mmWave Radar Interface Control Document

Revision 3.35

Jan 16, 2024

Contents

			P	age
C	onter	its		xii
Li	st of	Figures		xiii
Li	st of	Tables		хх
R	evisio	on Histor	у	xxii
1	Intr 1.1 1.2		Audience	1 1 2
2	Ti n 2.1 2.2 2.3	Commun Commun 2.2.1 2.2.2 2.2.3	Radar Sensor Communications Overview ication Link Description	14 14 20
3	Mes 3.1 3.2	Commun	bcessing ication protocol ication Sequence Command/Response Sequence (Host) Flow Diagram (Host) – Command/Response Flow Diagram (Host) – Bootup/ Asynchronous Event SPI Message Sequence – Command/Response Command/Response sequence (MSS-BSS mailbox) Flow Diagram Command/Response (MSS-BSS mailbox) Asynchronous event sequence (BSS-MSS mailbox)	23 23 24 25 26 26 28

		3.2.8	Flow Diagram Asynchronous event (BSS-MSS mailbox)	•			•		•	30
4	Rad	ar Interf	ace Messages Descriptions							32
	4.1		y of all messages and their associated sub-blocks							32
	4.2		CK_MSG							
	4.3	AWR_N/	ACK_MSG							39
	4.4	AWR EF	RROR MSG							39
	4.5	AWR R	F STATIC CONF SET MSG							40
	4.6	AWR R								41
	4.7									
	4.8	AWR_R								43
	4.9	AWR_R	F_DYNAMIC_CONF_GET_MSG							44
	4.10	AWR_R	F_FRAME_TRIG_MSG							45
	4.11	AWR_R	ADVANCED_FEATURES_CONF_SET_MSG							46
	4.12	AWR_R	F_MONITORING_CONF_SET_MSG							46
	4.13	AWR_R	F_STATUS_GET_MSG							48
	4.14	AWR_R	F_MONITORING_REPORT_GET_MSG							49
	4.15	AWR_RF	F_MONITORING_CONF_SET_2_MSG							49
	4.16	AWR_RF	F_MISC_CONF_SET_MSG							50
	4.17	AWR_RF	F_MISC_CONF_GET_MSG							51
	4.18	AWR_RF	F_ASYNC_EVENT_MSG1							51
	4.19	AWR_RF	F_ASYNC_EVENT_MSG2							53
	4.20	AWR_D	EV_RFPOWERUP_MSG							54
	4.21	AWR_D	EV_CONF_SET_MSG							55
	4.22	AWR_D	EV_CONF_GET_MSG							56
	4.23	AWR_D	EV_FILE_DOWNLOAD_MSG							57
	4.24	AWR_D	EV_FRAME_CONFIG_APPLY_MSG							57
	4.25	AWR_D	EV_STATUS_GET_MSG							58
	4.26	AWR_D	EV_ASYNC_EVENT_MSG							58
5	Ded		tional A Dia							<u> </u>
5			tional APIs k related to AWR ERROR MSG							60
	5.1	5.1.1	Sub block 0x0000 – AWR_RESP_ERROR_SB							
	5.0									
	5.2		ks related to AWR_RF_STATIC_CONF_SET_MSG							
		5.2.1	Sub block 0x0080 – AWR_CHAN_CONF_SET_SB							
		5.2.2	Sub block 0x0082 – AWR_ADCOUT_CONF_SET_SB .							
		5.2.3	Sub block 0x0083 – AWR_LOWPOWERMODE_CONF_S		_					66 67
		5.2.4	Sub block 0x0084 – AWR_DYNAMICPOWERSAVE_CO							67 69
		5.2.5	Sub block 0x0085 – AWR_HIGHSPEEDINTFCLK_CONI	_		_				68
		5.2.6	Sub block 0x0086 – AWR_RF_DEVICE_CFG_SB							69 72
		5.2.7	Sub block 0x0087 – AWR_RF_RADAR_MISC_CTL_SB							72
		5.2.8	Sub block 0x0088 – AWR_CAL_MON_FREQUENCY_LI							
		5.2.9	Sub block 0x0089 – AWR_RF_INIT_CALIBRATION_CO	NF	_SI	⊐.		• •	·	80

ii

	5.2.10	Sub block 0x008A – AWR_CAL_MON_FREQUENCY_TX_POWER_LIM	
		SB	
	5.2.11	Sub block 0x008B – AWR_CAL_DATA_RESTORE_SB	
	5.2.12	Sub block 0x008C – AWR_PHASE_SHIFTER_CAL_DATA_RESTORE_	
		SB	. 88
	5.2.13	Sub block 0x008D – AWR_APLL_SYNTH_BW_CONTROL_SB	. 90
5.3	Sub bloc	ks related to AWR_RF_STATIC_CONF_GET_MSG	. 92
	5.3.1	Sub block 0x00A0 – 0x00AA – RESERVED	. 92
	5.3.2	Sub block 0x00AB – AWR_CAL_DATA_SAVE_SB	. 92
	5.3.3	Sub block 0x00AC – AWR_PHASE_SHIFTER_CAL_DATA_SAVE_SB	. 97
5.4	Sub bloc	ks related to AWR_RF_INIT_MSG	. 100
	5.4.1	Sub block 0x00C0 – AWR_RF_INIT_SB	. 100
5.5	Sub bloc	ks related to AWR_RF_DYNAMIC_CONF_SET_MSG	. 101
	5.5.1	Sub block 0x0100 – AWR_PROFILE_CONF_SET_SB	. 101
	5.5.2	Sub block 0x0101 – AWR_CHIRP_CONF_SET_SB	. 115
	5.5.3	Sub block 0x0102 – AWR_FRAME_CONF_SET_SB	. 117
	5.5.4	Sub block 0x0103 - AWR_CONT_STREAMING_MODE_CONF_SET_S	B121
	5.5.5	Sub block 0x0104 – AWR_CONT_STREAMING_MODE_EN_SB	. 125
	5.5.6	Sub block 0x0105 – AWR_ADVANCED_FRAME_CONF_SB	. 126
	5.5.7	Sub block 0x0106 – AWR_PERCHIRPPHASESHIFT_CONF_SB	. 138
	5.5.8	Sub block 0x0107 – AWR_PROG_FILT_COEFF_RAM_SET_SB	. 140
	5.5.9	Sub block 0x0108 – AWR_PROG_FILT_CONF_SET_SB	. 142
	5.5.10	Sub block 0x0109 – AWR_CALIB_MON_TIME_UNIT_CONF_SB	. 143
	5.5.11	Sub block 0x010A - AWR_RUN_TIME_CALIBRATION_CONF_AND_	
		TRIGGER_SB	. 146
	5.5.12	Sub block 0x010B – AWR_DIGITAL_COMP_EST_CONTROL_SB	. 154
	5.5.13	Sub block 0x010C – AWR_RX_GAIN_TEMPLUT_SET_SB	. 158
	5.5.14	Sub block 0x010D – AWR_TX_GAIN_TEMPLUT_SET_SB	. 161
	5.5.15	Sub block 0x010E – AWR_LOOPBACK_BURST_CONF_SET_SB	. 164
	5.5.16	Sub block 0x010F – AWR_DYN_CHIRP_CONF_SET_SB	. 173
	5.5.17	Sub block 0x0110 - AWR_DYN_PERCHIRP_PHASESHIFTER_CONF_	
		SET_SB	. 176
	5.5.18	Sub block 0x0111 – AWR DYN CHIRP ENABLE SB	
	5.5.19	Sub block 0x0112 – AWR INTERCHIRP BLOCKCONTROLS SB	. 179
	5.5.20	Sub block 0x0113 – AWR SUBFRAME START CONF SB	. 181
	5.5.21	Sub block 0x0115 – AWR ADVANCE CHIRP CONF SB	
	5.5.22	Sub block 0x0116 – AWR_ADVANCE_CHIRP_GENERIC_LUT_LOAD_	
		SB	
	5.5.23	Sub block 0x0117 – AWR MONITOR TYPE TRIG CONF SB	. 208
	5.5.24	Sub block 0x0118 – AWR_ADVANCE_CHIRP_DYN_LUT_ADDR_OFFS	ET
		CFG SB	
	5.5.25	Sub block 0x0119 – AWR ADV TX GAIN TEMPLUT SET SB	
	5.5.26	Sub block 0x011A - AWR_ADV_DYN_PERCHIRP_PHASESHIFTER	
		CONF_SET_SB	

5.6	Sub bloc	ks related to AWR_RF_DYNAMIC_CONF_GET_SB	. 216
	5.6.1	Sub block 0x0120 – AWR_PROFILE_CONF_GET_SB	. 216
	5.6.2	Sub block 0x0121 – AWR_CHIRP_CONF_GET_SB	. 216
	5.6.3	Sub block 0x0122 – AWR_FRAME_CONF_GET_SB	. 217
	5.6.4	Sub block 0x0123 – RESERVED	. 217
	5.6.5	Sub block 0x0124 – RESERVED	. 217
	5.6.6	Sub block 0x0125 – AWR_ADV_FRAME_CONF_GET_SB	. 217
	5.6.7	Sub block 0x0126 – RESERVED	. 218
	5.6.8	Sub block 0x0127 – RESERVED	. 218
	5.6.9	Sub block 0x0128 – RESERVED	. 218
	5.6.10	Sub block 0x0129 – RESERVED	. 218
	5.6.11	Sub block 0x012A – RESERVED	. 218
	5.6.12	Sub block 0x012B – RESERVED	. 218
	5.6.13	Sub block 0x012C – AWR RX GAIN TEMPLUT GET SB	. 218
	5.6.14	Sub block 0x012D – AWR TX GAIN TEMPLUT GET SB	. 218
	5.6.15	Sub block 0x0139 – AWR ADV TX GAIN TEMPLUT GET SB	. 219
5.7	Sub bloc	ks related to AWR_FRAME_TRIG_MSG	. 219
	5.7.1	Sub block 0x0140 – AWR_FRAMESTARTSTOP_CONF_SB	. 219
5.8	Sub bloc	ks related to AWR RF ADVANCED FEATURES CONF SET MSG .	. 220
	5.8.1	Sub block 0x0180 – AWR_BPM_COMMON_CONF_SET_SB	. 220
	5.8.2	Sub block 0x0181 – AWR BPM CHIRP CONF SET SB	. 221
	5.8.3	Sub block 0x0182 – AWR POWER SAVE MODE CONF SET SB .	. 222
5.9	Sub bloc	ks related to AWR RF STATUS GET MSG	. 223
	5.9.1	Sub block 0x0220 – AWR_RF_VERSION_GET_SB	. 223
	5.9.2	Sub block 0x0221 – AWR_RF_CPUFAULT_STATUS_GET_SB	
	5.9.3	Sub block 0x0222 – AWR RF ESMFAULT STATUS GET SB	
	5.9.4	Sub block 0x0223 – AWR RF DIEID GET SB	
	5.9.5	Sub block 0x0224 – AWR RF BOOTUPBIST STATUS GET SB	. 230
	5.9.6	Sub block 0x0226 – AWR RF ADV ESMFAULT STATUS GET SB .	. 233
5.10	Sub bloc	ks related to AWR RF MONITORING REPORT GET MSG	. 237
	5.10.1	Sub block 0x0260 – AWR_RF_DFE_STATISTICS_REPORT_GET_SB	. 237
	5.10.2	Sub block 0x0261 - AWR RF REAL CHAN DFE STATISTICS REPO	RT
		GET_SB	. 247
5.11	Sub bloc	ks related to AWR_RF_MISC_CONF_SET_MSG	
	5.11.1	Sub block 0x02C0 – RESERVED	
	5.11.2	Sub block 0x02C1 – RESERVED	. 253
	5.11.3	Sub block 0x02C2 - AWR_RF_TEST_SOURCE_CONFIG_SET_SB .	. 253
	5.11.4	Sub block 0x02C3 – AWR RF TEST SOURCE ENABLE SET SB .	
	5.11.5	Sub block 0x02C4 – 0x02CB RESERVED	. 256
	5.11.6	Sub block 0x02CC – AWR_RF_LDO_BYPASS_SB	
	5.11.7	Sub block 0x02CD – AWR RF PALOOPBACK CFG SB	
	5.11.8	Sub block 0x02CE – AWR RF PSLOOPBACK CFG SB	
	5.11.9	Sub block 0x02CF – AWR RF IFLOOPBACK CFG SB	
	5.11.10	Sub block 0x02D0 – AWR_RF_GPADC_CFG_SET_SB	

	5.11.11	Sub block 0x02D1 – RESERVED	265
	5.11.12	Sub block 0x02D2 – RESERVED	265
	5.11.13	Sub block 0x02D3 – RESERVED	265
	5.11.14	Sub block 0x02D4 – RESERVED	265
	5.11.15	Sub block 0x02D5 – AWR_RF_LOLOOPBACK_CFG_SB	265
5.12	Sub bloc	ks related to AWR_RF_MISC_CONF_GET_MSG	266
	5.12.1	Sub block 0x02E0 to 0x2E9 – RESERVED	266
	5.12.2	Sub block 0x02EA – AWR_RF_TEMPERATURE_GET_SB	266
5.13	Sub bloc	ks related to AWR_RF_ASYNC_EVENT_MSG1	268
	5.13.1	Sub block 0x1000 – RESERVED	269
	5.13.2	Sub block 0x1001 – RESERVED	269
	5.13.3	Sub block 0x1002 – AWR_AE_RF_CPUFAULT_SB	269
	5.13.4	Sub block 0x1003 – AWR_AE_RF_ESMFAULT_SB	271
	5.13.5	Sub block 0x1004 – AWR_AE_RF_INITCALIBSTATUS_SB	274
	5.13.6	Sub block 0x1005 – RESERVED	275
	5.13.7	Sub block 0x1006 – RESERVED	275
	5.13.8	Sub block 0x1007 – AWR_AE_RF_ADV_ESMFAULT_SB	275
	5.13.9	Sub block 0x1008 – RESERVED	280
	5.13.10	Sub block 0x1009 – RESERVED	280
	5.13.11	Sub block 0x100A - AWR_AE_RF_MONITOR_TYPE_TRIGGER_DONE	_
		SB	280
	5.13.12	Sub block 0x100B - AWR_AE_RF_FRAME_TRIGGER_RDY_SB	280
	5.13.13	Sub block 0x100C - AWR_AE_RF_GPADC_RESULT_DATA_SB	281
	5.13.14	Sub block 0x100E – RESERVED	283
	5.13.15	Sub block 0x100D – RESERVED	283
	5.13.16	Sub block 0x100E – RESERVED	283
	5.13.17	Sub block 0x100F - AWR_FRAME_END_AE_SB	283
	5.13.18	Sub block 0x1010 - AWR_ANALOGFAULT_AE_SB	283
	5.13.19	Sub block 0x1011 - AWR_CAL_MON_TIMING_FAIL_REPORT_AE_SB	284
	5.13.20	Sub block 0x1012 – AWR_RUN_TIME_CALIB_SUMMARY_REPORT_	
		AE_SB	285
	5.13.21	Sub block 0x1013 - AWR_MONITOR_RF_DIG_LATENTFAULT_REPORT	Г_
		AE_SB	288
	5.13.22	Sub block 0x1014 – RESERVED	289
	5.13.23	Sub block 0x1015 - AWR_MONITOR_REPORT_HEADER_AE_SB	289
	5.13.24	Sub block 0x1016 – AWR_MONITOR_RF_DIG_PERIODIC_REPORT_	
		AE_SB	290
	5.13.25	Sub block 0x1017 – AWR_MONITOR_TEMPERATURE_REPORT_AE_	
		SB	291
	5.13.26	Sub block 0x1018 - AWR_MONITOR_RX_GAIN_PHASE_REPORT_	
		AE_SB	292
	5.13.27	Sub block 0x1019 - AWR_MONITOR_RX_NOISE_FIGURE_REPORT_	
		AE_SB	296
	5.13.28	$Sub \ block \ 0x101A - AWR_MONITOR_RX_IFSTAGE_REPORT_AE_SB$	298

v

5.13.29 5.13.30 5.13.31 5.13.32	Sub block 0x101D – AWR_MONITOR_TX2_POWER_REPORT_AE_SB 303
5.13.33	Sub block 0x101F – AWR_MONITOR_TX1_BALLBREAK_REPORT_AE_
	SB
5.14 Sub bio 5.14.1	Sub block 0x1020 – AWR MONITOR TX2 BALLBREAK REPORT AE
5.14.1	SB
5.14.2	Sub block 0x1021 – AWR_MONITOR_TX_GAIN_PHASE_MISMATCH_
0.14.2	REPORT AE SB
5.14.3	Sub block 0x1022 – AWR MONITOR TX0 PHASE SHIFTER REPORT
	AE SB
5.14.4	Sub block 0x1023 – AWR MONITOR TX1 PHASE SHIFTER REPORT
	AE_SB
5.14.5	Sub block 0x1024 – AWR_MONITOR_TX2_PHASE_SHIFTER_REPORT_
	AE_SB
5.14.6	Sub block 0x1025 – AWR_MONITOR_SYNTHESIZER_FREQUENCY_
	REPORT_AE_SB
5.14.7	Sub block 0x1026 – AWR_MONITOR_EXTERNAL_ANALOG_SIGNALS_
	REPORT_AE_SB
5.14.8	Sub block 0x1027 – AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_
5.14.9	REPORT_AE_SB
5.14.9	REPORT AE SB
5.14.10	— —
0.14.10	REPORT AE SB
5.14.11	
	REPORT AE SB
5.14.12	Sub block 0x102B – AWR_MONITOR_PMCLKLO_INTERNAL_ANALOG_
	SIGNALS_REPORT_AE_SB
5.14.13	Sub block 0x102C – AWR_MONITOR_GPADC_INTERNAL_ANALOG_
	SIGNALS_REPORT_AE_SB
5.14.14	Sub block 0x102D - AWR_MONITOR_PLL_CONTROL_VOLTAGE_REPORT_
	AE_SB
5.14.15	Sub block 0x102E – AWR_MONITOR_DUAL_CLOCK_COMP_REPORT_
5 4 4 4 0	AE_SB
5.14.16	Sub block 0x1031 – AWR_MONITOR_RX_MIXER_IN_POWER_REPORT_
5.14.17	AE_SB
5.14.17	NONLIVE REPORT AE SB
5.14.18	Sub block 0x1034 – AWR MONITOR TX3 POWER REPORT AE SB 332
0.1.10	

	5.14.19	Sub block 0x1035 – AWR_MONITOR_TX3_BALLBREAK_REPORT_AE_
		SB
	5.14.20	Sub block 0x1036 - AWR_MONITOR_TX3_INTERNAL_ANALOG_SIGNALS_
		REPORT_AE_SB
	5.14.21	Sub block 0x1037 – AWR_MONITOR_TX3_PHASE_SHIFTER_REPORT_
		AE_SB
	5.14.22	Sub block 0x1038 - AWR_MONITOR_ADV_TX_GAIN_PHASE_MISMATCH_
		REPORT_AE_SB
	5.14.23	Sub block 0x1039 – AWR_MONITOR_TX_PHSHIFTER_DAC_REPORT_
		AE_SB
5.15		ks related to AWR_DEV_RFPOWERUP_MSG
	5.15.1	Sub block 0x4000 – AWR_DEV_RFPOWERUP_SB
5.16		ks related to AWR_DEV_CONF_SET_MSG
	5.16.1	Sub block 0x4040 – AWR_DEV_MCUCLOCK_CONF_SET_SB 341
	5.16.2	Sub block 0x4041 - AWR_DEV_RX_DATA_FORMAT_CONF_SET_SB . 343
	5.16.3	Sub block 0x4042 - AWR_DEV_RX_DATA_PATH_CONF_SET_SB 344
	5.16.4	Sub block 0x4043 - AWR_DEV_RX_DATA_PATH_LANEEN_SET_SB 347
	5.16.5	Sub block 0x4044 – AWR_DEV_RX_DATA_PATH_CLK_SET_SB 348
	5.16.6	Sub block 0x4045 – AWR_DEV_LVDS_CFG_SET_SB
	5.16.7	Sub block 0x4046 – AWR_DEV_RX_CONTSTREAMING_MODE_CONF_ SET_SB
	5.16.8	Sub block 0x4047 – AWR DEV CSI2 CFG SET SB
	5.16.9	Sub block 0x4048 – AWR DEV PMICCLOCK CONF SET SB 354
	5.16.10	Sub block 0x4049 – AWR MSS PERIODICTESTS CONF SB 359
	5.16.11	Sub block 0x404A – AWR MSS LATENTFAULT TEST CONF SB 360
	5.16.12	Sub block 0x404B – AWR DEV TESTPATTERN GEN SET SB 362
	5.16.13	Sub block 0x404C – AWR DEV CONFIGURATION SET SB
	5.16.14	Sub block 0x404D – AWR DEV RF DEBUG SIG SET SB
		Sub block 0x404E – AWR_DEV_DEV_HSI_DELAY_DUMMY_CFG_SET_
	0.10.10	SB
5 17	Sub bloc	ks related to AWR DEV CONF GET MSG
••••	5.17.1	Sub block 0x4060 – AWR_DEV_MCUCLOCK_GET_SB
	5.17.2	Sub block 0x4061 – AWR DEV RX DATA FORMAT CONF GET SB . 368
	5.17.3	Sub block 0x4062 – AWR DEV RX DATA PATH CONF GET SB 369
	5.17.4	Sub block 0x4063 – AWR DEV RX DATA PATH LANEEN GET SB . 369
	5.17.5	Sub block 0x4064 – AWR DEV RX DATA PATH CLK GET SB 369
	5.17.6	Sub block 0x4065 – AWR DEV LVDS CFG GET SB
	5.17.7	Sub block 0x4066 – AWR DEV RX CONTSTREAMING MODE CONF
	0.17.1	GET SB
	5.17.8	Sub block 0x4067 – AWR DEV CSI2 CFG GET SB
	5.17.9	Sub block 0x4068 – AWR DEV PMICCLOCK CONF GET SB 370
	5.17.10	Sub block 0x4069 – AWR_MSS_LATENTFAULT_TEST_CONF_GET_SB371
	5.17.11	Sub block 0x406A – AWR_MSS_PERIODICTESTS_CONF_GET_SB 371
	5.17.12	Sub block 0x406B – AWR_DEV_TESTPATTERN_GEN_GET_SB 371

	5.18	Sub bloc	ks related to AWR_DEV_FILE_DOWNLOAD_MSG	. 372
		5.18.1	Sub block 0x4080 – AWR_DEV_FILE_DOWNLOAD_SB	. 372
	5.19	Sub bloc	ks related to AWR_DEV_FRAME_CONFIG_APPLY_MSG	. 372
		5.19.1	Sub block 0x40C0 – AWR_DEV_FRAME_CONFIG_APPLY_SB	. 372
		5.19.2	Sub block 0x40C1 - AWR_DEV_ADV_FRAME_CONFIG_APPLY_SB .	. 373
	5.20	Sub bloc	ks related to AWR_DEV_STATUS_GET_MSG	. 375
		5.20.1	Sub block 0x40E0 – AWR_MSSVERSION_GET_SB	. 375
		5.20.2	Sub block 0x40E1 – AWR_MSSCPUFAULT_STATUS_GET_SB	. 377
		5.20.3	Sub block 0x40E2 – AWR_MSSESMFAULT_STATUS_GET_SB	. 379
	5.21	Sub bloc	ks related to AWR_DEV_ASYNC_EVENT_MSG	. 382
		5.21.1	Sub block 0x5000 – AWR_AE_DEV_MSSPOWERUPDONE_SB	. 382
		5.21.2	Sub block 0x5001 – AWR_AE_DEV_RFPOWERUPDONE_SB	. 384
		5.21.3	Sub block 0x5002 – AWR_AE_MSS_CPUFAULT_SB	. 386
		5.21.4	Sub block 0x5003 – AWR_AE_MSS_ESMFAULT_STATUS_SB	. 387
		5.21.5	Sub block 0x5004 – RESERVED	. 391
		5.21.6	Sub block 0x5005 – AWR_AE_MSS_BOOTERRORSTATUS_SB	. 391
		5.21.7	Sub block 0x5006 - AWR_AE_MSS_LATENTFAULT_TESTREPORT_S	<mark>B</mark> 393
		5.21.8	Sub block 0x5007 – AWR_AE_MSS_PERIODICTEST_STATUS_SB .	. 395
		5.21.9	Sub block 0x5008 – AWR_AE_MSS_RFERROR_STATUS_SB	. 395
		5.21.10	Sub block 0x5009 – RESERVED	. 396
		5.21.11	Sub block 0x500A – RESERVED	. 396
		5.21.12	Sub block 0x500B – RESERVED	. 396
~		D		~~~
6			nming Sequence	397
	6.1			
	6.2		ed device mode	
	6.3		bus streaming mode (in single device case)	
	6.4	Continuc	bus streaming (CW) mode (in cascaded device case)	. 404
7	API	Error Ha	andling and Error Codes	406
	7.1		r Handling	
	7.2		r Codes	
	7.3	Boot on	SPI Error codes	. 418
8			toring APIs	421
	8.1		Configurations and Reports	
		8.1.1	Sub block 0x01C0 – AWR_MONITOR_RF_DIG_LATENTFAULT_CONF_	
			SB	
		8.1.2	Sub block 0x01C1 – AWR_MONITOR_RF_DIG_PERIODIC_CONF_SB	
		8.1.3	Sub block 0x01C2 – AWR_MONITOR_ANALOG_ENABLES_CONF_SE	
	8.2		ture Monitor	
		8.2.1	Sub block 0x01C3 – AWR_MONITOR_TEMPERATURE_CONF_SB .	
	8.3		and Phase Monitor	
		8.3.1	Sub block 0x01C4 – AWR_MONITOR_RX_GAIN_PHASE_CONF_SB	. 431

8.4		e Monitor
	8.4.1	Sub block 0x01C5 – AWR_MONITOR_RX_NOISE_FIGURE_CONF_SB 435
8.5	RX IF St	age Monitor
	8.5.1	Sub block 0x01C6 – AWR_MONITOR_RX_IFSTAGE_CONF_SB 437
8.6	TX Powe	er Monitor
	8.6.1	Sub block 0x01C7 – AWR_MONITOR_TX0_POWER_CONF_SB 439
	8.6.2	Sub block 0x01C8 – AWR_MONITOR_TX1_POWER_CONF_SB 441
	8.6.3	Sub block 0x01C9 – AWR MONITOR TX2 POWER CONF SB 442
8.7	TX Ball E	Break Monitor
	8.7.1	Sub block 0x01CA – AWR MONITOR TX0 BALLBREAK CONF SB . 444
	8.7.2	Sub block 0x01CB – AWR MONITOR TX1 BALLBREAK CONF SB . 446
	8.7.3	Sub block 0x01CC – AWR MONITOR TX2 BALLBREAK CONF SB . 447
8.8		and Phase Mismatch Monitoring
0.0	8.8.1	Sub block 0x01CD – AWR MONITOR TX GAIN PHASE MISMATCH
	0.0.1	CONF SB
8.9	TX Phas	e Shifter Monitor
0.0	8.9.1	Sub block 0x01CE – AWR_MONITOR_TX0_PHASE_SHIFTER_CONF_
	0.0.1	SB
	8.9.2	Sub block 0x01CF – AWR MONITOR TX1 PHASE SHIFTER CONF
	0.0.2	SB
	8.9.3	Sub block 0x01D0 – AWR MONITOR TX2 PHASE SHIFTER CONF
	0.0.0	SB
8 10	Synthesi	zer Frequency Monitoring
0.10	8.10.1	Sub block 0x01D1 – AWR_MONITOR_SYNTHESIZER_FREQUENCY_
	0.10.1	CONF SB
8 1 1	External	Analog Signals Monitor
0.11	8.11.1	Sub block 0x01D2 – AWR MONITORING EXTERNAL ANALOG SIGNALS
	0.11.1	CONF SB
8 12	Internal	Analog Signals Monitor
0.12	8.12.1	Sub block 0x01D3 – AWR MONITOR TX0 INTERNAL ANALOG SIGNALS
	0.12.1	CONF SB
	8.12.2	Sub block 0x01D4 – AWR MONITOR TX1 INTERNAL ANALOG SIGNALS
	0.12.2	CONF_SB
	8.12.3	Sub block 0x01D5 – AWR_MONITOR_TX2_INTERNAL_ANALOG_SIGNALS_
	0.12.0	CONF SB
	8.12.4	Sub block 0x01D6 – AWR MONITOR RX INTERNAL ANALOG SIGNALS
	0.12.4	CONF SB
	8.12.5	Sub block 0x01D7 – AWR MONITOR PMCLKLO INTERNAL ANALOG
	0.12.0	SIGNALS CONF SB
	8.12.6	Sub block 0x01D8 – AWR MONITOR GPADC INTERNAL ANALOG
	0.12.0	SIGNALS_CONF_SB
8 12	PLL Con	trol Voltage Monitor
0.10	8.13.1	Sub block 0x01D9 – AWR MONITOR PLL CONTROL VOLTAGE SIGNALS
	0.10.1	CONF SB

8.14	Dual Clo	ck Comparator Based Clock Frequency Monitor	479
	8.14.1	Sub block 0x01DA – AWR_MONITOR_DUAL_CLOCK_COMP_CONF_	
		SB	480
8.15	RX Satu	ration Detection Monitor	481
	8.15.1	Sub block 0x01DB – AWR_MONITOR_RX_SATURATION_DETECTOR_	
		CONF_SB	481
	8.15.2	Sub block 0x01DC – AWR_MONITOR_SIG_IMG_MONITOR_CONF_SB	482
8.16	RX mixe	r input power monitor	484
	8.16.1	Sub block 0x01DD - AWR_MONITOR_RX_MIXER_IN_POWER_CONF_	
		SB	484
8.17	Sub bloc	k 0x01DE – RESERVED	486
8.18	Analog F	Fault injection	486
	8.18.1	Sub block $0x01DF - AWR_ANALOG_FAULT_INJECTION_CONF_SB$.	
8.19	Sub bloc	ks related to AWR_RF_MONITORING_CONF_SET_2_MSG	
	8.19.1	Sub block 0x0280 – AWR_MONITOR_TXN_POWER_CONF_SB	
	8.19.2	Sub block 0x0281 – AWR_MONITOR_TXN_BALLBREAK_CONF_SB	
	8.19.3	Sub block 0x0282 – AWR_MONITOR_TXN_INTERNAL_ANALOG_SIGN/	
		CONF_SB	499
	8.19.4	Sub block 0x0283 – AWR_MONITOR_TXN_PHASE_SHIFTER_CONF_	
		SB	
	8.19.5	Sub block 0x0284 – AWR_MONITOR_ADV_TX_GAIN_PHASE_MISMATC	
		CONF_SB	
	8.19.6	Sub block 0x0285 – AWR_MONITOR_VMON_CONF_SB	
	8.19.7	Sub block 0x0286 – AWR_MONITOR_OVERRIDES_AND_DITHER_CON	
	8.19.8	Sub block 0x0287 – AWR_MONITOR_TX_PHSHIFTER_DAC_CONF_SE	515
9 Uns	unnorte	ed Features/APIs and Debug APIs	518
9.1		prted Features/APIs and Debug APIs	
0.1	onouppe		010
10 Chi	rp Paran	neters (CP) and Chirp Quality (CQ) data	519
10.1	Chirp Pa	arameters data	519
10.2	Chirp Qu	uality data	520
	10.2.1	CQ1	522
	10.2.2	CQ2	525
_			
			528
		/cle Time	
		n Inter Burst Time	
11.3	Minimum	n Inter Sub-frame or Frame Time	534
12 Cal	ibration	and monitoring durations	535
		e calibration durations	

	 12.3 Monitoring duration 12.4 Software overheads 12.4.1 Note on idle time for clearing the watchdog (WDT) 12.5 Sample Application 	. 544 . 545
Ap	opendices	ii
A	AWR2243 API changes	iii
В	xWR6243 API changes	vi

List of Figures

2.1	AWR12xx, AWR22xx, AWR62xx Software Architecture
2.2	xWR16xx, xWR18xx, IWR68xx, xWR294x and xWR254x Software Architecture . 13
2.3	Radar Message Structure
2.4	Message Header Format
2.5	OPCODE Format
2.6	MSGLEN Format
2.7	FLAGS Format
2.8	NSBC Format
2.9	Message Sub block structure
3.1	Flow Diagram (API)
3.2	Flow Diagram (Asynchronous Events) 25
3.3	SPI Message Sequence
3.4	Command/Response Flow Diagram
3.5	ASYNC Event Flow Diagram
5.1	TX PS apply timing in a chirp
5.2	Frame trigger delay in case of external hardware trigger
5.3	Frame trigger delay in case of external hardware trigger
5.4	TX PS apply timing in a chirp
5.5	Dynamic chirp configuration use case timing diagram
5.6	Advance chirp parameter dither sources and program
5.7	Lane formats and the order of receiving the data from the lanes
10.1	Chirp parameter information fields
10.2	Chirp parameter information from DSS registers
	CQ data start address configuration in single chirp use case
10.4	CQ data start address configuration in multi chirp use case
	Time slices during RX signal and image band monitor and saturation monitor 523
	CQ1 data format in memory in 16-bit mode
	CQ1 data format in memory in 12-bit mode
	CQ1 data format in memory in 14-bit mode
	CQ2 data format in memory in 16-bit mode
	OCQ2 data format in memory in 12-bit mode
10.11	ICQ2 data format in memory in 14-bit mode

mmWave Radar

Interface Control Document Revision 3.35 - Jan 16, 2024

List of Tables

1.1	TI CMOS mmWave radar devices	2
2.1	RSS_CR4_BOOT_INFO_REG0	4
2.2	RSS_CR4_BOOT_INFO_REG1 (Redundant copy of REG0)	5
2.3	RSS_CR4_BOOT_INFO_REG3	6
2.4	RSS_CR4_BOOT_INFO_REG4 (Redundant copy of REG3)	7
2.5	RSS_CR4_BOOT_INFO_REG5	10
2.6	RSS_CR4_BOOT_INFO_REG6	11
2.7	Possible SYNC values and their usage	15
2.9	MSGLEN field descriptions	17
2.10	FLAGS field description	17
2.11	NSBC field description	19
2.12	Checksum computation example	19
2.13	CRC types and their polynomials	21
4.4	Current of common Redex messages in both RCC and MCC and their coordi	
4.1	Summary of common Radar messages in both BSS and MSS and their associated sub blocks	32
4.2	Summary of all Radar messages in the BSS and their associated sub blocks	
4.2 4.3	Summary of Radar messages in the MSS of front-end devices (12xx/22xx/62xx)	52
4.5	and their associated sub blocks	37
		57
5.1	AWR_RESP_ERROR_SB contents	60
5.2	AWR_CHAN_CONF_SET_SB contents	
5.3	AWR_ADCOUT_CONF_SB contents	65
5.4	AWR_LOWPOWERMODE_CONF_SET_SB contents	66
5.5	AWR_DYNAMICPOWERSAVE_CONF_SET_SB contents	67
5.6	AWR_HIGHSPEEDINTFCLK_CONF_SET_SB contents	68
5.7	AWR_RF_DEVICE_CFG_SB contents	
5.8	AWR_RF_MISC_CTL_SB contents	73
5.9	AWR_CAL_MON_FREQUENCY_LIMITS_SB contents	78
5.10	AWR_RF_INIT_CALIBRATION_CONF_SB contents	80
5.11	AWR_CAL_MON_FREQUENCY_TX_POWER_LIMITS_SB contents	82
5.12	AWR_CAL_DATA_RESTORE_SB contents	87
5.13	AWR_PHASE_SHIFTER_CAL_DATA_RESTORE_SB contents	88
	Typical APLL and Synth BW settings for xWR6x43	
5.15	Typical APLL and Synth BW settings for AWR2243	90

5.16	Typical APLL and Synth BW settings for xWR294x and xWR254x devices 91
5.17	AWR_APLL_SYNTH_BW_CONTROL_SB contents
5.18	AWR_CAL_DATA_SAVE_SB contents 92
5.19	AWR_CAL_DATA_SAVE_SB response packet contents 93
5.20	AWR_CAL_DATA contents for AWR2243
5.21	AWR_CAL_DATA contents for xWR294x/xWR254x devices 94
5.22	AWR_CAL_DATA contents for xWR6x43 devices 96
5.23	AWR_PHASE_SHIFTER_CAL_DATA_SAVE_SB contents
5.24	AWR_PHASE_SHIFTER_CAL_DATA_SAVE_SB response packet contents 98
5.25	AWR_RF_INIT_SB contents
5.26	AWR_PROFILE_CONF_SB contents
5.27	Note on maximum sampling rate
5.28	AWR_CHIRP_CONF_SET_SB contents
5.29	AWR_FRAME_CONF_SET_SB contents 117
5.30	AWR_CONT_STREAMING_MODE_CONF_SET_SB contents
5.31	AWR_CONT_STREAMING_MODE_EN_SB contents
5.32	AWR_ADVANCED_FRAME_CONF_SB contents
5.33	AWR_PERCHIRPPHASESHIFT_CONF_SB contents
5.34	Programmable filter DFE sampling rate and max number of taps for AWR2243/xWR6243141
5.35	Programmable filter DFE sampling rate and max number of taps for xWR294x/xWR254x141
5.36	AWR_PROG_FILT_COEFF_RAM_SET_SB contents
5.37	AWR_PROG_FILT_CONF_SET_SB contents 142
5.38	AWR_CALIB_MON_TIME_UNIT_CONF_SB contents
5.39	AWR_RUN_TIME_CALIBRATION_CONF_AND_TRIGGER_SB contents 147
5.40	AWR_DIGITAL_COMP_EST_CONTROL_SB contents
5.41	AWR_RX_GAIN_TEMPLUT_SET_SB contents 159
5.42	AWR_TX_GAIN_TEMPLUT_SET_SB contents
	AWR_LOOPBACK_BURST_CONF_SET_SB contents
	AWR_DYN_CHIRP_CONF_SET_SB contents
	AWR_DYN_PERCHIRP_PHASESHIFTER_CONF_SB contents 177
5.46	AWR_DYN_CHIRP_ENABLE_SB contents
5.47	AWR_INTERCHIRP_BLOCKCONTROLS_SB contents 179
5.48	AWR_SUBFRAME_START_CONF_SB contents 182
	AWR_ADVANCE_CHIRP_CONF_SB contents 185
5.50	ADV_CHIRP_FIXED_DELTA_PARAM description
5.51	AWR_ADVANCE_CHIRP_GENERIC_LUT_LOAD_SB contents
5.52	ADV_CHIRP_GENERIC_LUT_PARAM description
	Types of Monitors
5.54	Monitor Categorization
5.55	AWR_MONITOR_TYPE_TRIG_CONF_SB contents
5.56	AWR_ADVANCE_CHIRP_DYN_LUT_ADDR_OFFSET_CFG_SB contents 211
5.57	AWR_ADV_TX_GAIN_TEMPLUT_SET_SB contents
5.58	AWR_ADV_DYN_PERCHIRP_PHASESHIFTER_CONF_SB contents
5.59	AWR_PROFILE_CONF_GET_SB contents

