Let's learn Signal Chain

セッション 5:オペアンプ性能のシミュレーション(前半)

セッション・インデックス(前半)

- ♣ S5.1 入力部: DC性能のシミュレーション
 - (1)入力バイアス電流I_B・オフセット電流I_{OS}
 - (2)入力オフセット電圧Vos
- ♣ S5.2 入力部: AC性能のシミュレーション
 - (1)同相モード・ゲイン対周波数
 - (2) CMR (同相モード除去) 対周波数を見る
- ♣ S5.3 ゲイン段: AC性能のシミュレーション
 - (1)反転アンプの周波数特性
 - (2) 反転アンプのゲイン 対 周波数特性
 - (3)反転アンプの位相 対 周波数
 - (4)波形で見る位相シフト
 - (5) 反転アンプのゲイン 対 位相特性
 - (6) 開ループ・ゲインを見る

♣ S5.1 入力部: DC性能のシミュレーション

- (1)入力バイアス電流I_B・オフセット電流I_{OS}
- (2)入力オフセット電圧Vos
- **♣ S5.2 入力部: AC性能のシミュレーション**
 - (1)同相モード・ゲイン対周波数
 - (2) CMR (同相モード除去) 対周波数を見る
- ♣ S5.3 ゲイン段: AC性能のシミュレーション
 - (1)反転アンプの周波数特性
 - (2)反転アンプのゲイン 対 周波数特性
 - (3) 反転アンプの位相 対 周波数
 - (4)波形で見る位相シフト
 - (5) 反転アンプのゲイン 対 位相特性
 - (6) 開ループ・ゲインを見る

入力部DC性能のシミュレーション:評価回路

下図の回路を作成してください. 🔯 Offset_V – Schematic Editor Edit Insert View Analysis T&M Tools - Help-オペアンプは、"Semiconductors"タブにある オペアンプ選択ボックスのものを使用します. Basic (Switches (Meters (Sources Semiconductors (Spice Macros ゲイン 101倍 R2 100k VOUT R1 1k I IBM 入力オフセット電圧 0V VOS 0 記事: "Input_DC_Sim"でセーブ

IB M 100n

入力バイアス電流

IB P 90n

入力バイアス電流I_B・オフセット電流I_{OS}:解析開始

入力バイアス電流 I_B の影響:解析結果

入力オフセット電圧OVにおける出力誤差

入力バイアス電流による誤差 RTO

Excelで加工した表

Nodes	Values
I_IBM	100nA
I_IBP	90nA
VOUT	9.9949mV
VP_1	-50.0123nV
VP_2	15V
VP_3	-15V
VP_4	0V
VP_5	-50.0123nV
VP_6	0V
VP_7	9.9949mV
VP_8	0V
VP_9	0V

記事:RTO(Refer to Output)=出力換算

入力バイアス電流 I_B:軽減抵抗の効果

入力バイアス電流の影響を軽減した結果

R3 990Ω追加による効果 RTO 残りの誤差成分は入力オフセット電流

入力バイアス電流 I_B:ゲイン設定抵抗の変更

入力バイアス電流の影響と周辺抵抗の値は比例関係

100nA

90nA

15V

-15V

-8.91uV

-8.91uV

-8.91uV

0V

入力オフセット電圧Vos: Vos=10mVを与える

高ゲイン回路では入力オフセット電圧が最も大きな誤差要因

Vosがわずか10mVでも論外の値となる

Nodes	Values
I_IBM	100.0075nA
I_IBP	90.0025nA
VOUT	1.0096V
VP_1	9.986mV
VP_2	15V
VP_3	-15V
VP_4	0V
VP_5	9.986mV
VP_6	9.9911mV
VP_7	1.0096V
VP_8	-8.9103uV
VP_9	-8.9103uV

入力オフセット電圧Vos:定義に従いVosを求める

① "DC Analysis"→"DC Transfer Characteristics" "a"カーソル・ボタンを押してここを ドラッグするとカーソルが動く. ③ 解析結果Window ic Editor 🎇 Noname – DC result4 T&M Tools Help <u>Analysis</u> File Edit View Process Help ERC... € 200% -⊕ ⊝ Mode... Select Control Object 2.00-Set Analysis Parameters... cros. Calculate nodal voltages DC Analysis x: 9.9789m y: 2.2253m AC Analysis Table of DC results Transient... DC Transfer Characteristic 1.00-Steady State Solver... Temperature Analysis... Fourier Analysis Noise Analysis... Options... 0.00 ② VG1の設定 数值表示Window DC Transfer Characteristic y≒0のカーソル位置で -1.00x=-10mVがオフセット OK [V] Start value -20m M End value Cancel -2.00: 1000 Number of points Help -20.00m-15.00m-10.00m-5.00m0.00 Input voltage (V) VG1 Input Enable hysteresis run \DC result4/

----- X軸の解析データ数. 微妙な解析は1000に設定(カーソル移動が滑らかになる).

