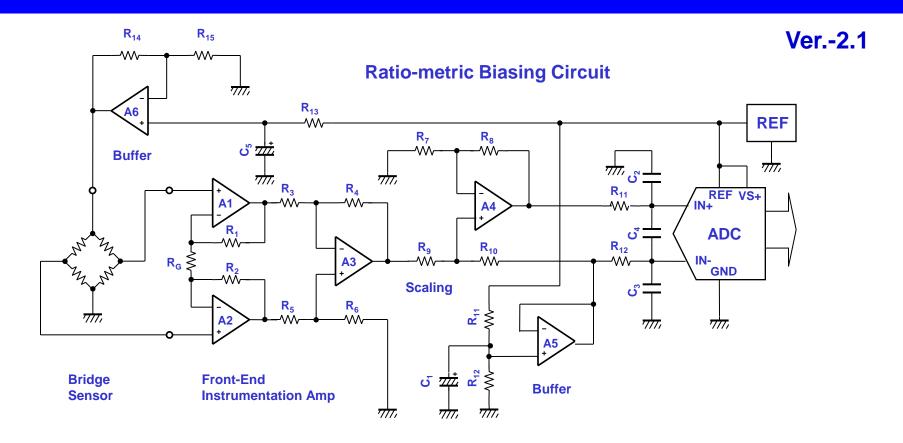
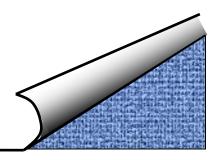
Let's learn Signal Chain セッション1:オペアンプの動作原理



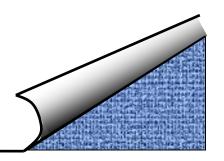
セッション・インデックス

- ♣ S1.1 予備知識
 - (1)オームの法則と各等式
 - (2)複合抵抗の扱い
- ♣ S1.2 オペアンプ
 - (1)オペアンプの概要
 - (2)オペアンプの使い方
 - (3)オペアンプの動作
- ♣ S1.3 オペアンプの基本応用回路
 - (1) 差動アンプ
 - (2)計測アンプ



♣ S1.1 予備知識

- (1)オームの法則と各等式
- (2)複合抵抗の扱い
- ♣ S1.2 オペアンプ
 - (1)オペアンプの概要
 - (2)オペアンプの使い方
 - (3)オペアンプの動作
- ♣ オペアンプの基本応用回路
 - (1)差動アンプ
 - (2)計測アンプ

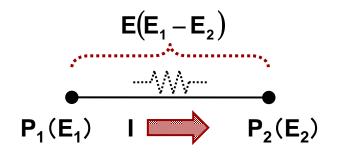


オームの法則と各等式:オームの法則とは

Georg S. Ohm氏

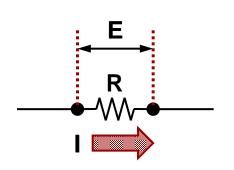
オーム氏いわく:

電流 I が流れている導体中の2点(P1, P2)間の電位差 E(E1-E2)は I に比例する. → E ∝ I



記事:後述する V=IR, I=V/R, R=V/Iなどの式は、オームの法則を等式で表したもので、 式自体はオームの法則ではない、オーム氏の主張はあくまでも上の吹き出しの文章.

オームの法則と各等式:オームの第1公式



電圧 E は電流 I 比例する.

● 比例定数を R とすれば E は I の関数...

ここで...

- E は電圧の量記号で単位は(V)→ボルト.
- I は電流の量記号で単位は(A)→アンペア.
- •R は抵抗の(電流の流れ難さを表す)量記号で単位は (Ω) \rightarrow オーム.

また, 式中の右辺は計算結果が電圧値であることから, 電圧項と呼ぶ.

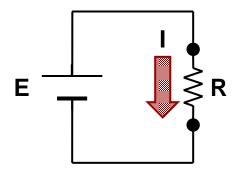
E=IR, V=IR の書き方が一般的

第1公式

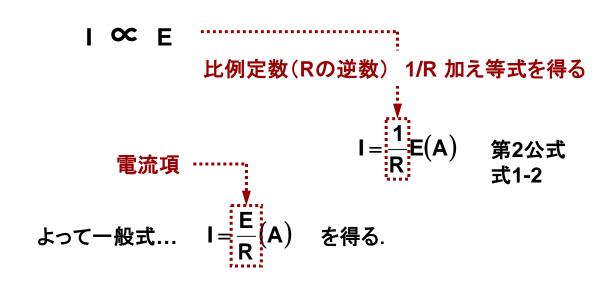
抵抗両端の電圧降下

オームの法則と各等式:オームの第2公式

起電力 E が与えられた場合...



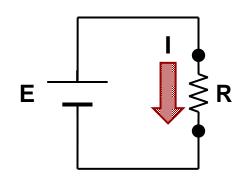
● 第1公式 V=IR の逆関数を考えると... 電位差が E である2点間に流れる電流 I は E に比例する.



また、式中の右辺は計算結果が電流値であることから、電流項と呼ぶ、

オームの法則と各等式:オームの第3公式

起電力 E と回路電流 I が与えられた場合...



● 第2公式 I=1/R×E の比例定数は抵抗の逆数 1/R であった. これを量記号 g として式にすれば...

$$g = \frac{1}{R}(S)$$
 第3公式 同時に $R = \frac{1}{g}$ 式1-4

ここで…g をコンダクタンス と呼び電流の流れ易さを表す量. 単位はジーメンス(S). また, 量記号に大文字 G も使われる.

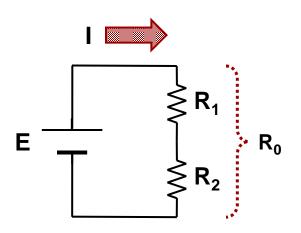
 $igoplus E \columnwidth E \columnwidth E \columnwidth I \text{ が既知なので、第2公式 } I = <math>\frac{1}{R}$ E から比例定数 $\frac{1}{R} = \frac{I}{E}$ を求め 互いの逆数から $R = \frac{E}{I}$ 式1-5 を得る. 計算結果が抵抗値 なので抵抗項と呼ぶ

● または, 第1公式 E = R ·I からも比例定数 R = E を得る

記事:式を電流の流れ易さgから導くか,流れ難さRから導くかの違いで互いに裏返し.

