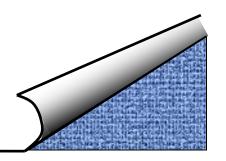

Let's learn Signal Chain データ・シート徹底理解による適切な製品選択



セッション・インデックス

- ♣ S10.1 データ・シートに記載される主な単位・記述
 - (1)基本単位と補助単位
 - (2)複合単位とデシベル表記
 - (3)上部欄外記述は後続スペックの前提条件
- **♣ S10.2 オペアンプのデータ・シート**
 - (1)DCスペック
 - (2)ACスペック
- **♣ S10.3 A/Dコンバータのデータ・シート**
 - (1)分解能の表記
 - (2)ドライブ条件
 - (3)システム性能
 - (4)サンプリング性能
 - (5)ダイナミック性能
- **★ S10.4 各ステージでの重要項目**

- ♣ S10.1 データ・シートに記載される主な単位・記述
 - (1)基本単位と補助単位
 - (2)複合単位とデシベル表記
 - (3)上部欄外記述は後続スペックの前提条件
- **♣** S10.2 オペアンプのデータ・シート
 - (1)DCスペック
 - (2) ACスペック
- **♣ S10.3 A/Dコンバータのデータ・シート**
 - (1)分解能の表記
 - (2)ドライブ条件
 - (3)システム性能
 - (4)サンプリング性能
 - (5)ダイナミック性能
- ♣ S10.4 各ステージでの重要項目

基本単位と補助単位

基本単位

呼び名	ボルト	アンペア	ワット	オーム	ヘルツ	セック	クーロン	ジーメンス
単位記号	V	Α	W	Ω	Hz	s, sec	С	s
物理量	電圧	電流	電力	抵抗 インピーダンス	周波数	時間	電荷	コンダクタンス

補助単位

呼び名	テラ	ギガ	メガ,メグ	丰口	デシ	ミリ	マイクロ	ナノ	ا ا	フェムト
記号	Т	G	М	K, k	d	m	μ	n	р	f
数値	10 ¹²	10 ⁹	10 ⁶	10 ³	10 ⁻¹	10 ⁻³	10 ⁻⁶	10^{-9}	10 ⁻¹²	10 ⁻¹⁵

<記事> 補助単位は3桁刻みで割り当てられている.

例: $k = 10^3 = 1000$, $m = 10^{-3} = 1/1000 = 0.001$

比率の単位

呼び名	パーセント	ピーピーエム	エスピーエス
記号	%	ppm	sps
数値	1/100	1/10 ⁶	サンプル/秒

<記事> ppmはパーツ・パー・ミリオンの略で100万分の1を表す. すなわち…1ppm = $1/10^6$ = 10^{-6} = 0.0001%

複合単位とデシベル(dB)表記

複合単位の一般的な記述方法 → 基本単位1/基本単位2

- ▶ オペアンプに見られる記述として...
 - ▶ 例1:V/µs(電圧/時間) → 1µsあたりの出力電圧の変化で、スルーレートに使用。
 - 例2:µV/℃(電圧/温度) → 1℃あたりの電圧変化で、入力オフセット電圧ドリフトに使用。
 - ▶ 例3:µV/V(電圧/電圧) → 1Vあたりの入力オフセット電圧変化で、電源変動除去に使用。
- 電圧源ICに見られる記述として...
 - 例1:ppm/℃(比率/温度) → 1℃あたりの出力電圧の変化. 出力を2.5V, 10ppmとすれば...
 2.5V×10×10⁻⁶/℃ = 25µV/℃
 - ▶ 例2:µV/mA(電圧/電流)→負荷電流1mAあたりの出力電圧の変化.
- デシベル(dB)表記は、2つ量の比率を表すのに広く使用される.
 - ▶ 例1: CMRR = 20 × Log₁₀(差動モード・ゲイン/コモンモード・ゲイン)(dB) → 80dBなど
 - ▶ 例2: 歪率 = $20 \times \text{Log}_{10}$ (歪レベル/信号レベル)(dB) \rightarrow 96dBなど 比率が1より小さいときは"ー"dBで、1より大きいときは符号なしのdBが一般的。

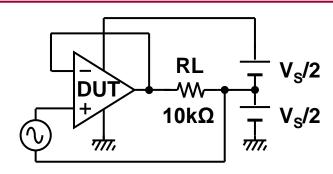
上部欄外記述は後続スペックの前提条件

上部欄外記述には、電源電圧範囲、温度範囲、負荷条件などが記述され、スペック表に特記条件が無い場合は、これらの条件が適用される。

OPA188/2188/4188の例

ELECTRICAL CHARACTERISTICS: High-Voltage Operation

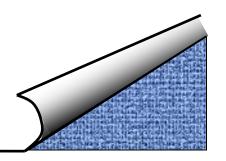
 $V_s = \pm 4 \text{ V to } \pm 18 \text{ V } (V_s = +8 \text{ V to } +36 \text{ V})$


Boldface limits apply over the specified temperature range, $T_A = -40^{\circ}\text{C}$ to +105°C. At $T_A = +25^{\circ}\text{C}$, $R_L = 10 \text{ k}\Omega$ connected to $V_S/2$, and $V_{COM} = V_{OUT} = V_S/2$, unless otherwise noted.

LMP2021/2022の例

2.5V 電気的特性 (Note 5)

特記のない限り、すべてのリミット値は $T_A=25$ $^{\circ}$ $^{\circ}$


- 太字のスペックは全温度範囲で規定.
- それ以外では、周囲温度25℃で規定
- 入・出力負荷は電源電圧の1/2に固定.

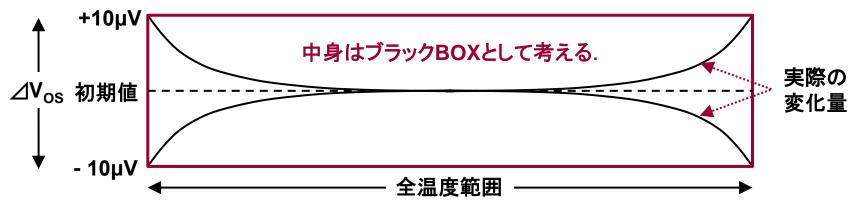
記述を回路で表した図

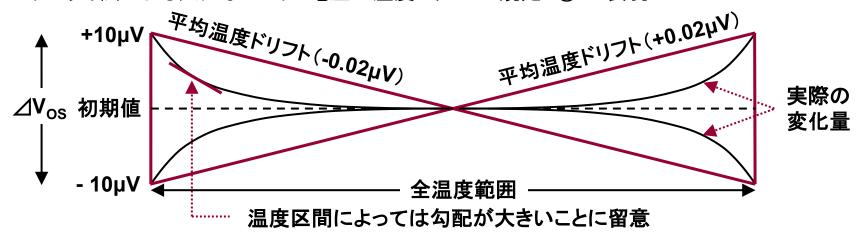
- ♣ S10.1 データ・シートに記載される主な単位・記述
 - (1)基本単位と補助単位
 - (2)複合単位とデシベル表記
 - (3)上部欄外記述は後続スペックの前提条件
- **▲ S10.2 オペアンプのデータ・シート**
 - (1)DCスペック
 - (2)ACスペック
- **♣ S10.3 A/Dコンバータのデータ・シート**
 - (1)分解能の表記
 - (2)ドライブ条件
 - (3)システム性能
 - (4)サンプリング性能
 - (5)ダイナミック性能
- **★ S10.4 各ステージでの重要項目**

DCスペック: 入力段のDCスペック(LMP2021/2022)