5.60 AWR_CHIRP_CONF_GET_SB contents
5.61 AWR_FRAME_CONF_GET_SB contents
5.62 AWR_ADV_FRAME_CONF_GET_SB contents
5.63 AWR_RX_GAIN_TEMPLUT_GET_SB contents
5.64 AWR_TX_GAIN_TEMPLUT_GET_SB contents
5.65 AWR_ADV_TX_GAIN_TEMPLUT_GET_SB contents
5.66 AWR_FRAMESTARTSTOP_CONF_SB contents
5.67 AWR_BPM_COMMON_CONF_SET_SB contents
5.68 AWR_BPM_CHIRP_CONF_SET_SB contents
5.69 AWR_POWER_SAVE_MODE_CONF_SET_SB contents
5.70 AWR_RF_VERSION_GET_SB contents
5.71 AWR_RF_VERSION_SB response contents
5.72 AWR_RF_CPUFAULT_STATUS_GET_SB contents
5.73 AWR_RF_CPUFAULT_STATUS_GET_SB response contents
5.74 AWR_RF_ESMFAULT_STATUS_GET_SB contents
5.75 AWR_RF_ESMFAULT_STATUS_SB response contents
5.76 AWR RF DIEID GET SB contents
5.77 AWR RF DIEID STATUS SB response contents
5.78 AWR_RF_BOOTUPBIST_STATUS_GET_SB contents
5.79 AWR_RF_BOOTUPBIST_STATUS_DATA_SB response contents
5.80 AWR RF ADV ESMFAULT STATUS GET SB contents
5.81 AWR RF ADV ESMFAULT STATUS SB response contents
5.82 AWR_RF_DFE_STATISTICS_REPORT_GET_SB contents
5.83 AWR_RF_DFE_STATISTICS_REPORT_SB response contents
5.84 AWR RF REAL CHAN DFE STATISTICS REPORT GET SB contents
5.85 AWR RF REAL CHAN DFE STATISTICS REPORT SB response contents
5.86 AWR_RF_TEST_SOURCE_CONFIG_SET_SB contents
5.87 AWR_RF_TEST_SOURCE_ENABLE_SET_SB contents
5.88 AWR_RF_LDO_BYPASS_SB contents
5.89 AWR_RF_PALOOPBACK_CFG_SB contents for AWR2243/xWR6243 devices
5.90 AWR_RF_PALOOPBACK_CFG_SB contents for xWR294x/xWR254x devices 259
5.91 AWR_RF_PSLOOPBACK_CFG_SB contents
5.92 AWR_RF_IFLOOPBACK_CFG_SB contents
5.93 AWR_RF_GPADC_CFG_SET_SB contents
5.94 AWR_RF_LOLOOPBACK_CFG_SB contents
5.95 AWR_RF_TEMPERATURE_GET_SB contents
5.96 AWR_RF_TEMPERATURE_DATA_SB contents
5.97 AWR_AE_RF_CPUFAULT_SB response contents
5.98 AWR_AE_RF_ESMFAULT_STATUS_SB response contents
5.99 AWR_AE_RF_INITCALIBSTATUS_SB response contents
5.100AWR_AE_RF_ADV_ESMFAULT_STATUS_SB response contents
5.101AWR_AE_RF_MONITOR_TYPE_TRIGGER_DONE_SB response contents 280
5.102AWR_AE_RF_FRAME_TRIGGER_RDY_SB response contents
5.103AWR_AE_RF_GPADC_RESULT_DATA_SB response contents

5.104AWR_FRAME_END_AE_SB response contents	283
5.105AWR_ANALOGFAULT_AE_SB response contents	283
5.106AWR_CAL_MON_TIMING_FAIL_REPORT_AE_SB response contents	284
5.107AWR_RUN_TIME_CALIB_SYMMARY_REPORT_AE_SB response contents	286
5.108AWR_MONITOR_RF_DIG_LATENTFAULT_REPORT_AE_SB response contents	288
5.109AWR_MONITORING_REPORT_HEADER_AE_SB response contents	290
5.110AWR MONITOR RF DIG PERIODIC REPORT AE SB contents	290
5.111AWR_MONITORING_TEMPERATURE_REPORT_AE_SB contents	291
5.112AWR_MONITOR_RX_GAIN_PHASE_REPORT_AE_SB contents	293
5.113AWR_MONITOR_RX_NOISE_FIGURE_REPORT_AE_SB contents	
5.114AWR_MONITOR_RX_IFSTAGE_REPORT_AE_SB contents	
5.115AWR_MONITOR_TX0_POWER_REPORT_AE_SB contents	
5.116AWR_MONITOR_TX1_POWER_REPORT_AE_SB contents	
5.117AWR MONITOR TX2 POWER REPORT AE SB contents	
5.118AWR_MONITOR_TX0_BALLBREAK_REPORT_AE_SB contents	
5.119AWR_MONITOR_TX1_BALLBREAK_REPORT_AE_SB contents	
5.120AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB contents	
5.121 AWR MONITOR TX GAIN PHASE REPORT AE SB contents	
5.122AWR_MONITOR_TX0_PHASE_SHIFTER_REPORT_AE_SB contents	310
5.123AWR_MONITOR_TX1_PHASE_SHIFTER_REPORT_AE_SB contents	
5.124AWR MONITOR TX2 PHASE SHIFTER REPORT AE SB contents	
5.125AWR MONITOR SYNTH FREQUENCY REPORT AE SB contents	
5.126AWR MONITOR EXTERNAL ANALOG SIGNALS REPORT AE SB contents .	
5.127AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB con-	
tents	319
5.128AWR MONITOR TX1 INTERNAL ANALOG SIGNALS REPORT AE SB con-	
tents	320
5.129AWR_MONITOR_TX2_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB con-	0_0
tents	321
5.130AWR MONITOR RX INTERNAL ANALOG SIGNALS REPORT AE SB content	
5.131AWR MONITOR PM CLK LO INTERNAL ANALOG SIGNALS REPORT AE	
SB contents	323
5.132AWR MONITOR GPADC INTERNAL ANALOG SIGNALS REPORT AE SB con	
5.133AWR MONITOR PLL CONTROL VOLTAGE REPORT AE SB contents	
5.134AWR MONITOR DUAL CLOCK COMP REPORT AE SB contents	
5.135AWR MONITOR RX MIXER IN POWER REPORT AE SB contents	
5.136AWR MONITOR SYNTHESIZER FREQUENCY NONLIVE REPORT AE SB co	
5.137AWR MONITOR TX3 POWER REPORT AE SB contents	
5.138AWR MONITOR TX3 BALLBREAK REPORT AE SB contents	
5.139AWR MONITOR TX3 INTERNAL ANALOG SIGNALS REPORT AE SB con-	004
	3 31
5.140AWR MONITOR TX3 PHASE SHIFTER REPORT AE SB contents	
	333

5.141AWR_MONITOR_ADV_TX_GAIN_PHASE_REPORT_AE_SB contents	. 338
5.142AWR_MONITOR_TX_PHSHIFTER_DAC_REPORT_AE_SB contents	. 340
5.143AWR_DEV_POWERUP_SB contents	. 341
5.144AWR_DEV_MCUCLOCK_CONF_SET_SB contents	. 342
5.145AWR_DEV_RX_DATA_FORMAT_CONF_SB contents	. 343
5.146AWR_DEV_RX_DATA_PATH_CONF_SB contents	. 344
5.147AWR_DEV_RX_DATA_PATH_LANEEN_SET_SB contents	. 347
5.148AWR_DEV_RX_DATA_PATH_CLK_SET_SB contents	
5.149AWR_DEV_LVDS_CFG_SET_SB contents	. 349
5.150AWR_DEV_RX_CONTSTREAMING_MODE_CFG_SET_SB contents	. 352
5.151AWR_DEV_CSI2_CFG_SET_SB contents	
5.152AWR_DEV_PMICCLOCK_CONF_SET_SB contents	. 354
5.153PMIC clock frequency across chirps in chirp-to-chirp staircase mode in an exam-	
ple when PMIC clock varies from 2 MHz to 2.5 MHz in 32 chirps	. 358
5.154AWR_MSS_PERIODICTESTS_CONF_SB contents	. 359
5.155AWR_MSS_LATENTFAULT_TEST_CONF_SB contents	. 360
5.156AWR_DEV_TESTPATTERN_GEN_SET_SB contents	. 363
5.157AWR_DEV_CONFIGURATION_SET_SB contents	. 365
5.158AWR_DEV_RF_DEBUG_SIG_SET_SB contents	. 366
5.159AWR_DEV_DEV_HSI_DELAY_DUMMY_CFG_SET_SB contents	. 367
5.160AWR_DEV_MCUCLOCK_GET_SB contents	. 368
5.161AWR_DEV_RX_DATA_FORMAT_CONF_GET_SB contents	. 369
5.162AWR_DEV_RX_DATA_PATH_CONF_GET_SB contents	. 369
5.163AWR_DEV_RX_DATA_PATH_LANEEN_GET_SB contents	. 369
5.164AWR_DEV_RX_DATA_PATH_CLK_GET_SB contents	. 369
5.165AWR_DEV_LVDS_CFG_GET_SB contents	. 370
5.166AWR_DEV_RX_CONTSTREAMING_CONF_GET_SB contents	. 370
5.167AWR_DEV_CSI2_CFG_GET_SB contents	. 370
5.168AWR_DEV_PMICCLOCK_CONF_GET_SB contents	. 371
5.169AWR_MSS_LATENTFAULT_CONF_GET_SB contents	. 371
5.170AWR_MSS_PERIODICTESTS_CONF_GET_SB contents	. 371
5.171AWR_DEV_TESTPATTERN_GEN_GET_SB contents	. 371
5.172AWR_DEV_FILE_DOWNLOAD_SB contents	. 372
5.173AWR_DEV_FRAME_CONFIG_APPLY_SB contents	. 373
5.174AWR_DEV_ADV_FRAME_CONFIG_APPLY_SB contents	. 373
5.175AWR_MSSVERSION_GET_SB contents	. 375
5.176AWR_MSSVERSION_SB contents	. 376
5.177AWR_MSSVERSION_SB contents	. 377
5.178AWR_MSSCPUFAULT_STATUS_SB contents	. 377
5.179AWR_MSSESMFAULT_STATUS_GET_SB contents	. 379
5.180AWR_MSSESMFAULT_STATUS_SB contents	. 379
5.181AWR_AE_DEV_MSSPOWERUPDONE_SB contents	. 382
5.182AWR_AE_DEV_RFPOWERUPDONE_SB contents	. 384
5.183AWR_AE_MSS_CPUFAULT_STATUS_SB contents	. 386

5.184AWR_AE_MSS_ESMFAULT_STATUS_SB contents
6.1 Sequence of APIs to be issued to master and slave devices in cascaded mode configuration for FMCW mode measurements
6.2 Sequence of APIs to be issued to master and slave devices in cascaded mode configuration for FMCW mode measurements
7.1 BSS API error codes
7.2 MSS API error codes (Applicable only in AWR1243/AWR2243)
7.3 Bit field describing the error status during boot on SPI
8.1 AWR_MONITOR_RF_DIG_LATENTFAULT_CONF_SB contents
8.2 AWR_MONITOR_RF_DIG_PERIODIC_CONF_SB contents
8.3 AWR_MONITOR_ANALOG_ENABLES_CONF_SB contents
8.4 AWR_MONITOR_TEMPERATURE_CONF_SB contents
8.5 AWR_MONITOR_RX_GAIN_PHASE_CONF_SB contents
8.6 AWR_MONITOR_RX_NOISE_FIGURE_CONF_SB contents
8.7 AWR_MONITOR_RX_IFSTAGE_CONF_SB contents
8.8 AWR_MONITOR_TX0_POWER_CONF_SB contents
8.9 AWR_MONITOR_TX1_POWER_CONF_SB contents
8.10 AWR_MONITOR_TX2_POWER_CONF_SB contents
8.11 AWR_MONITOR_TX0_BALLBREAK_CONF_SB contents
8.12 AWR_MONITOR_TX1_BALLBREAK_CONF_SB contents
8.13 AWR_MONITOR_TX2_BALLBREAK_CONF_SB contents
8.14 AWR_MONITOR_TX_GAIN_PHASE_MISMATCH_CONF_SB contents
8.15 AWR_MONITOR_TX0_PHASE_SHIFTER_CONF_SB contents
8.16 AWR_MONITOR_TX1_PHASE_SHIFTER_CONF_SB contents
8.17 AWR_MONITOR_TX2_PHASE_SHIFTER_CONF_SB contents
8.18 AWR_MONITOR_SYNTHESIZER_FREQUENCY_CONF_SB contents
8.19 AWR_MONITOR_EXTERNAL_ANALOG_SIGNALS_CONF_SB contents
8.21 AWR MONITOR TX1 INTERNAL ANALOG SIGNALS CONF SB contents
8.22 AWR MONITOR TX2 INTERNAL ANALOG SIGNALS CONF SB contents
8.23 AWR MONITOR RX INTERNAL ANALOG SIGNALS CONF SB contents
8.24 AWR_MONITOR_PMCLKLO_INTERNAL_ANALOG_SIGNALS_CONF_SB contents475
8.25 AWR MONITOR GPADC INTERNAL ANALOG SIGNALS CONF SB contents 476
8.26 AWR_MONITOR_PLL_CONTROL_VOLTAGE_CONF_SB contents
8.27 DCC Clock monitor pairs
8.28 AWR_MONITOR_DUAL_CLOCK_COMP_CONF_SB contents
8.29 AWR MONITOR RX SATURATION DETECTOR CONF SB contents

8.30AWR_MONITOR_RX_SIG_IMG_MONITOR_CONF_SB contents.4838.31AWR_MONITOR_MIXER_IN_POWER_CONF_SB contents.4848.32AWR_ANALOG_FAULT_INJECTION_CONF_SB contents.4868.33AWR_MONITOR_TXN_POWER_CONF_SB contents.4958.34AWR_MONITOR_TXN_BALLBREAK_CONF_SB contents.4978.35AWR_MONITOR_TXN_INTERNAL_ANALOG_SIGNALS_CONF_SB contents.4998.36AWR_MONITOR_TXN_PHASE_SHIFTER_CONF_SB contents.5008.37AWR_MONITOR_ADV_TX_GAIN_PHASE_MISMATCH_CONF_SB contents.5058.38AWR_MONITOR_VMON_CONF_SB contents.5088.39AWR_MONITOR_OVERRIDES_AND_DITHER_CONF_SB contents.5118.40AWR_MONITOR_TX_PHSHIFTER_DAC_CONF_SB contents.516
11.1 Minimum chirp cycle time for xWR294x devices
11.2 Minimum chirp cycle time for xWR254x devices
11.3 Minimum inter burst time for xWR294x/xWR254x devices
11.4 Minimum inter burst time for xWR294x/xWR254x devices
11.5 Minimum inter sub-frame/frame time for xWR294x/xWR254x devices
12.1 Duration of boot time calibrations for xWR294x/xWR254x device 535 12.2 Duration of boot time calibrations for AWR2243 device 536 12.3 Duration of boot time calibrations for xWR6243 device 536 12.4 Duration of run time calibrations for xWR294x/xWR254x devices 537 12.5 Duration of run time calibrations for AWR2243 devices 538 12.6 Duration of run time calibrations for xWR6243 devices 538 12.7 Duration of analog monitors for xWR254x device 540 12.8 Duration of analog monitors for xWR294x/xWR254x device 541 12.9 Duration of digital monitors for xWR294x/device 542 12.10Duration of digital monitors for AWR2243 device 542 12.11Duration of digital monitors for AWR2243 device 543 12.12Duration of digital monitors for xWR6243 device 543 12.12Duration of digital monitors for xWR6243 device 543 12.12Duration of digital monitors for xWR6243 device 543 12.13Duration of digital monitors for xWR6243 device 543 12.14Software overheads every FTTI that should be accounted to program CALIB_ 545
MON_TIME_UNIT and CALIBRATION_PERIODICITY

Revision History

Revision 2.0 (AWR2243)	Date 19.08.2019	Description
		 Base-lined from AWR1243 DFP 1.2.5 release (mmWave Radar Interface Control Document v1.7) Added new parameter MISC_FUNC_CTRL to disable dither in test source configuration API at 253.
		3. Added new parameter to enable VMON in analog monitor configuration API at 424.
		4. Added new error code 160 in 406.
		5. Added new TX Phase shifter DAC monitor settings and reports in TX internal analog signal monitors at 471 and 318.
		 updated RX gain temperature LUT RF gain code description at 158.
		 updated OSCCLKOUT_DIS description in channel config API 61.

Revision	Date	Description
Revision 2.1	Date 10.09.2019	 Added a new device AWR2243 and its features in ICD. Added new feature INTFRC_MASTER_EN bit in CASCAD- ING_PINOUTCFG field in channel config API in page 61. Added a new API AWR_APLL_SYNTH_BW_CONTROL_SB in page 90. Added a new field LODIST_BIAS_CODE in API AWR_CAL_ DATA_SAVE_SB in page 92. Updated AWR_PROFILE_CONF_SET_SB API to include AWR2243 features in page 101. Added a new feature MONITORING_MODE in AWR_CALIB_ MON_TIME_UNIT_CONF_SB in page 143. Added a new feature CAL_TEMP_INDEX_OVERRIDE_ ENABLE in AWR_RUN_TIME_CALIBRATION_CONF_AND_ TRIGGER_SB in page 146. Added a new API AWR_ADVANCE_CHIRP_CONF_SB in page 183. Added a new API AWR_MONITOR_TYPE_TRIG_CONF_SB in page 208. Added a new bootup and latent fault DCC monitor feature in page 230, 384, 422. Added a new feature MONITOR_CONFIG_MODE in AWR_ MONITOR_SYNTHESIZER_FREQUENCY_CONF_SB in
		page 464. 12. Added a new Async Event AWR_AE_RF_MONITOR_TYPE_ TRIGGER_DONE_SB in page 280.
		13. Added a new Async Event AWR_MONITOR_ SYNTHESIZER_FREQUENCY_NONLIVE_REPORT_AE_
		SB in page 330. 14. Added a new parameter DIS_LINE_START_END in AWR_ DEV_CSI2_CFG_SET_SB in page 352.
		 Added a new API AWR_DEV_RF_DEBUG_SIG_SET_SB in page 366.
		16. Added a new API AWR_DEV_DEV_HSI_DELAY_DUMMY_ CFG_SET_SB in page 367.

Revision	Date	Description
2.2	23.09.2019	 Added a new RX FE disable option in LOOPBACK_SEL in AWR_LOOPBACK_BURST_CONF_SET_SB API in page 164
		 Updated LPF monitoring threshold and reporting values in AWR_MONITOR_RX_IFSTAGE_CONF_SB API and AWR_ MONITOR_RX_IFSTAGE_REPORT_AE_SB AE in page 437 and 298
		 Changed name of AWR_INTER_RX_GAIN_PHASE_ CONTROL_SB to AWR_DIGITAL_COMP_EST_CONTROL_ SB API and updated the fields in page 154 Removed AWR_AE_MSS_VMON_ERRORSTATUS_SB Subblock (0x5009)
		 Subblock (0x5009) Removed VCO slope monitoring in AWR_MONITOR_PLL_ CONTROL_VOLTAGE_REPORT_AE_SB for all devices 325 Added a new enable control SYNTH_FREQ_MONITOR_ NON_LIVE for non-live synth frequency monitor in AWR_ MONITOR_ANALOG_ENABLES_CONF_SB in page 424 Updated calibration and monitoring duration for AWR2243 de- vice in page 535 The TXOFF BPM control bits made reserved in AWR_BPM_ CHIRP_CONF_SET_SB API in page 221

Revision	Date 18.10.2019	Description
2.3		 Updated Calibration structure definition for AWR2243 and IWR6843 devices in page 93 and 96
		Updated few API descriptions and added new error codes for Synth frequency monitor.

Revision	Date	Desc	ription
2.4	27.11.2019	2. 3.	Updated AWR_ADVANCE_CHIRP_CONF_SB API definition to support more flexible waveform generation in page 183 Added new AWR_ADVANCE_CHIRP_GENERIC_LUT_ LOAD_SB API to load Advance chirp SW generic LUT data in page 199 Added new Advance chirp enable flag in AWR_RF_RADAR_ MISC_CTL_SB API in page 72
		4.	Updated the definition of CHIRP_START_INDX, CHIRP_ END_INDX and NUM_LOOPS in AWR_FRAME_CONF_ SET_SB and AWR_ADVANCED_FRAME_CONF_SB APIs for new Advance chirp config API in page 117 and 126
		5.	Added new noise power report fields in AWR_MONITOR_ TX_GAIN_PHASE_MISMATCH_REPORT_AE_SB AE in page 307
		6.	Updated few API descriptions and added new error codes for new advanced chirp configuration APIs.
		7.	Added new frame stop features in AWR_ FRAMESTARTSTOP_CONF_SB API in page 219
		8.	Added new notes in AWR_CAL_MON_FREQUENCY_ LIMITS_SB and AWR_CAL_MON_FREQUENCY_TX_ POWER_LIMITS_SB APIs in page 82
		9.	Added new LODIST calibration data variable in AWR2243
		10.	Calibration structure in page 93 Added new notes related to minimum chirp cycle time in AWR_PROFILE_CONF_SET_SB API in page 101
		11.	Updated notes related to minimum burst time in AWR_ FRAME_CONF_SET_SB and AWR_ADVANCED_FRAME_ CONF_SB APIs in page 117 and 126
		12.	Added new error codes in AWR_AE_RF_CPUFAULT_SB API
		13.	in page 269 Added dither feature in AWR_DEV_DEV_HSI_DELAY_ DUMMY_CFG_SET_SB API in page 367
			Updated API programming sequence section in page 397
		15.	Updated Table 5.15 in AWR_APLL_SYNTH_BW_ CONTROL_SB API.
		16.	Updated RF gain settings and description in AWR_PROFILE_ CONF_SET_SB in page 101
		17.	Updated RF gain phase monitor report description in AWR_ MONITOR_RX_GAIN_PHASE_REPORT_AE_SB in page 292
		18.	Added new fault types in AWR_AE_MSS_CPUFAULT_SB API in page 386

Revision	Date	Description		
2.5	19.12.2019	 Added new phase shifter monitoring APIs AWR_MONITOR_ TXn_PHASE_SHIFTER_CONF_SB for 3 TX in 452 which re- places legacy AWR_MONITOR_TXn_BPM_CONF_SB APIs and corresponding AE reports AWR_MONITOR_TXn_ PHASE_SHIFTER_REPORT_AE_SB updated in page 310 Added new BSS_ANA_CTRL field in AWR_RF_DEVICE_ CFG_SB API to disable inter burst power save in page 69 Added new field MON_CHIRP_SLOPE field in AWR_ MONITOR_TX_GAIN_PHASE_MISMATCH_CONF_SB API in page 448 Added new section to provide details about Chirp, Burst and Frame timings of device in page 528 Updated few API descriptions and added new error codes for phase shifter monitor. 		
Revision	Date	Description		
2.6 02.	02.01.2020	1. Updated RX_GAIN_VALUE report description in AWR_ MONITOR_RX_GAIN_PHASE_REPORT_AE_SB AE in		

- page 292 2. Added Max programmable VCO slop info in AWR_APLL_ SYNTH_BW_CONTROL_SB API in page 90
- 3. Updated the ICD based on review comments

Revision	Date	Description
2.7	28.01.2020	 Updated the ICD based on review comments Added recommended value for MONITOR_START_TIME in AWR_MONITOR_SYNTHESIZER_FREQUENCY_CONF_ SB API in page 464
		 Updated RX gain valid range in AWR_PROFILE_CONF_ SET_SB in page 101
		 Removed RAMPGEN_100M clock monitoring feature from AWR_MONITOR_DUAL_CLOCK_COMP_CONF_SB API in page 480 and in AE report AWR_MONITOR_DUAL_CLOCK_ COMP_REPORT_AE_SB in page 327
		5. Updated few status flags in AWR_AE_DEV_ MSSPOWERUPDONE_SB API in page 382
		 Updated few status flags in AWR_MSSCPUFAULT_STATUS_ GET_SB API in page 377
		 Updated few status flags in AWR_AE_MSS_CPUFAULT_SB API in page 386
		8. Updated few status flags in AWR_AE_MSS_ BOOTERRORSTATUS_SB API in page 391
		 Updated few status flags in AWR_AE_MSS_ESMFAULT_ STATUS_SB API in page 387
		10. Updated few status flags in AWR_MSS_LATENTFAULT_ TEST_CONF_SB API in page 360
		 Removed 900 Mbps (DDR only) data rate in AWR_DEV_RX_ DATA_PATH_CLK_SET_SB API in page 348
		 Added new file type in META_IMAGE TO SRAM in AWR_ DEV_FILE_DOWNLOAD_SB API in page 372
		13 Updated Programmable filter description for AWB2243 in

13. Updated Programmable filter description for AWR2243 in AWR_PROG_FILT_COEFF_RAM_SET_SB API in page 140

2.9

Revision	Date	Description
2.8	12.02.2020	 Updated MAX_TX_PHASE_SHIFTER_INTERNAL_DITHER max range in AWR_ADVANCE_CHIRP_CONF_SB API in page 183 Updated timing of Dual clock comparator based clock monitor in Table 12.10 Disabled DFE parity test and updated status bits in AWR_RF_BOOTUPBIST_STATUS_DATA_SB AE, AWR_ MONITOR_RF_DIG_LATENTFAULT_REPORT_AE_SB AE, AWR_AE_DEV_RFPOWERUPDONE_SB AE, AWR_ MONITOR_RF_DIG_LATENTFAULT_CONF_SB API, AWR_ RF_ESMFAULT_STATUS_SB API and AWR_AE_RF_
		 ESMFAULT_SB AE. Updated TX phase shifter apply timing info note in AWR_PROFILE_CONF_SET_SB and AWR_ PERCHIRPPHASESHIFT_CONF_SB API in page 101 and 138 respectively. Added application care about notes in Communication Se- quence section. Added new error code 318
Revision	Date	Description

Dute	Description	
21.02.2020	1 Added a new field	

- 1. Added a new field ADVANCE_CHIRP_ERROR_CHK_DIS option in AWR_RF_RADAR_MISC_CTL_SB API in page 72
- 2. Updated Synth calibration duration in page 535
- 3. Added a new API AWR_ADVANCE_CHIRP_DYN_LUT_ ADDR_OFFSET_CFG_SB in page 210

Revision	Revision Date	Description		
2.10	23.06.2020	 Updated Phase value mapping in AWR_PHASE_SHIFTER_ CAL_DATA_RESTORE_SB and AWR_PHASE_SHIFTER_ CAL_DATA_SAVE_SB in page 97 Addressed few review comments Added a new field CAL_MON_TIME_UNIT_ERROR_CHK_ DIS option in AWR_RF_RADAR_MISC_CTL_SB API in page 72 Updated description in AWR_LOOPBACK_BURST_CONF_ SET_SB API in page 164 Added TX Phase shifter DAC monitor disable option in TXn internal analog signal monitors in page 471 Updated calibration and monitor timing info as per measure- ment on AWR2243 ES1.1 device in page 535 Changed the name of API from AWR_DEV_DEV_CSI2_ DELAY_DUMMY_CFG_SET_SB to AWR_DEV_DEV_HSI_ DELAY_DUMMY_CFG_SET_SB in page 367. Added a new mode CQ_CP_ADC in AWR_DEV_RX_DATA_ PATH_CONF_SET_SB API in page 344 		
Revision	Date	Description		
2.11	07.07.2020	 Addressed few review comments Updated API programming sequence section in page for cas- cade mode and added a new application care abouts notes 397 		

- 3. Updated API field descriptions AWR_CALIB_MON_TIME_ UNIT_CONF_SB in page 143 for cascade operation.
- 4. Changed field name from 'WDT_DISABLE' to 'WDT_ ENABLE' in AWR_RF_DEVICE_CFG_SB API in page 69

Revision	Date	Description
2.12	28.07.2020	 Updated Max clock out frequency limit in AWR_ DEV_MCUCLOCK_CONF_SET_SB and AWR_DEV_ PMICCLOCK_CONF_SET_SB APIs. Updated API field descriptions AWR_CALIB_MON_TIME_ UNIT_CONF_SB in page 143 for cascade operation. Updated max sampling rate information in Table 5.27 Added new API Error handling section in page 406 Added a new MSS logger disable bit field in AWR_DEV_ CONFIGURATION_SET_SB API in page 365 Updated continuous framing mode chirp and inter-burst timing -chap:chirpburstTimings
Revision	Date	Description
2.13	28.08.2020	 Address few minor review comments. Added an option to disable Digital temperature sensor disable option in AWR_MONITOR_TEMPERATURE_CONF_SB API in page 429

- 3. Updated max sampling rate information in Table 5.27 for low power ADC mode.
- Updated 20G SYNC monitor conversion factors note in AWR_ MONITOR_PMCLKLO_INTERNAL_ANALOG_SIGNALS_ CONF_SB in page 474
- 5. Updated notes related to LOOPBACK_POWER and RX_ GAN_VALUE in AWR_MONITOR_RX_GAIN_PHASE_ REPORT_AE_SB AE in page 292

	Date	Description		
2.14	28.11.2020		Updated document for xWR6243 devices Updated Phase value mapping in OBS_PHSHIFT_DATA field of AWR_PHASE_SHIFTER_CAL_DATA_RESTORE_SB	
		3.	in page 97 Updated Phase value mapping in OBS_PHSHIFT_DATA field of AWR_PHASE_SHIFTER_CAL_DATA_SAVE_SB in page 98	
		4.	Updated AWR_APLL_SYNTH_BW_CONTROL_SB fields and description for 60GHz devices in page 90	
		5.	Added a note on boot calibrations information in non-ISM band in page 100	
		6.	Updated AWR_PROFILE_CONF_SET_SB field description for 60GHz devices in page 101	
		7.	Updated the fields CHIRP_FREQ_START_VAR, CHIRP_ FREQ_SLOPE_VAR for 60GHz devices in AWR_CHIRP_ CONF SET SB in page 115	
		8.	Updated the field desciptions of AWR_CONT_STREAMING_ MODE_CONF_SET_SB for 60GHz devices in page 121	
		9.	Updated the field desciptions of AWR_LOOPBACK_BURST_ CONF_SET_SB for 60GHz devices in page 164	
		10.	Updated the field desciptions of ADV_CHIRP_FIXED_ DELTA_PARAM for 60GHz devices in page 196	
		11.	Updated the field desciptions of ADV_CHIRP_GENERIC_ LUT_PARAM for 60GHz devices in page 201	
		12.	Added a new power saving power save API AWR_POWER_ SAVE_MODE_CONF_SET_SB in page 222	
		13.	Updated DCC test description of AWR_RF_BOOTUPBIST_ STATUS_DATA_SB in page 231	
		14.	Updated description of AWR_RF_GPADC_CFG_SET_SB in page 263	
		15.	Changed PROG_FILT_FATAL_PARITY_ERROR to RE- SERVED in AWR_AE_RF_ESMFAULT_STATUS_SB in page 272	
		16.	Updated description for AWR_MONITOR_RF_DIG_ LATENTFAULT_REPORT_AE_SB in page 288	
		17.	Update the note in AWR_MONITOR_TX0_POWER_ REPORT AE SB for 60GHz devices in page 301	
		18.	Updated MON_CHIRP_SLOPE field description of AWR_ MONITOR_TX_GAIN_PHASE_MISMATCH_CONF_SB, AWR_MONITOR_TX0_PHASE_SHIFTER_CONF_SB, AWR_MONITOR_TX1_PHASE_SHIFTER_CONF_SB, AWR_MONITOR_TX2_PHASE_SHIFTER_CONF_SB in page 448	

page 448

Revision		Description
2.15	01.12.2020	 Updated PF_VCO_SELECT field of AWR_PROFILE_CONF_ SB in page 101 Updated VCO_SELECT field of AWR_CONT_STREAMING_ MODE_CONF_SET_SB in page 121 Updated CALIBRATION_STATUS and CALIBRATION_UP- DATE fields of AWR_AE_RF_INITCALIBSTATUS_SB in page 274 Updated CALIBRATION_ERROR_FLAG and CALIBRA- TION_UPDATE_STATUS fields of AWR_RUN_TIME_CALIB_ SYMMARY_REPORT_AE_SB in page 286 Updated STATUS_FLAGS and PLL_CONTROL_VOLTAGE_ VALUES fields of AWR_MONITOR_PLL_CONTROL_VOLT- AGE_REPORT_AE_SB in page 325 Updated SIGNAL_ENABLES field of AWR_MONITOR_PLL_ CONTROL_VOLTAGE_CONF_SB in page 477 Updated CAL_VALIDITY_STATUS field of AWR_CAL_DATA_ SAVE_SB in page 92 Added TX_POWER_CONF_SB, AWR_MONITOR_TX1_ POWER_CONF_SB, AWR_MONITOR_TX1_ POWER_CONF_SB, AWR_MONITOR_TX2_POWER_ CONF_SB in page 439 Added MON_START_FREQ_CONST and TX_POWER_ BACKOFF field in AWR_MONITOR_TX1_BALLBREAK_ CONF_SB, AWR_MONITOR_TX1_BALLBREAK_CONF_ SB, AWR_MONITOR_TX2_BALLBREAK_CONF_SB in page 445

Revision	Date	Description
2.16	27.01.2021	 Updated DIGITAL_TX_FREQ_SHIFT field of AWR_DIGITAL_ COMP_EST_CONTROL_SB in page 154 Added xWR6243 API changes in page vi Added API Error codes 319, 320 and 325 in page 406 Updated NOTE in RF_INIT_CALIB_ENABLE_MASK field of AWR_RF_INIT_CALIBRATION_CONF_SB in page 80 Updated field descriptions of AWR_PROFILE_CONF_SB in page 101
		 Updated field descriptions of AWR_CONT_STREAMING_ MODE_CONF_SET_SB in page 121
		 Updated NOTE1 in AWR_FRAME_CONF_SET_SB in page 117
		 Updated descriptions of AWR_DIGITAL_COMP_EST_ CONTROL_SB in page 154
		 Updated description of AWR_LOOPBACK_BURST_CONF_ SET_SB in page 164
		10. Updated description of AWR_MONITOR_TYPE_TRIG_ CONF_SB in page 208
		11. Updated description of AWR_MONITOR_RX_GAIN_ PHASE_REPORT_AE_SB in page 292
		 Updated description of AWR_MONITOR_PMCLKLO_ INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB in page 322
		 Updated description of AWR_DEV_RX_DATA_PATH_ LANEEN_SET_SB in page 347
		14. Updated LANE_POS_POL_SEL field of AWR_DEV_CSI2_ CFG_SET_SB in page 352
		15. Updated MIN_NDIV_VAL and MAX_NDIV_VAL field descrip- tion of AWR_DEV_PMICCLOCK_CONF_SET_SB in page 354
		 Updated TX_GAIN_MISMATCH_THRESH field description of AWR_MONITOR_TX_GAIN_PHASE_MISMATCH_CONF_ SB in page 448

Revision	Date	Description
2.17	04.03.2021	 Updated NOTE in AWR_MONITOR_RX_GAIN_PHASE_ REPORT_AE_SB in page 292 Updated NOTE for TX_PHASE_VALUE in AWR_MONITOR_ TX_GAIN_PHASE_MISMATCH_REPORT_AE_SB AE in page 307 Updated FREQ_LIMIT_LOW and FREQ_LIMIT_HIGH field description in AWR_CAL_MON_FREQUENCY_LIMITS_SB in 78 Updated description for AWR_DEV_TESTPATTERN_GEN_ SET_SB in 363 Updated Calibration and Monitoring timings in 536 Updated NOTE in AWR_CAL_MON_FREQUENCY_TX_ POWER_LIMITS_SB in page 82 Updated description for AWR_DIGITAL_COMP_EST_ CONTROL_SB in page 154
Revision	Date	Description
2.18	12.03.2021	 Added RF1_RF2_FREQ_DITHER_LIMITS, RF3_FREQ_ DITHER_LIMITS fields and updated RF_FREQ_BITMASK in AWR_MONITOR_RX_GAIN_PHASE_REPORT_AE_SB in page 431 Updated APLL_RZ_TRIM_VCO field in AWR_APLL_ SYNTH_BW_CONTROL_SB in page 90

2.19	31.03.2021	1. First set of API changes for xWR294x devices.
Revision 3.01	Date 21.04.2021	Description
		 Rebased the ICD to the final AWR2243 DFP 2.2.3 mainte- nance release version.

Description

Revision

Date

2. Second set of API changes for xWR294x devices.

Revision	Date	Description
3.02	05.05.2021	 Added a bit-field to enable/disable miscellaneous profile specific features in AWR_PROFILE_CONF_SB in 101 and AWR_CONT_STREAMING_MODE_CONF_SET_SB in 121. Updated the valid values for RX_GAIN and the new RF gain targets in AWR_PROFILE_CONF_SB, AWR_CONT_STREAMING_MODE_CONF_SET_SB and AWR_LOOPBACK_BURST_CONF_SET_SB API. Added field for TX3 phaseshifter value in AWR_PERCHIRPPHASESHIFT_CONF_SB in 138. Updated the MAX DFE sampling rate, real-only operating mode and the number of taps table in AWR_PROG_FILT_COEFF_RAM_SET_SB for xWR294x devices. Marked PROG_FILT_FREQ_SHIFT_FACTOR field in AWR_PROG_FILT_CONF_SET_SB as not applicable for xWR294x
		 devices. 6. Added a field to enable Runtime TX Phaseshifter calibrations in AWR_RUN_TIME_CALIBRATION_CONF_AND_TRIGGER SB in 146.
		 Added the status field for Runtime TX phaseshifter calibration in AWR_RUN_TIME_CALIB_SUMMARY_REPORT_AE_SB at ??.
		 Updated loopback enable field to replace PS LB with LO LB, RX gain range and RF gain targets, added enable bit and BPM config field for TX3, LO and PA LB gain selection fields, LO and PA LB frequencies in AWR_LOOPBACK_BURST_ CONF_SET_SB.
		 9. Added TX3 enable bit in AWR_DYN_CHIRP_CONF_SET_ SB.
		 Updated the notes for the decomposition of the RX GAIN code in AWR_RX_GAIN_TEMPLUT_SET_SB into the IFA and RF gains in xWR294x.
		 Added a field to program the TX3 BPM value in AWR_BPM_ CHIRP_CONF_SET_SB.
		 12. Updated all Q channel and IQ correction report fields in AWR_ RF_DFE_STATISTICS_REPORT_GET_SB as not applicable for REAL mode and xWR294x devices.
		 Updated the AWR_RF_PALOOPBACK_CFG_SB API for xWR294x devices. Modified PA loopback frequency selec- tion, QPSK and PA loopback buffer gain selection fields.
		14. De-featured the AWR_RF_PSLOOPBACK_CFG_SB API for xWR294x devices.
		 Added a new API AWR_RF_LOLOOPBACK_CFG_SB API for enabling LO loopback on xWR294x devices.
		16. De-featured the RFLDO_BYPASS_EN field in AWR_RF_ LDO_BYPASS_SB for xWR294x.

Revision	Date	Description
3.03	14.05.2021	 Added TX3 fields in LUT_ADDRESS_OFFSET and AD- DRESS_MASK_EN of AWR_ADVANCE_CHIRP_DYN_LUT_ ADDR_OFFSET_CFG_SB in 210. Added TX3 fields for CHIRP_TX_EN, CHIRP_BPM_VAL and TX3_PHASE_SHIFTER in ADV_CHIRP_GENERIC_ LUT_PARAM table in 201. Added TX3_PHASE_SHIFTER field in ADV_CHIRP_FIXED_ DELTA_PARAM table in 196. Added TX3_PHASE_SHIFTER field in CHIRP_PARAM_IN- DEX of the AWR_ADVANCE_CHIRP_CONF_SB API at 183.
Revision	Date	Description
3.04	24.05.2021	 Udpated AWR_RF_INIT_CALIBRATION_CONF_SB to take the multi-TX enable for boot time TX power calibration in 80. Updated AWR_PHASE_SHIFTER_CAL_DATA_SAVE_SB to add the TX index for TX3 and add information on the byte order of TX3 phaseshifter data in 88. Updated AWR_PHASE_SHIFTER_CAL_DATA_SAVE_SB to add the TX index for TX3 and added information on the byte ordering of TX3 phaseshifter data in 98. Updated the AWR_CAL_DATA_SAVE_SB and AWR_CAL_ DATA_RESTORE_SB calibration data structure for xWR294x in 94. Updated the TX_CAL_EN_CFG field in AWR_PROFILE_ CONF_SB. Moved the PF_HPF_FAST_INIT field inside PF_MISC_FEA- TURE_EN of AWR_PROFILE_CONF_SB API. Added a new field RUNTIME_TX_POWER_MULTI_ TX_CAL_EN inside PF_MISC_FEATURE_EN of AWR_ PROFILE_CONF_SB API.