複合抵抗の扱い:合成コンダクタンスと合成抵抗

● 直列接続の合成コンダクタンス g₀ は, 各抵抗の和の逆数となる.

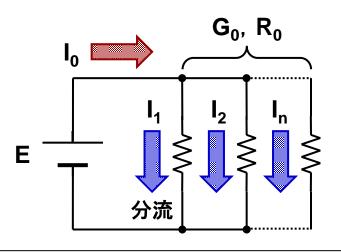


$$g_0 = \frac{1}{R_0} = \frac{1}{R_1 + R_2}$$
 式1-5

よって前出の式1-4 "R=1/g" に代入すれば...

$$R_0 = \frac{1}{g_0} = \frac{1}{\frac{1}{R_1 + R_2}} = R_1 + R_2$$
 $\sharp 1-6$

● 並列接続の合成コンダクタンスは G₀ は, 各コンダクタンスの和となる.



よって前出 式1-4 に代入すれば...

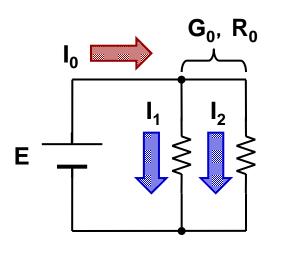
$$R_0 = \frac{1}{g_0} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N}}$$
 $\sharp 1-8$

複合抵抗の扱い:抵抗2個による並列接続

● 抵抗2の合成抵抗は R₀ = $\frac{R_1 \cdot R_2}{R_1 + R_2}$ 式1-9 …と表せる.

これを証明するため,前出の式1-7を用いて...

抵抗2個の並列接続



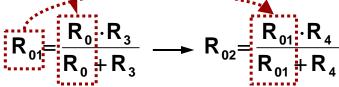
$$g_0 = \frac{1}{R_1} + \frac{1}{R_2}$$
 とする.

次に前出の式1-4 "R=1/g" に代入すれば...

$$R_0 = \frac{1}{g_0} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}} = \frac{1}{\frac{R_2 + R_1}{R_1 \cdot R_2}}$$

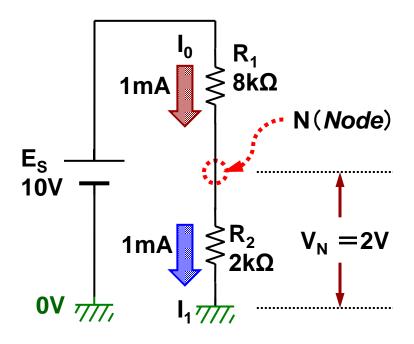
$$= \frac{R_1 \cdot R_2}{R_1 + R_2}$$
よって、式1-9を得る.

● 抵抗3個以上の並列合成抵抗を電卓で計算する場合は、 並列の並列を求めながら順次計算すればよい。



複合抵抗の扱い:例題1(ノード電圧を求める)

抵抗の直列接続による分圧回路



記事:特記なきグランド電位は0V. ここでは,起電力をE,ノード電圧をV_Nに統一する.単位はいずれも(V). ① 電流I₀/I₁を求める.

$$I_0 = \frac{E_s}{R_1 + R_2} = \frac{10V}{8k\Omega + 2k\Omega} = 1 \text{(mA)} \quad 式1-10$$

分流回路が無いので...

$$I_0 = I_1$$
 $\therefore I_1 = 1mA$

② ノードNの電圧V_Nを求める.

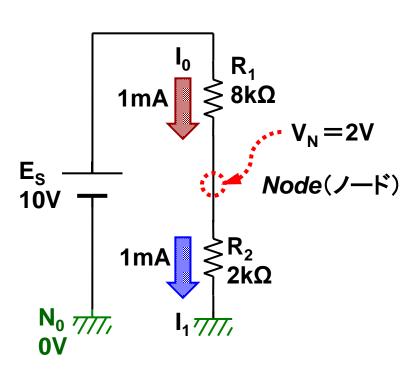
$$V_N = I_1 \cdot R_2 = 1$$
mA $\times 2$ k $\Omega = 2$ (V) 式1-11 電圧項 R₂両端の電圧降下

あるいは...

$$V_{N} = E_{S} - I_{0} \cdot R_{1}$$
$$= 10V - 1mA \times 8k\Omega$$
$$= 10V - 8V = 2(V)$$

複合抵抗の扱い:例題2(分圧比を求める)

抵抗の直列接続による分圧回路



① 前出の式1-11に式1-10を代入し式1-12Aを得る.

$$I_1 = \frac{E_s}{R_1 + R_2} = \frac{10V}{8k\Omega + 2k\Omega} = 1mA$$
 前出の式1-10

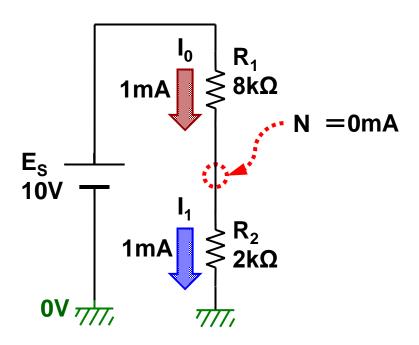
$$V_{N} = I_{1} \cdot R_{2} = \frac{E_{S}}{R_{1} + R_{2}} R_{2} \qquad \text{$\pm 1-12A$}$$

② 抵抗の量記号 R をまとめると分圧比が求まる.

複合抵抗の扱い:例題3(ノード電流の和が0とは)

Point-1:分流回路のないノードNの電流の和は0

抵抗の直列接続による分圧回路



電池Esから流れ出す電流

ノードNにおける電流の和は...