電源+5Vのスペック

Symbol	Parameter	Conditions	Min (Note 7)	Typ (Note 6)	Max (Note 7)	Units
V _{os}	Input Offset Voltage 入力オフセット電圧	Note 8 の要約		-0.4	±5 ±10	μV
TCV _{os}	Input Offset Voltage Drift (Note 8)	V _{os} の全変化量÷(最高温度-最低)		-0.004	±0.02	μV/°C
I _B	Input Bias Current 入力バイアス電流	=入力オフセット電圧ドリス	7 - /°C	±25	±100 ±300	pA
los	Input Offset Current 入力オフセット電流			±48	±200 ± 250	pA
CMRR	Common Mode Rejection Ratio 同相モード除去比(G = +1)	$-0.2V \le V_{CM} \le 4.2V$ $0V \le V_{CM} \le 4.0V$	1	139		dB
CMVR	Input Common-Mode Voltage Range (同相モード)入力電圧範囲	Large Signal CMRR ≥ 120 dB Large Signal CMRR ≥ 115 dB	0.2 0	6	4.2 4.0	v


- ① 細字がTa = 25℃における初期値で、太字が *BOX法による最大値の規定、 ±の記号は変化方向が不定であることを意味する。
- ② 温度変化 -対- オフセット電圧シフトは非直線なので、*バタフライ法による平均ドリフトと考える.
- ③ 入力バイアス電流も周囲温度で増減し、一般に高温で増大. "一"流れ出しで"+"が流れ込み.
- ④ 入力オフセット電流はESD保護ダイオードのリークが支配的. FETのゲート電流は正味50pA.
- ⑤⑥ 入力範囲と非直線性の規定. *出力を飽和させないで測定する. V_{CM}の範囲で値が異なるが,この場合0V~4Vの規定115dB(全温度)を一般的には採用.

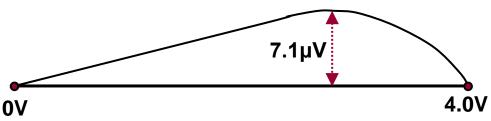

DCスペック:オフセット電圧ドリフトの表現方法

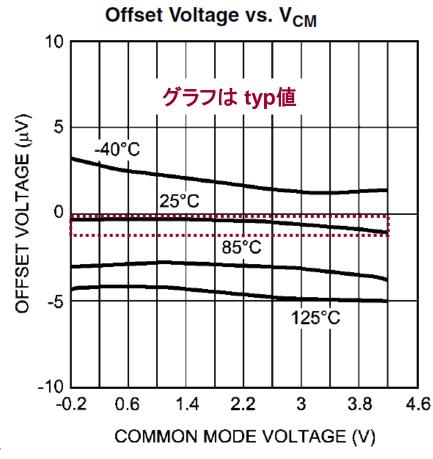
数値はLMP2021/2022のスペック

BOX法による入力オフセット電圧の温度ドリフト規定. ① の表現

バタフライ法による入力オフセット電圧の温度ドリフトの規定. ② の表現

DCスペック:同相モード除去比と同相モード入力範囲

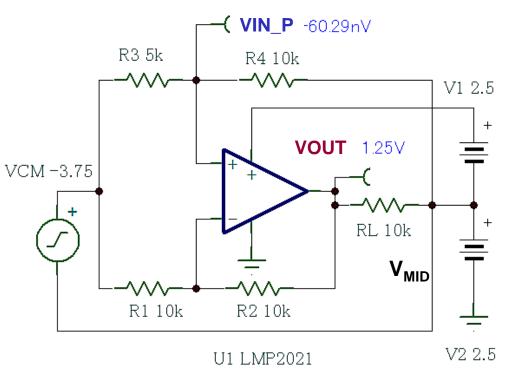

数値はLMP2021/2022のスペック

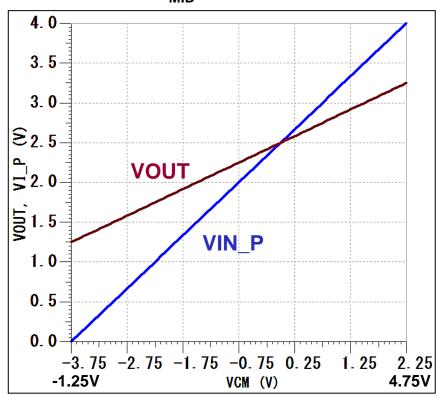

差動モード・ゲイン $G_D = 1$ とすれば、CMRRはコモンモード・ゲイン G_C の逆数なので...

CMRR =
$$20 \times LOG \left(\frac{\Delta V_{CM}}{\Delta V_{OS}} \right) = n = 115 (dB)$$
 $\pm 13-1$

$$\Delta V_{os} = \frac{\Delta V_{CM}}{10^{\frac{n}{20}}} = \frac{4V}{10^{\frac{115dB}{20}}} = 7.1 (\mu V)$$
 $\pm 13-2$

エンド・ポイント法による非直線性誤差の表現




DCスペック: 同相モード入力範囲のテスト方法(参考)

差動アンプ構成によるテスト回路例

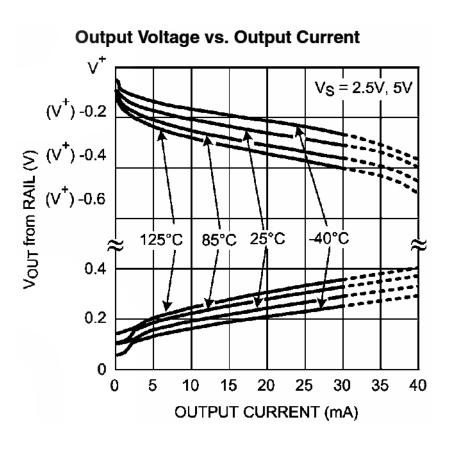
出力が飽和しない範囲で同相 モード. ゲインG_cを大きくして測定.

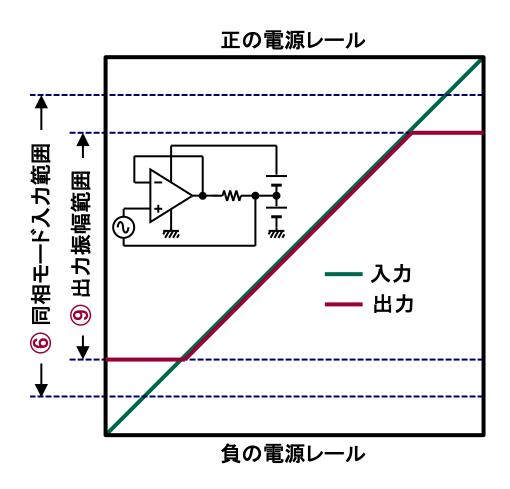
グラフはX軸がV_{MID}基準でY軸がGND基準.

伝達式
$$V_{\text{OUT}} = \frac{R_4(R_1 + R_2)(V_{\text{CM}} - V_{\text{MID}}) + (R_1 + R_2)(R_3 + R_4)V_{\text{MID}} - R_2V_{\text{CM}}(R_3 + R_4)}{R_1(R_3 + R_4)}$$
 式13-3

DCスペック: ゲイン段・出力段のDCスペック(LMP2021/2022)

Symbol	Parameter	Conditions	Min (Note 7)	Typ (Note 6)	Max (Note 7)	Units
PSRR	Power Supply Rejection Ratio 電源変動除去比	$2.5V \le V^{+} \le 5.5V$, $V_{CM} = 0 \leftarrow 1/2V_{S}$?	7 115 112	130		dB
		$2.2V \le V+ \le 5.5V$, $V_{CM} = 0 \leftarrow 1/2V_{S}$?	7 110	130		
A _{VOL}	Large Signal Voltage Gain 開ループ・ゲイン	$R_L = 10 \text{ k}\Omega \text{ to V+/2}$ $V_{OUT} = 0.5 \text{V to } 4.5 \text{V}$	125 8 120	160		dB
	$R_L = 2 k\Omega$ to V+/2 $V_{OUT} = 0.5V$ to 4.5V	123 8 118	160		ав	
V _{OUT}	Output Swing High 正側振幅	$R_L = 10 \text{ k}\Omega$ to V+/2	9	83	135 170	
		$R_L = 2 k\Omega$ to V+/2	9	120	160 204	mV from
	Output Swing Low 負側振幅	$R_L = 10 \text{ k}\Omega$ to V+/2	9	65	80 105	either rai
		$R_L = 2 k\Omega$ to V+/2	9	103	125 158	
I _{OUT}	Linear Output Current	Sourcing, V _{OUT} = 4.5V	30	50		m A
	正常動作での出力電流	Sinking, V _{OUT} = 0.5V	30	50		


- ⑦ 電源電圧の変動⊿V_S -対- 入力オフセット電圧の変動⊿V_{OS}(計算方法はCMRR参照).
- ⑧ 開ループ・ゲインは負帰還なしでの入/出力電圧の比で、負荷抵抗の値によって増減.
- ⑨ 出力が振幅できる能力を表し、振幅範囲は負荷抵抗の値によって増減.
- ⑪ 入出力電流リミッタが動作する前の最大出力電流(リミッタが動作した時は短絡電流と呼ぶ).