Revision	Date	Description
3.05	31.05.2021	1. Added a new message command -AWR_RF_MONITORING_
		CONF_SET_2_MSG at 49.
		2. Added a generic TXN power monitor configuration API -
		AWR_MONITOR_TXN_POWER_CONF_SB at 495.
		 Added a generic TXN ball-break monitor configuration API - AWR_MONITOR_TXN_BALLBREAK_CONF_SB at 497.
		 Added a generic TXN internal signals monitor configu- ration API - AWR_MONITOR_TXN_INTERNAL_ANALOG_
		SIGNALS_CONF_SB at 499.
		5. Added a generic TXN phaseshifter monitor configuration API - AWR_MONITOR_TXN_PHASE_SHIFTER_CONF_SB
		at 500. 6. Added an advanced TX gain phase mismatch monitor con-
		figuration API - AWR_MONITOR_ADV_TX_GAIN_PHASE_ MISMATCH CONF SB at 504.
		7. Updated AWR APLL SYNTH BW CONTROL SB to in-
		clude xWR294x settings at 90.
		8. Updated the VCO1/VCO2 frequency ranges, ADC sampling
		rate, Number of ADC samples for xWR294x in AWR_PRO-
		FILE_CONF_SB at 101.
		9. Updated the DIE-ID structure to display raw hex values in
		AWR_RF_DIEID_STATUS_SB at 229.
		10. Removed some notes about the reported RX gain and
		noise values from AWR_MONITOR_RX_GAIN_PHASE_RE- PORT AE SB at 292.
		11. Added GPADC_REF3 status and value in AWR_MONITOR_
		GPADC_INTERNAL_ANALOG_SIGNALS_REPORT_AE_
		SB at 324.
		12. Added TX3 power monitoring report - AWR_MONITOR_TX3_ POWER_REPORT_AE_SB at 332.
		 Added TX3 ball-break monitoring report - AWR_MONITOR_ TX3_BALLBREAK_REPORT_AE_SB at 334.
		14. Added TX3 internal signal monitoring report - AWR_MONI-
		TOR_TX3_INTERNAL_ANALOG_SIGNALS_REPORT_AE_ SB at 334.
		15. Added TX3 phaseshifter monitoring report - AWR MONI-
		TOR TX3 PHASE SHIFTER REPORT AE SB at 335.
		16. Added a new advanced TX gain phase monitoring report
		AWR_MONITOR_ADV_TX_GAIN_PHASE_REPORT_AE_
		SB at 337.
		17. Modified AWR_MONITOR_ANALOG_ENABLES_CONF_SB
		to add the enables for the new monitors added at 424.
		18. Updated AWR_MONITOR_DUAL_CLOCK_COMP_CONF_
		SB to display the clocks being monitored in xWR294x at 480.
		19. Updated AWR_AE_MEAS_TX_POWER_SB to include the
		4th TX measured values. xxxvii Convright © 2021 Texas Instruments Incorporated

Copyright © 2021, Texas Instruments Incorporated

Revision	Date	Description
3.06	16.06.2021	 Udpated the maximum RX gain allowed to 44dB for xWR294x.
Revision 3.07	Date 13.07.2021	Description
3.07	13.07.2021	1. Added a new VMON configuration API at 508.
		 Marked VMON enable field and PA LDO SC enable fields in AWR_MONITOR_ANALOG_ENABLES_CONF_SB as not applicable in xWR294x at 424.
		 Added temperature index override fields for runtime TX phase shifter calibration at 146.
		 Added TX4 fields for TX_GAIN_DROP, TX_PHASE_INV, SUPPLY_LDO_FAULT and added new TX PS DAC fault in- jection options in 486.
		5. Added the ECC aggregator and Bus safety monitoring status fields in AWR_RF_BOOTUPBIST_STATUS_DATA_SB at 231 and AWR_AE_DEV_RFPOWERUPDONE_SB at 384.
		 Added a new API to get RSS ESM status for xWR294x devices - AWR_RF_ADV_ESMFAULT_STATUS_GET_SB at 233 and its corresponding response packet details in AWR_ RF_ADV_ESMFAULT_STATUS_SB at 233.
		7. Added a new ASYNC event to report ESM errors in
		the xWR294x device - AWR_AE_RF_ADV_ESMFAULT_STA- TUS_SB at 275.
		 Corrected the definition of the APLL clock field in AWR_MON- ITOR_DUAL_CLOCK_COMP_REPORT_AE_SB at 327.
		Updated AWR_ANALOGFAULT_AE_SB report by marking the supply faults and PA LDO SC faults as not applicable for
		xWR294x devices at 283. 10. Updated the expected values for GPADC_REF2_VALUE and GPADC_REF3_VALUE in AWR_MONITOR_GPADC_INTER- NAL_ANALOG_SIGNALS_REPORT_AE_SB at 324

Revision	Date	Description
3.08	16.07.2021	1. Added a data dump address field for an internal debug API.

Revision	Date	Description
3.09	03.08.2021	 Added a control bit in AWR_RF_DEVICE_CFG_SB to disable the inter-burst APLL power save feature in 69. Added an restriction on the TX_POWER_BACKOFF of the different TXs in AWR_CAL_MON_FREQUENCY_TX_ POWER_LIMITS_SB when enabling multi-TX calibration (TX_POWER_CAL_CFG) in AWR_RF_INIT_CALIBRATION_ CONF_SB at 80. Updated the valid VCO1 slope values in AWR_MONITOR_ PLL CONTROL VOLTAGE REPORT AE SB for xWR294x
		devices at 325.
		 Marked RX signal image monitor and RX mixer input power monitor as reserved for xWR294x devices in AWR_
		MONITOR_ANALOG_ENABLES_CONF_SB at 424. 5. Updated the AWR MONITOR VMON CONF SB to include
		the reserved bytes at the end of the API at 508.
		6. Updated AWR_MONITOR_TX0_INTERNAL_ANALOG_ SIGNALS_REPORT_AE_SB, AWR_MONITOR_TX1_ INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB, AWR_MONITOR_TX2_INTERNAL_ANALOG_SIGNALS_ REPORT_AE_SB and AWR_MONITOR_TX3_INTERNAL_ ANALOG_SIGNALS_REPORT_AE_SB to remove the TX PS DAC related status and report fields as inapplicable for xWR294x devices. TX PS DAC will be available as a separate configuration API and ASYNC report in xWR294x.
		 Marked the TX_PS_DAC_MON_THRESH field in AWR_ MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_ CONF_SB, AWR_MONITOR_TX1_INTERNAL_ANALOG_ SIGNALS_CONF_SB, AWR_MONITOR_TX2_INTERNAL_ ANALOG_SIGNALS_CONF_SB and AWR_MONITOR_ TX3_INTERNAL_ANALOG_SIGNALS_CONF_SB as not applicable for xWR294x devices as the TX PS DAC monitor now has separate configuration and reports.
		 Added a new API for configuring the TX phase shifter DAC monitor - AWR_MONITOR_TX_PHSHIFTER_DAC_CONF_ SB at 515.
		 Added a new monitoring ASYNC report - AWR_MONITOR_ TX_PHSHIFTER_DAC_REPORT_AE_SB to report the re- sults of the TX phase shifter DAC monitor at 339.
		 Added TX phase shifter DAC monitoring enable field in AWR_ MONITOR_ANALOG_ENABLES_CONF_SB at 424.
		 11. Added a new API for configuring the RF parameters overrides and dither controls during monitoring - AWR_MONITOR_

Revision 3.10	Date 10.08.2021	Description
3.10	10.00.2021	 Updated the limits for VCO2_SLOPE reported in AWR_MON- ITOR_PLL_CONTROL_VOLTAGE_REPORT_AE_SB at 325. Corrected a few typos in AWR_MONITOR_OVERRIDES_ AND_DITHER_CONF_SB at 511.
Revision	Date	Description
3.11	16.08.2021	 Added CRD_NSLOPE_MAG field to control the magnitude of the slope during controlled rampdown in AWR_RF_MISC_ CTL_SB API at 72. Added the MPU test status report bit in AWR_RF_BOOTUP- BIST_STATUS_DATA_SB at 230. Added the MPU test status report bit in AWR_AE_DEV_RF- POWERUPDONE_SB at 384. Defeatured AWR_RF_DFE_STATISTICS_REPORT_GET_ SB for xWR294x devices and added a new API AWR_RF_ REAL_CHAN_DFE_STATISTICS_REPORT_GET_SB for reading DFE statistics in xWR294x devices at 247. Updated the RCOSC monitoring error threshold in the DCC clock pairs table at 479. Added separate thresholds for each TX in AWR_MONITOR_ TX_PHSHIFTER_DAC_CONF_SB at 515. Increased the minimum inter-frame time from 300 to 306uS to account for the increased time taken to read DFE statistics for 7 functional profiles instead of the earlier 4 profiles at 534.

Revision	Date	Description
Revision 3.12	Date 30.08.2021	 Description VMON reference values for normal and self-test operations updated in AWR_MONITOR_VMON_CONF_SB at 508. Marked external analog signals monitor as unsupported in xWR294x devices. Marked RX signal and image band monitor as unsupported in xWR294x devices. Modified "Typical inter burst time", "Inter burst APLL power save time" in the Minimum Inter-Burst time table at 532. Modified "Typical inter sub-frame/frame time" and "Test source config time" in the Min Inter-Sub-Frame/Frame time table at 534. Added new calibrations and monitoring duration tables for xWR294x at 535. Modified the highest RF gain target value in AWR_PROFILE_CONF_SET_SB from 35dB to 34dB.
	_	

Revision	Date	Description
3.13	07.09.2021	 Added the recommended value for the CRD_NSLOPE_MAG in AWR_RF_MISC_CTL_SB at 72.

Revision	Date	Description
3.14	28.09.2021	 Added a note indicating that AWR_MONITOR_TX_GAIN_ PHASE_MISMATCH_CONF_SB has been deprecated in xWR294x devices and replaced with AWR_MONITOR_ADV_ TX_GAIN_PHASE_MISMATCH_CONF_SB at 504. Added a new API for dynamic per-chirp phase shifter control - AWR_ADV_DYN_PERCHIRP_PHASESHIFTER_ CONF_SET_SB at page 214. The older API AWR_DYN_ PERCHIRP_PHASESHIFTER_CONF_SET_SB has been marked as unsupported in xWR294x. Added a new field to control the enable/disable of the RSS debug logger - LOGGER_ENABLE in AWR_RF_DEVICE_ CFG_SB at page 69. Added a note in FRAME_PERIODICITY field of AWR_ FRAME_CONF_SET_SB on the additional dependency on monitoring periodicity. Updated the maximum RF gain target in xWR294x to 34dB. Additional information on the programmable filter have been added to AWR_PROG_FILT_COEFF_RAM_SET_SB at page 140.
Revision	Date	Description
3.15	19.10.2021	1. Added information on the state of the TX PAs during inter- chirp time at 67.
		 Improved the description and added recommended compu- tation method for setting CRD_NSLOPE_MAG in AWR_RF_ MISC_CTL_SB API at 73.
		Added a new field FAST_RESET_END_TIME to control the synthesizer's fast reset end time in the idle time before a chirp
		 in AWR_RF_MISC_CTL_SB API at 73. 4. Updated Phase value mapping in OBS_PHSHIFT_DATA field of AWR_PHASE_SHIFTER_CAL_DATA_RESTORE_SB in page 88.
		 Description of AWR_PHASE_SHIFTER_CAL_DATA_SAVE_SB in page 98.
		 Marked AWR_RF_GPADC_CFG_SET_SB API as unsupported in xWR294x devices at 263.
		7. Updated the time taken for the application of the runtime cali- bration results to hardware at 537.

Revision	Date	Description
3.16	28.10.2021	 Added TI recommended values for the FAST_RESET_END_ TIME field in the AWR_RF_MISC_CTL_SB API at 73. Added some more information on the firmware behavior in xWR294x devices, when the mid-frequency code of the RF band used in functional chirp profiles exceeds the cal-mon limit upper frequency - 200MHz. See NOTE 5 in AWR_CAL_ MON_FREQUENCY_TX_POWER_LIMITS_SB at 82. Added the 3 newly supported frequencies in the LO_LOOP- BACK_FREQ field in AWR_LOOPBACK_BURST_CONF_ SET_SB at 164. Added the 3 newly supported frequencies in the PA_ LOOPBACK_FREQ (xWR294x) field in AWR_LOOPBACK_ BURST_CONF_SET_SB at 164. Marked RX_NOISE_FIGURE_MONITOR as unsupported in xWR294x devices in AWR_MONITOR_ANALOG_EN- ABLES_CONF_SB at 424. Increased the runtime calibration duration for the TX PHASE calibration in the table - Duration of run time calibrations for xWR294x devices at 537.
Revision	Date	Description

3.17 28.10.2021

 Updated the recommended values of AWR_APLL_SYNTH_ BW_CONTROL_SB API fields for xWR294x devices in the table "Typical APLL and Synth BW settings for xWR294x devices" at 91.

Revision 3.18	Date 16.11.2021	 Description Modified the recommended and default values of AWR_APLL_SYNTH_BW_CONTROL_SB API fields for xWR294x devices in the table "Typical APLL and Synth BW settings for xWR294x devices" at 91. Removed the field to control the enable/disable of the RSS debug logger - LOGGER_ENABLE from AWR_RF_DEVICE_CFG_SB API. Added one new supported frequency (0 Hz) in the LO_LOOP-BACK_FREQ field in AWR_LOOPBACK_BURST_CONF_SET_SB at 164. Added one new supported frequency (0 Hz) in the PA_LOOPBACK_FREQ (xWR294x) field in AWR_LOOPBACK_BURST_CONF_BURST_CONF_SET_SB at 164.
Revision 3.19	Date 08.12.2021	 Description Added more information regarding the differences in API message support based on device architecture (front-end vs single-chip) in 32. Changes to the AWR_APLL_SYNTH_BW_CONTROL_SB to add two additional fields to separate the SYNTH RZ and ICP trims between VCO1 and VCO2 at 90. Updated the PLL clock frequency and the allowed values of the SRCCLOCK_DIV field in AWR_DEV_MCUCLOCK_CONF_SET_SB at 342. Updated the PLL clock frequency, the allowed values of SRCCLOCK_DIV field in AWR_DEV_PMICCLOCK_CONF_SET_SB and the configuration examples at 354. Updated the description and added notes on the usage of LDO_VMON_SC_MONITORING_EN field in the AWR_MONITOR_ANALOG_ENABLES_CONF_SB API at 424. Updated the descriptions of the SYNTH_VCO_OPENLOOP and SUPPLY_LDO_FAULT fault injections to accurately describe the fault sequences used in AWR_ANALOG_FAULT_INJECTION_CONF_SB API at 486. Added a note in AWR_MONITOR_VMON_CONF_SB indicating that it is applicable only in xWR294x devices and the described the reporting method of VMON faults at 508. Updated the examples 1-4 that demonstrate the budgeting of calibration and monitoring time when designing the FTTI at 546.

Revision	Date	Description
3.20	16.12.2021	 Updated TX_PS_DAC_IDELTA_MIN and TX_PS_DAC_ QDELTA_MIN fields in AWR_MONITOR_TX_PHSHIFTER_ DAC_REPORT_AE_SB by splitting them into TX specific fields.
		 Marked the 2800 KHz option for HPF1/HPF2 cutoff as re- served in xWR294x devices.
		 Replaced AWR29xx and AWR2944 references with xWR294x.
		 Added a column providing the number of monitoring chirps in the monitoring durations table for xWR294x devices.
		 Updated the monitoring critical time for RX gain phase moni- tor from 260 to 290 uS.
		Updated the calibration duration of periodic PD calibration from 400 to 600 uS.
		 Added a note to MON_DITHER_CTRL field of AWR_ MONITOR_OVERRIDES_AND_DITHER_CONF_SB provid- ing information on how enabling time dithering would impact the overall monitoring duration and critical time in an FTTI.

Revision	Date	Description
3.21	02.03.2022	 Added LSB information explicitly in the LO_LOOPBACK_ FREQ and PA_LOOPBACK_FREQ (xWR294x) fields in AWR_LOOPBACK_BURST_CONF_SET_SB at 164. Removed unsupported field HIGH_RES_TX_POWER_CTRL and its related updates to PF_TX_OUTPUT_POWER_BACK- OFF fields in both AWR_PROFILE_CONF_SB in 101 and AWR_CONT_STREAMING_CONF_SET_SB in 121. Updated the notes in AWR_ANALOG_FAULT_INJECTION_ CONF_SB API to remove the restriction that the user has to perform device reset after fault injection tests in the analog at 486.
		 Improved information on self-test failures during configuration of BSS VMONs through the API - AWR_MONITOR_VMON_ CONF_SB at 508.
		5. Added new API error codes at 407.
		 Marked the field IO_SUPPLY_INDICATOR in AWR_RF_ LDO_BYPASS_SB API as RESERVED for xWR294x devices at 256.
		7. Information regarding gain normalization of the pro- grammable filter has been added to AWR_PROG_FILT_

COEFF_RAM_SET_SB at page 140.

Revision	Date	Description
3.22	26.04.2022	 Added a note on using different number of ADC samples i chirps within the same sub-frame in AWR_PROFILE_CONF SET_SB at page 101.
		 Added a note on the possible inaccuracies seen when us ing the 1.4MHz HPF1/HPF2 cutoff setting in AWR_PROFILE CONF_SET_SB at page 101.
		 Added a note on the possible inaccuracies seen when us ing the 1.4MHz HPF1/HPF2 cutoff setting in AWR_CONT STREAMING MODE CONF SET SB at page 121.
		 Updated the bit-width of TX gain STG_CODE of xWR294 devices in AWR_TX_GAIN_TEMPLUT_SET_SB (161) an AWR_ADV_TX_GAIN_TEMPLUT_SET_SB (213) APIs.
		 Deprecated AWR_RF_ESMFAULT_STATUS_GET_SB i xWR294x devices and pointed to the new API - AWR_RF ADV_ESMFAULT_STATUS_GET_SB.
		 Deprecated AWR_AE_RF_ESMFAULT_SB in xWR294x devices and pointed to the new ASYNC event - AWR_AE_RF ADV_ESMFAULT_SB.
		7. Added back the DFE parity test and DFE parity ESM G2 error
		 indications. 8. Removed the note that DCC test is only applicable o AWR2243/xWR6243 devices as it is applicable in xWR294 devices as well. The below APIs/ASYNC events have bee updated - AWR_RF_BOOTUPBIST_STATUS_DATA_SE
		AWR_MONITOR_RF_DIG_LATENTFAULT_REPORT_AE_ SB, AWR_AE_DEV_RFPOWERUPDONE_SB and AWR MONITOR_RF_DIG_LATENTFAULT_CONF_SB.
		 Marked all the LPF monitoring result fields in AWR MONITOR_RX_IFSTAGE_REPORT_AE_SB - LPF_CUT OFF_BANDEDGE_DROOP_VALUE_RX0, LPF_CUTOFF STOPBAND_ATTEN_VALUE and LPF_CUTOFF_BAND EDGE_DROOP_VALUE_RX as DEBUG ONLY in xWR294 devices at 298.
		 Marked all the LPF monitoring configuration fields in AWR MONITOR_RX_IFSTAGE_CONF_SB - LPF_CUTOFF BANDEDGE_DROOP_THRESH, LPF_CUTOFF_STOF BAND_ATTEN_THRESH as DEBUG ONLY in xWR294 devices at 437.
		 Updated the API error handling section for xWR294x at 406 Removed the note regarding the loopback path gain an phase mismatches that can show up as mismatches i the TX gain phase monitoring results. This is no longe applicable for xWR294x devices and hence this not has been removed from AWR_MONITOR_ADV_TX_GAIN_PHASE_MISMATCH_CONF_SB API at 504.
		vh

Revision	Date	Description
3.23	16.05.2022	1. Added a
		CONE S

1. Added a note to the AWR_CALIB_MON_TIME_UNIT_ CONF_SB API explicitly indicating that the CALIB_MON_ TIME_UNIT needs to be set within the allowed range even if no programmable monitoring or calibrations are desired by the user at 143.

Revision	Date	Description
Revision 3.24	Date 21.07.2022	 Updated AWR_CAL_MON_FREQUENCY_TX_POWER_ LIMITS_SB API with a new field - VCO2_RANGE_CONFIG at page 82. Updated the valid ranges for FREQ_LIMIT_HIGH_TX0 to FREQ_LIMIT_HIGH_TX3 fields in AWR_CAL_MON_ FREQUENCY_TX_POWER_LIMITS_SB API to account for the VCO2_RANGE_CONFIG which is configured by the user. Updated valid range information for PF_INDX, PF_VCO_ SELECT, PF_FREQ_START_CONST, PF_RAMP_END_ TIME, fields in AWR_PROFILE_CONF_SET_SB API at page 101. Modified the note on the xWR294x specific gain settings in PF_RX_GAIN in AWR_PROFILE_CONF_SET_SB API indi- cating the (RX gain, RF gain target) pairs that are not sup- ported. Updated additional information on PF_HPF_FAST_INIT field in AWR_PROFILE_CONF_SET_SB API. Updated valid range information for VCO_SELECT and PF_FREQ_START_CONST fields in AWR_CONT_ STREAMING_MODE_CONF_SET_SB API at page 121. Removed PF_MISC_FEATURE_EN field from AWR_CONT_ STREAMING_MODE_CONF_SET_SB API as it wasn't being used in the RSS firmware. For CW configuration, these misc feature settings are being taken from Profile 0 configuration. Fixed the issue of contradicting recommendations for the maximum pulse width of the SYNC_IN pulse in the ICD. Up- dated the note in AWR_ADVANCED_FRAME_CONF_SB to recommend a max size of 4uS for the SYNC_IN at 126. Added a note indicating the order of application for the RX signal digital compensation in AWR_DIGITAL_COMP_EST_ CONTROL_SB at page 154. Corrected an error in the IF_LOOPBACK_FREQ field table
		in AWR_LOOPBACK_BURST_CONF_SET_SB API at page 164 and AWR_RF_IFLOOPBACK_CFG_SB API at page 262.
		 Removed numerical frequency limits in the error codes description for AWR_PROFILE_CONF_SET_SB, AWR_ CHIRP_CONF_SET_SB, AWR_CAL_MON_FREQUENCY_ LIMITS_SB APIs at 406.
		 Updated the VCO extreme frequency set at which the PLL control voltage monitor is executed in AWR_MONITOR_PLL_CONTROL_VOLTAGE_SIGNALS_CONF_SB API at page 477.

13. Updated the Chirp Cycle Timing table at page 528.

Revision	Date	Description
3.25	25.08.2022	 Updated the MON_START_FREQ_CONST field in TX ball break monitoring configuration APIs (AWR_MONITOR_ TXn_BALLLBREAK_CONF_SB, AWR_MONITOR_ TX0_BALLBREAK_CONF_SB, AWR_MONITOR_TX1_ BALLBREAK_CONF_SB and AWR_MONITOR_TX2_ BALLBREAK_CONF_SB) to document the allowed range and LSB for 77GHz devices.
		 Modified the interpretation and the default value of the VCO2_RANGE_CONFIG field in AWR_CAL_MON_ FREQUENCY_TX_POWER_LIMITS_SB and AWR_CAL_ MON_FREQUENCY_LIMITS_SB APIs.
		 Removed the limitation on PF_NUM_ADC_SAMPLES in the additional notes section of AWR_FRAME_CONF_SET_SB and AWR_ADVANCED_FRAME_CONF_SB APIs.
		 Added information on the reset state of the OSC CLKOUT in xWR294x in the OSCCLKOUT_DIS field of AWR_RF_ STATIC_CONF_SET_MSG API at 61.
		 Updated the valid range information for CHIRP_PROFILE_ SELECT, CHIRP_TX_EN and CHIRP_BPM_VAL field in ADV_CHIRP_GENERIC_LUT_PARAM table at 201.

Revision	Date	Description
3.26	12.12.2022	 Updated the RF_GAIN_TARGET values supported in xWR294x in AWR_PROFILE_CONF_SB, AWR_CONT_ STREAMING_MODE_CONF_SET_SB and AWR_LOOP- BACK_BURST_CONF_SET_SB APIs.
		 Added a note in AWR_PROG_FILT_CONF_SET_SB API on the restriction that the programmable filter needs to be en- abled for all the profiles that is configured in a frame.
		 TX_PS_DAC_FAULT fault injection field updated to indicate that the failure would be seen in the TX PS DAC monitoring report in xWR294x devices.
		 MISC_THRESH_FAULT fault injection description updated to indicate the swapping of the reported values of GPADC inter- nal signals when fault is injected.
		5. Added new sections detailing the command/response and ASYNC event flow in single chip devices at 26.
		 Added new sections detailing the BOOT INFO register config- urations required in xWR294x at 3.
		 Added a note on PA loopback signal strength inaccura- cies for higher backoff values in the PA_LOOPBACK_BUF_ GAIN_SEL field in AWR_LOOPBACK_BURST_CONF_SET_ SB API at 164.
		 De-featured the "End of Frame" mode of GLOBAL_RESET_ MODE in AWR ADVANCE CHIRP CONF SB API at 183.
		 Added a note on the TX phase resolution supported in the hardware and how it relates to the delta increment value of

AWR_ADVANCE_CHIRP_CONF_SB in 199.

Revision 3.27	Date 02.03.2023	Description
		 Added a note in BSS_DIG_CTRL field of AWR_RF_DEVICE_ CFG_SB API that BSS WDT cannot be enabled if BSS dy- namic frequency switching feature is enabled. Updated VCO specific recommendations for the CRD_ NSLOPE_MAG field in AWR_RF_RADAR_MISC_CTL_SB API at 72. Updated AWR_MONITOR_GPADC_INTERNAL_ANALOG_ SIGNALS_REPORT_AE_SB to maintain the previous de- vices report structure and highlight xWR294x changes sep- arately. Added a note to AWR_MONITOR_ANALOG_ENABLES_ CONF_SB API and documented the order of execution of the
		 RF/Analog monitors in xWR294x devices at 424. Updated the description of AWR_MONITOR_ SYNTHESIZER_FREQUENCY_CONF_SB API to clarify that the SYNTH_FREQ live monitor can be used to monitor functional chirps in xWR294x. On other devices, it is still de-featured and should be used only for debug. Corrected multiple places in the ICD where CAL_MON_ TIME_UNIT was used instead of the actual CALIB_MON_ TIME_UNIT field name.
Revision	Date	Description
3.28	10.03.2023	 Updated the valid range for the PF_FREQ_SLOPE_CONST in the API AWR_PROFILE_CONF_SET_SB in xWR294x de- vices at 101. Added a note on RX data coherence across profiles in the API AWR_PROFILE_CONF_SET_SB at 101. Added additional information on the RSS dynamic frequency switching and the RSS logger features at page 10.
Revision	Date	Description
3.29	14.03.2023	 Updated the minimum valid value to 2.5uS for the PF_IDLE_ TIME_CONST in the API AWR_PROFILE_CONF_SET_SB in xWR294x devices at 101. Updated the minimum idle times used in the CRD_NSLOPE_

. Updated the minimum idle times used in the CRD_NSLOPE_ MAG and FAST_RESET_END_TIME computation examples in AWR_RF_RADAR_MISC_CTL_SB API at page 72.

Revision 3.30	Date 24.03.2023	Description 1. Added a note on the TX power accuracy for backoff values greater than 15dB in the in PF_TX_OUTPUT_POWER_ BACKOFF field of API AWR_PROFILE_CONF_SET_SB in xWR294x devices at 101.
Revision 3.31	Date 11.07.2023	 Updated the duration of the run time TX phase shifter calibration in Table 12.4. Updated all AWR294x references to xWR294x in the document. Marked ROM CRC and PCR tests in RF_POWERUP_BIST_STATUS_FLAGS as reserved for xWR294x devices in Table 5.79. Updated the mailbox communication sequences to include the recommended fix for the missing interrupt issue at 26. Added a note about the jitter between chirp start and ADC sampling start in AWR_FRAME_CONF_SET_SB API at 117 and AWR_ADVANCED_FRAME_CONF_SB API at 126.
Revision 3.32	Date 06.07.2023	 Description First set of API changes for xWR254x. 1. Removed RXIFMM for xWR254x devices. 2. Added FRC clock source for xWR254x devices. 3. Removed BIST FFT self test for xWR254x devices. 4. Updated mailbox sequence. 5. Removed DFE AND parity test for xWR254x devices. 6. Updated synthesizer frequency monitor to support multiple profiles for xWR254x devices.
Revision 3.33	Date 21.07.2023	 Description Added inter-chirp jitter mitigation for xWR254x devices. Defeatured bus safety self test for xWR254x devices. Added OSCCLKOUTETH for xWR254x devices. Added disable option for advance chirp configuration API. Added support for 1ns resolution of ADC start time.

Revision	Date	Description
3.34	11.10.2023	 Updated description for CHIRP_ADC_START_TIME_VAR in Table 5.52
		 Updated description for INTER_CHIRP_JITTER_MITIGA- TION in 72
		3. Updated NOTE in 72
		 Updated description for ESM_GROUP1_ERRORS_MSB in 233
		5. Updated description for DSS_MBOX_CONFIG in 3
Revision	Date	Description
3.35	16.01.2024	1. Updated description for SYNTH_FAULT in 486
		2. Updated description for LPF_CUTOFF_BANDEDGE_ DROOP_THRESH and LPF_CUTOFF_STOPBAND_AT- TEN_THRESH fields in AWR_MONITOR_RX_IFSTAGE_ CONF_SB API in Table 8.7
		 Updated description for INTER_CHIRP_JITTER_MITIGA- TION of AWR_RF_RADAR_MISC_CTL_SB in 72
		 Updated timing information for xWR254x devices in Chapter and Chapter 12
		 Added analog monitoring duration for xWR254x devices in Ta- ble 12.7
		 Added minimum chirp cycle time for xWR254x devices in Ta- ble 11.2
		 Updated description for PF_RX_GAIN in AWR_PROFILE_ CONF_SET_SB API in 101
		 Updated description for PF_RX_GAIN in AWR_CONT_ STREAMING_MODE_CONF_SET_SB API in 121
		 Updated description for PF_RX_GAIN in AWR_LOOPBACK_ BURST_CONF_SET_SB API in 164
		10. Updated description for LO_LOOPBACK_BUF_GAIN_SEL of AWR_LOOPBACK_BURST_CONF_SET_SB in 165
NOTE1		lease refer latest mmWave device DFP release notes for all known sues and de-featured APIs
NOTE2		Il reserved bytes/bits in configuration API sub blocks shall be pro- rammed with value zero. The functionality of radar device is not

guaranteed if reserved bytes are not zero.

mmWave Radar Interface Control Document Revision 3.35 - Jan 16, 2024

NOTE3:	All reserved bytes/bits in API message reports (ack or AE) sub
	blocks shall be masked off in application.

1 Introduction

1.1 Scope

The Scope of this document is to define interface control specifications for TI's xWR294x and xWR254x mmWave sensor devices. These devices are enhanced version of AWR2243 device, most features/APIs of AWR2243 are supported and applicable in xWR294x (Backward Compatible), however very few of them are modified for enhancement. xWR254x can be considered as a version of xWR294x optimized for 1st dimension processing and thereby does not include a DSP processor. The interfaces have been optimized accordingly while the RF performance remains similar.

The key differentiated new features in xWR294x and xWR254x are:

- 1. Max slope support upto 266MHz/us.
- 2. New programmable filter support
- 3. Improved analog RX front end noise figure and gain settings
- 4. New Advance flexible waveform generation API can support up-to 2048 unique chirps in a burst/frame
- 5. xWR294x/xWR254x supports 4 TX and 4 Real-only RX chains, while AWR2243 supports 3 TX and 4 complex RX chains.
- 6. 5GHz RF bandwidth support in VCO2 for AWR2243 and xWR294x devices
- 7. xWR254x supports inter-chirp jitter mitigation
- 8. Various new API features are listed in Appendix A

The wide range of TI highly integrated 77GHz and 60GHz CMOS TI mmwave sensors are tabulated in table 1.1. The mmWave device integrates all RF and Analog functionalities including VCO, PLL, PA, LNA, Mixer and ADC for multiple TX/RX channels into a single chip with integrated cortex R4 for programmability.

The device includes a Radar Sub-System (RadarSS) also called Built-in Self-Test (BSS) processor, which is responsible to configure the RF/Analog and digital front-end in real-time, as well as to periodically schedule calibration and functional safety monitoring. This enables the mmWave front-end to be self-contained and capable of adapting itself to handle temperature and ageing effects, and to enable significant ease-of-use from an external host perspective.

This document contains the Interface Control Specification for communications on the serial interface (SPI) between the Radar device and the external host processor. The same protocol is used

in all devices when the messages are sent to Radar Control subsystem (BIST subsystem) from the MCU subsystem (Master subsystem) and DSP subsystems (Not applicable for xWR254x).

Refer Link http://www.ti.com/sensors/mmwave/overview.html for more informations.

Frequency Type	60GHz RF Frequency	77GHz RF Freq	uency	
TI Automotive Radar De-	AWR6843, AWR6243	AWR1243,	AWR1642,	
vices		AWR1443,	AWR1843,	
		AWR2243,	xWR294x,	
		xWR254x		
TI Industrial Radar Devices	IWR6843, IWR6243	IWR1642, IWR1	443, IWR1843	

Table 1.1: TI CMOS mmWave radar devices

1.2 Intended Audience

The intended audience for this document is firmware, host software, and validation engineers needing to understand the format and contents of all communications between the Radar AWR2243 device and the host processor.

2 TI mmWave Radar Sensor Communications Overview

2.1 Communication Link Description

The AWR2243/xWR6243 radar device communicates with the external host processor using the SPI interface. The radar device is configured and controlled from the external host processor by sending commands to AWR2243/xWR6243 device over SPI.

The xWR1642, xWR1843, xWR6843, xWR294x and xWR254x radar devices are configured and controlled using the internal MCU (Master subsystem) and they communicate with an external ECU using the CAN interface.

This document details the communication protocol between radar device and external host processor using SPI in AWR2243/xWR6243. In xWR1642, xWR1843, xWR6843, xWR294x and xWR254x the same protocol is used to communicate between the BIST subsystem and Master subsystem over SRAM mailboxes. In xWR294x and xWR254x, in addition to the mailbox based communication interface between the BSS and the MSS, the BSS also has a few BOOT_INFO registers which have to be configured before the BSS CPU is released out of reset.

2.2 Communication Link configuration

2.2.1 SPI

This interface is synchronous. The interface includes four signals (SPICCLK, SPICS, and Data In and Data Out) and supports clock rates up to 40 MHz. The AWR2243/xWR6243 radar device is always the SPI slave and the external host processor will be the SPI master.

2.2.2 Mailbox

This interface includes a SRAM and an interrupt line from Master subsystem to BIST subsystem. A reverse channel which includes a different SRAM and a different interrupt line from the BIST subsystem to Master subsystem is used for responses which originate from BIST subsystem.

2.2.3 BOOT INFO registers

These registers are applicable only to xWR294x and xWR254x devices. These are memory mapped registers that have to be configured properly to allow the BSS firmware to boot and perform its functions. Fields indicated as CONFIG in the below registers have to be configured by

the application/secondary boot loader before the RSS CPU is unhalted.

RSS_PROC_CTRL:RSS_CR4_BOOT_INFO_REG0

This register contains boot related configuration and status fields.

Bits	Config (OR) Status	Field	Description
[15:0]	CONFIG	XTAL_FREQ	Frequency of the XTAL in MHz to be programmed by the user application.
[16:16]	STATUS	APLL_CALIB_ DONE	BSS sets this to '1' if APLL calibration was performed in boot.
[17:17]	STATUS	APLL_CALIB_ STATUS	PASS/FAIL status of the APLL calibration.
[18:18]	STATUS	BSS_BOOT_ DONE	BSS sets this to '1' at the end of its boot up sequence to indicate that the boot has been completed.
[19:19]	STATUS	BSS_BOOT_ STATUS	PASS/FAIL status of the BOOT monitors.
[22:20]	STATUS	BSS_FAULT_ STATUS	Firmware fault status. 0 No fault 1 BSS firmware ASSERT 2 BSS Firmware CPU Abort 3 ESM Group 1 Error 4 ESM Group 2 Error 5 RESERVED 6 ANA LDO SC fault Bits set to '1' indicate successful configuration of the
[26:23]	STATUS	MAILBOX_ BOOT_ CONFIG_ STATUS	Bits set to '1' indicate successful configuration of the mailbox system. Bits Description 23 MSS configuration success 24 DSS configuration success 26:25 Reserved
[31:27]	-	RESERVED	Set to 0.

Table 2.1: F	RSS_CR	4_BOOT_	_INFO_	_REG0
---------------------	--------	---------	--------	-------

RSS_PROC_CTRL:RSS_CR4_BOOT_INFO_REG1

This register contains the same information as in REG0 for redundancy.

Table 2.2: RSS	_CR4_BOOT	_INFO_REG1	(Redundant	copy of REG0)
-----------------------	-----------	------------	------------	---------------

Bits	Config (OR) Status	Field	Description		
[15:0]	CONFIG	XTAL_FREQ	Frequency of the XTAL in MHz to be programmed by the user application.		
[16:16]	STATUS	APLL_CALIB_ DONE	BSS sets this to '1' if APLL calibration was performed in boot.		
[17:17]	STATUS	APLL_CALIB_ STATUS	PASS/FAIL status of the APLL calibration.		
[18:18]	STATUS	BSS_BOOT_ DONE	BSS sets this to '1' at the end of its boot up sequence to indicate that the boot has been completed.		
[19:19]	STATUS	BSS_BOOT_ STATUS	PASS/FAIL status of the BOOT monitors.		
[22:20]	STATUS	BSS_FAULT_ STATUS	Firmware fault status.0No fault1BSS firmware ASSERT2BSS Firmware CPU Abort3ESM Group 1 Error4ESM Group 2 Error5RESERVED6ANA LDO SC fault		
[26:23]	STATUS	MAILBOX_ BOOT_ CONFIG_ STATUS	Bits set to '1' indicate successful configuration of the mailbox system.BitsDescription23MSS configuration success24DSS configuration success26:25Reserved		
[31:27]	-	RESERVED	Set to 0.		

RSS_PROC_CTRL:RSS_CR4_BOOT_INFO_REG3

This register contains config fields for setting up the mailboxes between BSS and MSS/DSS.

Bits	Config (OR) Status	Field	Description	
[7:0]	CONFIG	MSS_MBOX_	Mailbox	configuration for the MSS.
		CONFIG	Bits	Description
			7	Enable communication with MSS
			6	Sub-System selection 0 - MSS_CR5A, 1 - MSS_CR5B
			5:4	Buffer size in TX mailbox memory 0b00 512B
				0b01 1kB
				0b10 1.5kB
				0b11 2kB
			3:0	Buffer start address Offset Index of the mem- ory for BSS Tx buffer. The offset is computed as (Buffer size * Offset Index) Note: The buffer end address, calculated as (Buffer size * (1 + Offset Index)) must be less than 8kB.
[15:8]	CONFIG	DSS_MBOX_	Mailbox	configuration for the DSS.
		CONFIG	Bits	Description
			7	Enable communication with DSS
			6	Sub-System selection 0 - DSS_DSP, 1 - DSS_CM4
			5:4	Buffer size in TX mailbox memory 0b00 512B
				0b01 1kB
				0b10 1.5kB
				0b11 2kB
			3:0	Buffer start address Offset Index of the mem- ory for BSS Tx buffer. The offset is computed as (Buffer size * Offset Index) Note: The buffer end address, calculated as (Buffer size * (1 + Offset Index)) must be less than 8kB. NOTE: DSS_MBOX_CONFIG field is Re- served in xWR254x.
[31:16]	-	RESERVED	Set to 0)

Table 2.3: RSS_CR4_BOOT_INFO_REG3

RSS_PROC_CTRL:RSS_CR4_BOOT_INFO_REG4

This register is the redundant copy of RSS_CR4_BOOT_INFO_REG3 .

 Table 2.4:
 RSS_CR4_BOOT_INFO_REG4 (Redundant copy of REG3)

Bits	Config (OR) Status	Field	Descrip	otion
[7:0]	CONFIG	MSS_MBOX_	Mailbox	configuration for the MSS.
		CONFIG	Bits	Description
			7	Enable communication with MSS
			6	Sub-System selection 0 - MSS_CR5A, 1 - MSS_CR5B
			5:4	Buffer size in TX mailbox memory
				0b00 512B
				0b01 1kB
				0b10 1.5kB
				0b11 2kB
			3:0	Buffer start address Offset Index of the mem- ory for BSS Tx buffer. The offset is computed as (Buffer size * Offset Index) Note: The buffer end address, calculated as (Buffer size * (1 + Offset Index)) must be less than 8kB.
[15:8]	CONFIG	DSS_MBOX_	Mailbox	configuration for the DSS.
		CONFIG	Bits	Description
			7	Enable communication with DSS
			6	Sub-System selection 0 - DSS_DSP, 1 - DSS_CM4
			5:4	Buffer size in TX mailbox memory 0b00 512B
				0b01 1kB
				0b10 1.5kB
				0b11 2kB
			3:0	Buffer start address Offset Index of the mem- ory for BSS Tx buffer. The offset is computed as (Buffer size * Offset Index) Note: The buffer end address, calculated as (Buffer size * (1 + Offset Index)) must be less than 8kB. NOTE: DSS_MBOX_CONFIG field is Re- served in xWR254x.
[31:16]	-	RESERVED	Set to 0).

