Let's learn Signal Chain

セッション 5:オペアンプ性能のシミュレーション(前半)

セッション・インデックス(前半)

- ♣ S5.1 入力部: DC性能のシミュレーション
 - (1)入力バイアス電流I_B・オフセット電流I_{os}
 - (2)入力オフセット電圧Vos
- ♣ S5.2 入力部: AC性能のシミュレーション
 - (1)同相モード・ゲイン対周波数
 - (2)CMR(同相モード除去)対周波数を見る
- **↓ S5.3 ゲイン段:AC性能のシミュレーション**
 - (1)反転アンプの周波数特性
 - (2)反転アンプのゲイン 対 周波数特性
 - (3)反転アンプの位相対周波数
 - (4)波形で見る位相シフト
 - (5)反転アンプのゲイン 対 位相特性
 - (6)開ループ・ゲインを見る

♣ S5.1 入力部: DC性能のシミュレーション (1)入力バイアス電流I_B・オフセット電流I_{os} (2)入力オフセット電圧V_{os}

- ♣ S5.2 入力部: AC性能のシミュレーション (1)同相モード・ゲイン対周波数
 - (2)CMR(同相モード除去)対周波数を見る
- ♣ S5.3 ゲイン段: AC性能のシミュレーション

(1)反転アンプの周波数特性
(2)反転アンプのゲイン 対 周波数特性
(3)反転アンプの位相 対 周波数
(4)波形で見る位相シフト
(5)反転アンプのゲイン 対 位相特性
(6)開ループ・ゲインを見る

入力部DC性能のシミュレーション:評価回路

入力バイアス電流I_B・オフセット電流I_{os}:解析開始

Analysis T&M Tools Help			
ERC	① "DC Analysis"メニューから	🞬 Voltage ② 表が出現する 🛛 🔀	
	"Table of DC Results"を選択	I_IBM	99.999997nA
Mode Select Control Object		I_IBP	90.000003nA
Set Analysis Parameters	R1 1k VOU	I_R1[0,1]	50.349464pA
Oct Analysis Farameters	· · · · · · · · · · · · · · · · · · ·	I_R2[1,7]	-99.949648nA
<u>D</u> C Analysis	Calculate nodal voltages 🛉	I_R3[4,8]	1.0E+100A
<u>A</u> C Analysis 🔹 🕨	Table of DC results	I_VG1[4,0]	-90.000003nA
<u>T</u> ransient	<u>D</u> C Transfer Characteristic	VOUT	999.491445uV
Steady State Solver	Temperature Analysis	VP_1	-5.034946nV
<u>F</u> ourier Analysis		VP_2	15V
Noice Analysis	,	VP_3	-15V
Noise Analysis		VP_4	٥v
Options		VP_5	-5.034946nV
<u> </u>	BP VUSU	VP_6	٥v
VG10 ()		VP_7	999.491445uV
γ		VP_8	٥v
		VP_9	٥v
↓ ↓ IB_P 90n IB_M 100n ③ "Other Voltage"のチェックをはずす. ④ 必要に応じて数値を"txt"ファイルで吐き出す. ↓ Gancel → Help ↓ IFT			

入力バイアス電流 I_Bの影響:解析結果

入力オフセット電圧0Vにおける出力誤差 入力バイアス電流による誤差 RTO ゲイン 101倍 **Nodes** R2 100k VOUT R1 1k I IBM I_IBM I IBP VOUT **VP_1** 7S**VP 2 VP** 3 R3 0 VP 4 **VP** 5 VOS 0 **VP 6** VG1 0 VP 7 **VP_8**

IB M 100n

IBP 90n

Excelで加工した表

Values

100nA

90nA

15V

-15V

0V

0V

0V

0V

9.9949mV

-50.0123nV

-50.0123nV

9.9949mV

VP_9

記事:RTO(Refer to Output)=出力換算

入力バイアス電流 I_B:軽減抵抗の効果

入力バイアス電流 I_B:ゲイン設定抵抗の変更

入力バイアス電流の影響と周辺抵抗の値は比例関係

R1, R2, R3 を1桁下げた効果 RTO

入力オフセット電圧Vos:Vos=10mVを与える

高ゲイン回路では入力オフセット電圧が最も大きな誤差要因

Vosがわずか10mVでも論外の値となる

入力オフセット電圧Vos:定義に従いVosを求める

 S5.1 入力部: DC性能のシミュレーション (1)入力バイアス電流I_B・オフセット電流I_{os}
 (2)入力オフセット電圧V_{os}

♣ S5.2 入力部: AC性能のシミュレーション

(1)同相モード・ゲイン対周波数(2)CMR(同相モード除去)対周波数を見る

♣ S5.3 ゲイン段:AC性能のシミュレーション

(1)反転アンプの周波数特性

(2)反転アンプのゲイン対 周波数特性

(3)反転アンプの位相対周波数

(4)波形で見る位相シフト

(5)反転アンプのゲイン対位相特性

(6)開ループ・ゲインを見る

同相モード・ゲイン 対 周波数:評価回路

"Def_Amp_M"を開き、下図のように改造してください.

