

5.10.2 Input Clocks and Oscillators

5.10.2.1 Clock Specifications

The AWR1642 requires external clock source (that is, a 40-MHz crystal) for initial boot and as a reference for an internal APLL hosted in the device. An external crystal is connected to the device pins. Figure 5-3 shows the crystal implementation.

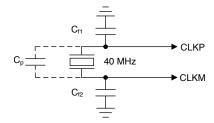


Figure 5-3. Crystal Implementation

NOTE

The load capacitors, C_{f1} and C_{f2} in Figure 5-3, should be chosen such that Equation 1 is satisfied. C_L in the equation is the load specified by the crystal manufacturer. All discrete components used to implement the oscillator circuit should be placed as close as possible to the associated oscillator CLKP and CLKM pins.

$$C_{L} = C_{f1} \times \frac{C_{f2}}{C_{f1} + C_{f2}} + C_{P}$$
(1)

Table 5-5 lists the electrical characteristics of the clock crystal.

Table 5-5. Crystal Electrical Characteristics (Oscillator Mode)

NAME	DESCRIPTION	MIN	TYP	MAX	UNIT
f_P	Parallel resonance crystal frequency		40		MHz
C _L	Crystal load capacitance	5	8	12	pF
ESR	Crystal ESR			50	Ω
Temperature range	Expected temperature range of operation	-40		150	°C
Frequency tolerance	Crystal frequency tolerance (1)(2)	-200		200	ppm
Drive level			50	200	μW

⁽¹⁾ The crystal manufacturer's specification must satisfy this requirement.

⁽²⁾ Includes initial tolerance of the crystal, drift over temperature, aging and frequency pulling due to incorrect load capacitance.

In the case where an external clock is used as the clock resource, the signal is fed to the CLKP pin only; CLKM is grounded. The phase noise requirement is very important when a 40-MHz clock is fed externally. Table 5-6 lists the electrical characteristics of the external clock signal.

Table 5-6. External Clock Mode Specifications

PARAMETER		SPECIFICATION			LINUT
		MIN	TYP	MAX	UNIT
	Frequency		40		MHz
	AC-Amplitude	700		1200	mV (pp)
	DC-V _{il}	0.00		0.20	V
Input Clock:	DC-V _{ih}	1.6		1.95	V
External AC-coupled sine wave or DC-	Phase Noise at 1 kHz			-132	dBc/Hz
coupled square wave Phase Noise referred to 40MHz	Phase Noise at 10 kHz			-143	dBc/Hz
Phase Noise referred to 40MHz	Phase Noise at 100 kHz			-152	dBc/Hz
	Phase Noise at 1 MHz			-153	dBc/Hz
	Duty Cycle	35		65	%
	Freq Tolerance	-50		50	ppm