RSS_PROC_CTRL:RSS_CR4_BOOT_INFO_REG5

This register contains config fields for miscellaneous features in the BSS.

Bits	Config (OR) Status	Field	Descrip	tion
[2:0]	CONFIG	RSS_LOG- GER_CONFIG		ration of the RSS debug logger. Description
			0b000	RSS logger disabled
			0b001	RSS logger enabled in UART mode
			0b010	RSS logger enabled in MSS MEM DUMP mode
[3:3]	CONFIG	RSS_DYN_ FREQ_		Disable control of the BSS dynamic frequency g feature.
		SWITCH	Value	Description
			0b0	RSS CPU clock always kept at 200MHz
			0b1	RSS CPU clock is dynamically switched to XTAL frequency during idle and returned to 200MHz when active.
[15:4]	CONFIG	RSS_200MHZ_ CLK_SRC	(12-bit TOPRC	0MHz clock source selection for RSS CPU. RSS CPU clock source selection at MSS_ M:RSS_CLK_SRC_SEL). This field is required lynamic frequency switching is enabled.
[18:16]	CONFIG	FRC_200MHZ_ CLK_SRC		Only applicable for xWR254x. MHz clock source selection for RSS CPU.
			Value	Clock source
			0	RSS_CLK
			1	RESERVED
			2	DPLL_CORE_HSDIV0_CLKOUT3
			3	DPLL_PER_HSDIV0_CLKOUT1
			7-4	RESERVED
[31:19]	-	RESERVED	Set to 0	

Table 2.5: RSS_CR4_BOOT_INFO_REG5

RSS dynamic frequency switch : The RSS sub-system and its firmware generally executes at a fixed 200MHz clock source from the ADPLL. For reducing power consumption during inactive periods, the fimrware can switch the RSS clock source from 200MHz source to XTAL. This is done only when the RSS firmware is entering into a WFI sleep mode during the inter-burst/inter-frame time periods. It doesn't enter into this mode if any calibrations or monitoring chirps are scheduled in the current inter-burst period. Anytime the RSS firmware wakes up from this state due to an event or an interrupt, the firmware first switches the clock back to a 200MHz source and then proceeds to service the interrupt. This is an optional feature that can be enabled through RSS_PROC_CTRL:RSS_CR4_BOOT_INFO_REG5. The additional restrictions placed

on the customer application if this feature is enabled have been listed below.

- 1. **MSS RTI C cannot be used by the application.** It can continue to use other RTIs in the MSS.
- 2. **RSS watchdog feature cannot be enabled when RSS dynamic frequency switching is enabled.** The customer can use application based checks (using MSS WDT to monitor RSS) to ensure that RSS is not in any stuck state.
- 3. FRAME_TIMING_MONITORING_EN cannot be enabled in AWR_MONITOR_RF_DIG_ PERIODIC_CONF_SB. The customer application can use alternate methods to monitor the frame timing like periodic monitoring of the FTTI using the MSS PMU to timestamp the temperature monitoring ASYNC reports and computing the period between them. Another option is periodic monitoring of the FRAME_START (burst start) interrupt coming to the MSS. Measuring the time period between two FRAME_START interrupts using the MSS PMU, we should get a more accurate estimate of the frame timing. However, this means that when the customer uses complicated waveforms like advanced frame configuration, they would have to compute the expected value of the current burst period (including IDLE periods), before comparing against the measured FRAME_START -> FRAME_ START time. Please refer to the TRM for more details on the FRAME_START interrupt.

RSS logger : RSS logger data generated by the RSS firmware provides information of the RSS control flow and also provides additional data like calibration/monitoring debug data as it is executed. This can be used to debug any RSS related issues. In xWR294x and xWR254x, the RSS supports enable/disable as well as 2 modes (UART / MSS memory dump) of transferring the logger data to an external system.

RSS_PROC_CTRL:RSS_CR4_BOOT_INFO_REG6

This register contains config fields for miscellaneous features in the BSS.

Bits	Config (OR) Status	Field	Description
[31:0]	CONFIG	BSS_LOG- GER_MEM_ BUF_ADDR	32 bit address of the MSS L2 memory dump for the BSS logger (2kB required). The BSS interprets this buffer as 2 chunks of 1kB each for PING-PONG opera- tion. Valid range: 0xC0200000 - 0xC02EF7FC Note: This field is only applicable if the BSS logger is enabled in the MSS MEM DUMP mode. In other cases, this can be set to zero.

 Table 2.6:
 RSS_CR4_BOOT_INFO_REG6

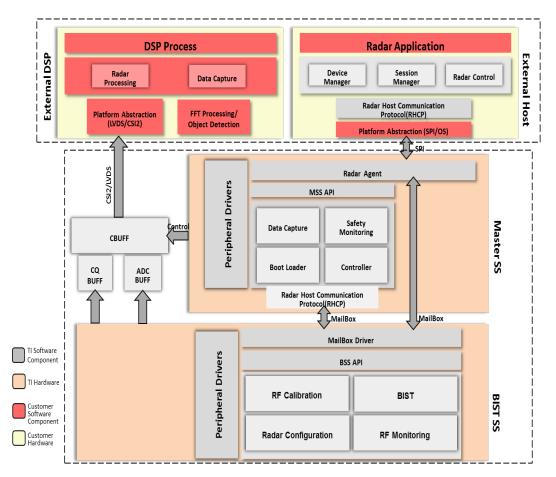


Figure 2.1: AWR12xx, AWR22xx, AWR62xx Software Architecture

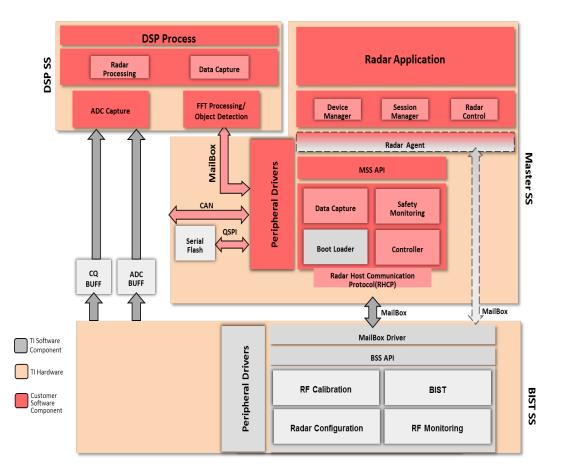


Figure 2.2: xWR16xx, xWR18xx, IWR68xx, xWR294x and xWR254x Software Architecture

2.3 Radar Message Structure

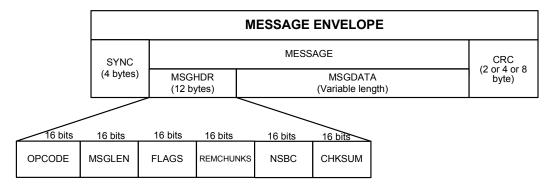


Figure 2.3: Radar Message Structure

Each message is sent in a message envelope, which starts with four special bytes called a sync pattern. Next, the message envelope contains the actual message and a CRC converted to a stream of bytes. Figure 2.3 defines the general form of radar messages. All communication messages between external host processor and the radar device will follow this message format. Each message consists of a 12-byte message header, variable length message data followed by a variable length CRC.

NOTE:	The CRC and all the fields in the message headers and message data that are larger than one byte are sent in little-endian byte order
	i.e. the least significant byte is sent first.

A message envelope contains only one message.

2.3.1 SYNC

SYNC is a unique 4 byte pattern which marks the start of the message. It can take one of the following 3 values, in memory all the bytes are stored in little endian format (least significant byte first).

2.3.2 MSGHDR

Figure 2.4 defines the content of the message header. Each radar message must begin with this 12 byte message header in little endian format.

OPCODE

The OPCODE is unique for a given message type. Figure 2.5 defines the OPCODE format.

CHKSUM

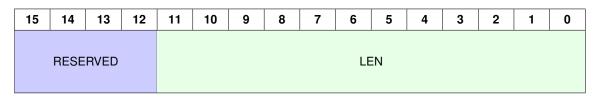
(16 bits)

				0		
SYNC w	ord value	Description				
0x43211	234	Messages fror command				
0x87655	678	Messages from external host to device indicating the host is now ready to receive a message from the device This pattern is defined as CNYS in this document.				
0xABCDDCBA Messages from slave to master						
CODE	LENGTH	FLAGS	REMCHUNKS	NSBC		
6 bits)	(16 bits)	(16 bits)	(16 bits)	(16 bits)		

 Table 2.7: Possible SYNC values and their usage

Figure	2.4:	Message	Header	Format
Iguic	4 . 1 .	mossage	incauci	rormau

Bits	Field	Description	
[3:0]	DIRECTION	Direction of command	
		0000 Invalid	
		0001 Communication between Host to BSS	
		0010 Communication between BSS to Host	
		0011 Communication between Host to DSS	
		0100 Communication between DSS to Host	
		0101 Communication between Host to Master	
		0110 Communication between Master to Host	
		0111 Communication between BSS to Master	
		1000 Communication between Master to BSS	
		1001 Communication between BSS to DSS	
		1010 Communication between DSS to BSS	
		1011 Communication between Master to DSS	
		1100 Communication between DSS to Master	
		1101 RESERVED	
		1110 RESERVED	
		1111 RESERVED	
[5:4]	MSGTYPE	Message type	
		00 COMMAND	
		01 RESPONSE (ACK or ERROR)	
		10 NACK	
		11 ASYNC	
[15:6]	MSGID	Message ID	
		0x00 AWR_ERROR_MSG	
		0x01 RESERVED	
		0x02 RESERVED	
	Copyrig	0x03 RESERVED ht © 2021, Texas Instruments Incorporated 0x04 AWR_RF_STATIC_CONF_SET_MSG	
		0x05 AWR_RF_STATIC_CONF_GET_MSG	
		0x06 AWR_RF_INIT_MSG	
		0x07 RESERVED	
		0x08 AWR_RF_DYNAMIC_CONF_SET_MSG	
		0x09 AWR RE DYNAMIC CONE GET MSG	


0x0C	AWR_RF_ADVANCED_FEATURES_CONF_ SET_MSG
0x0D	RESERVED
0x0E	AWR_RF_MONITORING_CONF_SET_MSG
0x0F	RESERVED
0x10	RESERVED
0x11	AWR_RF_STATUS_GET_MSG
0x12	RESERVED
0x13	AWR_RF_MONITORING_REPORT_GET_ MSG
0x14	AWR_RF_MONITORING_CONF_SET_2_ MSG
0x15	RESERVED
0x16	AWR_RF_MISC_CONF_SET_MSG
0x17	AWR_RF_MISC_CONF_GET_MSG
0x18	RESERVED
0x19	RESERVED
0x80	AWR_RF_ASYNC_EVENT_MSG1
0x81	AWR_RF_ASYNC_EVENT_MSG2
0x200	AWR_DEV_RFPOWERUP_MSG
0x201	RESERVED
0x202	AWR_DEV_CONF_SET_MSG
0x203	AWR_DEV_CONF_GET_MSG
0x204	AWR_DEV_FILE_DOWNLOAD_MSG
0x205	RESERVED
0x206	AWR_DEV_FRAME_CONFIG_APPLY_MSG
0x207	AWR_DEV_STATUS_GET_MSG
0x208	RESERVED
0x209	RESERVED
0x20A	RESERVED
0x20B	RESERVED
0x20C	RESERVED
0x20D	RESERVED
0x280	AWR_DEV_ASYNC_EVENT_MSG

LENGTH

The length field contains the length of the message in bytes including the message header, message data and CRC. Note that length field does not include the length of the sync field. The minimum length of the message is 12 bytes and maximum is 252 bytes. The message length

minus CRC length must also be a multiple of 4 bytes.

Figure 2.6: MSGLEN Format

Table 2.9: MSGLEN field descriptions

Bits	Field	Description
[11:0]	LEN	Message length in bytes (It includes message header, message data and CRC)
[15:12]	RESERVED	Keep these bits as 0s

FLAGS

The FLAGS is used to control the communication between the radar device and external host

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	SEQ	NUM		CRC	LEN	CRC	REQ	PRO	TOCO	LVER	SION	ACQ	REQ	RET	ſRY

Figure 2.7: FLAGS Format

Table 2.10:	FLAGS	field	description
-------------	-------	-------	-------------

Bits	Field	Description
[1:0]	RETRY	RETRY Value 00 New message
		11 Retransmitted message
		01 RESERVED
		10 RESERVED

Table 2.10 – Continued from Previous page					
[3:2]	ACKREQ	Acknowledgement Request type			
		00 Acknowledgement is requested for			
		the current message			
		11 Acknowledgement is not re-			
		quested for the current message			
		01 RESERVED			
		10 RESERVED			
[7:4]	PROTOCOL	Version number of the protocol that is used			
	VERSION	to communicate with the device (4 bits)			
[9:8]	CRCREQ	CRC request type			
		00 CRC is appended to the message			
		11 CRC is not appended to the mes-			
		sage			
		01 RESERVED			
		10 RESERVED			
[11:10]	CRCLEN	Length of CRC appended to the message			
		00 16-bit CRC			
		01 32-bit CRC			
		10 64-bit CRC			
		11 RESERVED			
[15:12]	SEQNUM	4 bit sequence number of the message. Se-			
		quence number is reset to 0 after a de-			
		vice boot and each new message has the			
		incremented sequence number. Whenever			
		the same message is retransmitted, the se- quence number is not incremented.			

Table 2.10 – continued from previous page

NOTE: It is recommended to always append CRC to the message to prevent any message integrity issues

REMCHUNKS

If the message length is larger than 256 bytes, then it is split into multiple chunks of sizes less than 256 bytes. When this field is non-zero, this field indicates the number of remaining chunks that are to be expected.

NSBC

The message may contain several configuration sub blocks with structure as defined in Figure 2.3. The NSBC field indicates the total number sub blocks inside the message data.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RESERVED				NSBC											
	RESERVED									NODO					

Figure 2.8: NSBC Format

Bits	Field	Description
[10:0]	NSBC	Number of sub blocks in the message
[15:11]	RESERVED	Keep these bits as 0s

Table 2.11: NSBC field description

CHKSUM

The message header is protected by a 16-bit checksum to enable the receiver to check the integrity of the message header. The checksum is computed on MSGHDR only (MSGID, MSGLEN, FLAGS, REMCHUNKS and NSBC fields). Note that SYNC field is not included in checksum calculation.

Checksum is 16-bit one's complement of the one's complement sum of all 16-bit words in the message header (Ref. https://tools.ietf.org/html/rfc1071).

For e.g., suppose the message header contents looks like this

Field	Value
OPCODE	0x0281
MSGLEN	0x0800
FLAGS	0x040C
REMCHUNKS	0x0000
NSBC	0x0001
CHKSUM	0xF171

Table 2.12: Checksum computation example

The receiver will compute the checksum as follows 0x0281 + 0x0800 = 0x0A81.

Then, 0x0A81 + 0x040C = 0x0E8D.

Then, 0x0E8D + 0x0000 = 0x0E8D.

Then, 0x0E8D + 0x0001 = 0x0E8E.

The carry bits generated beyond 16 bits should be added back to result

Ones complement of 0x0E8E is 0xF171 which matches with the received checksum.

2.3.3 MSGDATA

The message data contains the actual message specific data for the message. The message data contains sub blocks with structure as defined in Figure 2.9. More than one sub block can be appended in the MSGDATA to reduce the overall communication latency. The total number of sub blocks in MSGDATA is indicated in the NSBC field in the MSGHDR.

All data fields are aligned so that their offset in message is a multiple of the field size in bytes. For e.g. a 32 bit field in the message will be aligned to a 4 byte boundary and a 16 bit field will be aligned to a 2 byte boundary. This makes it possible to create a structure definition for the message for easy data access in most environments.

Any reserved (currently unused) fields in the messages should be always set as 0 when sent and ignored when received. This way those fields may be taken to use in later interface versions without modifying all old software.

All data structure in sub-blocks assumed to be in little endian format. For big endian Host system byte swap is required to match with defined protocol.

MSGDATA					
SBLKID	SBLKLEN	SBLKDATA			
(16 bits)	(16 bits)	(Variable length)			

Figure 2.9: Message Sub block structure

SBLKID Unique ID of the sub block

SBLKLEN Length of the sub block in bytes

SBLKDATA Data corresponding to the sub block

2.3.4 CRC

This is a CRC which is appended to the message data to protect the integrity of the message. The CRC is computed on all the bytes in the MSGHDR and MSGDATA. Note that SYNC is not included in CRC calculation.

3 different types of CRCs can be used – 16 bit, 32 bit or 64 bit. The choice of the CRC type is indicated in the FLAGS field in the MSGHDR.

The 32 bit CRC is recommended CRC to be used in SPI protocol.

The polynomials used for each type of CRC calculation are

	CRC type	Polynomial	Remarks
	16 bit	$x^{16} + x^{12} + x^5 + 1$	16-bit CRC-CCITT
	32 bit	$\begin{array}{c} x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + \\ x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + \\ x^2 + x + 1 \end{array}$	CRC-32 (used in Ether- net)
	64 bit	$x^{64} + x^4 + x^3 + x + 1$	CRC-64-ISO (HDLC)
N	OTE:	Device SPI protocol Limitation: The or Async-event shall be multiple of 4 recovery mechanism in case of any ch	bytes to enable reliable ret

 Table 2.13: CRC types and their polynomials

3 Message Processing

3.1 Communication protocol

When requested by the message transmitter, all correctly formatted radar messages are acknowledged by the receiver. This request for an acknowledgement is specified in FLAGS field of the MSGHDR (message header) field (see Section 2.3.2). A correctly formatted message is one that is formatted properly with a SYNC, MSGHDR, MSGDATA and CRC and that passes the CRC test when received. If an incorrectly formatted message is received, the radar device responds with a NACK message (MSGTYPE field in the MSGHDR set to NACK response). If a correctly formatted message is received, and after processing the message no errors are encountered, the radar device responds with an ACK response. In case of errors on a correctly formatted message, the radar device responds with an ERROR response.

The ACK response is a radar message which contains SYNC, MSGHDR, MSGDATA and CRC. In case the MSGTYPE was COMMAND_GET the MSGDATA for ACK response will contain the parameter values read by the radar device.

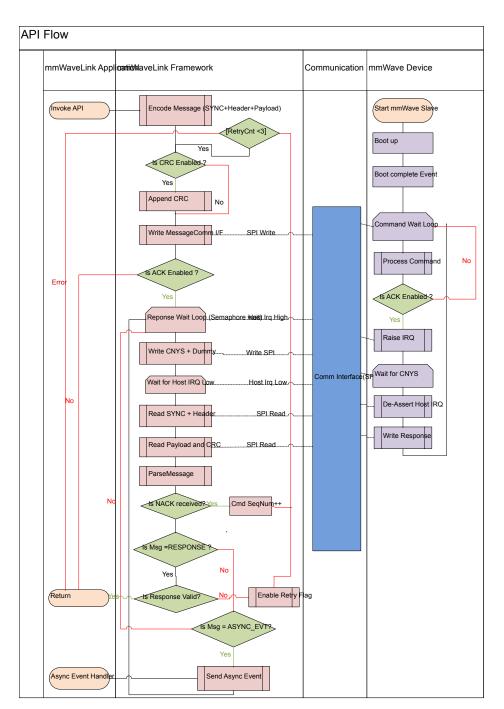
The NACK response is a radar message with only SYNC, MSGHDR and CRC. It does not contain MSGDATA.

For most commands the radar device prepares the acknowledgments and response packets immediately on reception. In certain cases, higher priority events in the system delay the execution of external communication function. The response time to command is a function of:

- · Speed of the selected communication channel
- Although typical radar command/response occurs within a few hundreds of microseconds, it is recommended that host software wait up to 1 millisecond for response or acknowledgment before timing out on nonresponse.

The radar communication protocol is defined as follows

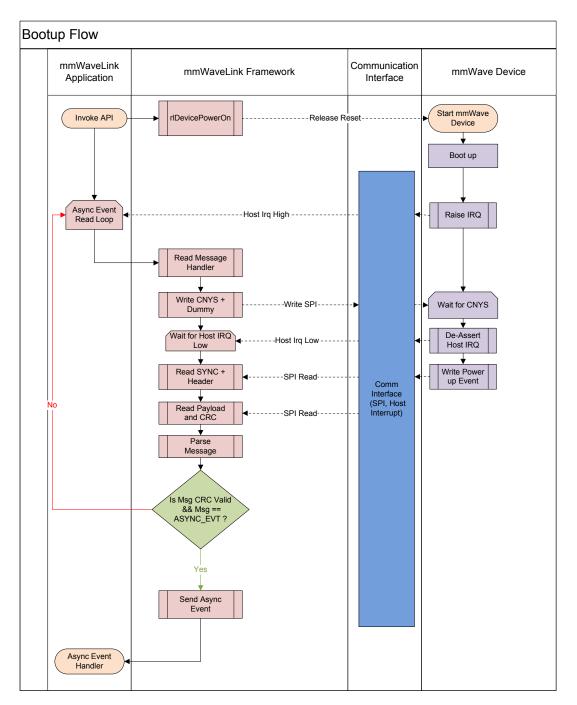
- 1. The host sends a message to the radar device requesting an acknowledgement. Host sets a timeout period of 1 ms for a response from the radar device.
- The radar device checks the CHKSUM field for Message header validity and checks the MSGDATA field for correctness and also computes the CRC of the message and compares it with the received CRC.
 - If the computed CHKSUM does not match the received CHKSUM, the radar device does not send any response. The transmitter will timeout and eventually resend the command again with RETRY flag set


- If the CRC matches and all parameters are valid/correct, the radar device sends an ACK to the host
- If the CRC matches, but any parameter in the message is invalid/incorrect, then the radar device sends an ERROR response to the host
- If the CRC does not match, the radar device sends a NACK response to the host
- 3. On reception of the ACK, the host can send the next command to the radar device.
- 4. If the host receives a NACK from the radar device within the timeout period, it sends the message again without the RETRY flag set.
- 5. If the host does not receive any response from the radar device within the timeout period then it sends the same command with the RETRY flag set.

3.2 Communication Sequence

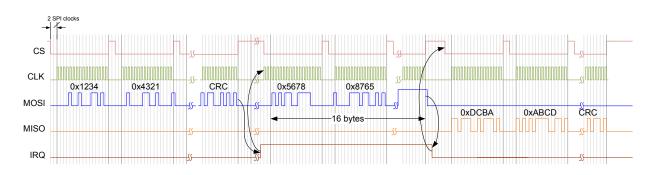
3.2.1 Command/Response Sequence (Host)

- 1. Host prepares the message as defined by protocol in Section 2.3
- 2. Host writes the message to the communication channel and starts Retry Timer (\sim 1 ms)
- 3. Host then waits for HOST IRQ high Interrupt
 - a. If IRQ is received, go to Step 4
 - b. If Retry Time expires, Enable Retry Flag and go to Step 2
- 4. Host writes CNYS (SYNC word = 0x5678 0x8765) and Dummy bytes (0xFFFF 0xFFFF 0xFFFF 0xFFFF) on communication channel
- 5. Host waits for low on Host IRQ line
 - a. If Host IRQ line is low, go to Step 6
 - b. If Retry Time expires, Flag Error
- 6. Host reads the header from communication channel
- 7. Host checks the validity of header (verify checksum)
 - a. If header is valid, parse the header and go to Step 8
 - b. If header is invalid, ignore the header and reports to error to Application
- 8. Host reads the payload from communication channel
- 9. Host checks the validity of the message (verify CRC)
 - a. If message is valid, process the message
 - b. If message is invalid, go to Step 2 with new sequence number



3.2.2 Flow Diagram (Host) – Command/Response

Figure 3.1: Flow Diagram (API)



3.2.3 Flow Diagram (Host) – Bootup/ Asynchronous Event

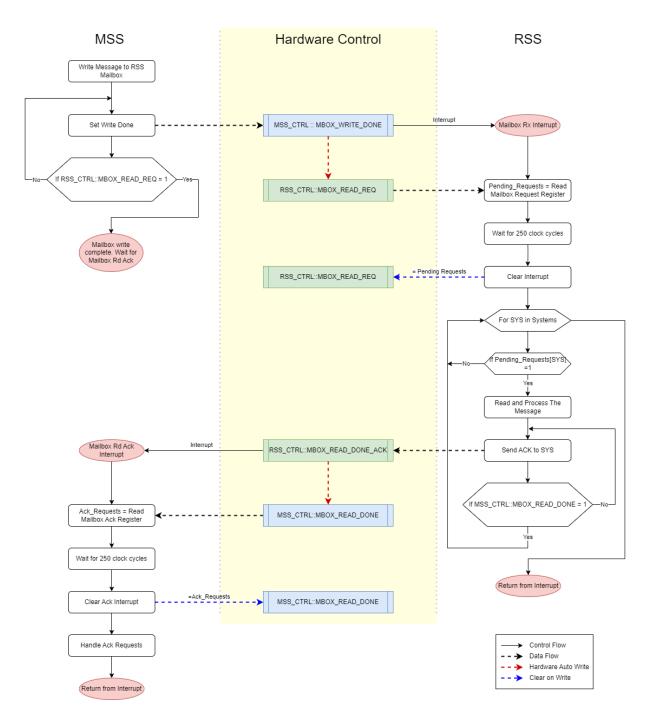
Figure 3.2: Flow Diagram (Asynchronous Events)

3.2.4 SPI Message Sequence – Command/Response

Figure 3.3: SPI Message Sequence

NOTE: 1.	Host should ensure that there is a delay of at least 2 SPI clocks between CS going low and start of SPI clock
2.	Host should ensure that CS is toggled for every 16 bits of transfer via SPI
3.	There should be a delay of at least 2 SPI Clocks between consecutive CS
4.	SPI needs to be operated at Mode 0 (Phase 1, Po- larity 0)
5.	SPI word length should be 16 bit (Half word)

3.2.5 Command/Response sequence (MSS-BSS mailbox)

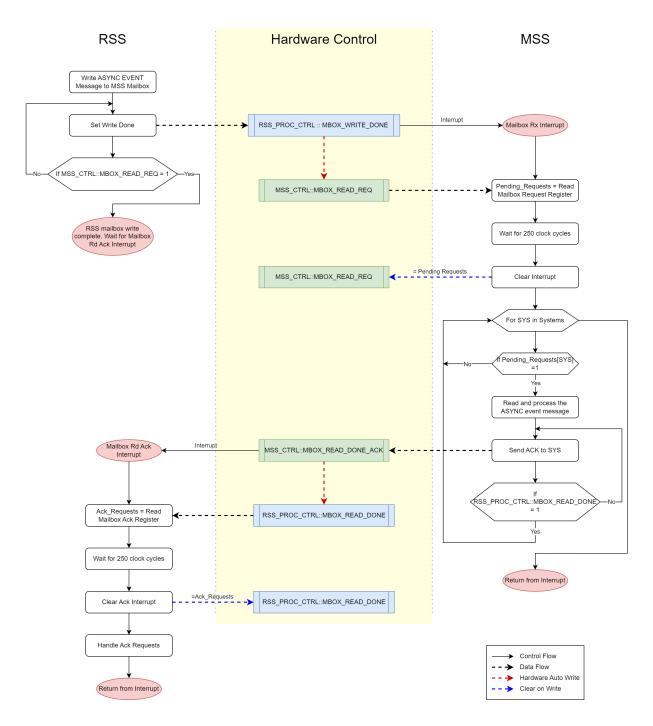

In single chip devices like xWR16xx/xWR18xx/xWR6843/xWR294x/xWR254x, the host application executes from the MSS and/or DSS. Communication between the host application and the RSS/BSS takes place through mailbox SRAMs within the device. This section will describe the communication flow in these devices taking xWR294x/xWR254x as an example.

- 1. Host (MSS) prepares the message as defined by protocol in Sec 2.3.
- 2. MSS writes the message in BSS mailbox.
- 3. MSS polls RSS_PROC_CTRL->RSS_CR4_MBOX_READ_REQ and keeps writing 1 to MSS_CTRL:MSS_CR5A_MBOX_WRITE_DONE_PROC_X until the read-value is 1 to trigger an interrupt to BSS.

- 4. This generates a mailbox interrupt to the BSS.
- 5. BSS reads RSS_PROC_CTRL->RSS_CR4_MBOX_READ_REQ register and finds the processor that has triggered the interrupt.
- 6. BSS waits for 250 clock-cycles.
- 7. BSS clears the interrupt by writing 1 to RSS_PROC_CTRL->RSS_CR4_MBOX_READ_ REQ register bit for that particular processor.
- 8. BSS reads and interprets the message in the mailbox.
- 9. BSS polls MSS_CTRL : MSS_CR5A_MBOX_READ_DONE and keeps writing 1 to RSS_ PROC_CTRL : RSS_CR4_MBOX_READ_DONE_ACK register bit corresponding to that particular processor until the read-value is 1 to trigger an interrupt to MSS.
- 10. This generates a mailbox interrupt to the MSS.
- 11. MSS reads the MSS_CTRL : MSS_CR5A_MBOX_READ_DONE to check which processor has interrupted it.
- 12. MSS waits for 250 clock-cycles.
- 13. MSS clears the interrupt by writing 0x1 to MSS_CTRL : MSS_CR5A_MBOX_READ_DONE register bit.

3.2.6 Flow Diagram Command/Response (MSS-BSS mailbox)

Figure 3.4: Command/Response Flow Diagram



3.2.7 Asynchronous event sequence (BSS-MSS mailbox)

This section will describe the Asynchronous Event communication flow from BSS to the MSS (Host) in xWR294x/xWR254x as an example.

- 1. BSS prepares the ASYNC event report message as defined by protocol.
- 2. BSS writes the message in MSS mailbox.
- 3. BSS polls MSS_CTRL->MSS_CR5A_MBOX_READ_REQ and keeps on writing 1 to RSS_ PROC_CTRL:RSS_CR4_MBOX_WRITE_DONE_PROC_X until MSS_CTRL->MSS_CR5A_ MBOX_READ_REQ is 1 to trigger an interrupt to MSS.
- 4. This generates a mailbox interrupt to the MSS.
- 5. MSS reads MSS_CTRL->MSS_CR5A_MBOX_READ_REQ register and finds the processor that has triggered the interrupt.
- 6. MSS waits for 250 clock cycles.
- 7. MSS clears the interrupt by writing 1 to MSS_CTRL->MSS_CR5A_MBOX_READ_REQ register bit for that particular processor.
- 8. MSS reads and interprets the ASYNC event message in the mailbox.
- 9. MSS polls RSS_PROC_CTRL : RSS_CR4_MBOX_READ_DONE and keeps on writing 1 to MSS_CTRL : MSS_CR5A_MBOX_READ_DONE_ACK until RSS_PROC_CTRL : RSS_CR4_MBOX_READ_DONE is 1 to trigger an interrupt to BSS.
- 10. This generates a mailbox interrupt to the BSS.
- 11. BSS reads the RSS_PROC_CTRL : RSS_CR4_MBOX_READ_DONE to check which processor has interrupted it.
- 12. BSS waits for 250 clock cycles.
- 13. BSS clears the interrupt by writing 0x1 to RSS_PROC_CTRL : RSS_CR4_MBOX_READ_ DONE register bit.

3.2.8 Flow Diagram Asynchronous event (BSS-MSS mailbox)

Figure 3.5: ASYNC Event Flow Diagram

Application Care Abouts:	1. Retry of RF Power up message is unsupported.			
	 HOST is recommended to wait for RF Power Async msg before any further APIs are issued. Lack of RF Power up Async msg should be treated as bootup failure. 			
	It is recommended to wait for Async event for Latent fault injection API before the next CMD is issued.			
	 HOST to ensure a delay of 30us in response to the HOST_IRQ interrupt, to allow for a SPI DMA config- uration in device post HOST_IRQ set high. 			
	 It is recommended to use 232 as the chunk size in mmWavelink/HOST when firmware download is done through SPI. 			

4 Radar Interface Messages Descriptions

This section describes all the radar interface messages that are used in communication with the radar transceiver. Depending on the architecture of the device, some of the messages might not be supported. Messages towards/from the MSS firmware are only supported in front-end devices like xWR12/xWR22/xWR62xx. In single-chip devices (xWR16/xWR18/xWR68/xWR29xx), these messages are not supported and can only be used as a reference for implementation in the MSS application by the user.

These messages are categorized based on type of messages and each message consist of multiple configuration sub-blocks. Each sub-block does a unique configuration of the device, they are grouped as static and dynamic messages. The Async Event (AE) response sub-blocks generated in the device are grouped as AE messages.

4.1 Summary of all messages and their associated sub-blocks

associated sub blocks		
Radar Messages	Associated sub-blocks	
AWR_ACK_MSG	NA	
AWR_NACK_MSG	NA	
AWR_ERROR_MSG	AWR_RESP_ERROR_SB	

Table 4.1: Summary of common Radar messages in both BSS and MSS and their

Radar Messages	Associated sub-blocks			
	AWR_CHAN_CONF_SET_SB			
	AWR_ADCOUT_CONF_SET_SB			
	AWR_LOWPOWERMODE_CONF_SET_SB			
	AWR_DYNAMICPOWERSAVE_CONF_SET_SB			
	AWR_HIGHSPEEDINTFCLK_CONF_SET_SB			
AWR_RF_STATIC_CONF_SET_ MSG	AWR_RF_DEVICE_CFG_SB			
	AWR_RF_RADAR_MISC_CTL_SB			
	AWR_CAL_MON_FREQUENCY_LIMITS_SB			
	AWR_RF_INIT_CALIBRATION_CONF_SB			
	AWR_CAL_MON_FREQUENCY_TX_POWER_LIMITS_SB			

Table 4.2: Summary of all Radar messages in the BSS and their associated sub blocks

Radar Messages	Associated sub-blocks		
	AWR_CAL_DATA_RESTORE_SB AWR_PHASE_SHIFTER_CAL_DATA_RESTORE_SB		
	AWR_APLL_SYNTH_BW_CONTROL_SB		
AWR_RF_STATIC_CONF_GET_ MSG	AWR_CAL_DATA_SAVE_SB		
	AWR_PHASE_SHIFTER_CAL_DATA_SAVE_SB		
AWR_RF_INIT_MSG	AWR_RF_INIT_SB		
AWR_RF_DYNAMIC_CONF_SET_ MSG	AWR_PROFILE_CONF_SET_SB		
	AWR_CHIRP_CONF_SET_SB		
	AWR_FRAME_CONF_SET_SB		
	AWR_CONT_STREAMING_MODE_CONF_SET_SB		
	AWR_CONT_STREAMING_MODE_EN_SB		
	AWR_ADVANCED_FRAME_CONF_SB		
	AWR_PERCHIRPPHASESHIFT_CONF_SB		
	AWR_PROG_FILT_COEFF_RAM_SET_SB		
	AWR_PROG_FILT_CONF_SET_SB		
	AWR_CALIB_MON_TIME_UNIT_CONF_SB		
	AWR_RUN_TIME_CALIBRATION_CONF_AND_TRIGGER_SB		
	AWR_DIGITAL_COMP_EST_CONTROL_SB		
	AWR_RX_GAIN_TEMPLUT_SET_SB		
	AWR_TX_GAIN_TEMPLUT_SET_SB		
	AWR_LOOPBACK_BURST_CONF_SET_SB		
	AWR_DYN_CHIRP_CONF_SET_SB		
	AWR_DYN_PERCHIRP_PHASESHIFTER_CONF_SB		
	AWR_DYN_CHIRP_ENABLE_SB		
	AWR_INTERCHIRP_BLOCKCONTROLS_SB		
	AWR_SUBFRAME_START_CONF_SB		
	AWR_ADVANCE_CHIRP_CONF_SB		
	AWR_ADVANCE_CHIRP_GENERIC_LUT_LOAD_SB		
	AWR_MONITOR_TYPE_TRIG_CONF_SB		
	AWR_ADVANCE_CHIRP_DYN_LUT_ADDR_OFFSET_CFG_ SB		
AWR_RF_DYNAMIC_CONF_GET_ MSG	AWR_PROFILE_CONF_GET_SB		
	AWR_CHIRP_CONF_GET_SB		

Table 4.2 – continued from previous page

Radar Messages	Associated sub-blocks
	AWR_FRAME_CONF_GET_SB
	AWR_ADVANCED_FRAME_CONF_GET_SB
	AWR_RX_GAIN_TEMPLUT_GET_SB
	AWR_TX_GAIN_TEMPLUT_GET_SB
AWR_RF_FRAME_TRIG_MSG	AWR_FRAMESTARTSTOP_CONF_SB
AWR_RF_ADVANCED_	AWR_BPM_COMMON_CONF_SET_SB
FEATURES_CONF_SET_MSG	AWR_BPM_CHIRP_CONF_SET_SB
AWR_RF_MONITORING_CONF_ SET_MSG	AWR_MONITOR_RF_DIG_LATENTFAULT_CONF_SB
	AWR_MONITOR_RF_DIG_PERIODIC_CONF_SB
	AWR_MONITOR_ANALOG_ENABLES_CONF_SB
	AWR_MONITOR_TEMPERATURE_CONF_SB
	AWR_MONITOR_RX_GAIN_PHASE_CONF_SB
	AWR_MONITOR_RX_NOISE_FIGURE_CONF_SB
	AWR_MONITOR_RX_IFSTAGE_CONF_SB
	AWR_MONITOR_TX0_POWER_CONF_SB
	AWR_MONITOR_TX1_POWER_CONF_SB
	AWR_MONITOR_TX2_POWER_CONF_SB
	AWR_MONITOR_TX0_BALLBREAK_CONF_SB
	AWR_MONITOR_TX1_BALLBREAK_CONF_SB
	AWR_MONITOR_TX2_BALLBREAK_CONF_SB
	AWR_MONITOR_TX_GAIN_PHASE_MISMATCH_CONF_SB
	AWR_MONITOR_TX0_PHASE_SHIFTER_CONF_SB
	AWR_MONITOR_TX1_PHASE_SHIFTER_CONF_SB
	AWR_MONITOR_TX2_PHASE_SHIFTER_CONF_SB
	AWR_MONITOR_SYNTHESIZER_FREQUENCY_CONF_SB
	AWR_MONITOR_EXTERNAL_ANALOG_SIGNALS_CONF_ SB
	AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_ CONF_SB
	AWR_MONITOR_TX1_INTERNAL_ANALOG_SIGNALS_ CONF_SB
	AWR_MONITOR_TX2_INTERNAL_ANALOG_SIGNALS_ CONF_SB
	AWR_MONITOR_RX_INTERNAL_ANALOG_SIGNALS_ CONF_SB

Table 4.2 – continued from previous page

Radar Messages	Associated sub-blocks
	AWR_MONITOR_PMCLKLO_INTERNAL_ANALOG_SIG- NALS_CONF_SB
	AWR_MONITOR_GPADC_INTERNAL_ANALOG_SIGNALS_ CONF_SB
	AWR_MONITOR_PLL_CONTROL_VOLTAGE_SIGNALS_ CONF_SB
	AWR_MONITOR_DUAL_CLOCK_COMP_CONF_SB
	AWR_MONITOR_RX_SATURATION_DETECTOR_CONF_SB
	AWR_MONITOR_SIG_IMG_MONITOR_CONF_SB
	AWR_MONITOR_RX_MIXER_IN_POWER_CONF_SB
	AWR_ANALOG_FAULT_INJECTION_CONF_SB
AWR_RF_MONITORING_CONF_ SET_2_MSG	AWR_MONITOR_TXN_POWER_CONF_SB
	AWR_MONITOR_TXN_BALLBREAK_CONF_SB
	AWR_MONITOR_TXN_INTERNAL_ANALOG_SIGNALS_ CONF_SB
	AWR_MONITOR_TXN_PHASE_SHIFTER_CONF_SB
	AWR_MONITOR_ADV_TX_GAIN_PHASE_MISMATCH_ CONF_SB
	AWR_MONITOR_VMON_CONF_SB
	AWR_MONITOR_OVERRIDES_AND_DITHER_CONF_SB
	AWR_MONITOR_TX_PHSHIFTER_DAC_CONF_SB
AWR_RF_MONITORING_RE- PORT_GET_MSG	AWR_RF_DFE_STATISTICS_REPORT_GET_SB
AWR_RF_STATUS_GET_MSG	AWR_RF_VERSION_GET_SB
	AWR_RF_CPUFAULT_STATUS_GET_SB
	AWR_RF_ESMFAULT_STATUS_GET_SB
	AWR_RF_DIEID_GET_SB
	AWR_RF_BOOTUPBIST_STATUS_GET_SB
	AWR_RF_ADV_ESMFAULT_STATUS_GET_SB
	AWR_RF_TEST_SOURCE_CONFIG_SET_SB
	AWR_RF_TEST_SOURCE_ENABLE_SET_SB
	AWR_RF_LDO_BYPASS_SB
AWR_RF_MISC_CONF_SET_MSG	AWR_RF_PALOOPBACK_CFG_SB
	AWR_RF_PSLOOPBACK_CFG_SB
	AWR_RF_IFLOOPBACK_CFG_SB
	AWR_RF_GPADC_CFG_SET_SB