DCスペック: 入/出力段を考慮したアンプのリニア動作範囲

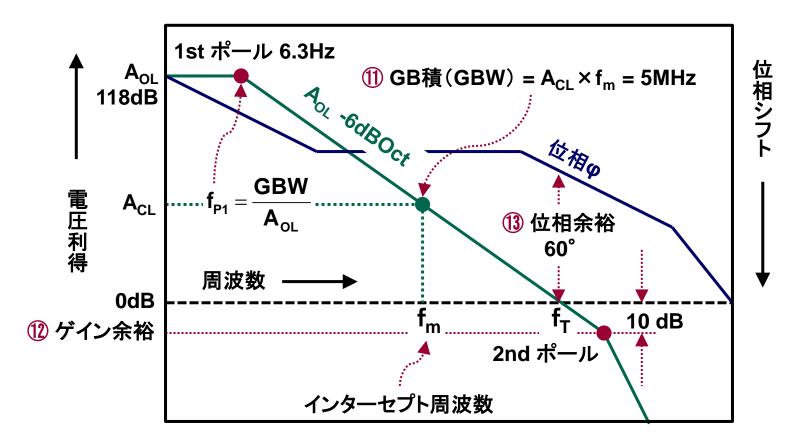
アンプのリニア動作範囲は、入/出力のいずれか狭い方で決まる.

LMP2021/2022の振幅能力

ACスペック: 入力段とゲイン段のACスペック(LMP2021/2022)

Symbol	Parameter ゲイン・バンド幅積	Conditions	Min (Note 7)	Typ (Note 6)	Max (Note 7)	Units
GBW	Gain Bandwidth Product	$C_L = 20 \text{ pF}, R_L = 10 \text{ k}\Omega$	T	5	, ,	MHz
G _M	Gain Margin ゲイン余裕	$C_L = 20 \text{ pF, } R_L = 10 \text{ k}\Omega$	1	10		dB
Фм	Phase Margin 位相余裕	$C_L = 20 \text{ pF, } R_L = 10 \text{ k}\Omega$	1	3 60		deg
CIN	Input Capacitance	Common Mode	4	12		pF
	入力容量	Differential Mode	T U	12		þг
e _n	Input-Referred Voltage Noise Density	f = 0.1 kHz or 10 kHz, A _V = 1000	(III	11		[1]
	入力換算(RTI)電圧ノイズ密度	f = 0.1 kHz or 10 kHz, A _V = 100		15		nV/√Hz
	Input-Referred Voltage Noise	0.1 Hz to 10 Hz Noise		260		n\/
	入力換算(RTI)電圧ノイズ	0.01 Hz to 10 Hz Noise		330		nV _{PP}
i n	Input-Referred Current Noise	f = 1 kHz	(I	350		fA√Hz

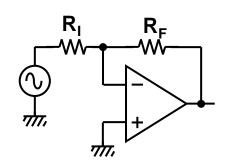
入力換算(RTI)電流ノイズ


- ① A_{OL} が 6dB/Oct で降下する帯域内における A_{CL} とインターセプト周波数との積. ここで, A_{OL} = 開ループ・ゲインで A_{CL} = 閉ループ・ゲイン.
- ① ボード線図上において、A_{OL} = 0dBのラインを基準としたセカンド・ポールの位置(dB換算).
- (1) AoL が0dBとなる周波数において、アンプの位相シフトが正帰還となるまでの位相差.
- (4) 外部からみた入力部の容量で、同相モードと差動(2つの入力ピン間)モードで定義される。
- (15) 1Hzの帯域幅で見た雑音電圧の大きさ. 入力換算とは出力雑音電圧を設定ゲインで割った値.
- 16 任意の帯域幅で見た雑音電圧の総量. 入力換算(同上).
- ① 1Hzの帯域幅で見た雑音電流の大きさ. 入力換算(同上).

ACスペック:ボード線図で見るGB積, ゲイン余裕, 位相余裕

12 ゲイン余裕 13 位相余裕は、オペアンプを低ゲインで使用したときの安定度に関わる.

LMP2201/2022 は A_{OL} の降下率が 0dB 以下まで - 6dB/Oct(-20dB/Dec)なので, GB積 = f_T となる. A_{CL} = 1000とすれば, GB積からの逆算で f_m の位置は 5kHz.

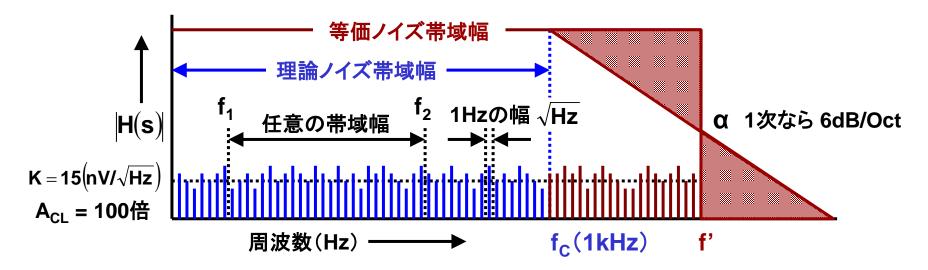

ACスペック:GB積(GBW)とA_{OI}の関係およびA_{CI}の精度


⑧ 開ループ・ゲインA_{OI}は、閉ループ・ゲインA_{CI}の精度に関わる。

$$f_S < f_{P1}$$
 では $A_{OL}(\varpi) = A_{OL}(dc)$ 式13-4

$$f_S < f_{P1}$$
 では $A_{OL}(\varpi) = A_{OL}(dc)$ 式13-4 $f_{P1} < f_S$ では $A_{OL}(\varpi) = \frac{A_{OL}(dc)}{f_S}$ 式13-5

非反転
$$A_{CL}(\varpi) = \frac{A_{OL}(\varpi)}{1 + A_{OL}(\varpi)\beta}$$
 式13-6 $A_{OL}(dc)$ 118dB $A_{CL}(\varpi) = -\frac{A_{OL}(\varpi)(1-\beta)}{1 + A_{OL}(\varpi)\beta}$ 式13-7 $A_{CL}(\omega)$ ここで… $\beta = \frac{R_1}{R_F + R_1}$

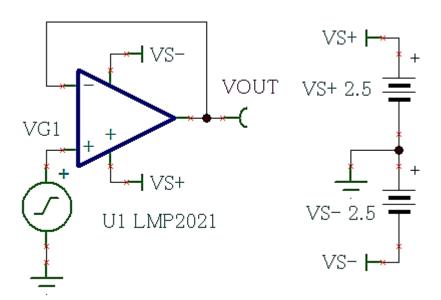


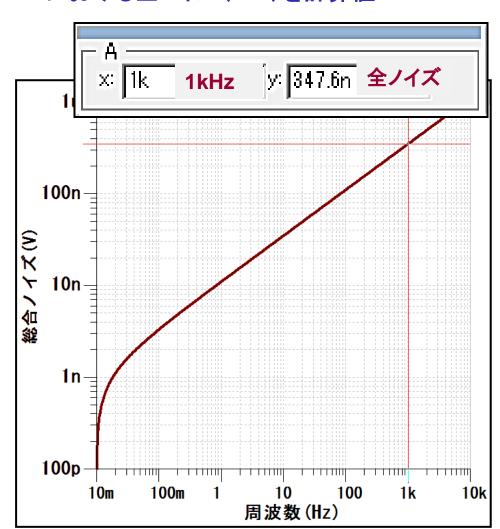
ACスペック:ノイズの単位の意味と等価ノイズ帯域幅

全ノイズの計算に必要な、ノイズの単位に関する概念と等価ノイズ帯域幅.