実際の回路電流は...

$$1mA + (-1mA) = 0mA$$

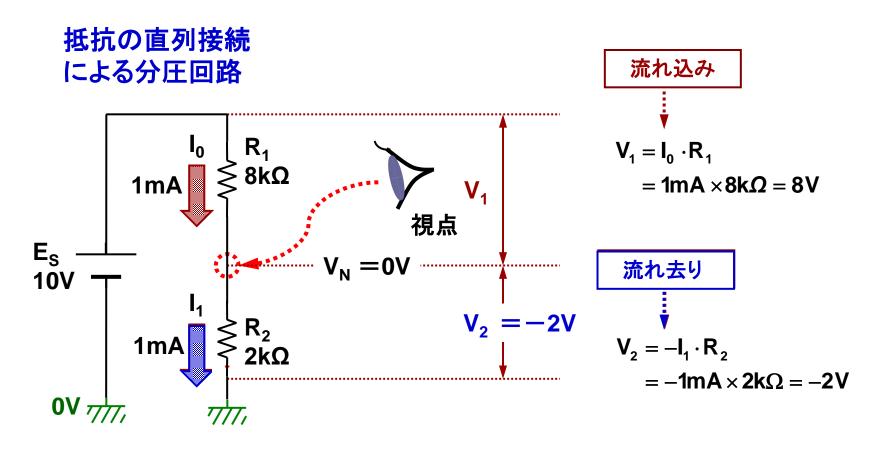
ここで....

+は流れ込みで、一は流れ出しを表す.

すなわち、Nにおける電流0mAとは、 流入と流出が等しい状態を意味する.

複合抵抗の扱い:例題4(ノードから見た電圧降下)

Point-2: 視点を変えると電圧・電流の符号が変わる.



記事:ノードNを中心に回路の動作を解析する場合は、電圧・電流の極性も読み替える.

複合抵抗の扱い:例題5,(抵抗の直・並列接続)

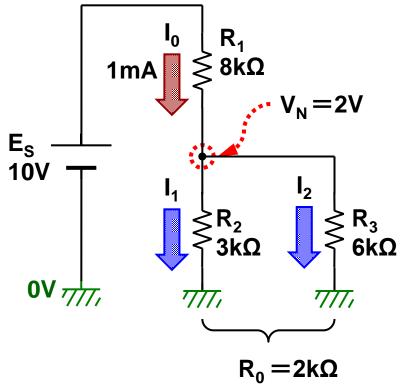
① 合成抵抗Roを求める

② 全電流10を求める

抵抗の直・並列接続 による分圧回路

$$R_0 = \frac{R_2 \cdot R_3}{R_2 + R_3}$$
$$= \frac{3k\Omega \times 6k\Omega}{3k\Omega + 6k\Omega} = 2k\Omega$$

$$I_0 = \frac{E_S}{R_1 + R_0}$$
$$= \frac{10V}{8k\Omega + 2k\Omega} = 1mA$$



- ③ ノードNの電圧 V_N を求める $V_N = E_S I_1 \cdot R_1$ = 10V 8V = 2V
- ④ 電流I₁を求める

$$I_1 = \frac{V_N}{R_2} = \frac{2V}{3k\Omega} = 0.6667 \text{mA}$$

⑤ 電流12を求める

$$I_2 = \frac{V_N}{R_a} = \frac{2V}{6k\Omega} = 0.3333mA$$

合計 1mA

♣ S1.1 予備知識

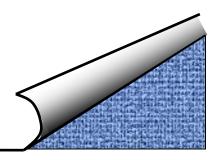
- (1)オームの法則と各等式
- (2)複合抵抗の扱い

♣ S1.2 オペアンプ

- (1)オペアンプの概要
- (2)オペアンプの使い方
- (3)オペアンプの動作

♣ オペアンプの基本応用回路

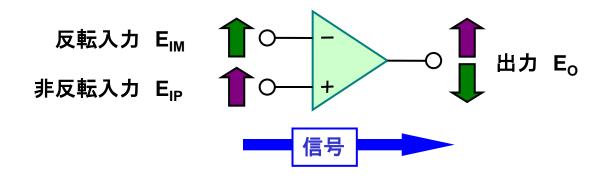
- (1)差動アンプ
- (2)計測アンプ



オペアンプの概要:オペアンプとは(その1)

オペレーショナル・アンプリファイア(オペアンプ)とは、

2つの入力と、1つの出力を持ったアンプ



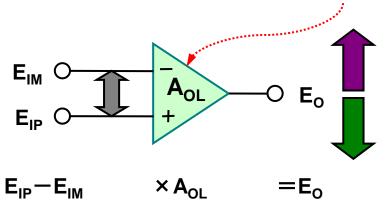
- ●記号"一"は反転入力, 記号"+"は非反転入力. と呼ばれ,入力信号に対する出力信号の極性の関係を表す.
- ●反転入力に正の電圧を入れると出力は負に振れる.
- ●非反転入力に正の電圧を入れると出力は正に振れる.

記事:原則として,アナログ回路では信号の流れが左から右になるように図面を書く.

オペアンプの概要:オペアンプとは(その2)

Point-1:オペアンプは、2つの入力の差電圧を増幅する.

A_{OL}の範囲 60dB~140dB(1×10³~1×10⁷倍)



式に直すと $E_o = (E_{IP} - E_{IM})A_{OL}$ 式1-15

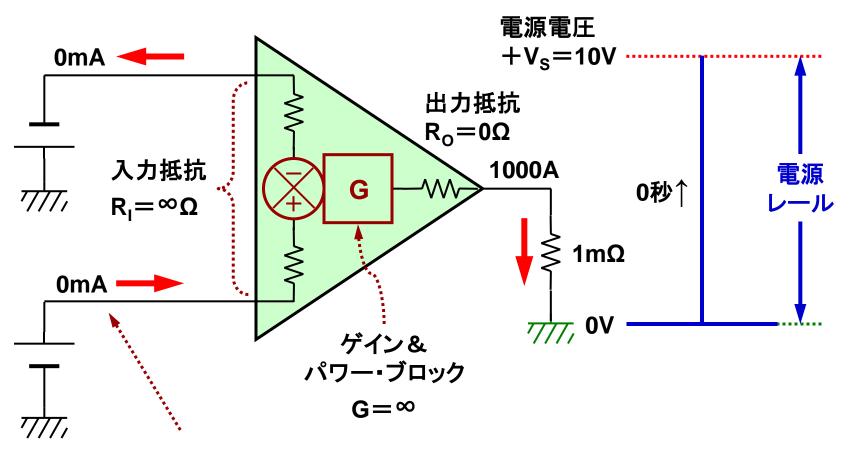
ここで、A_{OL} はオペアンプの持つオープン(開)ループ・ゲイン ↑

俗語で、裸のゲインと呼ぶこともある.