Table 4.2 – continued	from	previous page	е

Radar Messages	Associated sub-blocks		
	AWR_RF_LOLOOPBACK_CFG_SB		
AWR_RF_MISC_CONF_GET_ MSG	AWR_RF_TEMPERATURE_GET_SB		
AWR_RF_ASYNC_EVENT_MSG1	AWR_AE_RF_CPUFAULT_SB		
	AWR_AE_RF_ESMFAULT_SB		
	AWR_AE_RF_INITCALIBSTATUS_SB		
	AWR_AE_RF_MONITOR_TYPE_TRIGGER_DONE_SB		
	AWR_AE_RF_FRAME_TRIGGER_RDY_SB		
	AWR_AE_RF_GPADC_RESULT_DATA_SB		
	AWR_FRAME_END_AE_SB		
	AWR_ANALOGFAULT_AE_SB		
	AWR_CAL_MON_TIMING_FAIL_REPORT_AE_SB		
	AWR_RUN_TIME_CALIBRATION_SUMMARY_REPORT_AE_ SB		
	AWR_MONITOR_RF_DIG_LATENTFAULT_REPORT_AE_SB		
	AWR_MONITOR_REPORT_HEADER_AE_SB		
	AWR_MONITOR_RF_DIG_PERIODIC_REPORT_AE_SB		
	AWR_MONITOR_TEMPERATURE_REPORT_AE_SB		
	AWR_MONITOR_RX_GAIN_PHASE_REPORT_AE_SB		
	AWR_MONITOR_RX_NOISE_FIGURE_REPORT_AE_SB		
	AWR_MONITOR_RX_IFSTAGE_REPORT_AE_SB		
	AWR_MONITOR_TX0_POWER_REPORT_AE_SB		
	AWR_MONITOR_TX1_POWER_REPORT_AE_SB		
	AWR_MONITOR_TX2_POWER_REPORT_AE_SB		
	AWR_MONITOR_TX0_BALLBREAK_REPORT_AE_SB		
	AWR_MONITOR_TX1_BALLBREAK_REPORT_AE_SB		
	AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB		
	AWR_MONITOR_TX_GAIN_PHASE_MISMATCH_REPORT_ AE_SB		
	AWR_MONITOR_TX0_PHASE_SHIFTER_REPORT_AE_SB		
	AWR_MONITOR_TX1_PHASE_SHIFTER_REPORT_AE_SB		
	AWR_MONITOR_TX2_PHASE_SHIFTER_REPORT_AE_SB		
	AWR_MONITOR_SYNTHESIZER_FREQUENCY_REPORT_ AE_SB		
AWR_RF_ASYNC_EVENT_MSG2	AWR_MONITOR_EXTERNAL_ANALOG_SIGNALSREPORT_ AE_SB		

Table 4.2 – continued from previous page

Radar Messages	Associated sub-blocks
	AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_RE- PORT_AE_SB
	AWR_MONITOR_TX1_INTERNAL_ANALOG_SIGNALS_RE- PORT_AE_SB
	AWR_MONITOR_TX2_INTERNAL_ANALOG_SIGNALS_RE- PORT_AE_SB
	AWR_MONITOR_RX_INTERNAL_ANALOG_SIGNALS_RE- PORT_AE_SB
	AWR_MONITOR_PMCLKLO_INTERNAL_ANALOG_SIG- NALS_REPORT_AE_SB
	AWR_MONITOR_GPADC_INTERNAL_ANALOG_SIGNALS_ REPORT_AE_SB
	AWR_MONITOR_PLL_CONTROL_VOLTAGE_REPORT_AE_ SB
	AWR_MONITOR_DUAL_CLOCK_COMP_REPORT_AE_SB
	AWR_MONITOR_RX_MIXER_IN_POWER_REPORT_AE_SB
	AWR_MONITOR_SYNTHESIZER_FREQUENCY_NONLIVE_ REPORT_AE_SB

Table 4.2 – continued from previous page

Table 4.3: Summary of Radar messages in the MSS of front-end devices(12xx/22xx/62xx) and their associated sub blocks

Radar Messages	Associated sub-blocks
AWR_DEV_RFPOWERUP_MSG	AWR_DEV_RFPOWERUP_SB
AWR_DEV_CONF_SET_MSG	AWR_DEV_MCUCLOCK_CONF_SET_SB
	AWR_DEV_RX_DATA_FORMAT_CONF_SET_SB
	AWR_DEV_RX_DATA_PATH_CONF_SET_SB
	AWR_DEV_RX_DATA_PATH_LANEEN_SET_SB
	AWR_DEV_RX_DATA_PATH_CLK_SET_SB
	AWR_DEV_LVDS_CFG_SET_SB
	AWR_DEV_RX_CONTSTREAMING_MODE_CONF_SET_SB
	AWR_DEV_CSI2_CFG_SET_SB
	AWR_DEV_PMICCLOCK_CONF_SET_SB
	AWR_MSS_LATENTFAULT_TEST_CONF_SB
	AWR_MSS_PERIODICTESTS_CONF_SB
	AWR_DEV_TESTPATTERN_GEN_SET_SB
	AWR_DEV_CONFIGURATION_SET_SB
	AWR_DEV_RF_DEBUG_SIG_SET_SB

Radar Messages	Associated sub-blocks		
	AWR_DEV_DEV_HSI_DELAY_DUMMY_CFG_SET_SB		
AWR_DEV_CONF_GET_MSG	AWR_DEV_MCUCLOCK_GET_SB		
	AWR_DEV_RX_DATA_FORMAT_CONF_GET_SB		
	AWR_DEV_RX_DATA_PATH_CONF_GET_SB		
	AWR_DEV_RX_DATA_PATH_LANEEN_GET_SB		
	AWR_DEV_RX_DATA_PATH_CLK_GET_SB		
	AWR_DEV_LVDS_CFG_GET_SB		
	AWR_DEV_RX_CONTSTREAMING_MODE_CONF_GET_SB		
	AWR_DEV_CSI2_CFG_GET_SB		
	AWR_DEV_PMICCLOCK_CONF_GET_SB		
	AWR_MSS_LATENTFAULT_TEST_CONF_GET_SB		
	AWR_MSS_PERIODICCONF_GET_SB		
	AWR_DEV_TESTPATTERN_GEN_GET_SB		
AWR_DEV_FILE_DOWNLOAD_ MSG	AWR_DEV_FILE_DOWNLOAD_SB		
AWR_DEV_FRAME_CONFIG_	AWR_DEV_FRAME_CONFIG_APPLY_SB		
APPLY_MSG	AWR_DEV_ADV_FRAME_CONFIG_APPLY_SB		
	AWR_MSSVERSION_GET_SB		
AWR_DEV_STATUS_GET_MSG	AWR_MSSCPUFAULT_STATUS_GET_SB		
	AWR_MSSESMFAULT_STATUS_GET_SB		
	AWR_AE_DEV_MSSPOWERUPDONE_SB		
	AWR_AE_DEV_RFPOWERUPDONE_SB		
	AWR_AE_MSS_CPUFAULT_SB		
	AWR_AE_MSS_ESMFAULT_SB		
AWR_DEV_ASYNC_EVENT_MSG	AWR_AE_MSS_BOOTERRORSTATUS_SB		
	AWR_AE_MSS_LATENTFAULT_TESTREPORT_SB		
	AWR_AE_MSS_PERIODICTEST_STATUS_SB		
	AWR_AE_MSS_RFERROR_STATUS_SB		

Table 4.3 – continued from previous page

4.2 AWR_ACK_MSG

The AWR_ACK_MSG is sent by the radar transceiver on a successful reception of a command after its CRC check.

ACK messages are sent out for every command from the device. In case of any error AWR_ERROR_MSG sub-block will be sent out part of ACK message.

Field Name	Number of bytes	Description		
SYNC	4	Value = 0xABCDDCBA		
OPCODE	2	Bits	Variable name	Value
		b3:0	DIRECTION	See Table 2.8
		b5:4	MSGTYPE	01
		b15:6	MSGID	Same as MSGID in the command
MSGLEN	2	Length of the message in bytes (do not include sync length)		
FLAGS	2	See Section 2.3.2		
REMCHUNKS	2	Value = 0		
NSBC	2	Number of sub blocks contained in the message		
CHKSUM	2	See Section 2.3.2		
CRC	Variable	Based on CRCLEN field in FLAGS		

4.3 AWR_NACK_MSG

The AWR_NACK_MSG is sent by the radar transceiver if the CRC check of the command fails.

Field Name	Number of bytes	Descrip	otion		
SYNC	4	Value =	0xABCDDCBA		
OPCODE	2	Bits	Variable name	Value	
		b3:0	DIRECTION	See Table 2.8	
		b5:4	MSGTYPE	10	
		b15:6	MSGID	Same as MSGID in the command	
MSGLEN	2	Length of the message in bytes (do not include sync length)			
FLAGS	2	See Section 2.3.2			
REMCHUNKS	2	Value = 0			
NSBC	2	Number of sub blocks contained in the message			
CHKSUM	2	See Section 2.3.2			
CRC	Variable	Based of	Based on CRCLEN field in FLAGS		

4.4 AWR_ERROR_MSG

The AWR_RF_ERROR_MSG is sent by the radar transceiver on finding errors in the command send by host.

Field Name	Number of bytes	Description		
SYNC	4	Value = 0xABCDDCBA		
OPCODE	2	Bits Variable name Value		
		b3:0 DIRECTION See Table 2.8		
		b5:4 MSGTYPE 01		
		b15:6 MSGID 0x00		
MSGLEN	2	Length of the message in bytes (do not include sync length)		
FLAGS	2	See Section 2.3.2		
REMCHUNKS	2	Value = 0		
NSBC	2	Number of sub blocks contained in the message		
CHKSUM	2	See Section 2.3.2		
MSGDATA	Variable	Supported sub blocks		
		AWR_RESP_ERROR_SB		
CRC	Variable	Based on CRCLEN field in FLAGS		

4.5 AWR_RF_STATIC_CONF_SET_MSG

Static configuration sub-blocks are grouped as static messages. These messages are mostly static settings shall be configured once in radar transceiver after power cycle.

Field Name	Number of bytes	Descrip	otion	
SYNC	4	Value =	0x43211234	
OPCODE	2	Bits	Variable name	Value
		b3:0	DIRECTION	See Table 2.8
		b5:4	MSGTYPE	00
		b15:6	MSGID	0x04
MSGLEN	2	Length of the message in bytes (do not include sync length)		
FLAGS	2	See Section 2.3.2		
REMCHUNKS	2	Value = 0		
NSBC	2	Number of sub blocks contained in the message		
CHKSUM	2	See Section 2.3.2		
MSGDATA	Variable	Supported sub blocks		
		AWR_CHAN_CONF_SET_SB		

		AWR_ADCOUT_CONF_SET_SB
		AWR_LOWPOWERMODE_CONF_SET_SB
		AWR_DYNAMICPOWERSAVE_CONF_SET_SB
		AWR_HIGHSPEEDINTFCLK_CONF_SET_SB
		AWR_RF_DEVICE_CFG_SB
		AWR_RF_RADAR_MISC_CTL_SB
		AWR_CAL_MON_FREQUENCY_LIMITS_SB
		AWR_RF_INIT_CALIBRATION_CONF_SB
		AWR_CAL_MON_FREQUENCY_TX_POWER_LIMITS_ SB
		AWR_CAL_DATA_RESTORE_SB
		AWR_PHASE_SHIFTER_CAL_DATA_RESTORE_SB
		AWR_APLL_SYNTH_BW_CONTROL_SB
CRC	Variable	Based on CRCLEN field in FLAGS

4.6 AWR_RF_STATIC_CONF_GET_MSG

Static GET messages can be used to read the	static configuration settings from the radar transceiver.
	J J

Field Name	Number of bytes	Description		
SYNC	4	Value = 0x43211234		
OPCODE	2	Bits Variable name Value		
		b3:0 DIRECTION See Table 2.8		
		b5:4 MSGTYPE 00		
		b15:6 MSGID 0x05		
MSGLEN	2	Length of the message in bytes (do not include sync length)		
FLAGS	2	See Section 2.3.2		
REMCHUNKS	2	Value = 0		
NSBC	2	Number of sub blocks contained in the message		
CHKSUM	2	See Section 2.3.2		
MSGDATA	Variable	Supported sub blocks		
		AWR_CAL_DATA_SAVE_SB		
		AWR_PHASE_SHIFTER_CAL_DATA_SAVE_SB		
CRC	Variable	Based on CRCLEN field in FLAGS		

4.7 AWR_RF_INIT_MSG

RF initialization message does the boot time calibration of the radar transceiver.

Field Name	Number of bytes	Description		
SYNC	4	Value = 0x43211234		
OPCODE	2	Bits Variable name Value		
		b3:0 DIRECTION See Table 2.8		
		b5:4 MSGTYPE 00		
		b15:6 MSGID 0x06		
MSGLEN	2	Length of the message in bytes (do not include sync length)		
FLAGS	2	See Section 2.3.2		
REMCHUNKS	2	Value = 0		
NSBC	2	Number of sub blocks contained in the message		
CHKSUM	2	See Section 2.3.2		
MSGDATA	Variable	Supported sub blocks		
		AWR_RF_INIT_SB		
CRC	Variable	Based on CRCLEN field in FLAGS		

4.8 AWR_RF_DYNAMIC_CONF_SET_MSG

Dynamic configuration sub-blocks are grouped as dynamic messages. These messages are mostly dynamic settings configures the radar transceiver profiles, chirp and frames (waveform), these settings can be updated dynamically to achieve the dynamic waveform generation.

Field Name	Number of bytes	Description		
SYNC	4	Value = 0x43211234		
OPCODE	2	Bits Variable name Value		
		b3:0 DIRECTION See Table 2.8		
		b5:4 MSGTYPE 00		
		b15:6 MSGID 0x08		
MSGLEN	2	Length of the message in bytes (do not include sync length)		
FLAGS	2	See Section 2.3.2		
REMCHUNKS	2	Value = 0		
NSBC	2	Number of sub blocks contained in the message		
CHKSUM	2	See Section 2.3.2		
MSGDATA	Variable	Supported sub blocks		

		AWR_PROFILE_CONF_SET_SB AWR_CHIRP_CONF_SET_SB AWR_FRAME_CONF_SET_SB AWR_CONT_STREAMING_MODE_CONF_SET_SB AWR_CONT_STREAMING_MODE_EN_SB AWR_ADVANCED_FRAME_CONF_SB AWR_PERCHIRPPHASESHIFT_CONF_SB AWR_PROG_FILT_COEFF_RAM_SET_SB AWR_PROG_FILT_CONF_SET_SB AWR_CALIB_MON_TIME_UNIT_CONF_SB AWR_RUN_TIME_CALIBRATION_CONF_AND_TRIG- GER_SB AWR_DIGITAL_COMP_EST_CONTROL_SB
CRC	Variable	Based on CRCLEN field in FLAGS

4.9 AWR_RF_DYNAMIC_CONF_GET_MSG

Dynamic GET messages can be used to read the dynamic configuration settings from the radar transceiver.

Field Name	Number of bytes	Description
------------	--------------------	-------------

SYNC	4	Value = 0x43211234			
OPCODE	2	Bits Variable name \	/alue		
		b3:0 DIRECTION S	See Table 2.8		
		b5:4 MSGTYPE 0	00		
		b15:6 MSGID 0)x09		
MSGLEN	2	Length of the message in b length)	oytes (do not include sync		
FLAGS	2	See Section 2.3.2			
REMCHUNKS	2	Value = 0			
NSBC	2	Number of sub blocks contained in the message			
CHKSUM	2	See Section 2.3.2			
MSGDATA	Variable	Supported sub blocks			
		AWR_PROFILE_CONF_GET_	AWR_PROFILE_CONF_GET_SB		
		AWR_CHIRP_CONF_GET_SB			
		AWR_FRAME_CONF_GET_SB			
		AWR_ADVANCED_FRAME_CONF_GET_SB			
		AWR_RX_GAIN_TEMPLUT_GET_SB			
		AWR_TX_GAIN_TEMPLUT_GET_SB			
CRC	Variable	Based on CRCLEN field in FLAGS			

4.10 AWR_RF_FRAME_TRIG_MSG

Frame trigger message for the radar transceiver to start the waveform.

Field Name	Number of bytes	Descrip	tion	
SYNC	4	Value =	0x43211234	
OPCODE	2	Bits	Variable name	Value
		b3:0	DIRECTION	See Table 2.8
		b5:4	MSGTYPE	00
		b15:6	MSGID	0x0A
MSGLEN	2	Length of the message in bytes (do not include sync length)		
FLAGS	2	See Section 2.3.2		
REMCHUNKS	2	Value = 0		
NSBC	2	Number of sub blocks contained in the message		

CHKSUM	2	See Section 2.3.2
MSGDATA	Variable Supported sub blocks	
		AWR_FRAMESTARTSTOP_CONF_SB
CRC	Variable	Based on CRCLEN field in FLAGS

4.11 AWR_RF_ADVANCED_FEATURES_CONF_SET_MSG

Advance configuration messages for radar transceiver.

Field Name	Number of bytes	Description
SYNC	4	Value = 0x43211234
OPCODE	2	Bits Variable name Value
		b3:0 DIRECTION See Table 2.8
		b5:4 MSGTYPE 00
		b15:6 MSGID 0x0C
MSGLEN	2	Length of the message in bytes (do not include sync length)
FLAGS	2	See Section 2.3.2
REMCHUNKS	2	Value = 0
NSBC	2	Number of sub blocks contained in the message
CHKSUM	2	See Section 2.3.2
MSGDATA	Variable	Supported sub blocks
		AWR_BPM_COMMON_CONF_SET_SB
		AWR_BPM_CHIRP_CONF_SET_SB
CRC	Variable	Based on CRCLEN field in FLAGS

4.12 AWR_RF_MONITORING_CONF_SET_MSG

Monitoring configuration message sub-blocks for radar transceiver.

Field Name	Number of bytes	Description
SYNC	4	Value = 0x43211234
OPCODE	2	Bits Variable name Value
		b3:0 DIRECTION See Table 2.8
		b5:4 MSGTYPE 00
		b15:6 MSGID 0x0E
MSGLEN	2	Length of the message in bytes (do not include sync length)
FLAGS	2	See Section 2.3.2
REMCHUNKS	2	Value = 0
NSBC	2	Number of sub blocks contained in the message
CHKSUM	2	See Section 2.3.2
MSGDATA	Variable	Supported sub blocks
		AWR_MONITOR_RF_DIG_LATENTFAULT_CONF_SB
		AWR_MONITOR_RF_DIG_PERIODIC_CONF_SB
		AWR_MONITOR_ANALOG_ENABLES_CONF_SB
		AWR_MONITOR_TEMPERATURE_SONF_SB
		AWR_MONITOR_RX_GAIN_PHASE_CONF_SB
		AWR_MONITOR_RX_NOISE_FIGURE_CONF_SB
		AWR_MONITOR_RX_IFSTAGE_CONF_SB
		AWR_MONITOR_TX0_POWER_CONF_SB
		AWR_MONITOR_TX1_POWER_CONF_SB
		AWR_MONITOR_TX2_POWER_CONF_SB
		AWR_MONITOR_TX0_BALLBREAK_CONF_SB
		AWR_MONITOR_TX1_BALLBREAK_CONF_SB
		AWR_MONITOR_TX2_BALLBREAK_CONF_SB
		AWR_MONITOR_TX_GAIN_PHASE_MISMATCH_ CONF_SB
		AWR_MONITOR_TX0_PHASE_SHIFTER_CONF_SB
		AWR_MONITOR_TX1_PHASE_SHIFTER_CONF_SB
		AWR_MONITOR_TX2_PHASE_SHIFTER_CONF_SB
		AWR_MONITOR_SYNTHESIZER_FREQUENCY_ CONF_SB
		AWR_MONITOR_EXTERNAL_ANALOG_SIGNALS_ CONF_SB
		AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_ CONF_SB

T	mmWave Radar
IEXAS	Interface Control Document
INSTRUMENTS	Revision 3.35 - Jan 16, 2024
	AWR_MONITOR_TX1_INTERNAL_ANALOG_SIGNALS_ CONF_SB
	AWR_MONITOR_TX2_INTERNAL_ANALOG_SIGNALS_ CONF_SB
	AWR_MONITOR_RX_INTERNAL_ANALOG_SIGNALS_ CONF_SB
	AWR_MONITOR_PMCLKLO_INTERNAL_ANALOG_ SIGNALS_CONF_SB
	AWR_MONITOR_GPADC_INTERNAL_ANALOG_SIG- NALS_CONF_SB
	AWR_MONITOR_PLL_CONTROL_VOLTAGE_SIG- NALS_CONF_SB
	AWR_MONITOR_DUAL_CLOCK_COMP_CONF_SB
	AWR_MONITOR_RX_SATURATION_DETECTOR_ CONF_SB
	AWR_MONITOR_SIG_IMG_MONITOR_CONF_SB
	AWR_MONITOR_RX_MIXER_IN_POWER_CONF_SB
	AWR_ANALOG_FAULT_INJECTION_CONF_SB
CRC Variable	Based on CRCLEN field in FLAGS

4.13 AWR_RF_STATUS_GET_MSG

Radar transceiver status GET messages.

Field Name	Number of bytes	Description
SYNC	4	Value = 0x43211234
OPCODE	2	Bits Variable name Value
		b3:0 DIRECTION See Table 2.8
		b5:4 MSGTYPE 00
		b15:6 MSGID 0x11
MSGLEN	2	Length of the message in bytes (do not include sync length)
FLAGS	2	See Section 2.3.2
REMCHUNKS	2	Value = 0
NSBC	2	Number of sub blocks contained in the message
CHKSUM	2	See Section 2.3.2
MSGDATA	Variable	Supported sub blocks

		AWR_RF_VERSION_GET_SB
		AWR_RF_CPUFAULT_STATUS_GET_SB
		AWR_RF_ESMFAULT_STATUS_GET_SB
		AWR_RF_DIEID_GET_SB
		AWR_RF_BOOTUPBIST_STATUS_GET_SB
		AWR_RF_ADV_ESMFAULT_STATUS_GET_SB
CRC	Variable	Based on CRCLEN field in FLAGS

4.14 AWR_RF_MONITORING_REPORT_GET_MSG

DFE statistics report GET message from Radar transceiver.

Field Name	Number of bytes	Description	
SYNC	4	Value = 0x43211234	
OPCODE	2	Bits Variable name Value	
		b3:0 DIRECTION See Table 2.8	
		b5:4 MSGTYPE 00	
		b15:6 MSGID 0x13	
MSGLEN	2	Length of the message in bytes (do not include sync length)	
FLAGS	2	See Section 2.3.2	
REMCHUNKS	2	Value = 0	
NSBC	2	Number of sub blocks contained in the message	
CHKSUM	2	See Section 2.3.2	
MSGDATA	Variable	Supported sub blocks	
		AWR_RF_DFE_STATISTICS_REPORT_GET_SB	
CRC	Variable	Based on CRCLEN field in FLAGS	

4.15 AWR_RF_MONITORING_CONF_SET_2_MSG

Monitoring configuration message 2 sub-blocks for radar transceiver.

Field Name	Number of bytes	Description
SYNC	4	Value = 0x43211234

OPCODE	2	Bits	Variable name	Value
		b3:0	DIRECTION	See Table 2.8
		b5:4	MSGTYPE	00
		b15:6	MSGID	0x14
MSGLEN	2	Length length)	of the message in	bytes (do not include sync
FLAGS	2	See Se	ction 2.3.2	
REMCHUNKS	2	Value =	0	
NSBC	2	Number of sub blocks contained in the message		
CHKSUM	2	See Se	ction 2.3.2	
MSGDATA	Variable	Suppor	ted sub blocks	
		AWR_N	IONITOR_TXN_PO	WER_CONF_SB
		AWR_N	IONITOR_TXN_BAL	LBREAK_CONF_SB
		AWR_MONITOR_TXN_INTERNAL_ANALOG_SIG- NALS_CONF_SB		
		AWR_N	IONITOR_TXN_PH	ASE_SHIFTER_CONF_SB
		AWR_N CONF_		GAIN_PHASE_MISMATCH_
CRC	Variable	Based of	on CRCLEN field in F	FLAGS

4.16 AWR_RF_MISC_CONF_SET_MSG

Miscellaneous configuration message sub-blocks for radar transceiver.

Field Name	Number of bytes	Description
SYNC	4	Value = 0x43211234
OPCODE	2	Bits Variable name Value
		b3:0 DIRECTION See Table 2.8
		b5:4 MSGTYPE 00
		b15:6 MSGID 0x16
MSGLEN	2	Length of the message in bytes (do not include sync length)
FLAGS	2	See Section 2.3.2
REMCHUNKS	2	Value = 0
NSBC	2	Number of sub blocks contained in the message
CHKSUM	2	See Section 2.3.2

MSGDATA	Variable	Supported sub blocks
		AWR_RF_TEST_SOURCE_CONFIG_SET_SB
		AWR_RF_TEST_SOURCE_ENABLE_SET_SB
		AWR_RF_LDO_BYPASS_SB
		AWR_RF_PALOOPBACK_CFG_SB
		AWR_RF_PSLOOPBACK_CFG_SB
		AWR_RF_IFLOOPBACK_CFG_SB
		AWR_RF_GPADC_CFG_SET_SB
		AWR_RF_LOLOOPBACK_CFG_SB
CRC	Variable	Based on CRCLEN field in FLAGS

4.17 AWR_RF_MISC_CONF_GET_MSG

Field Name	Number of bytes	Description	
SYNC	4	Value = 0x43211234	
OPCODE	2	Bits Variable name Value	
		b3:0 DIRECTION See Table 2.8	
		b5:4 MSGTYPE 00	
		b15:6 MSGID 0x17	
MSGLEN	2	Length of the message in bytes (do not include sync length)	
FLAGS	2	See Section 2.3.2	
REMCHUNKS	2	Value = 0	
NSBC	2	Number of sub blocks contained in the message	
CHKSUM	2	See Section 2.3.2	
MSGDATA	Variable	Supported sub blocks	
		AWR_RF_TEMPERATURE_GET_SB	
CRC	Variable	Based on CRCLEN field in FLAGS	

Miscellaneous configuration GET messages from radar transceiver.

4.18 AWR_RF_ASYNC_EVENT_MSG1

The AWR_RF_ASYNC_EVENT_MSG1 message is sent by the radar transceiver to the host. This message indicates that specific events have occurred within the device.

Field Name	Number of bytes	Description		
SYNC	4	Value = 0xABCDDCBA		
OPCODE	2	Bits Variable name Value		
		b3:0 DIRECTION See Table 2.8		
		b5:4 MSGTYPE 11		
		b15:6 MSGID 0x80		
MSGLEN	2	Length of the message in bytes (do not include sync length)		
FLAGS	2	See Section 2.3.2		
REMCHUNKS	2	Value = 0		
NSBC	2	Number of sub blocks contained in the message		
CHKSUM	2	See Section 2.3.2		
MSGDATA	Variable	Supported sub blocks		
		AWR_AE_RF_CPUFAULT_SB		
		AWR_AE_RF_ESMFAULT_SB		
		AWR_AE_RF_INITCALIBSTATUS_SB		
		AWR_AE_RF_MONITOR_TYPE_TRIGGER_DONE_SB		
		AWR_AE_RF_FRAME_TRIGGER_RDY_SB		
		AWR_AE_RF_GPADC_RESULT_DATA_SB		
		AWR_FRAME_END_AE_SB		
		AWR_ANALOGFAULT_AE_SB		
		AWR_CAL_MON_TIMING_FAIL_REPORT_AE_SB		
		AWR_RUN_TIME_CALIBRATION_SUMMARY_RE- PORT_AE_SB		
		AWR_MONITOR_RF_DIG_LATENTFAULT_REPORT_ AE_SB		
		AWR_MONITOR_REPORT_HEADER_AE_SB		
		AWR_MONITOR_RF_DIG_PERIODIC_REPORT_AE_SB		
		AWR_MONITOR_TEMPERATURE_REPORT_AE_SB		
		AWR_MONITOR_RX_GAIN_PHASE_REPORT_AE_SB		
		AWR_MONITOR_RX_NOISE_FIGURE_REPORT_AE_ SB		
		AWR_MONITOR_RX_IFSTAGE_REPORT_AE_SB		
		AWR_MONITOR_TX0_POWER_REPORT_AE_SB		

		AWR_MONITOR_TX1_POWER_REPORT_AE_SB
		AWR_MONITOR_TX2_POWER_REPORT_AE_SB
		AWR_MONITOR_TX0_BALLBREAK_REPORT_AE_SB
		AWR_MONITOR_TX1_BALLBREAK_REPORT_AE_SB
CRC	Variable	Based on CRCLEN field in FLAGS

4.19 AWR_RF_ASYNC_EVENT_MSG2

The AWR_RF_ASYNC_EVENT_MSG2 message is sent by the radar transceiver to the host. This message indicates that specific events have occurred within the device.

Field Name	Number of bytes	Description			
SYNC	4	Value = 0xABCDDCBA			
OPCODE	2	Bits Variable name Value			
		b3:0 DIRECTION See Table 2.8			
		b5:4 MSGTYPE 11			
		b15:6 MSGID 0x81			
MSGLEN	2	Length of the message in bytes (do not include sync length)			
FLAGS	2	See Section 2.3.2			
REMCHUNKS	2	Value = 0			
NSBC	2	Number of sub blocks contained in the message			
CHKSUM	2	See Section 2.3.2			
MSGDATA	Variable	Supported sub blocks			
		AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB			
		AWR_MONITOR_TX_GAIN_PHASE_MISMATCH_RE- PORT_AE_SB			
		AWR_MONITOR_TX0_PHASE_SHIFTER_REPORT_ AE_SB			
		AWR_MONITOR_TX1_PHASE_SHIFTER_REPORT_ AE_SB			
		AWR_MONITOR_TX2_PHASE_SHIFTER_REPORT_ AE_SB			
		AWR_MONITOR_SYNTHESIZER_FREQUENCY_RE- PORT_AE_SB			
		AWR_MONITOR_EXTERNAL_ANALOG_SIGNALSRE- PORT_AE_SB			

TEXAS	mmWave Radar Interface Control Document
INSTRUMEN	ITS Revision 3.35 - Jan 16, 2024
	AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_ REPORT_AE_SB AWR_MONITOR_TX1_INTERNAL_ANALOG_SIGNALS_ REPORT_AE_SB AWR_MONITOR_TX2_INTERNAL_ANALOG_SIGNALS_ REPORT_AE_SB
	AWR_MONITOR_RX_INTERNAL_ANALOG_SIGNALS_ REPORT_AE_SB AWR_MONITOR_PMCLKLO_INTERNAL_ANALOG
	SIGNALS_REPORT_AE_SB AWR_MONITOR_GPADC_INTERNAL_ANALOG_SIG- NALS_REPORT_AE_SB
	AWR_MONITOR_PLL_CONTROL_VOLTAGE_REPORT_ AE_SB
	AWR_MONITOR_DUAL_CLOCK_COMP_REPORT_AE_ SB
	AWR_MONITOR_RX_MIXER_IN_POWER_REPORT_ AE_SB
	AWR_MONITOR_SYNTHESIZER_FREQUENCY_ NONLIVE_REPORT_AE_SB
CRC Vari	able Based on CRCLEN field in FLAGS

4.20 AWR_DEV_RFPOWERUP_MSG

The AWR_DEV_RFPOWERUP_MSG is sent by the host to the MSS. This message indicates that BSS/RadarSS can now be powered up.

Field Name	Number of bytes	Description		
SYNC	4	Value =	0x43211234	
OPCODE	2	Bits	Variable name	Value
		b3:0	DIRECTION	See Table 2.8
		b5:4	MSGTYPE	00
		b15:6	MSGID	0x200
MSGLEN	2	Length length)	of the message in	bytes (do not include sync
FLAGS	2	See Section 2.3.2		
REMCHUNKS	2	Value = 0		

NSBC	2	Number of sub blocks contained in the message	
CHKSUM	2	See Section 2.3.2	
MSGDATA	Variable	Supported sub blocks	
		AWR_DEV_RFPOWERUP_SB	
CRC	Variable	Based on CRCLEN field in FLAGS	

4.21 AWR_DEV_CONF_SET_MSG

The AWR_DEV_CONF_SET_MSG message sub-blocks are sent by the host to the radar transceiver. These sub-blocks configures MSS data path and monitoring settings.

Field Name	Number of bytes	Description		
SYNC	4	Value = 0x43211234		
OPCODE	2	Bits Variable name Value		
		b3:0 DIRECTION See Table 2.8		
		b5:4 MSGTYPE 00		
		b15:6 MSGID 0x202		
MSGLEN	2	Length of the message in bytes (do not include sync length)		
FLAGS	2	See Section 2.3.2		
REMCHUNKS	2	Value = 0		
NSBC	2	Number of sub blocks contained in the message		
CHKSUM	2	See Section 2.3.2		
MSGDATA	Variable	Supported sub blocks		
		AWR_DEV_MCUCLOCK_CONF_SET_SB		
		AWR_DEV_RX_DATA_FORMAT_CONF_SET_SB		
		AWR_DEV_RX_DATA_PATH_CONF_SET_SB		
		AWR_DEV_RX_DATA_PATH_LANEEN_SET_SB		
		AWR_DEV_RX_DATA_PATH_CLK_SET_SB		
		AWR_DEV_LVDS_CFG_SET_SB		
		AWR_DEV_RX_CONTSTREAMING_MODE_CONF_ SET_SB		
		AWR_DEV_CSI2_CFG_SET_SB		
		AWR_DEV_PMICCLOCK_CONF_SET_SB		
		AWR_MSS_LATENTFAULT_TEST_CONF_SB		
		AWR_MSS_PERIODICTESTS_CONF_SB		

		AWR_DEV_TESTPATTERN_GEN_SET_SB
		AWR_DEV_CONFIGURATION_SET_SB
		AWR_DEV_RF_DEBUG_SIG_SET_SB
		AWR_DEV_DEV_HSI_DELAY_DUMMY_CFG_SET_SB
CRC	Variable	Based on CRCLEN field in FLAGS

4.22 AWR_DEV_CONF_GET_MSG

The AWR_DEV_CONF_GET_MSG is sent by the host to the radar transceiver to read back the configuration values from MSS.

Field Name	Number of bytes	Description			
SYNC	4	Value = 0x43211234			
OPCODE	2	Bits Variable name Value			
		b3:0 DIRECTION See Table 2.8			
		b5:4 MSGTYPE 00			
		b15:6 MSGID 0x203			
MSGLEN	2	Length of the message in bytes (do not include sync length)			
FLAGS	2	See Section 2.3.2			
REMCHUNKS	2	Value = 0			
NSBC	2	Number of sub blocks contained in the message			
CHKSUM	2	See Section 2.3.2			
MSGDATA	Variable	Supported sub blocks			
		AWR_DEV_MCUCLOCK_GET_SB			
		AWR_DEV_RX_DATA_FORMAT_CONF_GET_SB			
		AWR_DEV_RX_DATA_PATH_CONF_GET_SB			
		AWR_DEV_RX_DATA_PATH_LANEEN_GET_SB			
		AWR_DEV_RX_DATA_PATH_CLK_GET_SB			
		AWR_DEV_LVDS_CFG_GET_SB			
		AWR_DEV_RX_CONTSTREAMING_MODE_CONF_ GET_SB			
		AWR_DEV_CSI2_CFG_GET_SB			
		AWR_DEV_PMICCLOCK_CONF_GET_SB			
		AWR_MSS_LATENTFAULT_TEST_CONF_GET_SB			
		AWR_MSS_PERIODICCONF_GET_SB			

		AWR_DEV_TESTPATTERN_GEN_GET_SB
CRC	Variable	Based on CRCLEN field in FLAGS

4.23 AWR_DEV_FILE_DOWNLOAD_MSG

The AWR_DEV_FILE_DOWNLOAD_MSG is sent by the host to MSS. This message sends a file to be written into the device.

Field Name	Number of bytes	Description		
SYNC	4	Value = 0x43211234		
OPCODE	2	Bits Variable name Value		
		b3:0 DIRECTION See Table 2.8		
		b5:4 MSGTYPE 00		
		b15:6 MSGID 0x204		
MSGLEN	2	Length of the message in bytes (do not include sync length)		
FLAGS	2	See Section 2.3.2		
REMCHUNKS	2	Value = 0		
NSBC	2	Number of sub blocks contained in the message		
CHKSUM	2	See Section 2.3.2		
MSGDATA	Variable	Supported sub blocks		
		AWR_DEV_FILE_DOWNLOAD_SB		
CRC	Variable	Based on CRCLEN field in FLAGS		

4.24 AWR_DEV_FRAME_CONFIG_APPLY_MSG

The AWR_DEV_FRAME_CONFIG_APPLY_MSG is sent by the host to MSS. This message indicates to MSS to apply all the regular framing mode configurations related to ADC buffer and CBUFF.

Field Name	Number of bytes	Description		
SYNC	4	Value = 0x43211234		
OPCODE	2	Bits Variable name Value		
		b3:0	DIRECTION	See Table 2.8
		b5:4	MSGTYPE	00
		b15:6	MSGID	0x206

MSGLEN	2	Length of the message in bytes (do not include sync length)			
FLAGS	2	See Section 2.3.2			
REMCHUNKS	2	Value = 0			
NSBC	2	Number of sub blocks contained in the message			
CHKSUM	2	See Section 2.3.2			
MSGDATA	Variable	Supported sub blocks			
		AWR_DEV_FRAME_CONFIG_APPLY_SB			
		AWR_DEV_ADV_FRAME_CONFIG_APPLY_SB			
CRC	Variable	Based on CRCLEN field in FLAGS			

4.25 AWR_DEV_STATUS_GET_MSG

The AWR_DEV_STATUS_GET_MSG is sent by the host to MSS to get some status information from the MSS device.

Field Name	Number of bytes	Description				
SYNC	4	Value = 0x43211234				
OPCODE	2	Bits Variable name	Value			
		b3:0 DIRECTION	See Table 2.8			
		b5:4 MSGTYPE	00			
		b15:6 MSGID	0x207			
MSGLEN	2	Length of the message in length)	bytes (do not include sync			
FLAGS	2	See Section 2.3.2				
REMCHUNKS	2	Value = 0				
NSBC	2	Number of sub blocks contained in the message				
CHKSUM	2	See Section 2.3.2				
MSGDATA	Variable	Supported sub blocks				
		AWR_MSSVERSION_GET_SB				
		AWR_MSSCPUFAULT_STATUS_GET_SB				
		AWR_MSSESMFAULT_STA	TUS_GET_SB			
CRC	Variable	Based on CRCLEN field in F	LAGS			

4.26 AWR_DEV_ASYNC_EVENT_MSG

The AWR_DEV_ASYNC_EVENT_MSG is sent by the radar transceiver MSS to the host. This message indicates that specific events have occurred within the MSS device.