- ♣ S5.1 入力部: DC性能のシミュレーション
 - (1)入力バイアス電流I_B・オフセット電流I_{OS}
 - (2)入力オフセット電圧Vos
- ♣ S5.2 入力部: AC性能のシミュレーション
 - (1)同相モード・ゲイン対周波数
 - (2) CMR (同相モード除去) 対周波数を見る
- ♣ S5.3 ゲイン段: AC性能のシミュレーション
 - (1)反転アンプの周波数特性
 - (2) 反転アンプのゲイン 対 周波数特性
 - (3) 反転アンプの位相 対 周波数
 - (4)波形で見る位相シフト
 - (5) 反転アンプのゲイン 対 位相特性
 - (6) 開ループ・ゲインを見る

同相モード・ゲイン 対 周波数: 評価回路

"Def_Amp_M"を開き、下図のように改造してください.

オペアンプをOPA177Eに変更.

記事: "Def_Amp_CMRR"でセーブ

同相モード・ゲイン 対 周波数: AC解析結果

- ① "Analysis"→"AC Analysis"→"AC Transfer Characteristic..."を実行.
- ② 表示範囲の設定 10~1MHz

50Hzと100kHzの差

同相モードゲインが 65.5dB 上がる.

同相モード・ゲイン対周波数、波高値の差

50Hzと100kHz波高値の差を波形で見る(同一目盛りを使用).

50Hz時の入力対出力波形

100kHz時の入力対出力波形

CMR(同相モード除去)対 周波数を見る:評価回路

回路に電圧モニタ・ピン(VCM)を追加.

これにより、CMRのカーブを表示させる設定が楽になる

CMR(同相モード除去)対 周波数を見る:カーブ追加の操作(1)

CMRカーブの表示は既存データ間の演算処理で行う

① "Analysis"→"AC Analysis"→"AC Transfer Characteristic…"を再実行.

CMR(同相モード除去)対 周波数を見る:カーブ追加の操作(2)

CMR(同相モード除去)対 周波数を見る:カーブ追加の操作(3)

出現したグラフ.

- ⑨ CMRのカーブを残し他のカーブを削除.
- ⑩ 最後に目盛りを整えて終了.

CMR(同相モード除去)対 周波数を見る:追加されたCMRカーブ

V_{CM}が50Hzと100kHz におけるCMRの比較

131.3dB が 65.8dB と 65.5dB 下がっている

- **♣ S5.1 入力部: DC性能のシミュレーション**
 - (1)入力バイアス電流I_B・オフセット電流I_{OS}
 - (2)入力オフセット電圧Vos
- **♣ S5.2 入力部: AC性能のシミュレーション**
 - (1)同相モード・ゲイン対周波数
 - (2) CMR (同相モード除去) 対周波数を見る
- ♣ S5.3 ゲイン段: AC性能のシミュレーション
 - (1)反転アンプの周波数特性
 - (2) 反転アンプのゲイン 対 周波数特性
 - (3) 反転アンプの位相 対 周波数
 - (4)波形で見る位相シフト
 - (5) 反転アンプのゲイン 対 位相特性
 - (6) 開ループ・ゲインを見る

反転アンプの周波数特性:評価回路

"Inv_Amp.TSC"を開き, 下図のように改造してください.

負荷条件をデータ・シートに合わせる.

OPA277のボード線図

記事: "Inv_Amp_AOL_ACL"でセーブ

反転アンプの周波数特性:表示内容の設定

AC伝達特性の解析を行う方法と、開始時の条件設定.

反転アンプのゲイン 対 周波数特性:解析結果

閉ループ・ゲインの読み取り

カーソル"a"により、閉ループ・ゲイン 60dB における帯域幅 1.12kHz at -3dB を読み取る.

