Let's learn Signal Chain

セッション 6:オペアンプ性能のシミュレーション(後半)

セッション・インデックス(後半)

↓ S6.1 ゲイン段(続き):AC性能のシミュレーション

- (1)ミドル・ブルック法による位相余裕の解析
- (2) 位相余裕とステップ応答の比較
- (3)位相余裕とゲイン・ピーク
- (4) 位相余裕の改善例

↓ S6.2 出力段:ステップ応答のシミュレーション

(1)反転アンプのステップ応答
(2)絶対値回路におけるブレークの影響
(3)非反転アンプのステップ応答
(4)スルーレートとセトリング時間の比較
(5)有限スルーレートによる波形歪

セッション・インデックス(後半)

♣ S6.1 ゲイン段(続き):AC性能のシミュレーション

- (1)ミドル・ブルック法による位相余裕の解析
- (2)位相余裕とステップ応答の比較
- (3)位相余裕とゲイン・ピーク
- (4) 位相余裕の改善例

▲ S6.2 出力段:ステップ応答のシミュレーション

(1)反転アンプのステップ応答
(2)絶対値回路におけるブレークの影響
(3)非反転アンプのステップ応答
(4)スルーレートとセトリング時間の比較
(5)有限スルーレートによる波形歪

ミドル・ブルック法による位相余裕の解析: OPA627の特性

"Gain_Phase_OPA627.TSC"を開きAC解析を行う.

INSTRUMENTS

ミドル・ブルック法による位相余裕の解析:曲線の追加手順その1

グラフが出現したら、計算値の曲線を追加するため式をコピーする.

X

×

?

23

</

×

?

F

j 🗊

ミドル・ブルック法による位相余裕の解析:曲線の追加手順その2

曲線の追加ボタンを押して、出現したダイアログ・ボックスへ式を張り付ける.

ミドル・ブルック法による位相余裕の解析:曲線の追加手順その3

不要な曲線を消去しボード線図に仕上げる.

Texas Instruments

ミドル・ブルック法による位相余裕の解析: OPA627と637の比較

"Gain_Phase_OPA637.TSC"も同様に行い、ボード線図の比較をする.

TEXAS

NSTRUMENTS

位相余裕とステップ応答の比較:信号源設定

"Step_OPA627_637.TSC"を開き, 信号源の波形を設定.

位相余裕とステップ応答の比較:表示時間幅の設定

過渡解析メニューを選択し表示時間幅を設定.

位相余裕とゲイン・ピーク:表示帯域幅の設定

"Step_OPA627_637.TSC"にて両者のAC伝達特性を調べる.

位相余裕とゲイン・ピーク:同一ゲイン(G=+5)での解析結果

TEXAS

INSTRUMENTS

位相余裕の改善例:中点バッファに見られる容量性負荷

"Mid_Buffer_No_Comp_Tran"を開き, V_{MID}の過渡応答を見る.

位相余裕の改善例:容量性負荷の影響を調べる

"Mid_Buffer_No_Comp"を開き位相余裕を調査.

14

位相余裕の改善例:分離抵抗R_sと補正用R_F+C_Fで対応

"Mid_Buffer_Comp"を開き、位相余裕の改善度合いを調査.

15

位相余裕の改善例:改善結果の確認

"Mid_Buffer_Tran_Check"を開き, 改善具合を確認.

セッション・インデックス(後半)

S6.1 ゲイン段(続き): AC性能のシミュレーション (1)ミドル・ブルック法による位相余裕の解析 (2)位相余裕とステップ応答の比較 (3)位相余裕とゲイン・ピーク (4)位相余裕の改善例

↓ S6.2 出力段:ステップ応答のシミュレーション

(1)反転アンプのステップ応答
(2)絶対値回路におけるブレークの影響
(3)非反転アンプのステップ応答
(4)スルーレートとセトリング時間の比較
(5)有限スルーレートによる波形歪

反転アンプのステップ応答:信号設定(1)

"Inv_Amp_Step.TSC"を開き、ステップ入力に対するV_{SJ}を解析.

③ シグナル"単位ステップ"を選択し、右側の"・・・"ボタンを押す

INSTRUMENTS

反転アンプのステップ応答:信号設定(2)

設定により、任意波形のパルス"一般"を両極性から単極性へ編集.

⑤ パルス波形の編集

	10
振幅 #2 [V] (A2)	0
時間インターバル#1 [s] (T1)	1n
時間インターバル#2[s](T2)	100u
時間インターバル#3[s](T3)	500p
時間インターバル#4 [s] (T4)	500p
時間インターバル#5[s](T5)	100u
時間インターバル#6[s](T6)	1n
時間シフト[s] (TS)	50u

記号の意味と、単極性パルスへの設定値.

- A₁ 信号源 V_s のHigh側レベル:10V
- A₂ 信号源 V_s のLow 側レベル: 0V
- T₁, T₆ 立上り時間:1ns
 - * T₆は単極性なら0でも良い.
- T₃ + T₄ 立下り時間:1ns(0.5ns + 0.5ns)
- •パルス幅 T₂, T₅:100µs
- スタートの遅延: "時間シフト" T_s = 50µs

反転アンプのステップ応答:過渡解析の実行

🖪 過渡解析により波形で見る.

⑧ 過渡応答波形のダイアグラムWindowが開く

〇 0初期値

☑ 励起入力を描画

反転アンプのステップ応答:解析結果の考察

V_s」の仮想短絡(バーチャル・ショート)が一瞬ブレークし,時間と共に回復.

プレゼン用にグラフを修正:線の色と太さを調整

グラフの色と太さを変えて見やすくする方法.