Field Name	Number of bytes	Description				
SYNC	4	Value = 0xABCDDCBA				
OPCODE	2	Bits Variable name Value				
		b3:0 DIRECTION See Table 2.8				
		b5:4 MSGTYPE 11				
		b15:6 MSGID 0x280				
MSGLEN	2	Length of the message in bytes (do not include sync length)				
FLAGS	2	See Section 2.3.2				
REMCHUNKS	2	Value = 0				
NSBC	2	Number of sub blocks contained in the message				
CHKSUM	2	See Section 2.3.2				
MSGDATA	Variable	Supported sub blocks				
		AWR_AE_DEV_MSSPOWERUPDONE_SB				
		AWR_AE_DEV_RFPOWERUPDONE_SB				
		AWR_AE_MSS_CPUFAULT_SB				
		AWR_AE_MSS_ESMFAULT_SB				
		AWR_AE_MSS_BOOTERRORSTATUS_SB				
		AWR_AE_MSS_LATENTFAULT_TESTREPORT_SB				
		AWR_AE_MSS_PERIODICTEST_STATUS_SB				
		AWR_AE_MSS_RFERROR_STATUS_SB				
CRC	Variable	Based on CRCLEN field in FLAGS				

5 Radar Functional APIs

This section describes all the radar interface sub blocks that are used in messages for communicating with the radar transceiver. Some of the sub blocks are status responses from the radar device. All the API sub-blocks defined in this document are applicable to all mmWave Radar Sensors unless it is specified in the sub-block.

5.1 Sub block related to AWR_ERROR_MSG

5.1.1 Sub block 0x0000 – AWR_RESP_ERROR_SB

This sub block contains the error response for an API command. Table 5.1 describes the contents of this sub block.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0000
SBLKLEN	2	Value = 8
API_RESP	2	0x0001 ERROR_CMD: Incorrect MSGID
		0x0002 ERROR_CMD: No Sub block found in the MSG
		0x0003 ERROR_CMD: Incorrect Sub block ID
		0x0004 ERROR_CMD: Incorrect Sub block Length
		0x0005 ERROR_CMD: Incorrect Sub block data
		0x0006 ERROR_PROC: Error in processing the com- mand
		0x0007 ERROR_FILECRCMISMATCH: File CRC mis- matched
		0x0008 ERROR_FILETYPEMISMATCH: File type mis- matched w.r.t. magic number
		0x0009 See Section 7 for details on error codes from each - API
		0xFFFF

Table 5.1: AWR_RESP_ERROR_SB contents

API_RESP_ER-	2	0x0000	Sub-Block ID in which I	Error	Occurred	for	sub
ROR_SBC_ID		-	block related errors				
		0xFFFF					

5.2 Sub blocks related to AWR_RF_STATIC_CONF_SET_MSG

5.2.1 Sub block 0x0080 - AWR_CHAN_CONF_SET_SB

This sub block contains static device configurations (applicable for the given power cycle) - how many RX and TX channels are needed for operation. It also defines static configurations related to whether the sensor uses a single mmWave or multiple chips to realize a larger antenna array (multiple is applicable only in AWR2243/xWR6243). Table 5.2 describes the contents of this sub block.

Field Name	Number of bytes	Description		
SBLKID	2	Value	= 0x008	0
SBLKLEN	2	Value	= 12	
RX_CHAN_EN	2	This fie	eld speci	ifies which RX channels are to be enabled
		Bit	Descrip	otion
		b0	RX_CH	IAN0_EN
			0	Disable RX Channel 0
			1	Enable RX Channel 0
		b1	b1 RX_CHAN1_EN	
			0	Disable RX Channel 1
			1	Enable RX Channel 1
		b2	b2 RX_CHAN2_EN	
			0	Disable RX Channel 2
			1	Enable RX Channel 2
		b3	RX_CH	IAN3_EN
			0	Disable RX Channel 3
			1	Enable RX Channel 3
		b15:4 RESERVED		
			0b0000	0000000

Table 5.2: AWR_CHAN_CONF_SET_SB contents

			linued from previous page
TX_CHAN_EN	2		specifies which TX channels are to be enabled
		Bit	Description
		b0	TX_CHAN0_EN
			0 Disable TX Channel 0
			1 Enable TX Channel 0
		b1	TX_CHAN1_EN
			0 Disable TX Channel 1
			1 Enable TX Channel 1
		b2	TX_CHAN2_EN (3rd Tx is supported only on some of the devices, Please refer device data sheet)
			0 Disable TX Channel 2
			1 Enable TX Channel 2
		b3	TX_CHAN3_EN (4th Tx is supported only on some of the devices, Please refer device data sheet)
			0 Disable TX Channel 3
			1 Enable TX Channel 3
		b15:4	RESERVED
			0b0000000000
CASCADING_	2	This field	specifies the cascading configuration.
CFG		Value	Description
		0x0000	SINGLECHIP: Single mmWave sensor application
		0x0001	MULTICHIP_MASTER: Multiple cascade sensor application. This device is a master chip and gen- erates LO and conveys to other slave sensors. This is applicable only for device which supports cascad- ing.
			MULTICHIP_SLAVE: Multiple cascade sensor ap- plication. This device is a slave chip and uses LO conveyed to it by the master sensor. This is appli- cable only for device which supports cascading. HIP MASTER and MULTICHIP SLAVE are in general
		referred	to as MULTICHIP applications, where larger antenna zes are possible in comparison with SINGLECHIP
		Please r 20G SYN	efer device data sheet for cascading capability and NC pins.

		Bit	Description
		b0	FM_CW_CLKOUT_MASTER_DIS Applicable only in MUTICHIP_MASTER. Default value is 0
			0 Enable FM_CW_CLKOUT on master
			1 Disable FM_CW_CLKOUT on master
		b1	FM_CW_SYNCOUT_MASTER_DIS Applicable only in MULTICHIP_MASTER. Default value is 0
			0 Enable FM_CW_SYNCOUT on master
			1 Disable FM_CW_SYNCOUT on master
		b2	FM_CW_CLKOUT_SLAVE_EN Applicable only in MULTICHIP_SLAVE. Default value is 0
			0 Disable FM_CW_CLKOUT on slave
			1 Enable FM_CW_CLKOUT on slave
		b3	FM_CW_SYNCOUT_SLAVE_EN Applicable only in MULTICHIP_SLAVE. Default value is 0
			0 Disable FM_CW_SYNCOUT on slave
CASCADING_	2		1 Enable FM_CW_SYNCOUT on slave
PINOUTCFG	b4	INTLO_MASTER_EN Applicable only in MULTICHIP_MASTER. Default value is 0 0 Use externally looped back LO	
			1 Use internal LO in master Externally looped-back LO mode is useful when length-matching the 20 GHz path between master and slave devices.
		b5	OSCCLKOUT_DIS AWR2243/xWR6243: OSCCLK is enabled at power up.
			xWR294x/xWR254x: OSCCLK is disabled at power
			up. This field can be used to either disable or enable it. 0 Enable OSCCLKOUT
			1 Disable OSCCLKOUT Note: This feature is supported only on AWR2243/xWR6243/xWR294x/xWR254x devices. It is recommended to disable the OSC clock when the device is configured in SINGLE_CHIP or SLAVE mode.
		1	

b6 INTFRC_MASTER_EN Applicable only in MULTICHIP_MASTER device. Default value is 0 0 Use externally looped back FRC Syncln in master Externally looped-back FRC Syncln mode is useful when length-matching the Syncln path between master and slave devices. b7 OSCCLKOUTETH_EN This field can be used to enable or disable OSCCLK- OUTETH. 0 Disable OSCCLKOUTETH 1 Enable OSCCLKOUTETH 0 Disable OSCCLKOUTETH 1 Enable OSCCLKOUTETH 0 Disable OSCCLKOUTETH 0 Disable OSCCLKOUTETH 0 Disable OSCLKOUTETH 0 Disable oscitation 0 Divide oscitation 0 Divide by 1 1 Divide by 1 1 Divide by 2 Divider is common to both OSCLKOUT / OSCLKOUTETH. 0 OSCLKOUTETH_DRV_VAL These bits configure the drive strength of the OSC_ CLKOUT_ETH				
CASCADING_ PINOUTCFG 2 CASCADING_ PINOUTCFG 2 CASCADING_ PINOUTCFG 2 example 2			b6	 Applicable only in MULTICHIP_MASTER device. Default value is 0 0 Use externally looped back FRC Syncln 1 Use internal FRC Syncln in master
CASCADING_ PINOUTCFG 2 CASCADING_ PINOUTCFG 2 This field can be used to enable or disable OSCCLKOUTETH 1 Enable OSCCLKOUTETH 0 Disable OSCCLKOUT at the same time is not supported. Only one of them should be enabled. NOTE: This feature is supported only on xWR254x devices. b8 OSCCLKDIV This field can be used to enable or disable divider for OSCLKOUT / OSCCLKOUTETH. 0 Divide by 1 1 Divide by 2 Divide by 1 Divide is common to both OSCLKOUT / OSCLK- OUTETH. Programmed value applicable for enabled output. NOTE: This feature is supported only on xWR254x devices. b12:9 OSCLKOUTETH_DRV_VAL These bits configure the drive strength of the OSC_ CLKOUT_ETH output. Programming 0 produces a high-Z output state. Bit Div Div b10 1X b11 2X b12 3X NOTE: This feature is supported only on xWR254x devices.				when length-matching the Syncln path between
CASCADING_ PINOUTCFG21Enable OSCCLKOUTETH OSCCLKETH is disabled at powerup. Enabling of both OSCLKOUT and OSCLKETH at the same time is not supported. Only one of them should be enabled. NOTE: This feature is supported only on xWR254x devices.b8OSCCLKDIV This field can be used to enable or disable divider for OSCLKOUT / OSCCLKOUTETH. 00Divide by 11Divide by 2Divider is common to both OSCLKOUT / OSCLK- OUTETH. Programmed value applicable for enabled output. NOTE: This feature is supported only on xWR254x devices.b12:9OSCLKOUTETH_DRV_VAL These bits configure the drive strength of the OSC_ CLKOUT_ETH output. Programming 0 produces a high-Z output state. Bitb101X b11b23X NOTE: This feature is supported only on xWR254x devices.			b7	This field can be used to enable or disable OSCCLK-OUTETH.
CASCADING_ PINOUTCFG 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3				
CASCADING_ PINOUTCFG 2 This field can be used to enable or disable divider for OSCLKOUT / OSCCLKOUTETH. 0 Divide by 1 1 Divide by 2 Divider is common to both OSCLKOUT / OSCLK- OUTETH. Programmed value applicable for enabled output. NOTE: This feature is supported only on xWR254x devices. b12:9 OSCLKOUTETH_DRV_VAL These bits configure the drive strength of the OSC_ CLKOUT_ETH output. Programming 0 produces a high-Z output state. Bit Drive strength b9 0.5X b10 1X b11 2X b12 3X NOTE: This feature is supported only on xWR254x devices.				OSCCLKETH is disabled at powerup. Enabling of both OSCLKOUT and OSCLKETH at the same time is not supported. Only one of them should be enabled. NOTE: This feature is supported only on xWR254x
CASCADING_ PINOUTCFG 2 This field can be used to enable or disable divider for OSCLKOUT / OSCCLKOUTETH. 0 Divide by 1 1 Divide by 2 Divider is common to both OSCLKOUT / OSCLK- OUTETH. Programmed value applicable for enabled output. NOTE: This feature is supported only on xWR254x devices. b12:9 OSCLKOUTETH_DRV_VAL These bits configure the drive strength of the OSC_ CLKOUT_ETH output. Programming 0 produces a high-Z output state. Bit Drive strength b9 0.5X b10 1X b11 2X b12 3X NOTE: This feature is supported only on xWR254x devices.			h8	
Divider is common to both OSCLKOUT / OSCLK-OUTETH. Programmed value applicable for enabled output. NOTE: This feature is supported only on xWR254x devices. b12:9 OSCLKOUTETH_DRV_VAL These bits configure the drive strength of the OSC_ CLKOUT_ETH output. Programming 0 produces a high-Z output state. Bit Drive strength b9 0.5X b10 1X b11 2X b12 3X NOTE: This feature is supported only on xWR254x devices.	_	2		This field can be used to enable or disable divider for OSCLKOUT / OSCCLKOUTETH.
Divider is common to both OSCLKOUT / OSCLK-OUTETH. Programmed value applicable for enabled output. NOTE: This feature is supported only on xWR254x devices. b12:9 OSCLKOUTETH_DRV_VAL These bits configure the drive strength of the OSC_ CLKOUT_ETH output. Programming 0 produces a high-Z output state. Bit Drive strength b9 0.5X b10 1X b11 2X b12 3X NOTE: This feature is supported only on xWR254x devices.				1 Divide by 2
NOTE: This feature is supported only on xWR254x devices.b12:9OSCLKOUTETH_DRV_VAL These bits configure the drive strength of the OSC_ CLKOUT_ETH output. Programming 0 produces a high-Z output state.BitDrive strength b9b90.5X b10b112X b12b123X NOTE: This feature is supported only on xWR254x devices.				OUTETH. Programmed value applicable for enabled
These bits configure the drive strength of the OSC_ CLKOUT_ETH output. Programming 0 produces a high-Z output state. Bit Drive strength b9 0.5X b10 1X b11 2X b12 3X NOTE: This feature is supported only on xWR254x devices.				NOTE: This feature is supported only on xWR254x
b9 0.5X b10 1X b11 2X b12 3X NOTE: This feature is supported only on xWR254x devices.			b12:9	These bits configure the drive strength of the OSC_ CLKOUT_ETH output. Programming 0 produces a high-Z output state.
b10 1X b11 2X b12 3X NOTE: This feature is supported only on xWR254x devices.				
b11 2X b12 3X NOTE: This feature is supported only on xWR254x devices.				
b12 3X NOTE: This feature is supported only on xWR254x devices.				
NOTE: This feature is supported only on xWR254x devices.				
b15:13 RESERVED				NOTE: This feature is supported only on xWR254x
			b15:13	RESERVED

5.2.2 Sub block 0x0082 – AWR_ADCOUT_CONF_SET_SB

This sub block contains static device configurations (applicable for the given power cycle) - regarding the data format of the ADC output (including the digital filtering). Table 5.3 describes the contents of this sub block.

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x0082		
SBLKLEN	2	Value = 12		
NUM_ADC_BITS	1	Bit Description		
		b1:0 Value Definition		
		00 12 bits		
		01 14 bits		
		10 16 bits		
		Other RESERVED		
		b7:2 RESERVED		
		0b00000		
FULL_SCALE_ REDUCTION_ FACTOR	1	Number of bits to reduce ADC full scale by Valid range: 0 to (16 – Number of ADC bits) For e.g. for 12 bit ADC output, this field can take values 0, 1, 2 or 3 For 14 bit ADC output, this field can take values 0, 1 or 2 For 16 bit ADC output, this field can take only value 0 Example: If the user desires 12 bit ADC output, then the digital front end (DFE) chain drops 4 LSBs before placing the data in ADC buffer (DFE output is 16 bits wide). If the user sets FULL_SCALE_REDUCTION_FACTOR as 1, then the DFE will drop only 3 LSBs but still restricting the data in ADC buffer to be within $\pm 2^{12}$. This allows wider ADC swings in smaller signal conditions.		

Table 5.3: AWR_ADCOUT_CONF_SB contents

ADC_OUT_FMT	2	For A	WR2243	3/xWR6243 devices:	
		Bits	Descri	ption	
		b1:0	Value	Definition	
			00	Real	
			01	Complex 1x (image band filtered out)	
			10	Complex 2x (image band visible)	
			11	Pseudo Real	
		b15:2	RESE	RVED	
			0b000	000000000	
		For xWR294x/xWR254x devices:			
		Bits	Descri	ption	
		b1:0	Value	Definition	
			00	Real	
			01	Reserved	
			10	Reserved	
			11	Reserved	
		b15:2	RESE	RVED	
			0b000	000000000	
RESERVED	2	0x000	0		
RESERVED	2	0x000	0		

5.2.3 Sub block 0x0083 – AWR_LOWPOWERMODE_CONF_SET_SB

This sub block contains static device configurations (applicable for this power cycle) - Sigma Delta ADC root sampling clock rate (reducing rate to half to save power in small IF bandwidth applications). In xWR6x43 devices, this API doesn't modify the ADC root sampling rate, but reduces the power by reducing the bias currents to some of the IF analog blocks. Table 5.4 describes the contents of this sub block.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0083
SBLKLEN	2	Value = 8
RESERVED	2	0x0000

Table 5.4: AWR_LOWPOWERMODE_CONF_SET_SB contents

LP_ADC_MODE	2	Value	Definition
		0x00	Regular ADC mode
		0x01	Low power ADC mode

NOTE:	For AWR2243 devices Low power mode is not recommended when
	IF bandwidth > 7.5MHz. For xWR6243, low power mode is not
	supported.

5.2.4 Sub block 0x0084 – AWR_DYNAMICPOWERSAVE_CONF_SET_SB

This sub block defines static device configuration - whether to enable dynamic power saving during inter-chirp IDLE times by turning off various circuits e.g. TX, RX, LO Distribution blocks. If Idle time + Tx start time < 10us or Idle time < 3.5us then inter-chirp dynamic power save option will be disabled, in that case, 15us of inter-burst idle time will be utilized to configure sequencer LO, TX and RX signal timings by firmware. TX PAs are always turned off in the inter-chirp time irrespective of the Idle time / Tx start time configurations.

Table 5.4 describes the contents of this sub block.

Table 5.5:AWR	DYNAMICPOWERSAVE	CONF	SET	SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0084
SBLKLEN	2	Value = 8

BLOCK_CFG	2	Bits	Definition
		b0	Enable power save by switching off TX during inter-chirp IDLE period 0 Disable 1 Enable Default value: 1 (power saving is enabled)
		b1	Enable power save by switching off RX during inter-chirp IDLE period 0 Disable 1 Enable Default value: 1 (power saving is enabled)
		b2 b15:3	Enable power save by switching off LO Distribu- tion blocks during inter-chirp IDLE period 0 Disable 1 Enable Default value: 1 (power saving is enabled) RESERVED 0b000000000000
RESERVED	2	0x000	0

NOTE:	All the 3 configuration bits (TX, RX and LO) should have same
	value, i.e. user should program value 0x7 to enable power save or
	0x0 to disable the power save in BLOCK_CFG.

5.2.5 Sub block 0x0085 – AWR_HIGHSPEEDINTFCLK_CONF_SET_SB

This sub block contains static device configurations (applicable for the given power cycle) - regarding high speed interface clock rates which are related to sending the ADC data from AWR device to the host in either LVDS or CSI2 format.

Table 5.6 describes the contents of this sub block.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0085
SBLKLEN	2	Value = 8

Table 5.6: AWR_HIGHSPEEDINTFCLK_CONF_SET_SB contents

HSICLKRATE_ CODE	2	This field indicates the high speed interface input clock rate, needed by the LVDS or CSI2 module. It should be N times the final serial data rate, where $N = 2$ in DDR mode and $N = 1$ in SDR mode. Bit 15:5 = Reserved (all 0). Bit 3:0 are to be set based on desired rate as follows:				
			b1:0 00	b1:0 01	b1:0 10	b1:0 11
		b3:2 00	Reserved	800 MHz	400 MHz	200 MHz
		b3:2 01	Reserved	900 MHz	450 MHz	225 MHz
		b3:2 10	Reserved	1200 MHz	600 MHz	300 MHz
		b3:2 11	Reserved	1800 MHz	Reserved	Reserved
	For example, for 900 Mbps choose Bit3:0=0b1101, and for SDR, choose Bit3:0=0b0110.					
RESERVED	2	0x0000				

5.2.6 Sub block 0x0086 - AWR_RF_DEVICE_CFG_SB

This sub block configures the direction of async event from BSS. Typically async events are sent to MSS. With this API, the user can configure the destination of async event. Table 5.7 describes the contents of this sub block.

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x0086	
SBLKLEN	2	Value = 16	

Table 5.7:	AWR	\mathbf{RF}	DEVICE	CFG	SB	contents

	1	1			
RF_AE_DIREC-	4	Bits	Definition		
TION		b1:0	ASYNC_EVENT_DIR		
			00 BSS to MSS		
			01 BSS to HOST		
			10 BSS to DSS		
			11 RESERVED		
			The ASYNC_EVENT_DIR controls the direction for following ASYNC_EVENTS		
			1. CPU_FAULT		
			2. ESM_FAULT		
			3. ANALOG_FAULT		
			All other ASYNC_EVENTs are sent to the subsystem which issues the API		
			Default value: 0b00		
		b3:2	MONITORING_ASYNC_EVENT_DIR		
			00 BSS to MSS		
			01 BSS to HOST		
			10 BSS to DSS		
			11 RESERVED		
			Default value: 0b00		
		b31:4	RESERVED		
			0x000000		
AE_CONTROL	1	Bits	Definition		
		b0	FRAME_START_ASYNC_EVENT_DIS		
			0 Frame Start async event enable		
			1 Frame Start async event disable		
			Default value: 0		
		b1	FRAME_STOP_ASYNC_EVENT_DIS		
			0 Frame Stop async event enable		
			1 Frame Stop async event disable		
			Default value: 0		
		b7:2	RESERVED		
			0b00000		

BSS_ANA_CTRL	1	Bits	Definition
		b0	INTER_BURST_POWER_SAVE_DIS
			0 Inter burst power save enable (default)
			1 Inter burst power save disable (Applicable only in single chip usecase)
		b1	INTER_BURST_APLL_POWER_SAVE_DIS (ap- plicable only in xWR294x/xWR254x)
			0 Inter burst APLL power save enable (default)
			1 Inter burst APLL power save disable
			Default value: 0 This disable feature is applicable only in single chip use case. In case of cascade slave device, synth power down is done by default. This allows to disable inter burst power save fea- ture for individual bursts in a advance frame con- fig API to reduce inter-burst idle time requirement. The power save is done always in inter sub-frame and frame boundaries irrespective of this control bit configuration. The inter burst power save needs ex- tra 55us burst idle time, please refer Table 11.4 for more details on inter burst time.
		b7:2	RESERVED
			0b000000
RESERVED	1	0x000	0

BSS_DIG_CTRL	1	Bits Definition			
		b0 WDT_ENABLE			
		0 Keep watchdog disabled			
		1 Enable watchdog			
		b7:1 RESERVED			
		0b000000			
		NOTE1: WDT cannot be enabled if BSS dynamic fre- quency switching feature is enabled in RSS_CR4_BOOT_ INFO_REG5 (BSS_DYN_FREQ_SWITCH). NOTE2: The Windowed WDT can be enabled only in Sw triggered framing Mode or in cascade mode where frames of all the devices synchronized with same clock source, if			
		frames are triggered from Hw trigger pulse generated from un-synchronized clock then WDT can not be enabled. WDT shall be disabled if API based monitoring trigger is enabled in MONITORING_MODE in AWR_CALIB_MON_ TIME_UNIT_CONF_SB.			
		WDT shall be disabled if SUB_FRAMETRIGGER mode is enabled in AWR_ADVANCED_FRAME_CONF_SB API. Refer section 9.4 for more details on WDT timing and programming window 544			
ASYNC_EVENT_	1	Value Description			
CRC_CONFIG		0 16 bit CRC for BSS async events			
		1 32 bit CRC for BSS async events			
		2 64 bit CRC for BSS async events			
RESERVED	3	0x00000			

5.2.7 Sub block 0x0087 - AWR_RF_RADAR_MISC_CTL_SB

This sub block controls miscellaneous global RF controls for e.g. per-chirp phase shifter global control.

NOTE1:	Issue	this	API	first	in	the	sequence	if	AWR_
	PERCH	IRPPH	ASESH	HIFT_C	ONF_	_SB,	AWR_DYN_	PER	CHIRP_
	PHASE	SHIFTE	ER_CC	NF_SE	ET_SE	3 and <i>1</i>	AWR_ADVAN	ICE_0	CHIRP_
	CONF_	SB are	issued	down	in the	seque	ence.		

NOTE2:	1. 1 ns ADC start time resolution is available only for advance chirp
	configuration AWR_ADVANCE_CHIRP_CONF_SB
	2. If ADC_START_TIME_RES is set to 1 in AWR_RF_MISC_CTL_ SB, when AWR_ADVANCE_CHIRP_CONF_SB API is issued fo CHIRP_ADC_START_TIME_VAR, it is recommended to program the below specified chirp delta parameters to 0. Only LUT based dither can be used for CHIRP_ADC_START_TIME_VAR.
	 SF0_CHIRP_PARAM_DELTA, SF1_CHIRP_PARAM_ DELTA, SF2_CHIRP_PARAM_DELTA, SF3_CHIRP_ PARAM_DELTA, DELTA_PARAM_UPDATE_PERIOD in AWR_ADVANCE_CHIRP_CONF_SB API.
	3. LUT_CHIRP_PARAM_SCALE should be programmed to 0 when AWR_ADVANCE_CHIRP_CONF_SB_API is issued for CHIRP_ ADC_START_TIME_VAR. Scaling is not supported for CHIRP_ ADC_START_TIME_VAR as 2 bytes are already used.
	4. Bit 2 (Digital RX delay compensation enable) of DIGITAL COMP_EN field in AWR_DIGITAL_COMP_EST_CONTROL_SE API should not be exercised when using 1ns resolution for CHIRP_ ADC_START_TIME_VAR.
	 LUT_CHIRP_PARAM_SIZE should always be set to 2 bytes in AWR_ADVANCE_CHIRP_CONF_SB API when it is issued fo CHIRP_ADC_START_TIME_VAR.

Table 5.8 describes the contents of this sub block.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0087
SBLKLEN	2	Value = 12

 Table 5.8:
 AWR_RF_MISC_CTL_SB contents

		Bits	Definition
		b0	PERCHIRP_PHASESHIFTER_EN
			0 Per chirp phase shifter is disabled
			1 Per chirp phase shifter is enabled
			This control is applicable only in devices which support phase shifter (refer data sheet). For other devices, this is a RESERVED bit and should be set to 0.
			Default value: 0
		b1	ADVANCE_CHIRP_CONFIG_EN 0 Advance chirp config mode is disabled
			1 Advance chirp config mode is enabled
			This feature enables advanced mode of configur- ing chirps to achieve very flexible waveform gen- eration.
RF_MISC_CTL	4		Default value: 0
		b2	ADVANCE_CHIRP_ERROR_CHK_DIS 0 Advance chirp parameters error check en- abled in frame config API
			1 Advance chirp parameters error check disabled in frame config API
			By default Error check is enabled for each and ev- ery parameters of advance chirp based on wave- form pattern in legacy and advance frame con- fig API, this would take around 1.8ms to process frame config for 128 chirps. This option enables the user to disable the error check in functional mode and error check can be done only dur- ing development phase. If this error check takes more than 50ms due to large number of chirps then it is recommended to disable RadarSS WDT while executing frame config API.
			Default value: 0

 b3 CAL_MON_TIME_UNIT_ERROR_CHK_DIS 0 Calibration and Monitor time error check is enabled in AWR_FRAMESTARTSTOP_ CONF_SB API 1 Calibration and Monitor time error check is disabled in AWR_FRAMESTARTSTOP_ CONF_SB API By default Calibration and Monitor time Error check is enabled and performed in frame start API, this error check generates AWR_CAL_ MON_TIMING_FAIL_REPORT_AE_SB AE if to- tal available idle time in a CALIB_MON_TIME_ UNIT_CONF_SB API is not sufficient to run all enabled calibrations and Monitors. This option enables the user to disable the er- ror check in advance continuous farming mode where idle time is split across multiple bursts in a CALIB_MON_TIME_UNIT window. The calibra- tion and monitors need idle time only to run critical chirps for measurements, the setup and post pro- cessing can be done in background while func- tional frames are running. Refer Table 12.10 and Table 12.5 for more info. Default value: 0 b4 CRD_ENABLE (only on xWR294x/xWR254x devices) 0 Controlled ramp down disabled on all pro- files. 1 Controlled ramp down enabled on all pro- files. b5 CRD_DITHER_ENABLE (only on xWR294x/xWR254x devices) 0 CRD Dithering disabled. 1 CRD Dithering should be enabled only when the CRD feature is enabled. 	 	naoa nom protioao pago
disabled in AWR_FRAMESTARTSTOP_ CONF_SB API By default Calibration and Monitor time Error check is enabled and performed in frame start API, this error check generates AWR_CAL_ MON_TIMING_FAIL_REPORT_AE_SB AE if to- tal available idle time in a CALIB_MON_TIME_ UNIT_CONF_SB API is not sufficient to run all enabled calibrations and Monitors. This option enables the user to disable the er- ror check in advance continuous farming mode where idle time is split across multiple bursts in a CALIB_MON_TIME_UNIT window. The calibra- tion and monitors need idle time only to run critical chirps for measurements, the setup and post pro- cessing can be done in background while func- tional frames are running. Refer Table 12.10 and Table 12.5 for more info. Default value: 0 b4 CRD_ENABLE (only on xWR294x/xWR254x devices) 0 Controlled ramp down disabled on all pro- files. 1 Controlled ramp down enabled on all pro- files. b5 CRD_DITHER_ENABLE (only on xWR294x/xWR254x devices) 0 CRD Dithering disabled. 1 CRD Dithering disabled. 1 CRD Dithering mabled. CRD dithering should be enabled only when the	b3	0 Calibration and Monitor time error check is enabled in AWR_FRAMESTARTSTOP_
 check is enabled and performed in frame start API, this error check generates AWR_CAL_ MON_TIMING_FAIL_REPORT_AE_SB AE if to- tal available idle time in a CALIB_MON_TIME_ UNIT_configured in AWR_CALIB_MON_TIME_ UNIT_CONF_SB API is not sufficient to run all enabled calibrations and Monitors. This option enables the user to disable the er- ror check in advance continuous farming mode where idle time is split across multiple bursts in a CALIB_MON_TIME_UNIT window. The calibra- tion and monitors need idle time only to run critical chirps for measurements, the setup and post pro- cessing can be done in background while func- tional frames are running. Refer Table 12.10 and Table 12.5 for more info. Default value: 0 CRD_ENABLE (only on xWR294x/xWR254x devices) Controlled ramp down disabled on all pro- files. CRD_DITHER_ENABLE (only on xWR294x/xWR254x devices) CRD Dithering disabled. CRD Dithering enabled. CRD dithering should be enabled only when the 		disabled in AWR_FRAMESTARTSTOP_
b4 CRD_ENABLE (only on xWR294x/xWR254x devices) 0 Controlled ramp down disabled on all pro- files. 1 Controlled ramp down enabled on all pro- files. b5 CRD_DITHER_ENABLE (only on xWR294x/xWR254x devices) 0 CRD Dithering disabled. 1 CRD Dithering enabled. CRD dithering should be enabled only when the		check is enabled and performed in frame start API, this error check generates AWR_CAL_ MON_TIMING_FAIL_REPORT_AE_SB AE if to- tal available idle time in a CALIB_MON_TIME_ UNIT configured in AWR_CALIB_MON_TIME_ UNIT_CONF_SB API is not sufficient to run all enabled calibrations and Monitors. This option enables the user to disable the er- ror check in advance continuous farming mode where idle time is split across multiple bursts in a CALIB_MON_TIME_UNIT window. The calibra- tion and monitors need idle time only to run critical chirps for measurements, the setup and post pro- cessing can be done in background while func- tional frames are running. Refer Table 12.10 and
devices) 0 Controlled ramp down disabled on all pro- files. 1 Controlled ramp down enabled on all pro- files. b5 CRD_DITHER_ENABLE (only on xWR294x/xWR254x devices) 0 CRD Dithering disabled. 1 CRD Dithering enabled. CRD dithering should be enabled only when the		Default value: 0
files. 1 Controlled ramp down enabled on all pro- files. b5 CRD_DITHER_ENABLE (only on xWR294x/xWR254x devices) 0 CRD Dithering disabled. 1 CRD Dithering enabled. CRD dithering should be enabled only when the	b4	_ ``
files. b5 CRD_DITHER_ENABLE (only on xWR294x/xWR254x devices) 0 CRD Dithering disabled. 1 CRD Dithering enabled. CRD dithering should be enabled only when the		
xWR294x/xWR254x devices) 0 CRD Dithering disabled. 1 CRD Dithering enabled. CRD dithering should be enabled only when the		
CRD dithering should be enabled only when the	b5	xWR294x/xWR254x devices)
		1 CRD Dithering enabled.

· · · · ·		naca nem pretieae page
	b6	ADC_START_TIME_RES (only on xWR254x devices)
		0 10 ns
		1 1 ns
		NOTE: Refer the list of constraints above this table in NOTE2 on other parameters when 1ns resolution is enabled.
	b7	INTER_CHIRP_JITTER_MITIGATION (only on xWR254x devices) This feature enables/disables features to mitigate jitter in synchronization of sequencer clock and synthesizer clock, resulting in improved phase stability across chirps. Mitigation feature is only valid for the chirps of the same burst, there may still be jitter across bursts/frames.
		0 Disable inter-chirp jitter mitigation.
		 Enable inter-chirp jitter mitigation. NOTE: If INTER_CHIRP_JITTER_MITIGATION is enabled, it is recommended to set 1. CRD_ENABLE = 1 2. Max allowed slope for CRD_NSLOPE_MAG is 400MHz/uS 3. Chirp idle time >= 6uS 4. CRD_DITHER_ENABLE = 0
	b31:8	RESERVED
		0b000_0000_0000_0000_0000_0000

	Table 5.8 – continued from previous page				
CRD_NSLOPE_ MAG	2	during the chirp's ic next chirp's starting	s, unsigned. To be programmed based		
		Time - CRD_Dither	ed slope (MHz/uS) = RF_Diff / ((Idle_		
		Max allowed slop MHz/uS. where,	e in both the above cases = 1582		
		RF_Diff	Max RF Difference chirp-to-chirp in MHz. Maximum RF difference be- tween a chirp's ending RF and next subsequent chirp's starting RF fre- quency across all chirps in a frame.		
		Idle_Time	Idle time of the chirp in uS. The time between a ramp end and sub- sequent ramp start. (Idle time is al- ways >= 2.5 uS).		
		CRD_Dither_ Time	If CRD Dither is enabled, CRD_ Dither_Time is always 0.25 us oth- erwise it is 0 us.		
		CRD dither enabled	750MHz chirp with 2.5uS idle time and l. z / ((2.5 uS - 0.25 uS) * 0.8) =		
		CRD dither disabled	500MHz chirp with 5uS idle time and d. ((5 uS - 0 uS) * 0.7) = 142.8MHz/uS.		

FAST_RESET_ END_TIME2If set to X, fast ramp setting used during the idle time are reverted to normal setting at X * 10ns before the next chirp's frequency ramp start. 1 LSB = 10ns. For example, setting this field to 40 would end the fast reset pulse 400nS before the knee of the ramp, i.e, -400nS. The fast reset disable should be set to approximately the time from when ramp jump back is completed. Example: For the case where idle time = 2.5us, CRD time is 1.75us, CRD dither is 0.25us, FAST_RESET_END_TIME = (CRD_TIME + CRD_ DITHER - IDLE_TIME) = (1.75us + 0.25us - 2.5us) = -0.5us0.5us/10ns = -50. Therefore 50 would be pro- grammed to this field. TI recommends -400ns as a good tradeoff between subsequent chirp linearity and settling time if using the recommended calculation for CRD slope based on idle time and chirp bandwidth.		
	 2	reverted to normal setting at X * 10ns before the next chirp's frequency ramp start. 1 LSB = 10ns. For example, setting this field to 40 would end the fast reset pulse 400nS before the knee of the ramp, i.e, -400nS. The fast reset disable should be set to approximately the time from when ramp jump back is completed. Example: For the case where idle time = 2.5us, CRD time is 1.75us, CRD dither is 0.25us, FAST_RESET_END_TIME = (CRD_TIME + CRD_ DITHER - IDLE_TIME) = (1.75us + 0.25us - 2.5us) = -0.5us0.5us/10ns = -50. Therefore 50 would be pro- grammed to this field. TI recommends -400ns as a good tradeoff between subsequent chirp linearity and settling time if using the recommended calculation for CRD slope based on idle time and chirp bandwidth.

5.2.8 Sub block 0x0088 – AWR_CAL_MON_FREQUENCY_LIMITS_SB

This sub block sets the limits for RF frequency transmission. This API is deprecated as a new API AWR_CAL_MON_FREQUENCY_TX_POWER_LIMITS_SB is added to limit frequency for each TX channels in Table 5.11

Table 5.9 describes the contents of this sub block.

Table 5.9.	AWR	CAL	MON	FREQUENCY	LIMITS	SB contents
Table 0.0.	AVVIL_	$_{OAL}$				_DD Contentis

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0088
SBLKLEN	2	Value = 16

FREQ_LIMIT_ LOW	2	The sensor's lower frequency limit for calibrations and monitoring is encoded in 2 bytes (16 bit unsigned number) 1 LSB = 100 MHz For 77GHz Devices(76GHz to 81Ghz): Valid range: 760 to 810 Default value: 760 (If this API is not issued) For 60GHz Devices(56GHz/57GHz to 64Ghz): Valid range: 560/570 to 640 Default value: 560/570 (If this API is not issued) NOTE: Refer to device datasheet for supported frequency ranges
FREQ_LIMIT_ HIGH	2	The sensor's higher frequency limit for calibrations and monitoring is encoded in 2 bytes (16 bit unsigned number) 1 LSB = 100 MHz
		For 77GHz Devices (76GHz to 81Ghz):
		Valid range: 760 to 810
		Default value: 810 (If this API is not issued)
		For 60GHz Devices(57.2GHz to 64Ghz):
		Valid range: 572 to 640
		Default value: 640 (If this API is not issued)
		For xWR294x/xWR254x devices:
		Valid range: 762 to 805/810 (based on VCO2_RANGE_ CONFIG in this API)
		Default value: 805 (If this API is not issued)
		NOTE: FREQ_LIMIT_HIGH should be strictly greater than FREQ_LIMIT_LOW
		Examples: For an LRR device deployed in the US, one might typically configure FREQ_LIMIT_LOW to 760 and FREQ_LIMIT_HIGH to 770.
VCO2_RANGE_ CONFIG	1	VCO2 frequency range configuration.

		Bit	Definition
		b0	VCO2 frequency range selection. VCO2 in xWR294x/xWR254x only supports a maximum bandwidth of 4.5GHz. The user can select between the two allowed ranges shown below.
			1 - VCO2 range is 76GHz - 80.5GHz. 0 - VCO2 range is 76.5GHz - 81GHz.
			Default setting: 0 (76.5-81GHz)
		b1-7	RESERVED
RESERVED	1	RESE	RVED
		0x00	
RESERVED	2	RESE	RVED
		0x0000	0
RESERVED	4	RESERVED	
		0x0000	0_000

NOTE1:	The minimum RF bandwidth shall be set to 200MHz, this is to per- form internal calibration and monitoring.
NOTE2:	The limit set in this API is not applicable for functional chirps and loop-back chirps used in advanced frame config API.
NOTE3:	The TX0 frequency limit is used by default in calibrations and mon- itors where TX is not relevant or enabled.
NOTE4:	The RF band used in functional chirp profiles shall be within the limit set in this API.
NOTE5:	The mid frequency code of RF band used in functional chirp profiles + 200MHz shall be within the max limit set in this API.

5.2.9 Sub block 0x0089 – AWR_RF_INIT_CALIBRATION_CONF_SB

This sub block configures device to perform boot time calibration. Table 5.10 describes the contents of this sub block.