- \sqrt{Hz} ノイズ(密度)とは,任意の周波数(f_n)において1Hzの幅で見たノイズ・レベル.
- 実効値ノイズとは,任意の帯域幅 $(f_2 f_1)$ における全ノイズ. $V_N = K\sqrt{f_2 f_1}(Vrms)$
- Vp-p ノイズとは, ノイズの正と負の波高値の幅. 実効値ノイズ×6.6倍 = Vp-pノイズ(確率99.9%)
- 等価ノイズ帯域幅とは、ロールオフの傾斜 "Q"で定まる全ノイズ計算上の帯域幅.

次数 n=1 では $f' = f\frac{\pi}{2} = 1.56(kHz)$ 式13-8 n=2 では f' = 1.194f = 1.194(kHz) 式13-9

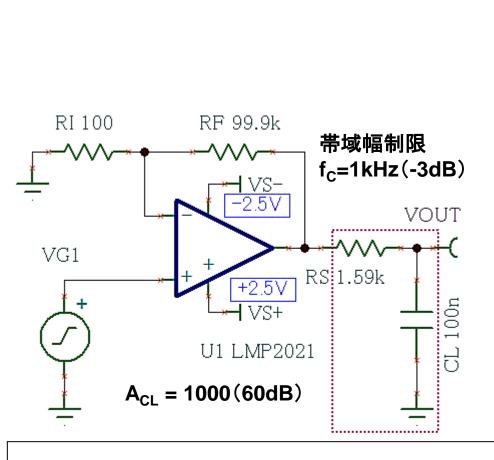


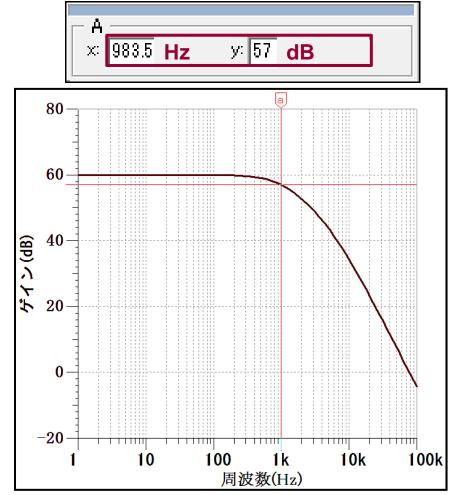

ACスペック:ノイズ密度から帯域幅1kHzの総合ノイズを求める

LMP2021/2022のノイズ密度から帯域幅1kHzにおける全ノイズ(RTI)を計算値

$$11 nV \big/ \sqrt{\text{Hz}} \big(100 \text{Hz} \rightarrow 1 \text{kHz}, A_{\text{CL}} = 1000 \big)$$

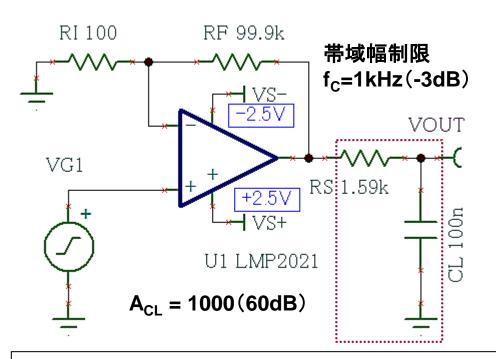
$$V_N(Vrms,RTI) = K\sqrt{f_2 - f_1}$$
 式13-10 = 11nV/ $\sqrt{Hz} \times \sqrt{1k - 0.01} = 0.348 (\mu Vrms)$

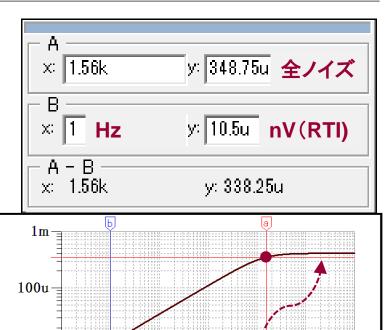


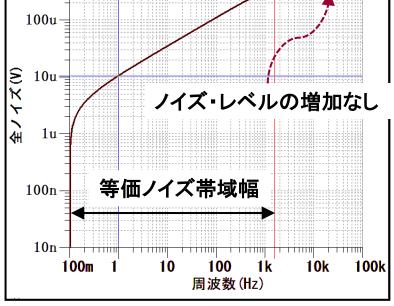


ACスペック: 等価ノイズ帯域幅とノイズ密度から全ノイズを計算(1)

帯域制限を付加して回路の周波数特性を0dBまで傾斜を -6dB/oct にする.

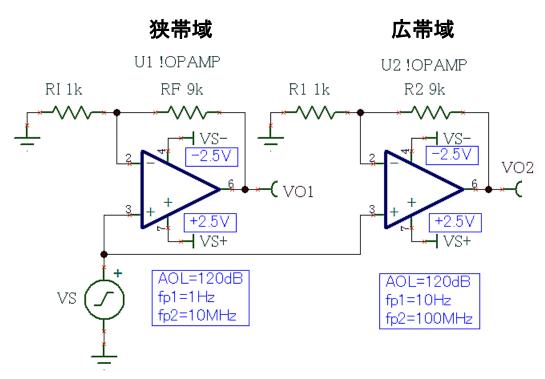


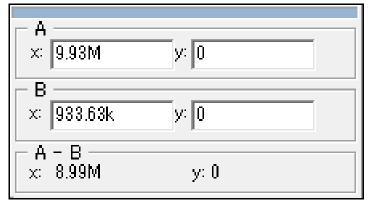

ACスペック: 等価ノイズ帯域幅とノイズ密度から全ノイズを計算(2)

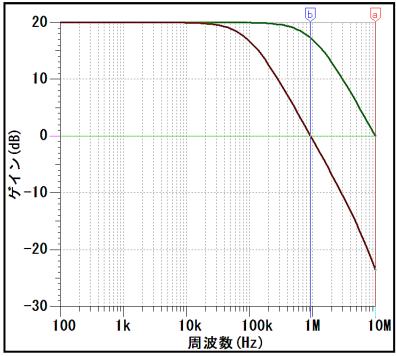

全ノイズ(RTO)を等価ノイズ帯域幅1.56kHzで計算

$$V_N(Vrms,RTO) = K\sqrt{f_2 - f_1} \times A_{CL}$$
 式13-11
$$= 11nV/\sqrt{Hz} \times \sqrt{1.56k - 0.01} \times 1000 = \underline{434.4} (\mu Vrms)$$

$$V_N(V_{P-P}) = V_N(Vrms) \times 6.6 = 2.87(mV_{P-P})$$
 式13-12

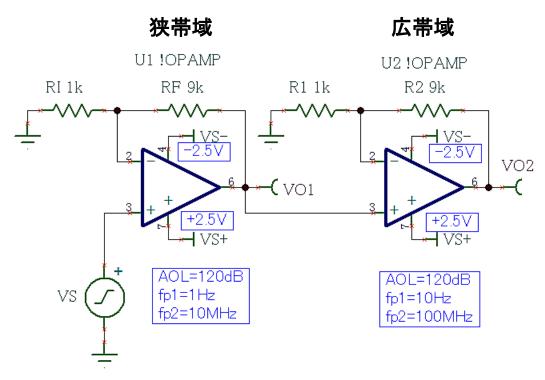


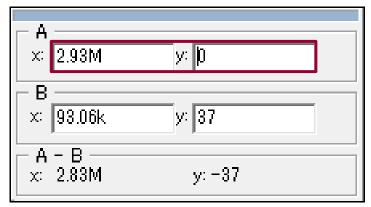


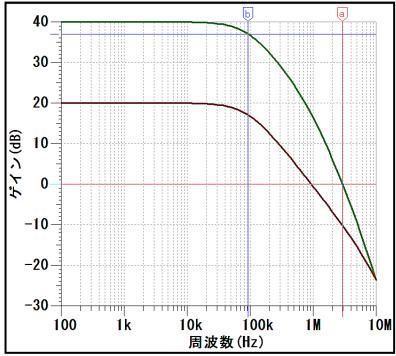

ACスペック: 複合等価ノイズ帯域幅の考え方(1)

帯域幅が1桁異なるオペアンプで考察

U1:fp1 = 1Hz, U2:fp1 = 10Hz ACLは共に非反転 ゲイン10倍. 高域での減衰率(傾斜)は1次の応答 -6dB/oct.