記事:
$$A_{OL} = 20Log_{10} \left(\frac{E_O}{E_{IP} - E_{IM}} \right) (dB)$$
 \longrightarrow $A_{OL} = 10^{\frac{dB}{20}} (倍)$

オペアンプの概要:理想オペアンプの性能

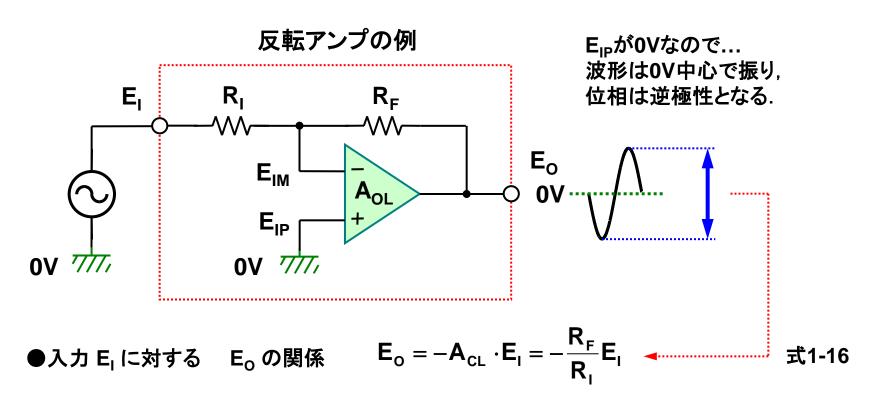
Point-2:全ての性能・動作において誤差要因や制限がない.



記事:オペアンプの入力へ流入・流出する電流を入力バイアス電流 と呼ぶ(記号=I_B).

オペアンプの使い方:反転アンプ

Point-3:オペアンプは、2つの抵抗の比 R_F/R_I でゲインを設定して使う.

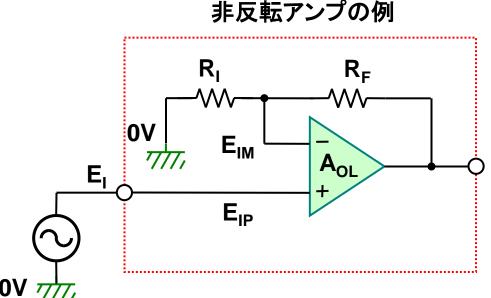


ここで、 A_{CL} は R_F/R_I で定まるクローズド(閉)ループ・ゲイン

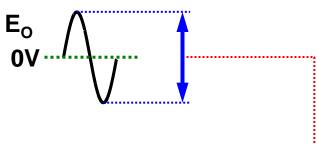
記事:式1-16のように,入力 E_Iに対する出力 E₀の関係を表す式を伝達式と呼ぶ.

オペアンプの使い方:非反転アンプ

Point-4: 入力 E₁ と出力 E₀ を同極性とするには非反転入力を使う.



 $E_I = E_{IP}$ なので、位相は同極性となる、 振幅は反転ゲイン R_F/R_I にプラスして R_I/R_I (=1)分だけ大きくなる.

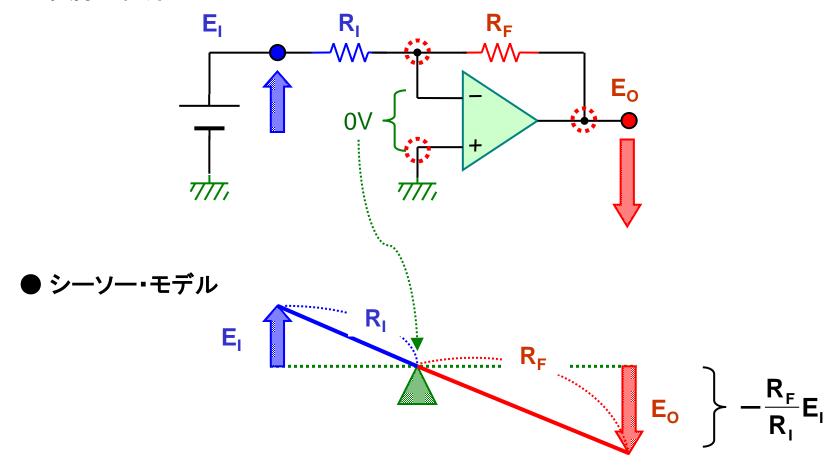


●入力 E_I に対する E_O の関係 E_O = A_{CL} ·E_I = $\frac{\mathsf{R_I} + \mathsf{R_F}}{\mathsf{R_I}} \mathsf{E_I} = \left(1 + \frac{\mathsf{R_F}}{\mathsf{R_I}}\right) \mathsf{E_I}$ 式1-17

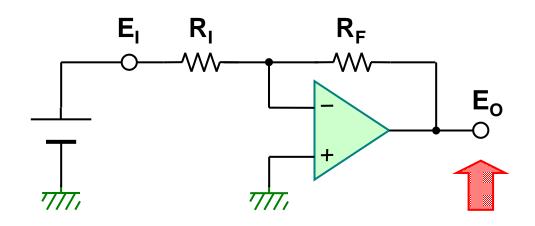
オペアンプの動作: 反転アンプの振る舞い

オペアンプ出力 E_0 は -INが +INと電圧が等しくなる方向に振れる.