Table 5.10:	AWR_	$_{\rm RF}$	_INIT_	_CALIBRATION_	_CONF_	SB contents
-------------	------	-------------	--------	---------------	--------	-------------

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0089
SBLKLEN	2	Value = 16

		o – continued nom previous page		
RF_INIT_CALIB_ ENABLE_MASK	4	Normally, upon receiving RF INIT message, the BSS per- forms all relevant initial calibrations. HOST can disable each boot calibration by setting the corresponding calibra- tion bit in this field to 0x0. If disabled, the host needs to in- ject calibration data using AWR_CAL_DATA_RESTORE_ SB API.		
		Each of these calibrations can be selectively disabled by issuing this message before RF INIT message.		
		Bit Definition		
		b0 RESERVED		
		b1 RESERVED		
		b2 RESERVED		
		b3 RESERVED		
		b4 Enable LODIST calibration		
		b5 Enable RX ADC DC offset calibration		
		b6 Enable HPF cutoff calibration		
		b7 Enable LPF cutoff calibration		
		b8 Enable Peak detector calibration		
		b9 Enable TX power calibration		
		b10 Enable RX gain calibration		
		b11 Enable TX Phase calibration (Device dependent feature, please refer data sheet)		
		b12 Enable RX IQMM calibration (Device dependent feature, please refer data sheet)		
		b31:13 RESERVED		
		0b000_0000_0000_0000		
		Default value: 0x1FF0 for AWR2243 / xWR6243 devices		
		Default value: 0x0FF0 for xWR294x / xWR254x de- vices		
		NOTE: If calibrations are disabled then it is mandatory to restore the same.		
RESERVED	2	0x0000000		

		o oontinaoa nom protioao pago	
TX_POWER_ CAL_CFG	2	 Number of transmitters to turn on during boot power calibration. During actual operation, if mor TXs are enabled during the chirp, then enabling the TXs during calibration will have better TX output accuracy. NOTE1: If this 16 bit field is set to 0, only 1 TX is during the boot time TX power calibration. For e.g TX0 calibration, only TX0 will be enabled; dur calibration, only TX1 will be enabled and so on. NOTE2: When this feature is enabled, all the TXs should necessarily have the same TXx_P BACKOFF in the AWR_CAL_MON_FREQUEN POWER_LIMITS_SB API. Bit Definition b3:0 TX enabled during TX0 calibration b0 - TX0, b1 - TX1, b2 - TX2, b3 - TX3 b7:4 TX enabled during TX2 calibration b4 - TX0, b5 - TX1, b6 - TX2, b7 - TX3 b11:8 TX enabled during TX3 calibration b8 - TX0, b9 - TX1, b10 - TX2, b11 - TX3 b15:12 TX enabled during TX3 calibration b12 - TX0, b13 - TX1, b14 - TX2, b15 - T 	e than 1 ne same it power enabled d. during ing TX1 enabled OWER_ CY_TX_
RESERVED	4	0x0000000	
	· ·	0,0000000	

NOTE1:	The APLL, SYNTH1 and SYNTH2 calibrations are always triggred
	by default on RF init command

5.2.10 Sub block 0x008A – AWR_CAL_MON_FREQUENCY_TX_POWER_LIMITS_ SB

This sub block sets the limits for RF frequency transmission for each TX and also TX power limits.

$\textbf{Table 5.11: AWR_CAL_MON_FREQUENCY_TX_POWER_LIMITS_SB}$

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x008A
SBLKLEN	2	Value = 28
FREQ_LIMIT_ LOW_TX0	2	The sensor's lower frequency limit for calibrations and monitoring for TX0 is encoded in 2 bytes (16 bit unsigned number)

contents

		· · · · ·
		1 LSB = 10 MHz
		For 77GHz Devices(76GHz to 81Ghz):
		Valid range: 7600 to 8100
		Default value: 7600 (If this API is not issued)
		For 60GHz Devices(57GHz to 64Ghz):
		Valid range: 5700 to 6400
		Default value: 5700 (If this API is not issued)
FREQ_LIMIT_ LOW_TX1	2	The sensor's lower frequency limit for calibrations and monitoring for TX1 is encoded in 2 bytes (16 bit unsigned number)
		1 LSB = 10 MHz
		For 77GHz Devices(76GHz to 81Ghz):
		Valid range: 7600 to 8100
		Default value: 7600 (If this API is not issued)
		For 60GHz Devices(57GHz to 64Ghz):
		Valid range: 5700 to 6400
		Default value: 5700 (If this API is not issued)
FREQ_LIMIT_ LOW_TX2	2	The sensor's lower frequency limit for calibrations and monitoring for TX2 is encoded in 2 bytes (16 bit unsigned number)
		1 LSB = 10 MHz
		For 77GHz Devices(76GHz to 81Ghz):
		Valid range: 7600 to 8100
		Default value: 7600 (If this API is not issued)
		For 60GHz Devices(57GHz to 64Ghz):
		Valid range: 5700 to 6400
		Default value: 5700 (If this API is not issued)

		T – continueu nom previous page
FREQ_LIMIT_ HIGH_TX0	2	The sensor's higher frequency limit for calibrations and monitoring for TX0 is encoded in 2 bytes (16 bit unsigned number) 1 LSB = 10 MHz For 77GHz Devices (76GHz to 81Ghz): Valid range: 7600 to 8100 Default value: 8100 (If this API is not issued) For 60GHz Devices (57GHz to 64Ghz): Valid range: 5700 to 6400 Default value: 6400 (If this API is not issued) For xWR294x/xWR254x devices: Valid range: 7620 to 8050/8100 (based on VCO2_ RANGE_CONFIG in this API) Default value: 8050 (If this API is not issued) NOTE: FREQ_LIMIT_HIGH_TXn should be strictly greater than FREQ_LIMIT_LOW_TXn
FREQ_LIMIT_ HIGH_TX1	2	The sensor's higher frequency limit for calibrations and monitoring for TX1 is encoded in 2 bytes (16 bit unsigned number) 1 LSB = 10 MHz For 77GHz Devices (76GHz to 81Ghz): Valid range: 7600 to 8100 Default value: 8100 (If this API is not issued) For 60GHz Devices (57GHz to 64Ghz): Valid range: 5700 to 6400 Default value: 6400 (If this API is not issued) For xWR294x/xWR254x devices: Valid range: 7620 to 8050/8100 (based on VCO2_ RANGE_CONFIG in this API) Default value: 8050 (If this API is not issued) NOTE: FREQ_LIMIT_HIGH_TXn should be strictly greater than FREQ_LIMIT_LOW_TXn

F	10010 0.1	1 – continued from previous page
FREQ_LIMIT_ HIGH_TX2	2	The sensor's higher frequency limit for calibrations and monitoring for TX2 is encoded in 2 bytes (16 bit unsigned number) 1 LSB = 10 MHz For 77GHz Devices (76GHz to 81Ghz): Valid range: 7600 to 8100 Default value: 8100 (If this API is not issued) For 60GHz Devices (57GHz to 64Ghz): Valid range: 5700 to 6400 Default value: 6400 (If this API is not issued) For xWR294x/xWR254x devices: Valid range: 7620 to 8050/8100 (based on VCO2_ RANGE_CONFIG in this API) Default value: 8050 (If this API is not issued) NOTE: FREQ_LIMIT_HIGH_TXn should be strictly greater than FREQ_LIMIT_LOW_TXn
TX0_POWER_ BACKOFF	1	TX0 output power back off 1 LSB = 1 dB Valid values: 0, 3, 6, 9 Default value: 0
TX1_POWER_ BACKOFF	1	TX1 output power back off 1 LSB = 1 dB Valid values: 0, 3, 6, 9 Default value: 0
TX2_POWER_ BACKOFF	1	TX2 output power back off 1 LSB = 1 dB Valid values: 0, 3, 6, 9 Default value: 0
TX3_POWER_ BACKOFF	1	TX3 output power back off (only for xWR294x/xWR254x devices) 1 LSB = 1 dB Valid values: 0, 3, 6, 9 Default value: 0
FREQ_LIMIT_ LOW_TX3	2	The sensor's lower frequency limit for calibrations and monitoring for TX3 is encoded in 2 bytes (16 bit unsigned number) (only for xWR294x/xWR254x devices) 1 LSB = 10 MHz For 77GHz Devices(76GHz to 81Ghz): Valid range: 7600 to 8100 Default value: 7600 (If this API is not issued)

FREQ_LIMIT_ HIGH_TX3	2	The sensor's higher frequency limit for calibrations and monitoring for TX3 is encoded in 2 bytes (16 bit unsigned number) (only for xWR294x/xWR254x devices) 1 LSB = 10 MHz For xWR294x/xWR254x devices: Valid range: 7620 to 8050/8100 (based on VCO2_ RANGE_CONFIG in this API) Default value: 8050 (If this API is not issued) NOTE: FREQ_LIMIT_HIGH_TXn should be strictly greater than FREQ_LIMIT_LOW_TXn
VCO2_RANGE_ CONFIG	1	VCO2 frequency range configuration.
		Bit Definition
		b0 VCO2 frequency range selection. VCO2 in xWR294x/xWR254x only supports a maximum bandwidth of 4.5GHz. The user can select between the two allowed ranges shown below.
		1 - VCO2 range is 76GHz - 80.5GHz.
		0 - VCO2 range is 76.5GHz - 81GHz.
		Default setting: 0 (76.5-81GHz)
		b1-7 RESERVED
RESERVED	1	0x00
RESERVED	2	0x0000

NOTE1:	The minimum RF bandwidth 200MHz, this is to perform internal calibration and monitoring.
NOTE2:	The limit set in this API is not applicable for functional chirps and loop-back chirps used in advanced frame config API.
NOTE3:	The TX0 frequency limit is used by default in calibrations and mon- itors where TX is not relevant or enabled.
NOTE4:	The RF band used in functional chirp profiles shall be within the limit set in this API.
NOTE5:	The mid frequency code of RF band used in functional chirp pro- files + 200MHz shall be within the max limit set in this API. In xWR294x/xWR254x devices, if this is not followed, the FW inter- nally backs off any calibration test chirps starting RF to honor the Cal Mon Freq Limit. Overall, this ensures that the calibration chirps (which have up to 200MHz RF BW) don't transmit outside the Cal Mon Freq limits.
NOTE6:	The power limits in this API apply to the calibrations that transmit (TX power calibration, phase shift calibration), and the monitors that do NOT have an associated functional profile index (like TX ball break monitor). The power limits set here do NOT apply to monitors that are clearly associated with a functional profile index (like TX gain phase mismatch monitor)

5.2.11 Sub block 0x008B - AWR_CAL_DATA_RESTORE_SB

This sub block restores the calibration data which was stored previously using the AWR_CAL_ DATA_SAVE_SB command. The async event AWR_AE_RF_INITCALIBSTATUS_SB will be issued after this API, this indicates success of the calibration data restore. The calibration data contents are defined in page 93 in AWR_CAL_DATA table.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x008B
SBLKLEN	2	Value = 232
RESERVED	2	0x0000
CHUNK_ID	2	Index of the current chunk Valid range: 0 to 2
CAL_DATA	224	Calibration data chunk which was stored in non-volatile memory

Table 5.12: AWR_CAL_DATA_RESTORE_SB contents

All 3 chunks of 224 bytes each shall be sent to radar device
to complete the restore process and to generate AWR_AE_RF_
INITCALIBSTATUS_SB AE.
Refer recommended API sequence and order in page 397 for more
details on sequence of issuing this API.

5.2.12 Sub block 0x008C – AWR_PHASE_SHIFTER_CAL_DATA_RESTORE_SB

This sub block restores the calibration data which was stored previously using the AWR_PHASE_ SHIFTER_CAL_DATA_SAVE_SB command. This is device specific feature, please refer data sheet.

NOTE: In xWR294x/xWR254x devices, this can be used to inject factory calibration data generated using corner reflector based external calibration. There are some limitations when using this API in xWR294x/xWR254x.

- 1. The injected calibration data must necessarily correspond to 25C.
- If external calibration data is injected, the user has to execute runtime TX phase shifter calibration using ONE_TIME_CALIB_ ENABLE_MASK in AWR_RUN_TIME_CALIBRATION_CONF_AND_ TRIGGER_SB API before transmitting frames. This corrects the calibration data for the current temperature.

Table 5.13: AWR_PHASE_SHIFTER_CAL_DATA_RESTORE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x008C
SBLKLEN	2	Value = 136
TX_INDX	1	Index of the transmit channel for which the following data applies Valid range: 0 to 3
CAL_APPLY	1	Set this to 0x01 after applying calibration data from all transmitters. This bit will indicate the firmware to start the correction process.

OBS_PHSHIFT_								
DATA	128	Observed phase shift corresponding to each desired phase shift. Index <i>n</i> corresponds to desired phase shift of $n \times 5.625^{\circ}$. For TX0 and TX3, for phase shifter setting/index n=0 to 63						
					Pls (e.g. Profile Config, Per			
		-	Chirp Phase Shifter, etc), the calibration data needs to be					
					wing byte locations of TX0 a save/restore API:			
		n	Desired pha	ise snin	Observed phase shift is injected in the following bytes			
		0	0	x5.625°	byte[1], byte[0]			
		1	1	$x5.625^{\circ}$	byte[3], byte[2]			
		÷	:					
		62	62	$x5.625^{\circ}$	byte[125], byte[124]			
		63	63	x5.625°	byte[127], byte[126]			
					al APIs (e.g. Profile Config, the calibration data needs			
				/restored to	o following byte locations of data save/restore API:			
				/restored to calibration	o following byte locations of			
		TX1 a	nd TX2 phase	/restored to calibration	o following byte locations of a data save/restore API: Observed phase shift is injected in the			
		<u>TX1 a</u> n	nd TX2 phase Desired pha	/restored to calibration ase shift	o following byte locations of a data save/restore API: Observed phase shift is injected in the following bytes			
		TX1 a n 32	nd TX2 phase Desired pha 32	/restored to calibration ase shift x5.625°	b following byte locations of a data save/restore API: Observed phase shift is injected in the following bytes byte[1], byte[0]			
		TX1 a n 32	nd TX2 phase Desired pha 32	/restored to calibration ase shift x5.625°	b following byte locations of a data save/restore API: Observed phase shift is injected in the following bytes byte[1], byte[0]			
		TX1 a n 32 33 :	nd TX2 phase Desired pha 32 33	/restored to e calibration ase shift x5.625° x5.625°	o following byte locations of a data save/restore API: Observed phase shift is injected in the following bytes byte[1], byte[0] byte[3], byte[2]			
		TX1 a n 32 33 : 62	nd TX2 phase Desired pha 32 33 : 62	/restored to calibration ase shift x5.625° x5.625° x5.625°	b following byte locations of a data save/restore API: Observed phase shift is injected in the following bytes byte[1], byte[0] byte[3], byte[2] byte[61], byte[60]			
		TX1 a n 32 33 : 62 63	nd TX2 phase Desired pha 32 33 : 62 63	/restored to e calibration ase shift x5.625° x5.625° x5.625° x5.625°	b following byte locations of a data save/restore API: Observed phase shift is injected in the following bytes byte[1], byte[0] byte[3], byte[2] byte[61], byte[60] byte[63], byte[62]			
		TX1 a n 32 33 : 62 63 0	nd TX2 phase Desired pha 32 33 62 63 0	/restored to e calibration ase shift x5.625° x5.625° x5.625° x5.625° x5.625°	b following byte locations of a data save/restore API: Observed phase shift is injected in the following bytes byte[1], byte[0] byte[3], byte[2] byte[61], byte[60] byte[63], byte[62] byte[65], byte[64]			
		TX1 a n 32 33 : 62 63 0	nd TX2 phase Desired pha 32 33 62 63 0	/restored to e calibration ase shift x5.625° x5.625° x5.625° x5.625° x5.625°	b following byte locations of a data save/restore API: Observed phase shift is injected in the following bytes byte[1], byte[0] byte[3], byte[2] byte[61], byte[60] byte[63], byte[62] byte[65], byte[64]			
		TX1 a n 32 33 : 62 63 0 1 :	nd TX2 phase Desired pha 32 33 : 62 63 0 1 :	/restored to calibration ase shift x5.625° x5.625° x5.625° x5.625° x5.625° x5.625°	 b following byte locations of a data save/restore API: Observed phase shift is injected in the following bytes byte[1], byte[0] byte[3], byte[2] byte[61], byte[60] byte[63], byte[62] byte[65], byte[64] byte[67], byte[66] 			
		TX1 a n 32 33 : 62 63 0 1 : 30 31	nd TX2 phase Desired pha 32 33 : 62 63 0 1 : 30	/restored to calibration ase shift x5.625° x5.625° x5.625° x5.625° x5.625° x5.625° x5.625°	 b following byte locations of a data save/restore API: Observed phase shift is injected in the following bytes byte[1], byte[0] byte[3], byte[2] byte[61], byte[60] byte[63], byte[62] byte[65], byte[64] byte[67], byte[66] byte[125], byte[124] 			

5.2.13 Sub block 0x008D - AWR_APLL_SYNTH_BW_CONTROL_SB

This is a new feature addition in **AWR2243**, **xWR6x43**, **xWR294x** and **xWR254x**. This sub block is used to control bandwidth of the APLL and Synthesizer. The typical recommended settings are as below.

S.No	Synth ICP	Synth Rtrim		APLL Rtrim LPF	APLL Rtrim VCO	VCO1/ BW	VCO2 BW	APLL BW	Emission Improv	1M PN De- grad@6(100K PN Im- prov @60G	Max Slope (MHz/us)
1	1	8	0x26	0x9	8	1.5M	1.5M	150K	2dB	2dB	0dB	250
2	3	8	0x26	0x9	8	0.75M	0.75M	150K	2dB	2dB	0dB	125
3	1	8	0x3F	0x9	8	1.5M	1.5M	300K	2dB	4dB	5dB	250
4	1	8	0x26	0x9	5	1.5M	1.5M	150K	8dB	1.5dB	0dB	250
5	3	8	0x26	0x9	5	0.75M	0.75M	150K	8dB	1.5dB	0dB	125
6	1	8	0x3F	0x9	5	1.5M	1.5M	300K	8dB	3.5dB	5dB	250
7	1	8	0x26	0x9	6	1.5M	1.5M	150K	5dB	1dB	0dB	250
8	3	8	0x26	0x9	6	0.75M	0.75M	150K	5dB	1dB	0dB	125
9	1	8	0x3F	0x9	6	1.5M	1.5M	300K	5dB	3dB	5dB	250
10	1	8	0x26	0x9	18	1.5M	1.5M	150K	0dB	0dB	0dB	250
11	3	8	0x26	0x9	18	0.75M	0.75M	150K	0dB	0dB	0dB	125
12	1	8	0x3F	0x9	18	1.5M	1.5M	300K	0dB	2dB	5dB	250

Table 5.14: Typical APLL and Synth BW settings for xWR6x43

 Table 5.15:
 Typical APLL and Synth BW settings for AWR2243

SYNTH_ ICP_TRIM	SYNTH_ RZ_TRIM	APLL_ ICP_TRIM	APLL_ RZ_TRIM	VCO1_ BW	VCO2_ BW	APLL_ BW	Description	Max VCO Slope (MHz/us)
1	8	0x26	0x9	750K	1.5M	150K	Default settings (+/-0.2% Ferror at 2us ADC start)	266
3	8	0x26	0x9	375K	750K	150K	Optimum for 76- 77GHz VCO1 (1M, 10M PN)	100
0	8	0x26	0x9	1.3M	2.6M	150K	Synth High BW (+/-0.2% Ferror at 1us ADC start)	266
3	8	0x3F	0x9	375K	1.5M	300K	Optimum 100K PN	100

Table 5.16	Typical APLL	and Synth BW	settings for xV	WR294x and xWR254x
------------	--------------	--------------	-----------------	--------------------

				devie	es			
SYNTH_ ICP_ TRIM	SYNTH_ RZ_ TRIM	APLL_ ICP_ TRIM	APLL_ RZ_ TRIM_ LPF	APLL_ RZ_ TRIM_ VCO	VCO1_ BW	VCO2_ BW	APLL_ BW	Description
1	4	0xB	0x9	0x12	-	1.3M	158K	Default VCO2 setting
1	5	0xB	0x9	0x12	500K	-	150K	Default VCO1 setting

Table 5.17: AWR_APLL_SYNTH_BW_CONTROL_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x008D
SBLKLEN	2	Value = 20
SYNTH_ICP_ TRIM / SYNTH_ ICP_TRIM_VCO1 (xWR294x/xWR254	1 4x)	In xWR294x/xWR254x devices, this field sets the SYNTH ICP trim code for VCO1. In other supported devices, this field sets the common SYNTH ICP trim code for both VCO1 and VCO2. Default value in xWR294x/xWR254x = 0x1.
SYNTH_RZ_ TRIM / SYNTH_ RZ_TRIM_VCO1 (xWR294x/xWR254	1 4x)	In xWR294x/xWR254x devices, this field sets the SYNTH RZ trim code for VCO1. In other supported devices, this field sets the common SYNTH RZ trim code for both VCO1 and VCO2. Default value in xWR294x/xWR254x = 0x5.
APLL_ICP_TRIM	1	APLL ICP trim code. Default value in xWR294x/xWR254x = 0xB.
APLL_RZ_TRIM_ LPF	1	APLL RZ LPF trim code Default value in xWR294x/xWR254x = 0x9.
APLL_RZ_TRIM_ VCO	1	APLL RZ VCO trim code AWR2243 device : 0 : Programs the default device setting. Other values : Reserved for future use. xWR6x43 device : Values specified in the xWR6x43 table xWR294x/xWR254x device : Values specified in the xWR294x/xWR254x table Default value in xWR294x/xWR254x = 0x12.
SYNTH_ICP_ TRIM_VCO2	1	In xWR294x/xWR254x devices, this field sets the SYNTH ICP trim code for VCO2. This field is RESERVED in other devices. Default value in xWR294x/xWR254x = 0x1.

SYNTH_RZ_ TRIM_VCO2	1	In xWR294x/xWR254x devices, this field sets the SYNTH RZ trim code for VCO2. This field is RESERVED in other devices.			
		Default value in $xWR294x/xWR254x = 0x4$.			
RESERVED	9	0x0000			

NOTE:	Recommended to issue this AWR_APLL_SYNTH_BW_
	CONTROL_SB API before AWR_RF_INIT_SB API. The RF_
	INIT synthesizer boot calibration shall run after changing the APLL
	BW.

5.3 Sub blocks related to AWR_RF_STATIC_CONF_GET_MSG

5.3.1 Sub block 0x00A0 – 0x00AA – RESERVED

5.3.2 Sub block 0x00AB – AWR_CAL_DATA_SAVE_SB

This sub block reads the calibration data from the device which can be injected later using the AWR_CAL_DATA_RESTORE_SB command.

NOTE:	The total size of the calibration data is 672 bytes, this has been split into 3 chunks (NUM_CHUNKS) of 224 bytes each due to SPI limitation. The Host should receive all these 3 chunks from radar device, later host can store only relevant data in non volatile mem-
	ory.

Field Name Number **Description** of bytes 2 SBLKID Value = 0x00AB SBLKLEN 2 Value = 8RESERVED 2 0x0000 2 CHUNK_ID Index of the requested chunk Valid values: 0 to NUM_CHUNKS - 1

Table 5.18: AWR_CAL_DATA_SAVE_SB contents

Response to the above command will contain the calibration data which is formatted as shown below

Table 5.19: AWR_CAL_DATA_SAVE_SB response packet contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x00AB
SBLKLEN	2	Value = 232
NUM_CHUNKS	2	Total number of calibration data chunks NUM_CHUNKS
CHUNK_ID	2	Current chunk number
CAL_DATA	224	Calibration data, refer device specific CAL_DATA contents below

Table 5.20:	AWR	CAL	DATA	contents	for	AWR2243

Field Name	Number of bytes	Description
CAL_VALIDITY_ STATUS	4	This field indicates the status of each calibration(0 - FAIL, 1 - PASS). If a particular calibration was notenabled, then its corresponding field should be ignored.BitDefinition (0 - FAIL, 1 - PASS)b0RESERVEDb1APLL tuning (Ignore while store restore)b2SYNTH VCO1 tuning (Ignore while store restore)b3SYNTH VCO2 tuning (Ignore while store restore)b4LODIST calibrationb5RX ADC DC offset calibrationb6HPF cutoff calibrationb7LPF cutoff calibrationb8Peak detector calibration (optional)b9TX Power calibration (optional)b10RX gain calibrationb11TX Phase calibrationb12RX IQMM calibrationb13SERVEDThe recommended Validity status bits while restoring is0x000014E0, assuming only RX_ADC_DC_CAL_DATA,HPF_CAL_DATA, LPF_CAL_DATA, RX_RF_GAIN_CAL_DATA and IQMM CAL DATA are stored and restored.
CAL_VALIDITY_ STATUS_COPY	4	Redundant CAL_VALIDITY_STATUS value, this value should match with CAL_VALIDITY_STATUS

RESERVED	8	RESERVED
CAL_TEMPERA- TURE	2	Temperature at which boot calibration is done
RESERVED	14	RESERVED
RX_ADC_DC_ CAL_DATA	16	Rx chain ADC DC calibration data
HPF1_CAL_DATA	1	HPF1 calibration data
HPF2_CAL_DATA	1	HPF2 calibration data
LODIST_BIAS_ CODE	1	LODIST calibration data
LODIST_FREQ_ INDEX	1	LODIST calibration frequency index
RESERVED	48	RESERVED
RX_RF_GAIN_ CAL_DATA	8	RX RF gain calibration data
IQMM_CAL_ DATA	104	RX IQMM calibration data
TX_POWER_ CAL_DATA	82	TX Power calibration data
POWER_DET_ CAL_DATA	326	Power detector calibration data
RESERVED	52	RESERVED

 Table 5.21:
 AWR_CAL_DATA contents for xWR294x/xWR254x devices

Field Name	Number of bytes	Description
------------	--------------------	-------------

CAL_VALIDITY_	4	This field indicates the status of each calibration
STATUS		(0 – FAIL, 1 – PASS). If a particular calibration was not enabled, then its corresponding field should be ignored.
		Bit Definition $(0 - FAIL, 1 - PASS)$
		b0 RESERVED
		b1 APLL tuning (Ignore while store restore)
		b2 SYNTH VCO1 tuning (Ignore while store restore)
		b3 SYNTH VCO2 tuning (Ignore while store restore)
		b4 LODIST calibration
		b5 RX ADC DC offset calibration
		b6 HPF cutoff calibration
		b7 LPF cutoff calibration
		b8 Peak detector calibration (optional)
		b9 TX Power calibration (optional)
		b10 RX gain calibration
		b11 TX Phase calibration (optional)
		b12 RESERVED
		b31:13 RESERVED
		The recommended Validity status bits while restoring is 0x000004E0, assuming only RX_ADC_DC_CAL_DATA, HPF_CAL_DATA, LPF_CAL_DATA, RX_RF_GAIN_CAL_DATA are stored and restored.
CAL_VALIDITY_ STATUS_COPY	4	Redundant CAL_VALIDITY_STATUS value, this value should match with CAL_VALIDITY_STATUS
RESERVED	8	RESERVED
CAL_TEMPERA- TURE	2	Temperature at which boot calibration is done
RESERVED	14	RESERVED
RX_ADC_DC_ CAL_DATA	16	Rx chain ADC DC calibration data
HPF1_CAL_DATA	1	HPF1 calibration data
HPF2_CAL_DATA	1	HPF2 calibration data
LODIST_BIAS_ CODE	1	LODIST calibration data
LODIST_FREQ_ INDEX	1	LODIST calibration frequency index
HPF1_CAL_	1	HPF1 CTRIM data for 300KHz cutoff
DATA_300KHZ		

RX_RF_GAIN_ CAL_DATA	10	RX RF gain calibration data
RESERVED	102	RESERVED
TX_POWER_ CAL_DATA	148	TX Power calibration data
POWER_DET_ CAL_DATA	250	Power detector calibration data
RESERVED	62	RESERVED

Table 5.22: AWR_CAL_DATA contents for xWR6x43 devices

Field Name	Number of bytes	Descrip	tion
CAL_VALIDITY_ STATUS	4	(0 – FA	d indicates the status of each calibration IL, 1 – PASS). If a particular calibration was not , then its corresponding field should be ignored. Definition (0 – FAIL, 1 – PASS)
		b0	SYNTH VCO3 tuning (Available only on selected xWR6243 device variants, RESERVED for other 60GHz devices. Ignore while store restore)
		b1	APLL tuning (Ignore while store restore)
		b2	SYNTH VCO1 tuning (Ignore while store restore)
		b3	SYNTH VCO2 tuning (Ignore while store restore)
		b4	LODIST calibration (Ignore while store restore)
		b5	RX ADC DC offset calibration
		b6	HPF cutoff calibration
		b7	LPF cutoff calibration
		b8	Peak detector calibration (optional)
		b9	TX Power calibration (optional)
		b10	RX gain calibration
		b11	TX Phase calibration (Ignore while store restore)
		b12	RX IQMM calibration
		b31:13	RESERVED
		0x00001 HPF_CA	ommended Validity status bits while restoring is 4E0, assuming only RX_ADC_DC_CAL_DATA, AL_DATA, LPF_CAL_DATA, RX_RF_GAIN_CAL_ nd IQMM_CAL_DATA are stored and restored.
CAL_VALIDITY_ STATUS_COPY	4		ant CAL_VALIDITY_STATUS value, this value natch with CAL_VALIDITY_STATUS

RESERVED	8	RESERVED
CAL_TEMPERA- TURE	2	Temperature at which boot calibration is done
RESERVED	14	RESERVED
RX_ADC_DC_ CAL_DATA	16	Rx chain ADC DC calibration data
HPF1_CAL_DATA	1	HPF1 calibration data
HPF2_CAL_DATA	1	HPF2 calibration data
LODIST_BIAS_ CODE	1	LODIST calibration data
RESERVED	1	RESERVED
RX_RF_GAIN_ CAL_DATA	8	RX RF gain calibration data
IQMM_CAL_ DATA	104	RX IQMM calibration data
TX_POWER_ CAL_DATA	122	TX Power calibration data
POWER_DET_ CAL_DATA	344	Power detector calibration data
RESERVED	42	RESERVED

NOTE1:	Before storing the calibration data in non volatile memory, the host shall make sure validity status of all enabled calibrations are SET to value 1 including APLL, VCO1, VCO2 and LODIST calibration validity in RF_INIT of radar device.
NOTE2:	Host can store only relevant calibration data in non volatile mem- ory and corresponding validity bits shall be set to 1 in AWR_CAL_ DATA_RESTORE_SB and rest of the validity bits should be clear to
NOTE3:	0 before restoring the data to radar device. Host shall ignore APLL, VCO1 and VCO2 validity bits while restor- ing, these calibrations will be done in each device power-up.

5.3.3 Sub block 0x00AC - AWR_PHASE_SHIFTER_CAL_DATA_SAVE_SB

This sub block reads the phase shifter calibration data from the device which can be injected later using the AWR_PHASE_SHIFTER_CAL_DATA_RESTORE_SB command. This is device specific feature, please refer data sheet.

NOTE: In xWR294x and xWR254x devices, issuing this API will always return correction values from a constant LUT corresponding to 25C. In case external calibration data was injected earlier, the same data will be returned back.

Table 5.23: AWR_PHASE_SHIFTER_CAL_DATA_SAVE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x00AC
SBLKLEN	2	Value = 8
TX_INDX	1	Index of the transmitter channel for which the phase shift is desired Valid range for AWR2243/xWR6243: 0 to 2 Valid range for xWR294x/xWR254x: 0 to 3
RESERVED	3	0x00000

Response to the above command will contain the phase shifter calibration data which is formatted as shown below

 Table 5.24:
 AWR_PHASE_SHIFTER_CAL_DATA_SAVE_SB response packet

contents		
Field Name	Number of bytes	Description
SBLKID	2	Value = 0x00AC
SBLKLEN	2	Value = 136
TX_INDX	1	Index of the transmitter channel for which the following phase shift values applies Valid range for AWR2243/xWR6243: 0 to 2 Valid range for xWR294x/xWR254x: 0 to 3
RESERVED	1	0x00

contents

OBS_PHSHIFT_			itinuea from		-
DATA	128	phase $n \times 5$. For TX corres Chirp	shift. Index n 625° . (0 and TX3, fo ponding to fur Phase Shifter,	correspon r phase sh nctional AF etc), the c	sponding to each desired ds to desired phase shift of ifter setting/index n=0 to 63 Pls (e.g. Profile Config, Per calibration data needs to be wing byte locations of TX0
					a save/restore API:
		n	Desired pha	se shift	Observed phase shift is injected in the following bytes
		0	0	x5.625°	byte[1], byte[0]
		1	1	x5.625°	byte[3], byte[2]
		:	:		
		62	62	x5.625°	byte[125], byte[124]
		63	63	x5.625°	byte[127], byte[126]
					o following byte locations of
		n	Desired pha		Observed phase shift is injected in the following bytes
			Desired pha	se shift	Observed phase shift is injected in the following bytes
		<i>n</i>			Observed phase shift is injected in the following bytes byte[1], byte[0]
		n 	Desired pha	se shift x5.625°	Observed phase shift is injected in the following bytes
		n 	Desired pha	se shift x5.625°	Observed phase shift is injected in the following bytes byte[1], byte[0]
		n 32 33 :	Desired pha 32 33 :	se shift x5.625° x5.625°	Observed phase shift is injected in the following bytes byte[1], byte[0] byte[3], byte[2]
		n 32 33 : 62	Desired pha 32 33 : 62	se shift x5.625° x5.625° x5.625°	Observed phase shift is injected in the following bytes byte[1], byte[0] byte[3], byte[2] byte[61], byte[60]
		n 32 33 : 62 63	Desired pha 32 33 : 62 63	se shift x5.625° x5.625° x5.625° x5.625°	Observed phase shift is injected in the following bytes byte[1], byte[0] byte[3], byte[2] byte[61], byte[60] byte[63], byte[62]
		n 32 33 : 62 63 0	Desired pha 32 33 : 62 63 0	se shift x5.625° x5.625° x5.625° x5.625° x5.625°	Observed phase shift is injected in the following bytes byte[1], byte[0] byte[3], byte[2] byte[61], byte[60] byte[63], byte[62] byte[65], byte[64]
		n 32 33 : 62 63 0	Desired pha 32 33 : 62 63 0	se shift x5.625° x5.625° x5.625° x5.625° x5.625°	Observed phase shift is injected in the following bytes byte[1], byte[0] byte[3], byte[2] byte[61], byte[60] byte[63], byte[62] byte[65], byte[64]
		n 32 33 : 62 63 0 1 :	Desired pha 32 33 : 62 63 0 1 :	se shift x5.625° x5.625° x5.625° x5.625° x5.625° x5.625°	Observed phase shift is injected in the following bytes byte[1], byte[0] byte[3], byte[2] byte[61], byte[60] byte[63], byte[62] byte[65], byte[64] byte[67], byte[66]
		n 32 33 : 62 63 0 1 : 30 31	Desired pha 32 33 : 62 63 0 1 : 30	se shift x5.625° x5.625° x5.625° x5.625° x5.625° x5.625°	Observed phase shift is injected in the following bytes byte[1], byte[0] byte[3], byte[2] byte[61], byte[60] byte[63], byte[62] byte[65], byte[64] byte[67], byte[66] byte[125], byte[124]

5.4 Sub blocks related to AWR_RF_INIT_MSG

5.4.1 Sub block 0x00C0 - AWR_RF_INIT_SB

This sub block, needed to be initially issued, triggers one time calibrations such as those related to APLL and synthesizer. The BSS processor is woken up upon receiving this sub block, the RF analog and digital baseband sections are initialized.

Table 5.25 describes the content of this sub block.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x00C0
SBLKLEN	2	Value = 4

Table 5.25: AWR_RF_INIT_SB contents

NOTE1:	This sub block will be acknowledged immediately but an async event AWR_AE_RF_INITCALIBSTATUS_SB from BSS will indicate that the RF initialization is complete. No commands shall be sent to BSS till the async event is received.
NOTE2:	It is not recommended to issue this API in runtime multiple times. This API shall be issued only once after power cycle with or without calibration data restore operation.

NOTE3:	 The following boot-time calibrations are susceptible to corruption by interference. The calibrations may result in false configuration of the RF analog sections due to corruption by interference during the calibration measurements. a. RX gain calibration (susceptible to interference) b. RX IQMM calibration (susceptible to interference) c. TX Phase calibration (susceptible to interference)
	In the 60G band (supported by xWR6x43 devices), it is man- dated by regulatory standards that transmissions in non-ISM band are capped to -10dBm. The following calibrations could violate these standards if executed in the field. a. TX power calibration. b. TX phase shifter calibration. c. RX IQMM calibration.
	It is recommended to perform factory calibration and store the calibration data in non volatile memory using AWR_CAL_ DATA_SAVE_SB API. This data can be restored to radar device using AWR_CAL_DATA_RESTORE_SB API. More info related to save restore provided in page 92

5.5 Sub blocks related to AWR_RF_DYNAMIC_CONF_SET_MSG

5.5.1 Sub block 0x0100 - AWR_PROFILE_CONF_SET_SB

This sub block contains FMCW radar chirp profiles or properties (FMCW slope, chirp duration, TX power etc.). Since the device supports multiple profiles, each profile is defined in this sub block. Internal RF and analog calibrations may be triggered upon receiving this sub block and ASYNC_EVENT response sent once completed.

NOTE 1:	This API can be issued dynamically to change profile parameters. Few parameters which cannot be changed are							
	1. PF_NUM_ADC_SAMPLES							
	2. PF_DIGITAL_OUTPUT_SAMPLING_RATE							
	3. Programmable filter coefficients in AWR2243/xWR6243/xWR294x/xWR254x							
	4. The dynamic profile configuration settings are applied to HW at the end of the active frame boundary (start of the frame idle time). It is recommended to issue dynamic profile config API at the beginning of the active frame (during the chirping) to apply the profile changes for immediate next frame							
NOTE 2:	The number of ADC samples per chirp is a property of the pro- file. A sub-frame can contain chirps with different profiles. Typi- cally, all the chirps in a sub-frame are expected to have the same number of ADC samples per chirp. However, if the user needs to implement advanced use cases with varying number of samples per chirp across chirps within a sub-frame, the following guidance may be applicable. The BSS does allow this usage by allowing different profiles to have different PF_NUM_ADC_SAMPLES, and different chirps within the same sub-frame to use different profiles. But the user-programmable/configurable MSS/DSS needs to also appropriately receive this data. One example way for this is to fol- low these two steps.							
	 Always read out the maximum of all profiles' PF_NUM_ADC_ SAMPLES after each chirp by appropriate programming of ADCBUF parameters. 							
	 Discard the excess data from those chirps which have lesser PF_NUM_ADC_SAMPLES. 							

Table 5.26 describes the contents of this sub block.