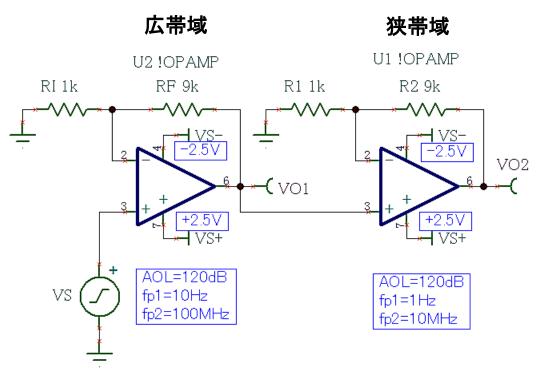


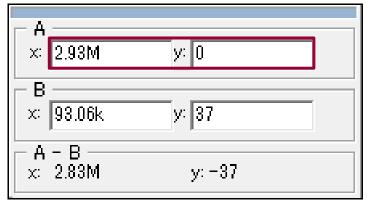


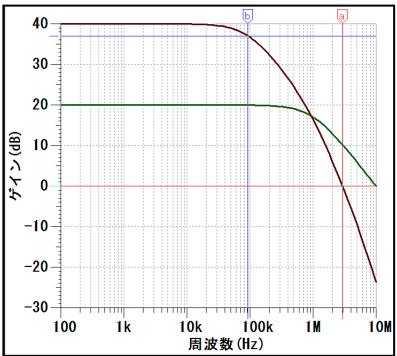

ACスペック: 複合等価ノイズ帯域幅の考え方(2)

初段が狭帯域、2段目が広帯域の組み合わせ

総合周波数特性は初段の狭帯域 オペアンプ U1で決定されている. 傾斜は2次の応答 -12dB/oct. 総合ゲインが0dBになる周波数は 2.93MHz.

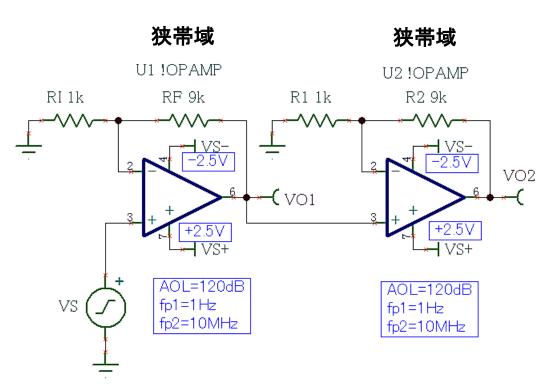


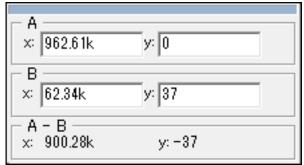


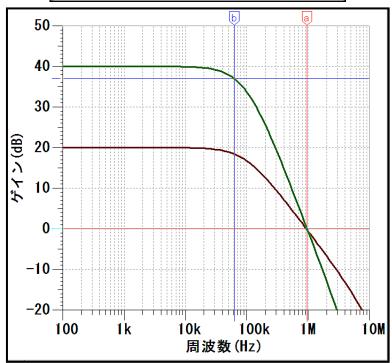

ACスペック: 複合等価ノイズ帯域幅の考え方(3)

初段が広帯域、2段目が狭帯域の組み合わせ

総合周波数特性は2段目の狭帯域オペアンプ U1で決定されている. 傾斜は2次の応答 -12dB/oct. 総合ゲインが0dBになる周波数は 2.93MHzなので組み合わせの順序に関係なく同じ.

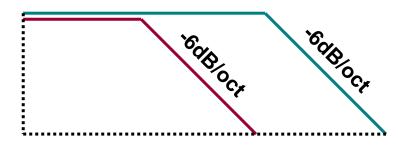




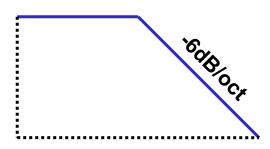

ACスペック: 複合等価ノイズ帯域幅の考え方(4)

初段,2段目共に狭帯域の組み合わせ

総合周波数特性は最も帯域幅が狭く 高域での傾斜は2次の応答(-12dB/oct).

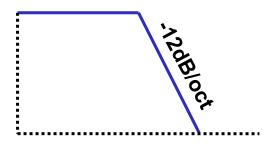


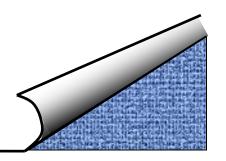
ACスペック: 複合等価ノイズ帯域幅の考え方(5)