● 実際の回路



オペアンプの動作: 反転アンプの伝達式



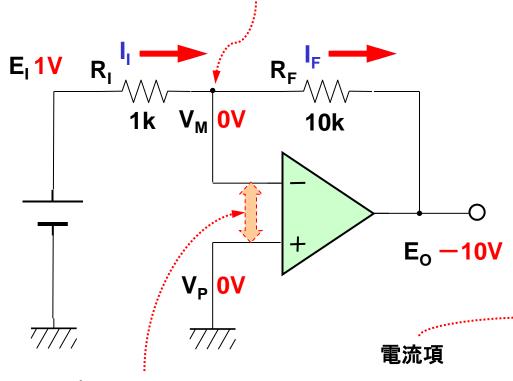
反転アンプの伝達式は、なぜ $E_o = -\frac{R_F}{R_I}E_I$ になるのか?

ちなみに、 $E_0 \geq E_1 \hat{e}$ 除去したものを $G = -\frac{R_F}{R_I}$ 式1-18 ゲイン式と呼ぶ.

記事:本トレーニングでは、コンダクタンスの量記号を"g"としゲインの量記号を"G"とする.

オペアンプの動作: 反転アンプの伝達式を導く

電流加算点 SJ点(Summing Junction)



オペアンプの動作が正常なら $V_M = V_P (バーチャル・ショート)$ となるよう E_O が変化

V_M=0V が成立するにはSJ点の 電流は0mAでなければならない

$$I_1 + (-I_F) = 0 (mA)$$

式1-19

$$I_{l} = \frac{E_{l}}{R_{l}}$$

式1-20

$$I_{F} = \frac{-E_{O}}{R_{E}}$$

式1-21

式1-15~式1-21の関係より

$$\frac{\mathsf{E}_{\mathsf{I}}}{\mathsf{R}_{\mathsf{I}}} + \left(-\left(\frac{-\mathsf{E}_{\mathsf{O}}}{\mathsf{R}_{\mathsf{F}}}\right)\right) = \mathsf{O}(\mathsf{m}\mathsf{A}) \qquad \mathbf{\sharp} \mathsf{1-22}$$

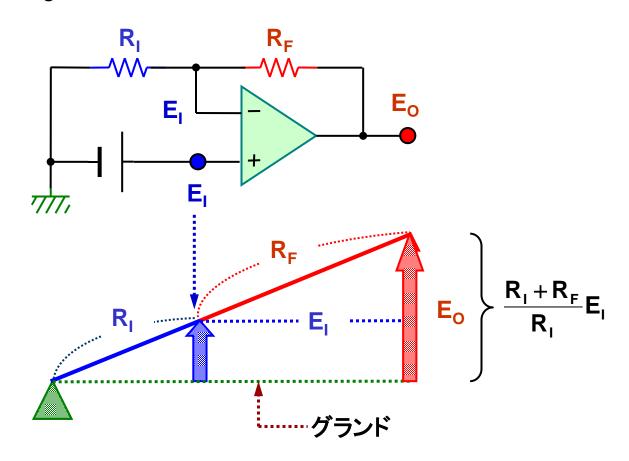
よって反転アンプの伝達式は

$$E_{o} = -\frac{R_{F}}{R_{I}}E_{I}$$

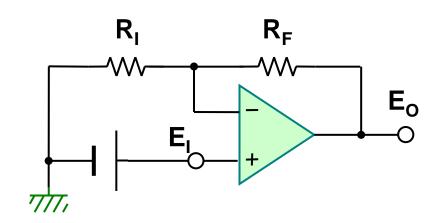
$$= -\frac{10k\Omega}{1k\Omega}1V = -10(V)$$

オペアンプの動作: 非反転アンプの振る舞い

オペアンプ出力EoはーINが+INと電圧が等しくなる方向に振る.



オペアンプの動作: 非反転アンプの伝達式

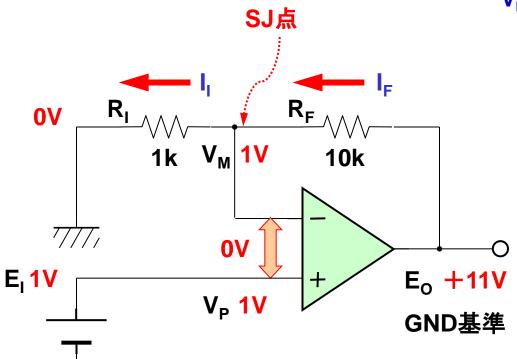


非反転アンプの伝達式は、なぜ $E_o = \frac{R_F + R_I}{R_I} E_I$ になるのか?

ゲイン式

$$G = \frac{R_F + R_I}{R_I} = 1 + \frac{R_F}{R_I}$$
 $\pm 1-24$

オペアンプの動作:非反転アンプの伝達式を導く



V_P-V_M=0V が成立するにはSJ点=0mA

$$\left(-I_{l}\right)+I_{F}=\mathbf{0}(\mathbf{m}\mathbf{A})$$

$$I_1 = \frac{E_1}{R_1}$$

$$I_F = \frac{E_O - E_I}{R_F}$$

式1-27

式1-25~式1-27の関係より

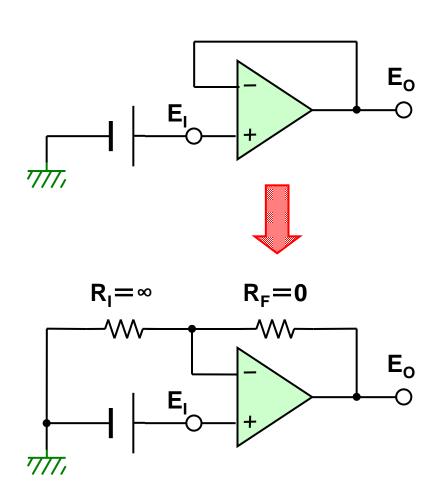
$$\left(-\left(\frac{\mathsf{E}_1}{\mathsf{R}_1}\right)\right) + \frac{\mathsf{E}_0 - \mathsf{E}_1}{\mathsf{R}_F} = \mathsf{0}(\mathsf{mA}) \qquad \pm \mathsf{1-28}$$

よって非反転アンプの伝達式は

$$E_{o} = \frac{R_{F}E_{I} + R_{I}E_{I}}{R_{I}} = \frac{R_{F} + R_{I}}{R_{I}}E_{I}$$
 式1-29
$$= \frac{10k\Omega + 1k\Omega}{1k\Omega}1V = 11(V)$$

オペアンプの動作:ボルテージ・フォロアの場合

ボルテージ・フォロアのゲイン(非反転)を求める.