反転アンプの位相対 周波数:解析結果

① "Analysis"メニューから "AC Transfer Characteristic..."を再実行

INSTRUMENTS

波形で見る位相シフト: 信号設定

波形でみる位相シフト:表示範囲の設定

過渡解析の開始とグラフ Window の表示範囲の設定

④ 開いたダイアログからグラフ Window の表示範囲を設定.

•スタート: 1 (s) •ストップ: 2 (s)

波形で見る位相シフト: 波形の調整

Y軸(電圧)のレンジを調整し上下非対称の波形を整える.

現れた解析結果のグラフ

⑥ 開いたダイアログの"Scale"で調整.

• "Lower limit": -2 (V)

"Upper limit": 2 (V)

波形で見る位相シフト: Y軸の追加

Y軸を追加し信号波形が見えるようにする.

⑦ 開いたメニューから "Add new Y Axis"を選択. ⑥ 信号のグラフを右クリック.

> Add new X Axis Fourier Series... Modified components

Set page name.. Delete page

1.75

2.00

Text... Line Circle Properties...

1.50

Time (s)

信号波形(緑)が現れる

Moname - TR result6

2.00-

1.00

0.00

-1.00-

-2.00-

1.25

AC Phase2 (AC Bode2 (AC Ampli2), TR result6

File Edit View Process Help

波形で見る位相シフト: 1Hzにおける位相差

1Hzにおける位相差を読み取る.

- . ⑧ 信号の y 軸を±2mV に調整し 波高値を合わせる.
- ⑨ カーソル"a"を出力波形の最小値に, "b"を信号波形の最大値に合わせる

時間差0秒で両者の最大・最小値が 交わり、時間遅れのない位相差 -180° (反転)が確認できる.

記事:出力振幅の誤差10mVは波形の上下非対称(歪)によるもの.

波形で見る位相シフト: サイン波の瞬時値と位相

サイン波とは単位円を等速で回転するベクトルVが描く軌跡.

波形で見る位相シフト: 1.12kHzにおける位相差

1.12kHzにおける位相差を読み取る.

$$\phi = \frac{Q}{P} \times 2\pi (rad)$$
 $\Delta A = 20Log \left(\frac{A_2}{A_1}\right) (dB)$

 A_1 =989.5mV at 1Hz A_2 =690mV at 1.12kHz

反転アンプのゲイン 対 位相特性, 評価回路

パラメトリック解析によりゲイン対位相特性を見る.

反転アンプのゲイン 対 位相特性, 評価回路

抵抗定数をステップで変える操作.

反転アンプのゲイン対 位 相特性:定数リストの作成

③ ターゲット(R2)のパラメータ設定ボタンを押す. ④ "List"方式を選び"Set List"ボタンを押す

反転アンプのゲイン 対 位相特性:表示内容の設定

反転アンプのゲイン 対 位相特性:解析結果

ゲインに比例して, 位相シフトが増大.

出現したグラフ Window

G=1, -3dBにおける 周波数 対 位相シフト量

周波数帯域幅(-3dBまで)に関し G=60dB(1000倍)では 1.12kHz G=0dB(1倍)では, 707kHz … と格段に広がる.

開ループ・ゲインを見る: 閉ループ・ゲイン対周波数を再解析

下記条件で再解析を行う.

① グラフ Window の表示範囲を設定

• スタート: 10 mHz

• ストップ: 10 MHz

• ポイント数: 1000 (データ数)

• "Diagram": "Amplitude"

開ループ・ゲインを見る: "Add Curves"の式を設定

開ループ・ゲインは SJ と VOUT の振幅の比から求まる.

② "Add curves"ボタンを 押してノード番号を表示させる.

③ "Add curves"により開いたダイアログから "More"ボタンを押し、ノード番号を参照しながら 式を設定する → VOUT[4] (s) / VP_5[4] (s)

開ループ・ゲインを見る:追加された開ループ・ゲインのカーブ

開ループ・ゲインは閉ループ・ゲインを変えても一定.

- ・開ループ・ゲインは負荷が一定であれば、 閉ループ・ゲインを変えても変わらない。
- これを確認するため、ゲイン20dBでの 開ループ・ゲインをAOL_20dBとして 追加してください。

出現したグラフ Window