考え方のまとめ

帯域幅の異なるオペアンプを複数使用する場合は、 簡略的に傾斜1次(-6dB/oct)の等価ノイズ帯域幅を 採用すれば、全ノイズの見積にマージンが得られる

帯域幅が1桁以上違う場合

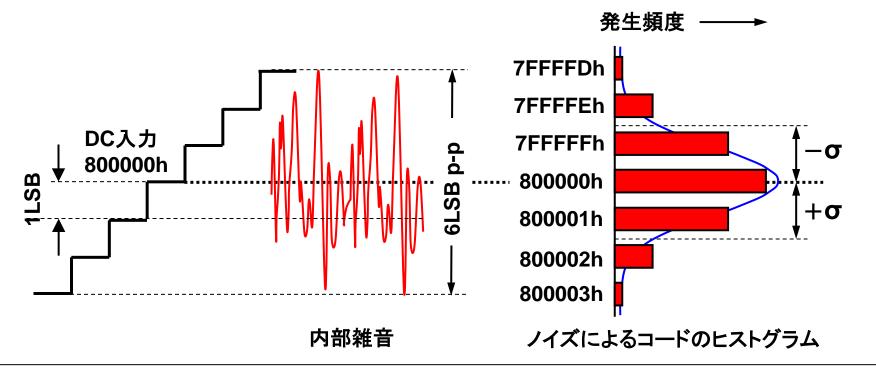

総合帯域幅は狭帯域と等しくなる


帯域幅が接近しているか同じ場合

総合帯域幅は元の帯域より狭くなる

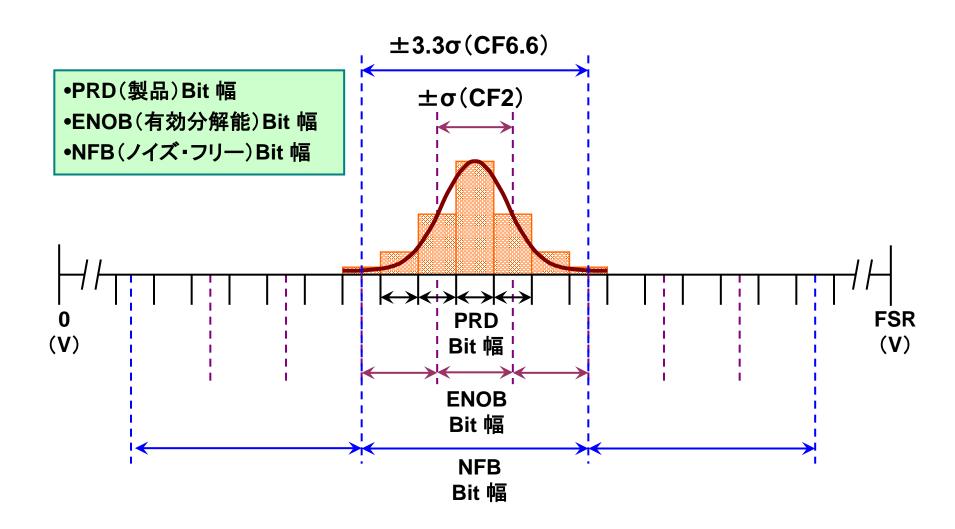
- ♣ S10.1 データ・シートに記載される主な単位・記述
 - (1)基本単位と補助単位
 - (2)複合単位とデシベル表記
 - (3)上部欄外記述は後続スペックの前提条件
- **♣** S10.2 オペアンプのデータ・シート
 - (1)DCスペック
 - (2) ACスペック
- **▲ S10.3 A/Dコンバータのデータ・シート**
 - (1)分解能の表記
 - (2)ドライブ条件
 - (3)システム性能
 - (4)サンプリング性能
 - (5)ダイナミック性能
- **★ S10.4 各ステージでの重要項目**

分解能の表記:ノイズの統計処理をADCの評価へ導入

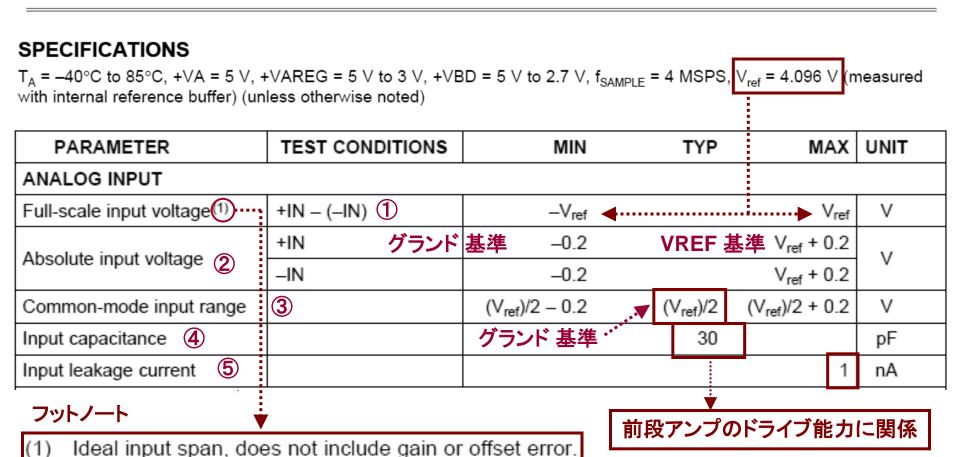

有効分解能 ENOB: ±1σのばらつき(実効値ノイズ)を差し引いた残りの有効なBit分解能

ENOB = N – Log₂(2 σ) Bit(rms) 式13-13 ここでNは、製品分解能

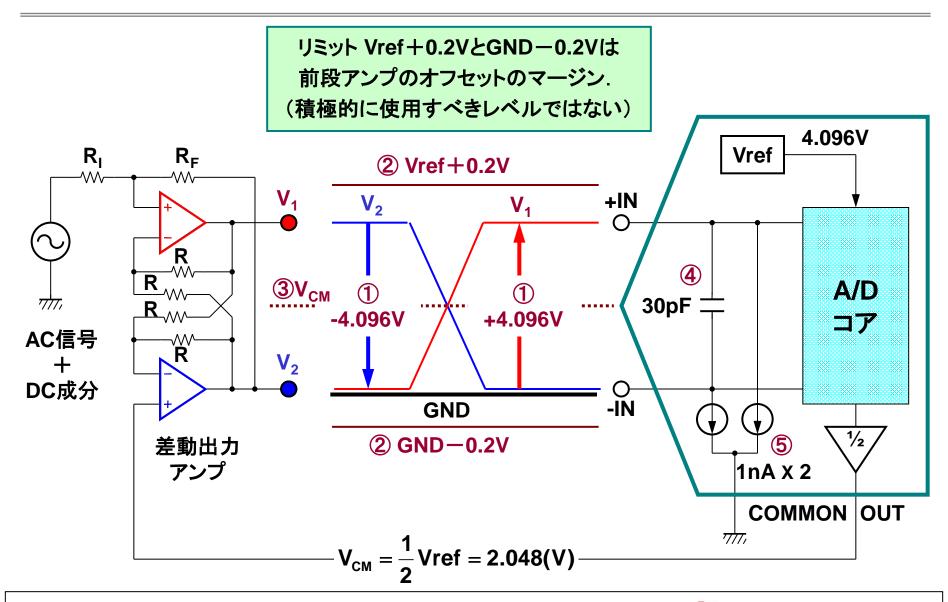
ピーク・ツー・ピーク・ノイズを差し引いた残りのBit分解能: ノイズフリー・ビット(以降, NFB)


NFB = N – Log₂(m) Bit(p-p) 式13-14 ここでmは、コードのp-p ばらつき

下の例でA/Dを24Bitとすれば NFB = $24 - \text{Log}_{2}(6) = \underline{21.4} \text{ Bit (p-p)}$



分解能の表記:各分解能の概念


ドライブ条件:外部から見たアナログ入力, ADS8422の例

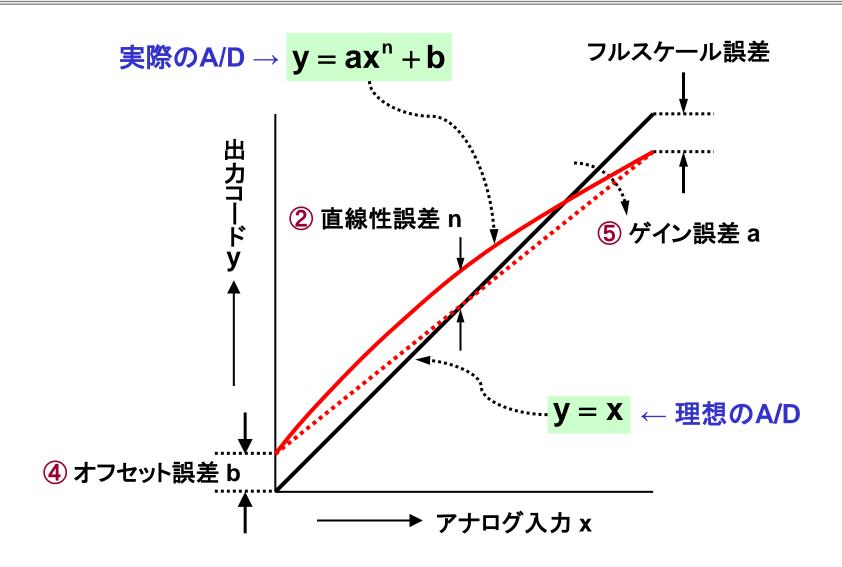
記事:入力容量が 50pF を越す場合は,広帯域オペアンプでドライブできない(発振する).