非反転アンプの伝達式において

下段の図のように...

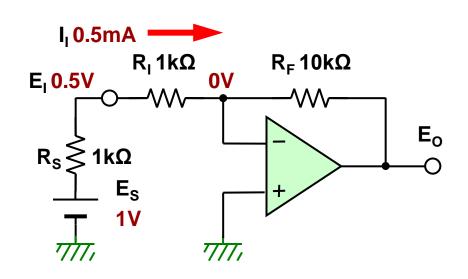
$$R_F = 0\Omega(>=--)$$

…と考えれば

$$E_0 = \frac{R_F + R_I}{R_I} E_I$$
$$= \frac{0\Omega + \infty\Omega}{\infty\Omega} E_1$$
$$= E_I$$

$$G = +1$$

オペアンプの動作:ボルテージ・フォロアの効用



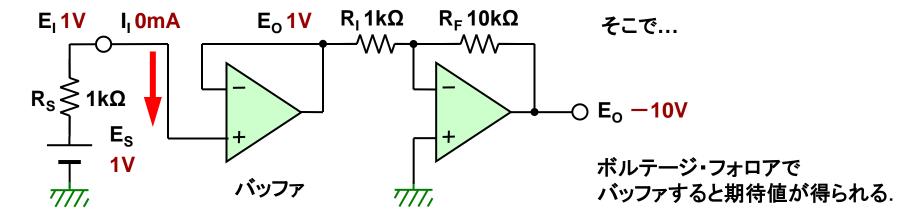
左図のアンプ回路の入力抵抗は $1k\Omega$. 信号に出力抵抗 R_s があると...

$$E_{I} = E_{S} - I_{I} \cdot R_{S} = E_{S} - \frac{R_{S} \cdot E_{S}}{R_{S} + R_{I}} = 0.5V$$

よって, 出力電圧 Eo は...

$$\mathsf{E_0} = -\frac{\mathsf{R_F}}{\mathsf{R_I}}\mathsf{E_I} = -5\mathsf{V}$$

…のように、期待値の-10Vにはならない.



♣ S1.1 予備知識

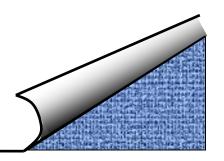
- (1)オームの法則と各等式
- (2)複合抵抗の扱い

♣ S1.2 オペアンプ

- (1)オペアンプの概要
- (2)オペアンプの使い方
- (3)オペアンプの動作

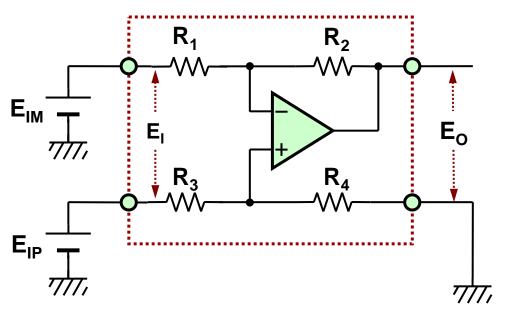
▲ オペアンプの基本応用回路

- (1)差動アンプ
- (2)計測アンプ



差動アンプ:書籍に見られる簡易伝達式

差動アンプは、2つ電圧入力の差電圧を求める回路.



もし R₁=R₃, R₂=R₄なら 差動アンプの伝達式は...

$$E_0 = \frac{R_2}{R_1} (E_{IP} - E_{IM}) = \frac{R_2}{R_1} E_I$$
 = \$\frac{\pi}{1-30}\$

回路のゲイン式は...

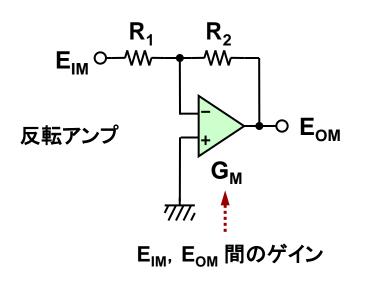
$$G = \frac{R_2}{R_1}$$
 式1-31
もしくは $G = \frac{R_2 + R_4}{R_4 + R_2}$ 式1-32

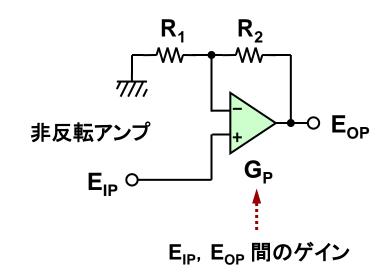
式1-29, 式1-30は書籍に見られる簡易式. こうした式を, 吟味しないで利用する習慣をつけると...

回路の動作概念が理解できない. = 問題が起きたとき何が悪いのか判定できない.

差動アンプ:式による分析(その1)

単に反転ゲインと非反転ゲインを合成すると、EIP=EIMでも出力がゼロにならない.





$$\mathsf{E}_{\mathsf{OM}} = -\frac{\mathsf{R}_2}{\mathsf{R}_1} \mathsf{E}_{\mathsf{IM}} \qquad \mathbf{\sharp} \mathsf{1-30}$$

$$G_{M} = -\frac{R_{2}}{R_{1}}$$
 $\pm 1-32$

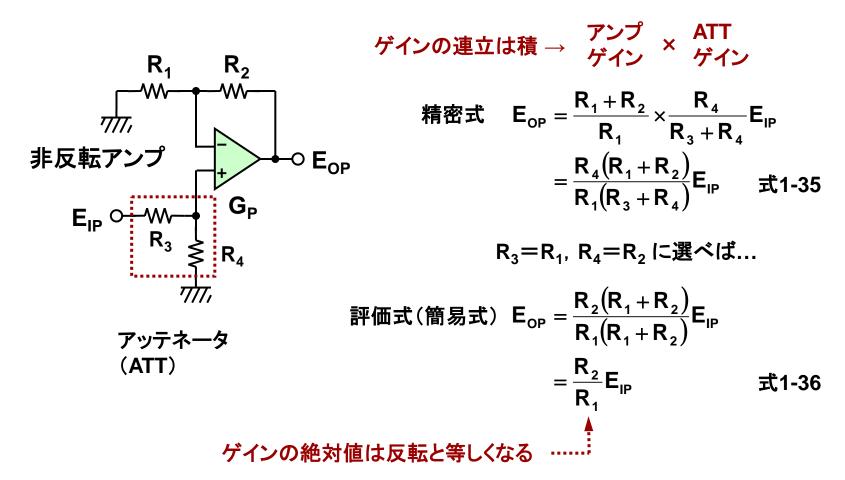
$$E_{OP} = \frac{R_1 + R_2}{R_1} E_{IP} = 1 + \frac{R_2}{R_1} E_{IP}$$
 式1-33