オペアンプをOPA177Eに変更.

記事: "Def_Amp_CMRR"でセーブ

同相モード・ゲイン 対 周波数: AC解析結果

① "Analysis"→"AC Analysis"→"AC Transfer Characteristic…"を実行.

INSTRUMENTS

同相モード・ゲイン対周波数、波高値の差

50Hzと100kHz波高値の差を波形で見る(同一目盛りを使用).

50Hz時の入力対出力波形

100kHz時の入力対出力波形

TEXAS

NSTRUMENTS

14

CMR(同相モード除去)対 周波数を見る:評価回路

回路に電圧モニタ・ピン(VCM)を追加.

これにより、CMRのカーブを表示させる設定が楽になる

CMR(同相モード除去)対 周波数を見る:カーブ追加の操作(1)

CMRカーブの表示は既存データ間の演算処理で行う

① "Analysis"→"AC Analysis"→"AC Transfer Characteristic…"を再実行.

CMR(同相モード除去)対 周波数を見る:カーブ追加の操作(2)

INSTRUMENTS

CMR(同相モード除去)対周波数を見る:カーブ追加の操作(3)

出現したグラフ.

⑨ CMRのカーブを残し他のカーブを削除.⑩ 最後に目盛りを整えて終了.

CMR(同相モード除去)対 周波数を見る:追加されたCMRカーブ

NSTRUMENTS

- S5.1 入力部: DC性能のシミュレーション
 (1)入力バイアス電流I_B・オフセット電流I_{os}
 (2)入力オフセット電圧V_{os}
- S5.2 入力部:AC性能のシミュレーション
 (1)同相モード・ゲイン対周波数
 (2)CMR(同相モード除去)対周波数を見る
- **↓ S5.3 ゲイン段:AC性能のシミュレーション**

(1)反転アンプの周波数特性
(2)反転アンプのゲイン 対 周波数特性
(3)反転アンプの位相 対 周波数
(4)波形で見る位相シフト
(5)反転アンプのゲイン 対 位相特性

(6)開ループ・ゲインを見る

反転アンプの周波数特性:評価回路

反転アンプの周波数特性:表示内容の設定

AC伝達特性の解析を行う方法と、開始時の条件設定.

反転アンプのゲイン 対 周波数特性:解析結果

閉ループ・ゲインの読み取り

カーソル"a"により, 閉ループ・ゲイン 60dB における帯域幅 1.12kHz at -3dB を読み取る.

反転アンプの位相対 周波数:解析結果

① "Analysis"メニューから "AC Transfer Characteristic..."を再実行

INSTRUMENTS

波形で見る位相シフト:信号設定

INSTRUMENTS

25

波形でみる位相シフト:表示範囲の設定

過渡解析の開始とグラフ Window の表示範囲の設定

波形で見る位相シフト: 波形の調整

Y軸(電圧)のレンジを調整し上下非対称の波形を整える.

現れた解析結果のグラフ

TEXAS

INSTRUMENTS

波形で見る位相シフト:Y軸の追加

Y軸を追加し信号波形が見えるようにする.

⑦ 開いたメニューから "Add new Y Axis"を選択.

信号波形(緑)が現れる

1Hzにおける位相差を読み取る.

TEXAS

INSTRUMENTS

記事:出力振幅の誤差10mVは波形の上下非対称(歪)によるもの.

波形で見る位相シフト:サイン波の瞬時値と位相

サイン波とは単位円を等速で回転するベクトルVが描く軌跡.

波形で見る位相シフト:1.12kHzにおける位相差

1.12kHzにおける位相差を読み取る.

INSTRUMENTS

反転アンプのゲイン 対 位相特性, 評価回路

パラメトリック解析によりゲイン対位相特性を見る.

反転アンプのゲイン 対 位相特性, 評価回路

抵抗定数をステップで変える操作.

反転アンプのゲイン対 位 相特性:定数リストの作成

③ ターゲット(R2)のパラメータ設定ボタンを押す.

④ "List"方式を選び"Set List"ボタンを押す

反転アンプのゲイン 対 位相特性:表示内容の設定

反転アンプのゲイン 対 位相特性:解析結果

ゲインに比例して、位相シフトが増大.

出現したグラフ Window

TEXAS

NSTRUMENTS

36

A

XC

В

X

A - B x: 0

開ループ・ゲインを見る:閉ループ・ゲイン対周波数を再解析

下記条件で再解析を行う.

開ループ・ゲインを見る: "Add Curves"の式を設定

開ループ・ゲインは SJ と VOUT の振幅の比から求まる.

Texas

INSTRUMENTS

開ループ・ゲインを見る:追加された開ループ・ゲインのカーブ

開ループ・ゲインは閉ループ・ゲインを変えても一定.

- ・開ループ・ゲインは負荷が一定であれば、
 ・開ループ・ゲインを変えても変わらない。
- これを確認するため、ゲイン20dBでの 開ループ・ゲインをAOL_20dBとして 追加してください。