ドライブ条件:前段アンプとの接続, ADS8422の例

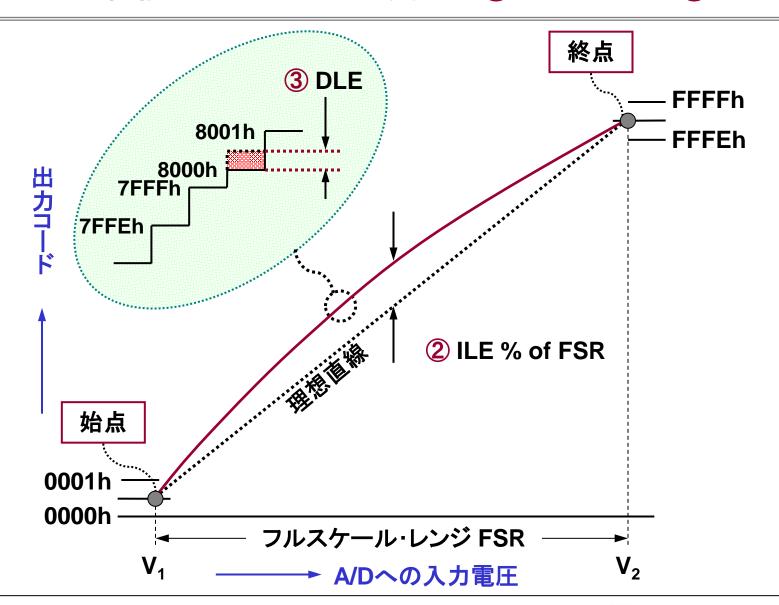
システム性能: ADCをシステムとして見る, ADS8422の例

			•				
	SYSTEM PERFORMANCE	上	位15ビットは全コード発生	MIN	TYP	MAX	
	Resolution		***********		16		Bits
	No missing codes (NMC)	ADS8422I		15			D:4-
		ADS8422IB	NMCで2グレード	16			Bits
	Integral linearity (2)(3) 2	ADS8422I	し ロロマンガレード	-6	±2	6	LSB
	(ILE / INL)	ADS8422IB	ILEで2グレード	-2	±1	2	(16 bit) ⁽²⁾
	Differential linearity	ADS8422I	DLEで2グレード —	-2	±0.7	2	LSB
	Differential linearity (3) (DLE / DNL)	ADS8422IB	DLE CZY D-F	-1	±0.7	1.5	(16 bit)
	Offset error 4		±4LSB	-0.5	±0.25	0.5	mV
	Offset error drift				±0.2		ppm/°C
••••	Gain error ⁽⁴⁾⁽⁵⁾ 5		V _{ref} = 4.096 V	-0.1	±0.05	0.1	%FS
	Gain error drift		V _{ref} = 4.096 V		±2		ppm/°C
			At dc		81		
	Common-mode rejection ratio		At code 0000h with [+IN + (-IN)]/2 = 512 mV _{pp} at 500 kHz,	=	78		dB
	Noise		At 0000h output code 264	μVp-p	40		μV RMS
	Power supply rejection ratio	÷	At 8000h output code		78		dB
	(2) LSB means least sign	ificant bit a	nd is equal to 2V _{REF} /65536. ••		1LSB:	=125	μV

LSB means least significant bit and is equal to $2V_{REF}/65536$.


This is endpoint INL, not best fit.

This specification does not include the internal reference voltage error and drift.



Measured relative to an ideal full-scale input [+IN – (–IN)] of 8.192 V.

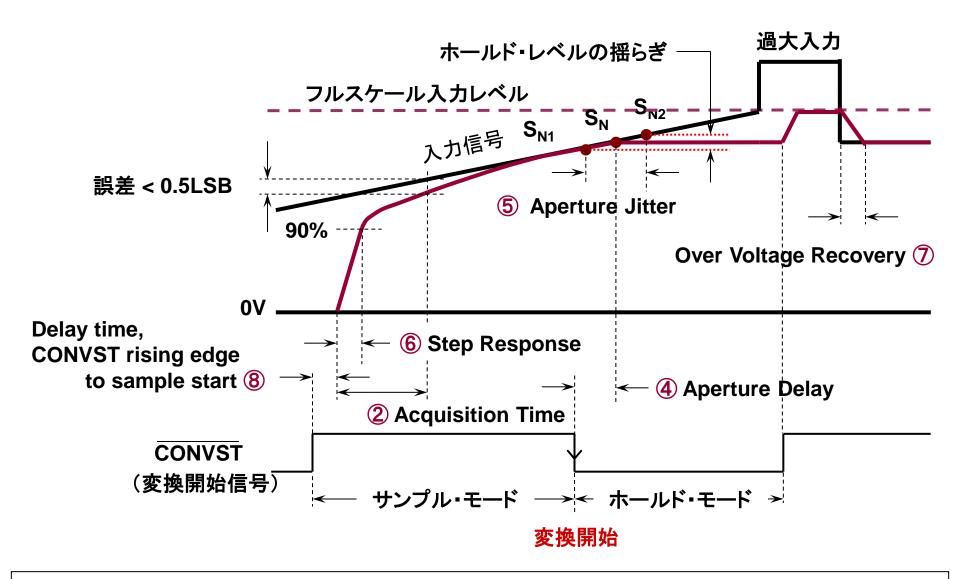
システム性能: ②ILE, ④オフセット, ⑤ゲイン誤差の概念

システム性能:エンド・ポイント法での② ILE および ③ DLE

サンプリング性能: サンプリング・スペック, ADS8422の例

SAMPLING DYNAMICS	MIN	TYP	MAX	
Conversion time 1		180ns	·····► 0.180	μs
Acquisition time 2	0.070 <	70ns		μs
Throughput rate 3	180	ns+70ns=2	50ns→ 4	MHz
Aperture delay 4		3		ns
Aperture jitter 5		7		ps RMS
Step response 6		70		ns
Overvoltage recovery 7		140		ns

- 4 5 ····· 時間軸での精度. AC波形解析では重要なスペック
- ⑥ …… オペアンプのスルーレートに近いスペック
- ⑦ ------▶ 過入力は変換時間の遅延要因.


サンプリング性能:スペックの用語と波形との対応(1)

サンプル/ホールド アナログ入力 • SW:アナログ・スイッチ R_{ON} SW • R_{on}: SWのオン抵抗 A/D • C_H:ホールド・コンデンサ H=オン 7777, RonとC_Hの時定数による勾配 変換スタート ► ③ Throughput Rate **Acquisition Time 2 1** Conversion Time SW オン SW オフ

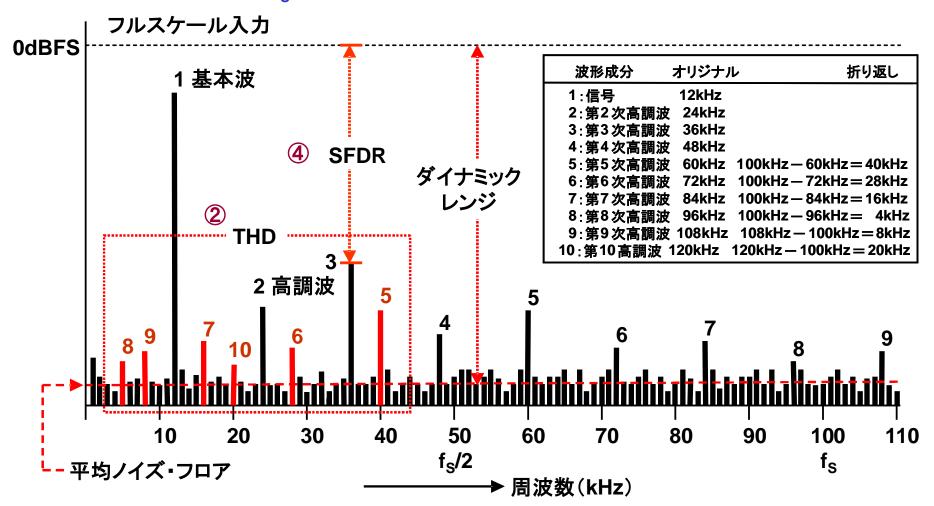
時間

サンプリング性能:スペックの用語と波形との対応(2)

ダイナミック性能: AC解析に重要なスペック群

 $T_A = -40$ °C to 85°C, +VA = 5 V, +VAREG = 5.25 V to 3 V, +VBD = 5 V to 2.7 V, $f_{SAMPLE} = 4$ MSPS, $V_{ref} = 4.096$ V (measured with internal reference buffer) (unless otherwise noted)

PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
DYNAMIC CHARACTERISTICS						
1		10 kHz		-114		
Total harmonic distortion (THD) ⁽¹⁾	$V_{IN} = 8 V_{pp}$	100 kHz		-102		dB
		500 kHz		-100		
2		10 kHz		93		
Signal to noise ratio (SNR)	V _{IN} = 8 V _{pp}	100 kHz		92		dB
		500 kHz		90		
3		10 kHz		92.5		
Signal to noise + distortion (SINAD)	V _{IN} = 8 V _{pp}	100 kHz		91.5		dB
		500 kHz		89.5		
4		10 kHz		116		
Spurious free dynamic range (SFDR)	V _{IN} = 8 V _{pp}	100 kHz		109		dB
		500 kHz		106		
–3dB Small signal bandwidth 5				30		MHz
Maximum input frequency, f _{i(max)} ⁽²⁾	V _{IN} = 8 V _{pp}		2			MHz


⁽¹⁾ Calculated on the first nine harmonics of the input frequency.