$$G_{P} = \frac{R_{1} + R_{2}}{R_{1}} = 1 + \frac{R_{2}}{R_{1}}$$
 $\sharp 1-34$

このように、ゲイン項の絶対値が等しくない

差動アンプ:式による分析(その2)

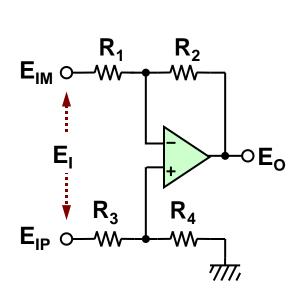
差動アンプは E_{IP} 側に分圧器(ATT)を入れてトータル・ゲインを調整している.



記事:簡易式は式のエッセンス. ゲインなどの比較には役立つが, 基本あっての評価式である.

差動アンプ:式による分析(その3)

反転と非反転のゲインを合成する.



精密式
$$E_0 = G_P E_{IP} + G_M E_{IM}$$

$$= \frac{R_4 (R_1 + R_2)}{R_1 (R_3 + R_4)} E_{IP} + \left(-\frac{R_2}{R_1}\right) E_{IM}$$

$$= \frac{R_4 (R_1 + R_2) E_{IP} - R_2 (R_3 + R_4) E_{IM}}{R_1 (R_3 + R_4)}$$
 式1-36

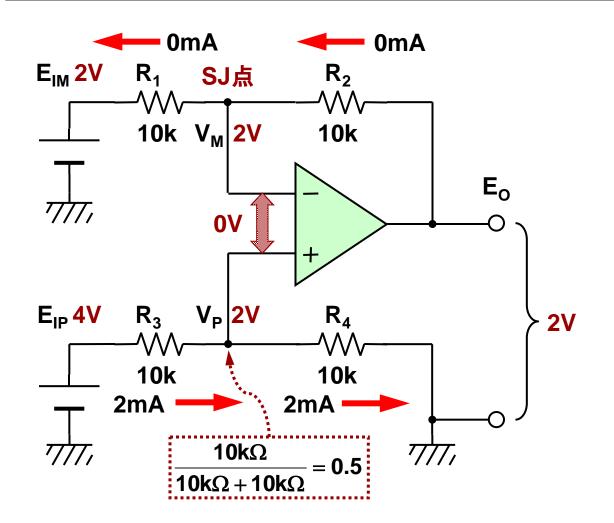
評価式
$$E_0 = \frac{R_2(R_1 + R_2)E_{IP} - R_2(R_1 + R_2)E_{IM}}{R_1(R_1 + R_2)}$$

$$= \frac{R_2(R_1 + R_2)(E_{IP} - E_{IM})}{R_1(R_1 + R_2)} = \frac{R_2}{R_1}E_{I}$$

抵抗比の観点から、同時に… $E_0 = \frac{R_2 + R_4}{R_4 + R_5} E_1$ 式1-37

式1-29と式1-30と同じ簡易式が得られ、式が自分のものとなる

差動アンプ, ノード電圧から動作を確認



前出の式1-28から...

$$\begin{split} & \boldsymbol{E}_0 = \frac{\boldsymbol{R}_2}{\boldsymbol{R}_1} \big(\boldsymbol{E}_{IP} - \boldsymbol{E}_{IM} \big) \\ & = \frac{10 k \Omega}{10 k \Omega} \big(4 \boldsymbol{V} - 2 \boldsymbol{V} \big) \\ & = 2 \big(\boldsymbol{V} \big) \end{split}$$

…となるかを調べる.

入力の平均値を Vc とすれば...

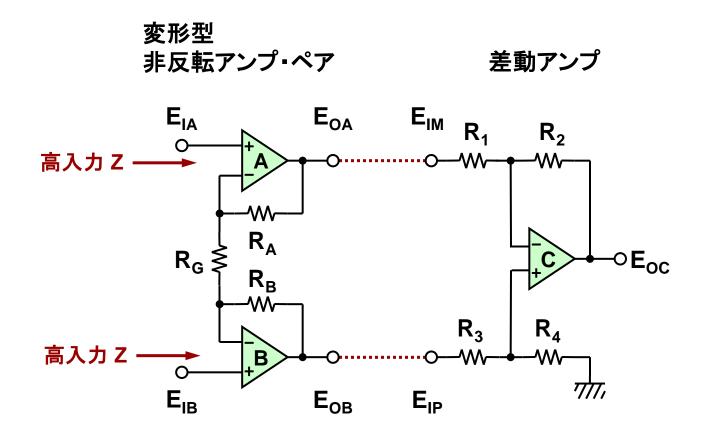
$$V_{c} = \frac{E_{IP} + E_{IM}}{2}$$

$$= \frac{4V + 2V}{2} = 3(V)$$

記事: 平均値 V_c を同相モード電圧と呼び、差動アンプはこの V_c 成分を除去する.