線幅4で緑・青・栗色に変更したグラフ

プレゼン用にグラフを修正:グラフの目盛を調整

グラフの目盛を整える方法.

④ Y軸の目盛とタイトルの変更結果

<記事> MS明朝の標準フォントは、プレゼン資料として使うにはフォントの線が弱い.

プレゼン用にグラフを修正:グラフのラベル・数値を調整

ラベルと数値のフォントおよび大きさ(ポイント数)の設定方法.

⑥ フォントとPt数の変更結果

TEXAS

INSTRUMENTS

絶対値回路におけるブレークの影響:絶対値回路の動作原理

"Absolute_OPA277_DC"を開きDC解析の"節点電圧を計算"を実行.

 VO_1 が D2のV_F(順方向電圧) = -0.63Vだけ低くなり, 結果VI_2からD2のV_Fは除去されている.

絶対値回路におけるブレークの影響:絶対値回路の動作原理

スイッチを切り替えて、負電圧入力における"節点電圧の計算"を実行する.

VO_1の出力"+0.6V"に対してD2は逆方向(非導通)なのでVI_2 は 0V になる.

絶対値回路におけるブレークの影響:絶対値回路の動作原理

抵抗値を代数"R"の比で表したときの伝達式とグラフ.

$$V_{02} = -\left(\frac{R}{0.5R}V_{I2} + \frac{R}{R}V_{I1}\right) \qquad V_{I1} < 0 \quad \rightarrow \quad V_{I2} = 0 \qquad V_{02} = -(V_{I1})$$
$$= -(2V_{I2} + V_{I1}) \qquad V_{I1} > 0 \quad \rightarrow \quad V_{I2} = -V_{I1} \quad V_{02} = -(-V_{I1}) = V_{I1}$$

27

絶対値回路におけるブレークの影響:絶対値回路のDC伝達特性

INSTRUMENTS

絶対値回路におけるブレークの影響:過渡解析による波形観測

信号源をサイン波10kHzに、モニタ用電圧計(VI_1)のVOSを20mVに設定.

TEXAS INSTRUMENTS

絶対値回路におけるブレークの影響:過渡解析の結果

過渡解析の実施と結果.

⑤ サイン波(10kHz)の過渡解析結果が出現

絶対値回路におけるブレークの影響:波形を詳細に解析する手順

不要な波形の除去とV_{sJ}に対するX軸の追加.

VS, VI_2, VO_1を除去した波形

VSJに対するX軸の追加操作

ITEXAS

INSTRUMENTS

絶対値回路におけるブレークの影響:波形の詳細解析

オペアンプのスルーレート(SR)で決まるブレーク時間と影響度合い.

OPA277(SR=0.8V/µs)の過渡解析結果

OPA627(SR=55V/µs)の過渡解析結果

非反転アンプのステップ応答:評価回路

非反転アンプのステップ応答:信号設定

パルス波形の振幅とタイミング設定.

非反転アンプのステップ応答:過渡解析の結果

過渡解析の実施.

⑧ ステップ応答のグラフが出現

非反転ステップ応答:スルーレートの読取り(1)

目盛をズームインして、出力電圧(Y軸)が0Vと交差する時間(X軸)を求める.

- 1回目のタグを選択 この例では "TR result 2"
- ② x軸(時間)を 250µs~260µs にズーム
- ③ y軸(VOUT)を -1V~+1V にズーム
- ④ カーソル"a"のボタンを押して、出現した
 カーソル座標カラム "y"に0を記入し
 "Enter"キーを押す(以下同じ).
- ⑤ 同座標Windowに表示されたX軸の
 値 255.13µ(中心時間)をメモする

非反転ステップ応答:スルーレートの読取り(2)

スルーレートを求めるための開始点へ, カーソル"b"を合わせる.

⑥ カーソル"b" のボタンを押す.

⑦ カーソル"b"の座標カラム"x"に
 中心時間より0.5µs 前の値を記入
 255.13µ – 0.5µ = 254.63µ

A ×	255.13u	y: O	
x	254.63u	y: -436.62m	a⊷
A ×:	- B 496.24n	y: 436.62m	

⑧ 座標カラムの"y"に表示される 値は、出力電圧の開始値となる

非反転ステップ応答:スルーレートの読取り(3)

スルーレートを求めるための終止点へ, カーソル"a"を合わせる.

⑨ カーソル"a"の座標カラム"x"に
 中心時間より0.5µs 前の値を記入
 255.13µ + 0.5µ = 255.63µ

 (他) 座標カラムの"y"の差分(A-B)が, 1µs(dt)あたりの出力電圧の変化分 (dV) 879.87mV となる.

非反転ステップ応答:0.003%へのセトリング時間を読取る(1)

目盛をズームインして、カーソル"b"を入力が5Vになる時間(X軸)に合わせる.

NSTRUMENTS

非反転ステップ応答:0.003%へのセトリング時間を読取る(2)

セトリング値をあらかじめ把握し、カーソル"a"をセトリング時間へ合わせる.

非反転ステップ応答:0.003%へのセトリング時間を読取る(3)

カーソル座標から"Y軸"の差分(A-B)を読み取る.

スルーレートとセトリング時間の比較,評価回路

"Compe_OPA627_637.TSC"を開き,両者の比較を行う.

スルーレートとセトリング時間の比較,解析結果

有限スルーレートによる波形歪:事前設定

有限スルーレートによる波形歪: OPA277(1kHz)

低周波での位相遅れと波形歪

限界周波数の1/10以下の信号周波数なので、入/出力間の波形差が見えない.

有限スルーレートによる波形歪: OPA277 (14kHz)

有限スルーレートによる波形歪: OPA277 (30kHz)

お疲れ様でした.