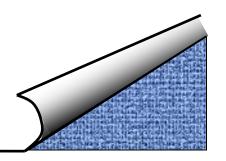
^{(6) (2)} ADC Sampling circuit is optimized to accept inputs until Nyquist frequency. Dynamic performance may degrade rapidly above f_{i(max)}.

ダイナミック性能: 高調波歪とSFDRの関係

5次~10次はエリアスで、周波数がナイキスト周波数($f_s/2=50kHz$)を超えるため、サンプリング周波数 $f_s=100kHz$ のビートとして低周波領域に折り返す.

ダイナミック性能:A/Dのダイナミック特性に関する計算式

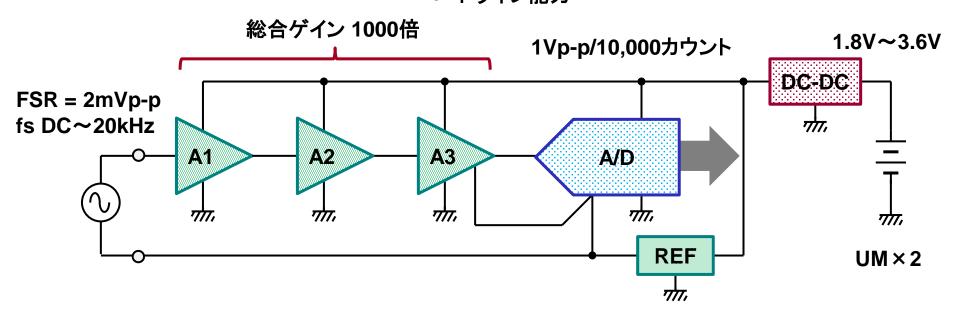
② SNR: S/N比のことで正弦波実効値電力とノイズ実効値電力との比.


① THD: 全高調波歪率. 規定の次数までの高調波成分の実効値電力の合計と, 正弦波実効値電力との比.

③ SINAD: 正弦波実効値電力と(ノイズ+THD)実効値電力との比. ダイナミック特性の中ではA/Dにとって最も厳しいスペック.

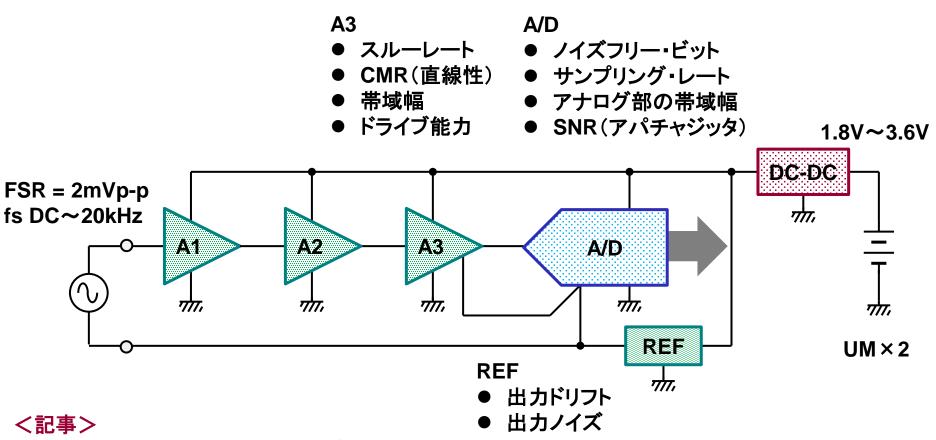
SINAD□10Log_	(dBc)	式13-17
	(ubc)	<i>I</i> (13-17

- ♣ S10.1 データ・シートに記載される主な単位・記述
 - (1)基本単位と補助単位
 - (2)複合単位とデシベル表記
 - (3)上部欄外記述は後続スペックの前提条件
- **♣ S10.2 オペアンプのデータ・シート**
 - (1)DCスペック
 - (2) ACスペック
- **♣ S10.3 A/Dコンバータのデータ・シート**
 - (1)分解能の表記
 - (2)ドライブ条件
 - (3)システム性能
 - (4)サンプリング性能
 - (5)ダイナミック性能
- **▲ S10.4 各ステージでの重要項目**


各ステージでの重要項目:mVオーダのデータ収集システムの例

各ステージで求められるキー・スッペクが異なる

A1 A2 A3


● ドリフト ● 帯域幅 ● スルーレート

● ノイズ性能 ● 全ての中間 ● CMR(直線性)
● 帯域幅 ● 帯域幅 ● ドライブ能力

各ステージでの重要項目:mVオーダのデータ収集システムの例

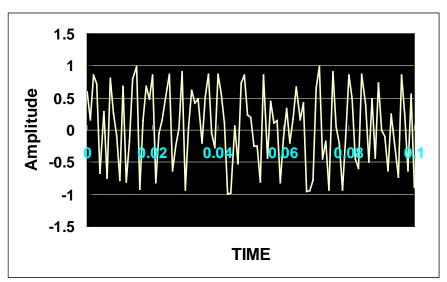
A/Dと周辺部品のキー・スッペク

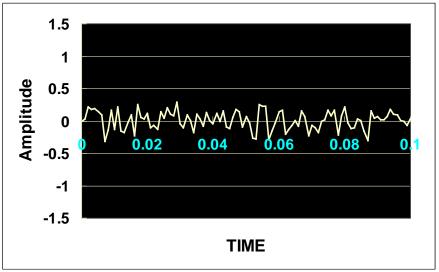
コスト優先の場合は, 高速ADC(4ⁿ倍)を用いて変換データの平均化により回路ノイズ低減する.

各ステージでの重要項目:4のn乗平均による回路ノイズの軽減

41 = 4個のデータ平均で1ビット(6dB)改善

42 = 16個のデータ平均で2ビット(12dB)改善

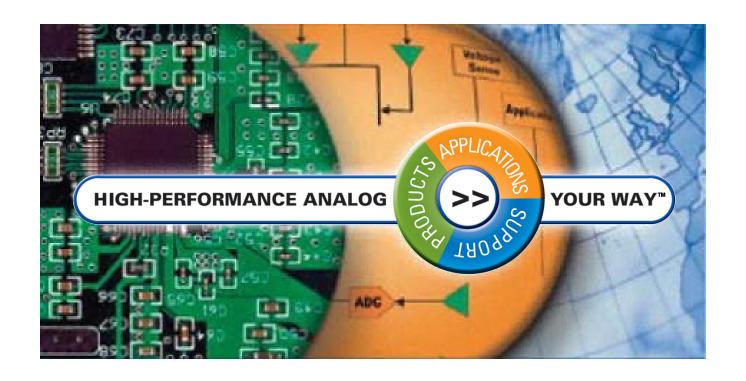

43 = 64個のデータ平均で3ビット(18dB)改善


t	DATA 1
0	0.309953275
0.001	0.842464658
0.002	-0.17138265
0.003	-0.82536564

•	=RAND()*2-1
---	-------------

DATA 1		DATA 16	AVE, n=16
0.309953275		0.735941684	-0.04811349
0.842464658		0.278487203	0.286797075
-0.17138265		-0.57689685	0.131392997
-0.82536564		0.91347042	0.050656713

RSS DATA1	RSS AVE	RATIO
18.4424876	4.595834988	0.249



セッション10 終わり

お疲れ様でした.