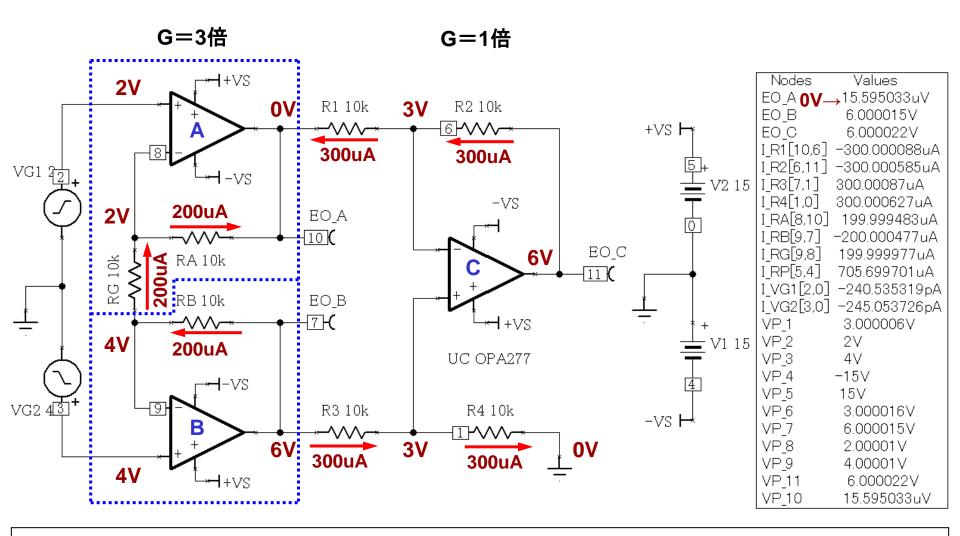
計測アンプ:前段バッファと差動アンプの2段構成

計測アンプとは... 非反転アンプで差動アンプをバッファしたアンプ構成を指す.



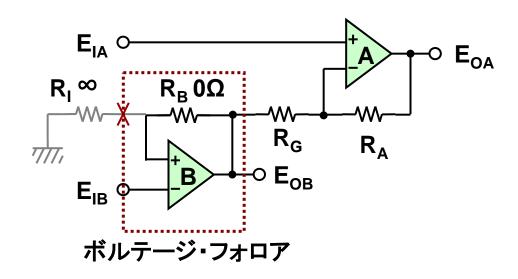
計測アンプ:動作のシミュレーション結果

アンプ A を中心に見ると, アンプ B はボルテージ・フォロアと見なせる.



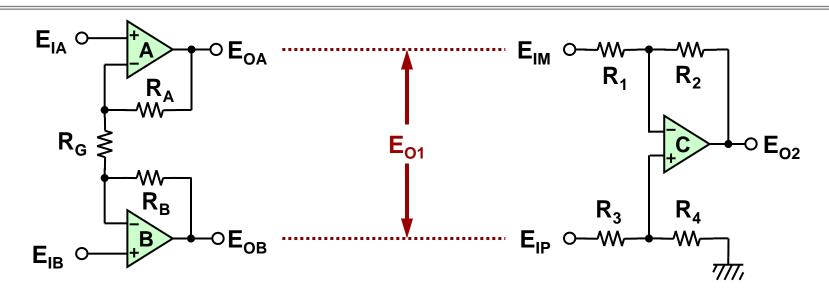
計測アンプ:変形型 非反転アンプ・ペアの解析

分かりやすくするため、右のように回路を変形.



$$E_{OB} = \left(1 + \frac{R_B}{R_I}\right) E_{IB}$$
 式1-38 よって、アンプAを中心に見れば
$$= \left(1 + \frac{0}{\infty}\right) E_{IB}$$
 $E_{OA} = \left(1 + \frac{R_A}{R_G}\right) E_{IA} - \frac{R_A}{R_G} E_{IB}$ 式1-38
$$= E_{IB}$$

計測アンプ: 非反転アンプ・ペアの伝達式

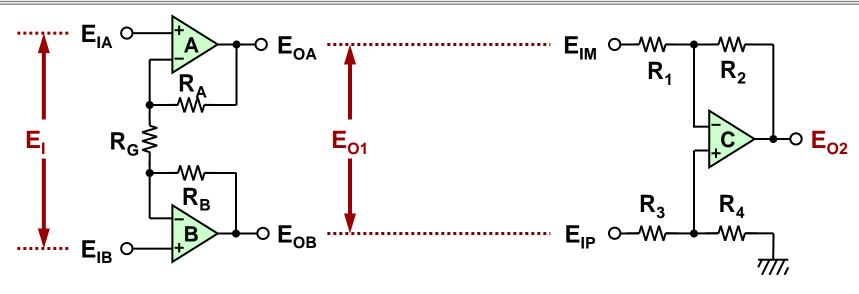


それぞれのアンプを中心とした式

式1-40と式1-41の合成式が非反転アンプ・ペアの伝達式

$$\begin{split} E_{OA} = & \left(1 + \frac{R_A}{R_G} \right) E_{IA} - \frac{R_A}{R_G} E_{IB} & \vec{\pm} 1\text{-}40 \\ & = \frac{\left(R_A + R_B + R_G \right) E_{IB} - \left(R_A + R_B + R_G \right) E_{IA}}{R_G} \\ E_{OB} = & \left(1 + \frac{R_B}{R_G} \right) E_{IB} - \frac{R_B}{R_G} E_{IA} & \vec{\pm} 1\text{-}41 \\ & = \left(1 + \frac{R_A + R_B}{R_G} \right) \left(E_{IB} - E_{IA} \right) & \vec{\pm} 1\text{-}42 \end{split}$$

計測アンプ:総合伝達式



$$E_{O1} = E_I \left(1 + \frac{R_A + R_B}{R_G} \right)$$

$$E_{O2} = (E_{OB} - E_{OA}) \frac{R_4(R_1 + R_2) - R_2(R_3 + R_4)}{R_1(R_3 + R_4)}$$

ここで,
$$R_1 = R_3 = R_1$$
, $R_2 = R_4 = R_F$ とすれば...

$$E_{O2} = \frac{R_F(R_I + R_F)(E_{IP} - E_{IM})}{R_I(R_I + R_F)} = E_{O1} \frac{R_F}{R_I}$$

よって総合伝達式は
$$E_{O2} = E_I \left(1 + \frac{R_A + R_B}{R_G} \right) \left(\frac{R_F}{R_I} \right)$$
 式1-43

抵抗誤差はCMRRに関与しない。

多くの 計測アンプIC は R_{F/}R_I=1

セッション1 終わり

お疲れ様でした.