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x0100	
SBLKLEN	2	Value = 48	

 Table 5.26:
 AWR_PROFILE_CONF_SB contents

		1 1 5
PF_INDX	2	The profile index for which the rest of the fields are applicable
		for.
		Valid range for xWR294x/xWR254x devices: 0 to 6
		Valid range for other devices: 0 to 3
		- · · ·

PF_VCO_SE-	1	Bit				
		b0	FORCE_VCO_SEL (Not supported for produc- tion in xWR6243 , debug purpose only)			
			0 Use internal VCO selection			
			1 Forced external VCO selection			
		b2:1	2:1 VCO_SEL (Not supported for production in xWR6243, debug purpose only)			
			0 VCO1 77G: 76–78GHz in AWR2243, 77G: 76-77GHz in xWR294x/xWR254x, 60G: 57-60.75GHz			
			1 VCO2 77G: 77–81GHz in AWR2243, 77G: 76-80.5GHz or 76.5-81GHz in xWR294x/xWR254x (based on VCO2_RANGE_ CONFIG in AWR_CAL_MON_FREQUENCY_ TX_POWER_LIMITS_SB). 60G: 60–64GHz			
			2 VCO3 77G: RESERVED. Set it to 0b0, xWR6243: 56–58GHz			

		b7:3 RESERVED			
		0600000			
PF_CALLUT_	1	Bit Description			
UPDATE		b0 RETAIN_TXCAL_LUT			
		0 Update TX calibration LUT			
		1 Do not update TX calibration LUT			
		b1 RETAIN_RXCAL_LUT			
		0 Update RX calibration LUT and update RX IQMM correction			
		1 Do not update RX calibration LUT			
		b7:2 RESERVED (set it to 0b000000)			
		Normally, whenever Profile Config API is issued, the TX/RX ana- log settings are recomputed and their properties can change. If Profile Config API is issued for a second time then the user has an option to ensure the TX/RX RF properties/settings are un- changed, by setting the appropriate RETAIN_RX/TXCAL_LUT bits to 1. For example, if Profile Config API is issued with minor timing parameter changes like Idle Time and without changing the TX power or RX gain or chirp RF frequency range, then the RETAIN_RX/TXCAL_LUTs can be set to ensure that only the timing parameters change without disturbing the RF analog properties.			
PF_FREQ_ START_CONST	4	Start frequency for this profileFor 77GHz Devices (76GHz to 81Ghz):1 LSB = $3.6e9/2^{26}$ Hz ≈ 53.644 HzValid range: $0x5471C71C$ to $0x5A000000$ For 60GHz Devices (56GHz/57GHz to 64Ghz):1 LSB = $2.7e9/2^{26}$ Hz ≈ 40.233 HzValid range: Only even numbers from0x52F684BD/0x5471C71C to 0x5ED097B4NOTE: Refer to device datasheet for supported frequencyrangesNOTE: For xWR294x and xWR254x, when using VCO2, thisstart frequency must be within the chosen VCO2_RANGE_CONFIG in AWR_CAL_MON_FREQUENCY_TX_POWER_LIMITS_SB.			
PF_IDLE_TIME_ CONST	4	Idle time for each profile 1 LSB = 10 ns Valid range: 250 to 524287			
PF_ADC_ START_TIME_ CONST	4	Time of starting of ADC capture relative to the knee of the ramp 1 LSB = 10 ns Valid range: 0 to 4095			

		J.20 – continueu nom previous page		
PF_RAMP_END_ TIME	4	End of ramp time relative to the knee of the ramp 1 LSB = 10 ns Valid range: 2 to 500000 Ensure that the total frequency sweep is either within these ranges: 77G: 76-78 GHz or 77-81 GHz for AWR2243 77G: 76-80.5 / 76.5-81 GHz for xWR294x/xWR254x based on VCO2_RANGE_CONFIG in AWR_CAL_MON_FREQUENCY_ TX_POWER_LIMITS_SB. 60G: 56-58GHz or 57-60.75GHz or 60-64GHz		
PF_TX_OUT- PUT_POWER_ BACKOFF	4	TX_POWER_LIMITS_SB.		

			intinueu nom previous page		
PF_TX_PHASE_	4	Bits Description			
SHIFTER		b1:0 RESERVED (set it to 0b00)			
		b7:2	TX0 phase shift value		
			1 LSB = $360^{\circ}/2^{6} \approx 5.625^{\circ}$		
		b9:8	RESERVED (set it to 0b00)		
		b15:10	TX1 phase shift value		
		1 LSB = $360^{\circ}/2^{6} \approx 5.625^{\circ}$			
		b17:16 RESERVED (set it to 0b00)			
		b23:18	TX2 phase shift value		
			1 LSB = $360^{\circ}/2^{6} \approx 5.625^{\circ}$		
		b25:24	RESERVED (set it to 0b00)		
		b31:26	TX3 phase shift value (only for xWR294x/xWR254x devices)		
			1 LSB = $360^{\circ}/2^{6} \approx 5.625^{\circ}$		
		This field defines the additional phase shift to be introduced on each transmitter output. This option is supported only on se- lected device variants, Please refer data sheet.			
PF_FREQ_ SLOPE_CONST	2	lected device variants, Please refer data sheet. Frequency slope for each profile is encoded in 2 bytes (16 bit signed number) For 77GHz Devices (76GHz to 81Ghz): 1 LSB = $3.6e9 \times 900/2^{26}$ Hz ≈ 48.279 kHz/ μ s Valid range: -5510 to 5510 (Max 266MHz/ μ s) xWR294x/xWR254x specific restrictions: There are ad- ditional restrictions on this field as shown below. Only X = [0 to +256, except (17, 23, 34, 45, 46, 68, 90, 92, 111, 136, 137, 180, 184, 222, 239)], along with +/-(2*X), +/-(4*X), +/-(8*X), +/-(16*X), +/-(32*X), +/-(64*X) are the supported slope codes. Other slope codes are not recommended. For 60GHz Devices (57GHz to 64Ghz): 1 LSB = $2.7e9 \times 900/2^{26}$ Hz ≈ 36.21 kHz/ μ s Valid range: Only even numbers in the range -6905 to 6905 (250MHz/ μ s) Note: Refer AWR_APLL_SYNTH_BW_CONTROL_SB BW control API for constraints on max slope.			
PF_TX_START_ TIME	2	Time of start of transmitter relative to the knee of the ramp			
		1 LSB = 10 ns			
		Valid range: -4096 to 4095			

		negative number		TX after knee of the ramp and TX before the knee of the ramp on timing.
PF_NUM_ADC_ SAMPLES	2	Number of ADC	C samples to capture	re in a chirp for each RX
		or 32 kB with each ADC output complex 2x AWR1243/xWF	MPLES is su annels' data fits R1443/AWR2243/x memory in xV sample consum case and 4 by ADC output ca	WR6243/xWR294x/xWR254x VR1642/xWR6x43/xWR1843, hing 2 bytes for real ytes for complex 1x and ases. For example in WR6243/xWR294x/xWR254x
		Number of RX chains	ADC format	MAX_NUM_ SAMPLES
		4	Complex	1024
		4	Real	2048
		2	Complex	2048
		2	Real	4096
PF_DIGITAL_ OUTPUT_SAM- PLING_RATE	2	unsigned numb 1 LSB = 1 ksps Valid range: AWR2243/xWF bandwidth)	er) R6243 device : 200	e is encoded in 2 bytes (16 bit 00 to 50000 (Max 20MHz IF 00 to 45000 (Max 20MHz IF
PF_HPF1_COR- NER_FREQ	1	xWR294x/xWF	254x devices:	
		HPF1 corner frequency for each profile is encoded in 1 byte. Note1: Both HPF1 and HPF2 necessarily must have the same corner frequency in xWR294x/xWR254x devices. Note2: Using the 1.4MHz setting might cause high inaccuracies in the cutoff frequency in both functional path and monitoring results.		
		Value HPF1 co	rner frequency defi	nition
				Continued on next page

		0x00 350 kHz
		0x01 700 kHz
		0x02 1.4 MHz
		0x03 RESERVED
		0x04 300 KHz
		AWR2243 / xWR6243 devices
		HPF1 corner frequency for each profile is encoded in 1 byte
		Value HPF1 corner frequency definition
		0x00 175 kHz
		0x01 235 kHz
		0x02 350 kHz
		0x03 700 kHz
PF_HPF2_COR- NER_FREQ	1	xWR294x/xWR254x devices:
		HPF2 corner frequency for each profile is encoded in 1 byte.
		Note1: Both HPF1 and HPF2 necessarily must have the same
		corner frequency in xWR294x/xWR254x devices.
		Note2: Using the 1.4MHz setting might cause high inaccuracies in the cutoff frequency in both functional path and monitoring
		results.
		Value HPF2 corner frequency definition
		0x00 350 kHz
		0x01 700 kHz
		0x02 1.4 MHz
		0x03 RESERVED
		0x04 300 KHz
		AWR2243 / xWR6243 devices
		HPF2 corner frequency for each profile is encoded in 1 byte
		Value HPF2 corner frequency definition
		0x00 350 kHz
		0x01 700 kHz
		0x02 1.4 MHz
		0x03 2.8 MHz

TX_CAL_EN_ CFG 2 Number of transmitters to turn on during TX power calibration. During actual operation, if more than 1 TXs are enabled dur- ing the chirp, then enabling the same TXs during calibration will have better TX output power accuracy. For this field to take ef- fect, RUNTIME_TX_POWER_MULTI_TX_CAL_EN field in PFMISC_FEATURE_EN needs to be enabled. If this bit is not set, only 1 TX is enabled during the TX power calibration. For e.g. during TX0 calibration, only TX1 will be enabled; during TX1 cal- ibration, only TX1 will be enabled and so on. Bit Definition b3:0 TX enabled during TX0 calibration b0 - TX0, b1 - TX1, b2 - TX2, b3 - TX3 b7:4 b7:4 TX enabled during TX1 calibration b4 - TX0, b5 - TX1, b6 - TX2, b7 - TX3 b11:8 b15:12 TX enabled during TX2 calibration b12 - TX0, b13 - TX1, b14 - TX2, b15 - TX3 b15:12 TX enabled during TX3 calibration b12 - TX0, b13 - TX1, b14 - TX2, b15 - TX3 PF_RX_GAIN 1 Bit Definition b5:0 RX_GAIN This field defines RX gain for each channel. 1 LSB = 1 dB Valid values: AWR2243 : All even values from 32 to 52 xWR6x43 : All even values from 32 to 54 xWR2243 : All even values from 28 to 44 b7:6 RF_GAIN_TARGET The RF gain target: Value RF gain target: Value RF gain target: Value RF gain target: Value RF gain target RF gain target (WR2243/xWR6243) (WR294x/xWR254x) 00 30 dB 32 dB 01 33 dB 34 dB 10		Tuble				
b3:0TX enabled during TX0 calibration b0 - TX0, b1 - TX1, b2 - TX2, b3 - TX3b7:4TX enabled during TX1 calibration b4 - TX0, b5 - TX1, b6 - TX2, b7 - TX3b11:8TX enabled during TX2 calibration b8 - TX0, b9 - TX1, b10 - TX2, b11 - TX3b15:12TX enabled during TX3 calibration b12 - TX0, b13 - TX1, b14 - TX2, b15 - TX3PF_RX_GAIN1BitDefinition b5:0RX_GAIN This field defines RX gain for each channel. 1 LSB = 1 dB Valid values: AWR2243 : All even values from 32 to 52 xWR6x43 : All even values from 24 to 44 xWR254x : All even values from 28 to 44b7:6RF_GAIN_TARGET The RF gain target (AWR2243/xWR6243) (xWR294x/xWR254x) 00 30 dB 1 33 dB 10 36 dB 10 36 dB 11030 dB 1132 dB 10 36 dB1RESERVED Recommended RF_GAIN_TARGET REcommended RF_GAIN_TARGET REcommended RF_GAIN_TARGET RECOMMENDA		2	During ing the have be fect, RU MISC_I only 1 during ibration	actual chirp, f etter TX JNTIMI FEATU TX is e TX0 ca , only 7	operation, if more than then enabling the same K output power accuracy E_TX_POWER_MULTI_ RE_EN needs to be ena enabled during the TX p libration, only TX0 will be TX1 will be enabled and	1 TXs are enabled dur- TXs during calibration will y. For this field to take ef- TX_CAL_EN field in PF_ abled. If this bit is not set, ower calibration. For e.g. e enabled; during TX1 cal-
b0 - TX0, b1 - TX1, b2 - TX2, b3 - TX3 b7:4 TX enabled during TX1 calibration b4 - TX0, b5 - TX1, b6 - TX2, b7 - TX3 b11:8 TX enabled during TX2 calibration b5:12 TX enabled during TX3 calibration b15:12 TX enabled during TX3 calibration b12 - TX0, b13 - TX1, b14 - TX2, b15 - TX3 PF_RX_GAIN 1 Bit Definition b5:0 RX_GAIN This field defines RX gain for each channel. 1 LSB = 1 dB Valid values: AWR2243 : All even values from 30 to 48 xWR6x43 : All even values from 24 to 52 xWR6x43 : All even values from 28 to 44 b7:6 RF_GAIN_TARGET The RF gain target: Value RF gain target (AWR2243/xWR6243) (xWR294x/xWR254x) 00 00 30 dB 32 dB 01 33 dB 34 dB 10 36 dB 36 dB 11 RESERVED Recommended RF_GAIN_TARGET			Bit	Defir	nition	
b4 - TX0, b5 - TX1, b6 - TX2, b7 - TX3 b11:8 TX enabled during TX2 calibration b8 - TX0, b9 - TX1, b10 - TX2, b11 - TX3 b15:12 TX enabled during TX3 calibration b12 - TX0, b13 - TX1, b14 - TX2, b15 - TX3 PF_RX_GAIN 1 Bit Definition b5:0 RX_GAIN This field defines RX gain for each channel. 1 LSB = 1 dB Valid values: AWR2243 : All even values from 32 to 52 xWR6x43 : All even values from 30 to 48 xWR294x : All even values from 24 to 44 xWR254x : All even values from 28 to 44 b7:6 RF_GAIN_TARGET The RF gain target RF gain target (AWR2243/xWR6243) (xWR294x/xWR254x) 00 00 30 dB 32 dB 01 33 dB 34 dB 10 36 dB 36 dB 11 RESERVED Recommended RF_GAIN_TARGET 11 RESERVED Recommended RF_GAIN_TARGET 11 RESERVED Recommended RF_GAIN_TARGET 11 RESERVED Recommended RF_GAIN_TARGET 36dB 10<			b3:0		-	
b8 - TX0, b9 - TX1, b10 - TX2, b11 - TX3 b15:12 TX enabled during TX3 calibration b12 - TX0, b13 - TX1, b14 - TX2, b15 - TX3 PF_RX_GAIN 1 Bit Definition b5:0 RX_GAIN This field defines RX gain for each channel. 1 LSB = 1 dB Valid values: AWR2243 : All even values from 32 to 52 xWR6x43 : All even values from 24 to 44 xWR294x : All even values from 24 to 44 xWR254x : All even values from 28 to 44 b7:6 RF_GAIN_TARGET The RF gain target RF gain target (AWR2243/xWR6243) (xWR294x/xWR254x) 00 30 dB 32 dB 01 33 dB 34 dB 10 36 dB 36 dB 11 RESERVED Recommended RF_GAIN_TARGET is 36dB for AWR2243/xWR6243 and 36dB for xWR294x/xWR254x. 36dB for			b7:4		•	
b12 - TX0, b13 - TX1, b14 - TX2, b15 - TX3 PF_RX_GAIN 1 Bit Definition b5:0 RX_GAIN This field defines RX gain for each channel. 1 LSB = 1 dB Valid values: AWR2243 : All even values from 32 to 52 AWR2243 : All even values from 30 to 48 xWR294x : All even values from 24 to 44 xWR254x : All even values from 28 to 44 b7:6 RF_GAIN_TARGET The RF gain target RF gain target (AWR2243/xWR6243) (xWR294x/xWR254x) 00 30 dB 32 dB 01 33 dB 34 dB 10 36 dB 36 dB 11 RESERVED Recommended RF_GAIN_TARGET is 36dB for AWR2243/xWR6243 and 36dB for xWR294x/xWR254x.			b11:8		-	
b5:0 RX_GAIN This field defines RX gain for each channel. 1 LSB = 1 dB Valid values: AWR2243 : All even values from 32 to 52 xWR6x43 : All even values from 30 to 48 xWR294x : All even values from 24 to 44 xWR254x : All even values from 28 to 44 b7:6 RF_GAIN_TARGET The RF gain target RF gain target (AWR2243/xWR6243) (xWR294x/xWR254x) 00 30 dB 32 dB 01 33 dB 34 dB 10 36 dB 36 dB 11 RESERVED Recommended RF_GAIN_TARGET is 36dB for AWR2243/xWR6243 and 36dB for xWR294x/xWR254x.			b15:12		0	
This field defines RX gain for each channel. 1 LSB = 1 dB Valid values: AWR2243 : All even values from 32 to 52 xWR6x43 : All even values from 30 to 48 xWR294x : All even values from 24 to 44 xWR254x : All even values from 28 to 44 b7:6 RF_GAIN_TARGET The RF gain target: Value RF gain target RF gain target (AWR2243/xWR6243) (xWR294x/xWR254x) 00 30 dB 32 dB 01 33 dB 34 dB 10 36 dB 36 dB 11 RESERVED Recommended RF_GAIN_TARGET is 36dB for AWR2243/xWR6243 and 36dB for xWR294x/xWR254x.	PF_RX_GAIN	1	Bit	Definit	ion	
1 LSB = 1 dB Valid values: AWR2243 : All even values from 32 to 52 xWR6x43 : All even values from 30 to 48 xWR294x : All even values from 24 to 44 xWR254x : All even values from 28 to 44 b7:6 RF_GAIN_TARGET The RF gain target RF gain target (AWR2243/xWR6243) (xWR294x/xWR254x) 00 30 dB 32 dB 01 33 dB 34 dB 10 36 dB 36 dB 11 RESERVED Recommended RF_GAIN_TARGET is 36dB for AWR2243/xWR6243 and 36dB for xWR294x/xWR254x.			b5:0	RX_G/	AIN	
1 LSB = 1 dB Valid values: AWR2243 : All even values from 32 to 52 xWR6x43 : All even values from 30 to 48 xWR294x : All even values from 24 to 44 xWR254x : All even values from 28 to 44 b7:6 RF_GAIN_TARGET The RF gain target RF gain target (AWR2243/xWR6243) (xWR294x/xWR254x) 00 30 dB 32 dB 01 33 dB 34 dB 10 36 dB 36 dB 11 RESERVED Recommended RF_GAIN_TARGET is 36dB for AWR2243/xWR6243 and 36dB for xWR294x/xWR254x.				This fie	eld defines RX gain for e	each channel.
Valid values: AWR2243 : All even values from 32 to 52 xWR6x43 : All even values from 30 to 48 xWR294x : All even values from 24 to 44 xWR254x : All even values from 28 to 44 b7:6 RF_GAIN_TARGET The RF gain target RF gain target (AWR2243/xWR6243) (xWR294x/xWR254x) 00 30 dB 32 dB 01 33 dB 34 dB 10 36 dB 36 dB 11 RESERVED Recommended RF_GAIN_TARGET is 36dB for AWR2243/xWR6243 and 36dB for xWR294x/xWR254x.					-	
AWR2243 : All even values from 32 to 52 xWR6x43 : All even values from 30 to 48 xWR294x : All even values from 24 to 44 xWR254x : All even values from 28 to 44 b7:6 RF_GAIN_TARGET The RF gain target RF gain target (AWR2243/xWR6243) (xWR294x/xWR254x) 00 30 dB 32 dB 01 33 dB 34 dB 10 36 dB 36 dB 11 RESERVED Recommended RF_GAIN_TARGET is 36dB for AWR2243/xWR6243 and 36dB for xWR294x/xWR254x.				-	-	
xWR294x : All even values from 24 to 44 xWR254x : All even values from 28 to 44 b7:6 RF_GAIN_TARGET The RF gain target: Value RF gain target RF gain target (AWR2243/xWR6243) (xWR294x/xWR254x) 00 30 dB 32 dB 01 33 dB 34 dB 10 36 dB 36 dB 11 RESERVED Recommended RF_GAIN_TARGET is 36dB for AWR2243/xWR6243 and 36dB for xWR294x/xWR254x.						m 32 to 52
xWR254x : All even values from 28 to 44 b7:6 RF_GAIN_TARGET The RF gain target: Value RF gain target RF gain target (AWR2243/xWR6243) (xWR294x/xWR254x) 00 30 dB 32 dB 01 33 dB 34 dB 10 36 dB 36 dB 11 RESERVED Recommended RF_GAIN_TARGET is 36dB for AWR2243/xWR6243 and 36dB for xWR294x/xWR254x.				xWR6	x43 : All even values from	m 30 to 48
b7:6 RF_GAIN_TARGET The RF gain target: Value RF gain target RF gain target (AWR2243/xWR6243) (xWR294x/xWR254x) 00 30 dB 32 dB 01 33 dB 34 dB 10 36 dB 36 dB 11 RESERVED Recommended RF_GAIN_TARGET is 36dB for AWR2243/xWR6243 and 36dB for xWR294x/xWR254x.						
The RF gain target: Value RF gain target RF gain target (AWR2243/xWR6243) (xWR294x/xWR254x) 00 30 dB 32 dB 01 33 dB 34 dB 10 36 dB 36 dB 11 RESERVED Recommended RF_GAIN_TARGET is 36dB for AWR2243/xWR6243 and 36dB for xWR294x/xWR254x.				XWR2	54x : All even values froi	m 28 to 44
ValueRF gain target (AWR2243/xWR6243)RF gain target (xWR294x/xWR254x)0030 dB32 dB0133 dB34 dB1036 dB36 dB11RESERVEDRecommendedRF_GAIN_TARGETis 36dB for AWR2243/xWR6243 and 36dB for xWR294x/xWR254x.			b7:6	RF_G/	AIN_TARGET	
(AWR2243/xWR6243) (xWR294x/xWR254x) 00 30 dB 32 dB 01 33 dB 34 dB 10 36 dB 36 dB 11 RESERVED Recommended RF_GAIN_TARGET is 36dB for AWR2243/xWR6243 and 36dB for xWR294x/xWR254x.				The RI	⁼ gain target:	
01 33 dB 34 dB 10 36 dB 36 dB 11 RESERVED Recommended RF_GAIN_TARGET is 36dB for AWR2243/xWR6243 and 36dB for xWR294x/xWR254x.				Value		0 0
1036 dB36 dB11RESERVEDRecommendedRF_GAIN_TARGETAWR2243/xWR6243 and 36dB for xWR294x/xWR254x.				00	30 dB	32 dB
11 RESERVED Recommended RF_GAIN_TARGET is 36dB for AWR2243/xWR6243 and 36dB for xWR294x/xWR254x.				01	33 dB	34 dB
Recommended RF_GAIN_TARGET is 36dB for AWR2243/xWR6243 and 36dB for xWR294x/xWR254x.				10	36 dB	36 dB
AWR2243/xWR6243 and 36dB for xWR294x/xWR254x.				11	RESERVED	
	I	1	I			1

The total RX gain is achieved as a sum of RF gain and IF ampl fiers gain. The RF Gain Target allows the user to control the R gain independently from the total RX gain, thus giving flexibilit to the user to trade-off linearity vs. noise figure. Out of multipl gain settings for the RF stages, the firmware calibration algor rithm uses the one that makes the RF gain as close as possibil to the user programmed RF Gain Target.AWR2243/xWR6243: At high temperatures, the RF Gain Targets provide trade-off or approximately 4 dB in RF P1dB point vs 2 dB in noise figure.
At high temperatures, the RF Gain Targets provide trade-off of
At high temperatures, the RF Gain Targets provide trade-off of
For the lowest RF Gain Target setting 30 dB, the RF gain varie linearly from 38 dB at -40C to 30 dB at 140C for nominal pro- cess corner. Since the minimum IF gain is -6 dB, The minimum achievable RX Gain varies from 32 dB at -40C to 24 dB at 140C The maximum RX gain setting is recommended to be limited t 48dB, which can be achieved at all temperatures and RF gai target conditions. Increasing RX gain beyond 48 dB may resu in degradation of in-band P1dB without improvement in nois figure.
xWR294x/xWR254x:
For the lowest RF Gain Target setting 32 dB, the RF gain range between from 30.2 dB to 35.8 dB for nominal process corne Since the minimum IF gain is -10 dB, the minimum achievabl RX Gain lies between 20.2 dB to 25.8 dB at this RF Gain Targe We recommend using RF Gain Target of 36 dB to achieve bes NF while maintaining optimal Linearity (OOB-P1dB) in the FE. The maximum RX gain setting is recommended to be limited t 44dB, which can be achieved at all temperatures at 36 dB R gain target condition. Increasing RX gain beyond 44 dB may re sult in degradation of in-band P1dB without significant improve ment in noise figure. In addition, since the maximum IF gain i +10dB in xWR294x/xWR254x, we recommend to avoid the fo lowing pairs of (RX gain, RF gain target) settings: (44dB, 32dB

	4	T I · I ·		
PF_MISC_FEA- TURE_EN	1	This bit-field controls the enable/disable of miscellaneous profile specific features. This is only applicable for xWR294x/xWR254x devices.		
		Bit	Feature	
		b0	RESERVED	
		b1	PF_HPF_FAST_INIT	
			HPF fast init feature helps in settling the low IF sig- nal (e.g. bumper reflection) quickly at the beginning of the chirp. WHen HPF fast init feature is enabled, the profile's ADC start time should be at least 2.5uS later than the profile's TX start time.	
			Value Status	
			0 HPF fast init disabled.	
			1 HPF fast init enabled.	
		b2	RUNTIME_TX_POWER_MULTI_TX_CAL_EN	
			Value Status	
			0 Multi-TX runtime TX power cal disabled.	
			1 Multi-TX runtime TX power cal enabled.	
		b3:b7	RESERVED	
RESERVED	1	0x00		
RESERVED	1	0x00		

NOTE1: NOTE2: NOTE3:	Please refer Table 11.1 for details on minimum chirp duration. The max TX output power back-off only up to 20dB is supported. The RF band used in functional chirp profiles shall be within the limit set in AWR_CAL_MON_FREQUENCY_TX_POWER_ LIMITS_SB API.
NOTE4: NOTE5:	This API takes around 700us to execute in RadarSS sub System. Phase shifter(PS) settings are applied in advance at max -5us or at -(Idle_time-1.28us-DfeLagTime) from the knee of the ramp. If idle time is > 6.28us then PS is applied always at -5us and if idle time < 6.28us then PS is applied at -(Idle_time-1.28us-DfeLagTime) from knee of the ramp as shown in figure below. Where DfeLagTime is internal DFE lag time (Please refer rampgen calculator).
NOTE6:	It is recommended to configure TX start time > -5us or -(Idle_time- 1.28us-DfeLagTime) based on PS apply time as shown in figure below.
NOTE7:	The mid frequency code of RF band used in functional chirp profiles + 200MHz shall be within the max limit set in this API.
NOTE8:	RX data coherence across profiles - Amplitude and phase co- herence may not be perfect across profiles normally. Coherence across profiles can be improved if the user sets the same chirp slope, ADC Start Time, Sampling Rate, RX GAIN and HPF cutoff settings across these profiles, AND also explicitly reads one ref- erence profile's TX calibration settings (through AWR_ADV_TX_ GAIN_TEMPLUT_GET_SB) and forces the same into the other profiles (through AWR_ADV_TX_GAIN_TEMPLUT_SET_SB).

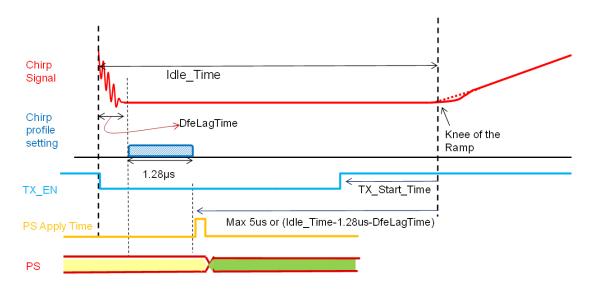


Figure 5.1: TX PS apply timing in a chirp

NOTE:	The maximum information in th	· •	upported is limi	ted based on the
	When device data sheet)	supports 20 M	IHz IF bandwid	dth (refer device
		Real/Pseudo Real	Complex1x	Complex2x
	Regular ADC mode	45 Msps	22.5 Msps	45 Msps
	Low power ADC mode	18.75 Msps	9.375 Msps	18.75 Msps
	When device data sheet)	supports 15 M	IHz IF bandwid	dth (refer device
		Real/Pseudo Real	Complex1x	Complex2x
	Regular ADC mode	37.5 Msps	18.75 Msps	37.5 Msps
	Low power ADC mode	18.75 Msps	9.375 Msps	18.75 Msps
	• The IF ba	ndwidth here re	fers to the IF fre	quency of the far-

 Table 5.27:
 Note on maximum sampling rate

- The IF bandwidth here refers to the IF frequency of the farthest reflection desired to be detected
- Typically, the IF frequency range preserved well in the receiver baseband is 0.9 \times Sampling Rate in Complex 1x and 0.45 \times Sampling Rate in Complex 2x and Real/Pseudo Real.
- The maximum sampling rates are also subject to restrictions from LVDS/CSI2 interface rate and ADC bits configurations. Typically in Complex2x mode, the maximum sampling rate would be 45 Msps.
- In Low power ADC mode, the max supported IF BW is 7.5MHz only.

5.5.2 Sub block 0x0101 – AWR_CHIRP_CONF_SET_SB

This sub block contains chirp to chirp variations on top of the chirp profiles defined in the AWR_ PROFILE_CONF_SET_SB. E.g. which profile is to be used for each chirp in a frame, and small

dithers in FMCW start frequency and idle time for each chirp are possible to be defined here. The dithers used in this configuration sub block are only additive on top of programmed parameters in AWR_PROFILE_CONF_SET_SB.

Table 5.28 describes the contents of this sub block.

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x0101	
SBLKLEN	2	Value = 24	
CHIRP_START_ INDX	2	Valid range 0 to 511	
CHIRP_END_ INDX	2	Valid range CHIRP_START_INDX to 511	
PROFILE_INDX	2	Valid range 0 to 3	
RESERVED	2	0x0000	
CHIRP_FREQ_ START_VAR	4	For 77GHz Devices (76GHz to 81GHz): 1 LSB = $3.6e9/2^{26} \approx 53.644$ Hz Valid range: 0 to 8388607 (450MHz) For 60GHz Devices (57GHz to 64Ghz): 1 LSB = $2.7e9/2^{26} \approx 40.23$ Hz Valid range: Only even numbers from 0 to 8388607 (337.5MHz)	
CHIRP_FREQ_ SLOPE_VAR	2	For 77GHz Devices (76GHz to 81GHz): 1 LSB = $3.6e9 \times 900/2^{26} \approx 48.279$ kHz Valid range: 0 to 63 (3MHz/us) For 60GHz Devices (57GHz to 64Ghz): 1 LSB = $2.7e9 \times 900/2^{26} \approx 36.21$ Hz Valid range: Only even numbers between 0 to 63 (2.3MHz/us)	
CHIRP_IDLE_ TIME_VAR	2	Idle time of each chirp is encoded in 2 bytes (16 bit un- signed number) 1 LSB = 10 ns Valid range: 0 to 4095	
CHIRP_ADC_ START_TIME_ VAR	2	ADC start time of each chirp is encoded in 2 bytes (16 bit unsigned number) 1 LSB = 10 ns Valid range: 0 to 4095	

 Table 5.28:
 AWR_CHIRP_CONF_SET_SB contents

CHIRP_TX_EN	2		ble selection Definition
		b0 [.]	TX0 Enable
		b1 [.]	TX1 Enable
		b2 [.]	TX2 Enable
			TX3 Enable (only applicable for xWR294x/xWR254x devices)
		b15:4	RESERVED
			0b0_0000_0000
			Maximum number of TXs that can be turned on in depends on the device data sheet specification

5.5.3 Sub block 0x0102 – AWR_FRAME_CONF_SET_SB

This sub block defines a frame, i.e. a sequence of chirps to be transmitted subsequently, the no. of frames to be transmitted, frame periodicity and how to trigger them. Table 5.29 describes the contents of this sub block.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0102
SBLKLEN	2	Value = 28
RESERVED	2	May use to indicate Frame mode or Continuous chirping mode of operation.
CHIRP_START_ INDX	2	Valid range 0 to 511 NOTE : If ADVANCE_CHIRP_CONFIG_EN is set then this Field is not used/applicable.
CHIRP_END_ INDX	2	Valid range CHIRP_START_INDX to 511 NOTE: If ADVANCE CHIRP CONFIG EN is set then
		this Field is not used/applicable.

 Table 5.29:
 AWR_FRAME_CONF_SET_SB contents

	Table 5.2	9 – continued from previous page
NUM_LOOPS	2	 Number of times to repeat from CHIRP_START_INDX to CHIRP_END_INDX in each frame Valid range 1 to 255 NOTE: If ADVANCE_CHIRP_CONFIG_EN is set then this Field definition is modified. ADVANCE_CHIRP_CONFIG mode: This field configures the total number of chirps in a frame L. This should be programmed as per below calculation. L = X * Y, where X is 1 to 512 (HW RAM) and Y is 1 to 128 (HW loops) The value of L should be a multiple of 4 (assuming each chirp is min 25us duration) i.e 1, 4, 8, 12, 16, 20, 32768 (max). The FW needs to prepare and update HW chirp RAM dynamically in advance chirp config API, this puts some restriction on minimum number of chirps in a burst/frame. Valid range 1 to 32768
NUM_FRAMES	2	Number of frames to transmit 16 bit unsigned number Valid range: 0 to 65535 (0 for infinite frames)
RESERVED	2	0x0000
FRAME_PERI- ODICITY	4	$\begin{array}{l} PERIOD \geq Sum \ total \ time \ of \ all \ chirps + \mathit{InterFrameBlank-Time},\\ where, \ Sum \ total \ time \ of \ all \ chirps = Num \ Loops \ ^* \ Num \\ chirps \ ^* \ Chirp \ Period.\\ \mathit{InterFrameBlankTime} \ is \ primarily \ for \ sensor \ calibration/- \\ monitoring, \ thermal \ control, \ transferring \ out \ any \ safety \\ monitoring \ data \ if \ requested, \ hardware \ reconfiguration \ for \\ next \ frame, \ re \ triggering \ of \ next \ frame.\\ InterFrameBlankTime \ \geq 300 \ \mu s \ typical, \ refer \ a \ NOTE \ end \\ of \ this \ API \ for \ more \ info.\\ Add \ 150 \ \mu s \ to \ \mathit{InterFrameBlankTime} \ if \ data-path \ reconfiguration \ needed \ in \ frame \ boundary \ due \ to \ change \ in \\ profile.\\ 1 \ LSB = 5 \ ns \\ Valid \ range \ 300 \ \mu s \ to \ 1.342 s \\ NOTE: \ If \ the \ devices' \ self-triggered \ periodic \ monitoring \\ features \ are \ enabled, \ the \ user \ needs \ to \ set \ th \ frame \ periodic \\ (refer \ to \ CALIB_MON_TIME_UNIT \ n \ AWR_CALIB_MON_ \\ TIME_UNIT_CONF_SB) \\ \end{array}$

			naou nom protiouo pugo
TRIGGER_SE-	2	Value	Definition
LECT		0x0001	SWTRIGGER (Software API based trigger- ing): Frame is triggered upon receiving AWR_ FRAMESTARTSTOP_CONF_SB. There could be several tens of micro seconds uncertainty in trig- gering. This mode is not applicable if this device is configured as MULTICHIP_SLAVE in AWR_ CHAN_CONF_SB.
		0x0002	HWTRIGGER (Hardware SYNC_IN based trig- gering): Each frame is triggered by rising edge of pulse in SYNC_IN pin, after receiving AWR_ FRAMESTARTSTOP_CONF_SB (this is to pre- vent spurious transmission). W.r.t. the SYNC_ IN pulse, the actual transmission has 160ns de- lay and 5ns uncertainty in SINGLECHIP and only a 300 ps uncertainty (due to tight inter-chip syn- chronization needed) in MULTICHIP sensor appli- cations as defined in AWR_CHAN_CONF_SB. For more details please refer to device datasheet.
RESERVED	1	0x00	
RESERVED	1	0x00	
FRAME_TRIG- GER_DELAY	4	Optional time delay from the SYNC_IN trigger to the oc- currence of frame chirps. Applicable only in SINGLECHIP sensor applications, as defined in AWR_CHAN_CONF_ SB. It is recommended only for staggering the transmis- sion of multiple radar sensors around the car for interfer- ence avoidance, if needed. Typical range is 0 to 100 micro seconds. Units: 1 LSB = 5 ns	

NOTE1:	If hardware triggered mode is used, the SYNC_IN pulse width should be less than 4 us. Also, the minimum pulse width of SYNC_IN should be 25 ns.
NOTE2:	If frame trigger delay is used with hardware triggered mode, then external SYNC_IN pulse periodicity should take care of the config- ured frame trigger delay and frame periodicity. The external pulse should be issued only after the sum total of frame trigger delay and frame periodicity. See figure below
NOTE3:	If dummy chirp is used then programmer should make sure the idle time of dummy chirp $>=$ 4us + DFE spill over time of previous chirp (calculate from rampgen calculator). The first chirp of frame can not be a dummy chirp.
NOTE4:	In Hw triggered mode, the Hw pulse should be issued or periodicity of pulse is configured such that, the pulse is generated only 150us after the completion of previous frame/burst (The pulse should not be issued before end of previous frame/burst). The time delta between end of previous frame/burst and raising edge of Hw pulse recommended to be $<$ 300us.
NOTE5:	The PF_DIGITAL_OUTPUT_SAMPLING_RATE impacts the LVD-S/CSI2 data rate in a frame, so it is recommended to analyze timing impact if different sample rate is used across chirps in a frame.
NOTE6:	Please refer Table 11.5 for details on minimum inter-frame blank time requirements.
NOTE7:	If advance chirp configuration is enabled then this API takes around 1.8ms to execute in RadarSS sub System for 128 chirps. The error checks for each parameters of advance chirp is done in frame configuration API. This option can be disabled by using AD- VANCE_CHIRP_ERROR_CHK_DIS option in AWR_RF_RADAR_ MISC_CTL_SB API. If this error check takes more than 50ms due to large number of chirps then it is recommended to disable RadarSS WDT while executing this API.
NOTE9:	Due to data synchronizers in the synthesizer chirp starting path, there can be 0/1.1 ns bimodal jitter in the starting of each RF chirp wrt RX ADC sampling. This can lead to a small chirp to chirp phase jitter whose magnitude depends on IF frequency. For example, this translates to $360^{\circ} \times 1.1 \text{ ns} \times 1 \text{ MHz} = 0.4^{\circ}$ at 1-MHz IF in range dimension; 4° for 10-MHz IF, and 8° for 20-MHz IF. If the interchirp jitter mitigation feature is enabled in products where it is available, this jitter will be mitigated from inter-chirp perspective and be present only as an inter-burst, inter-sub-frame and inter-frame jitter, with the same magnitude.

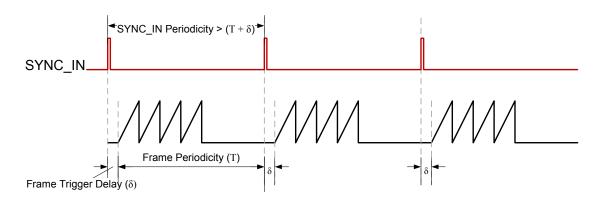


Figure 5.2: Frame trigger delay in case of external hardware trigger

5.5.4 Sub block 0x0103 - AWR_CONT_STREAMING_MODE_CONF_SET_SB

This sub block contains configuration needed to enable continuous streaming mode from the device.

NOTE:	The continuous streaming mode configuration APIs are supported		
	only for debug purpose. Please refer latest DFP release note for		
	more info.		

Table 5.30 describes the contents of this sub block.

Table 5.30: AWR_CONT_STREAMING_MODE_CONF_SET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0103
SBLKLEN	2	Value = 24

	Table 5.3	30 – continued from previous page
PF_FREQ_ START_CONST	4	Frequency start for each profile is encoded in 4 bytes (32 bit unsigned number) For 77GHz Devices (76GHz to 81GHz): 1 LSB = $3.6e9/2^{26}$ Hz ≈ 53.644 Hz Valid range: 0 to 0x7FFFFFF For 60GHz Devices (56GHz/57GHz to 64GHz): 1 LSB = $2.7e9/2^{26}$ Hz ≈ 40.23 Hz Valid range: Only even numbers from 0 to 0x7FFFFFF NOTE1: Refer to device datasheet for supported frequency ranges NOTE2: For xWR294x/xWR254x, when using VCO2, this start frequency must be within the chosen VCO2_ RANGE_CONFIG in AWR_CAL_MON_FREQUENCY_ TX_POWER_LIMITS_SB.
PF_TX_OUT-	4	Bits Description
PUT_POWER_ BACKOFF		b7:0 TX0 output power back off
		b15:8 TX1 output power back off
		b23:16 TX2 output power back off
		 b31:24 TX3 output power back off (applicable only for xWR294x/xWR254x devices, set to 0 otherwise) This field defines how much the transmit power should be reduced from the maximum. 1 LSB = 1 dB
PF_TX_PHASE_	4	Bits Description
SHIFTER		b1:0 RESERVED (set it to 0b00)
		b7:2 TX0 phase shift value 1 LSB = $360^{\circ}/2^{6} \approx 5.625^{\circ}$
		b9:8 RESERVED (set it to 0b00)
		b15:10 TX1 phase shift value 1 LSB = $360^{\circ}/2^{6} \approx 5.625^{\circ}$
		b17:16 RESERVED (set it to 0b00)
		b23:18 TX2 phase shift value 1 LSB = $360^{\circ}/2^{6} \approx 5.625^{\circ}$
		b25:24 RESERVED (set it to 0b00)
		b31:26 TX3 phase shift value (only for xWR294x/xWR254x devices) 1 LSB = $360^{\circ}/2^{6} \approx 5.625^{\circ}$ This field defines the additional phase shift to be introduced on each transmitter output.

	Table 5.0	o – continued from previous page
PF_DIGITAL_ OUTPUT_SAM- PLING_RATE	2	ADC Sampling rate for each profile is encoded in 2 bytes (16 bit unsigned number) 1 LSB = 1 ksps Valid range 2000 to 37500
PF_HPF1_COR-	1	xWR294x/xWR254x devices:
NER_FREQ		
		HPF1 corner frequency for each profile is encoded in 1 byte.
		Note1: Both HPF1 and HPF2 necessarily must have the same corner frequency in xWR294x/xWR254x devices. Note2: Using the 1.4MHz setting might cause high inaccuracies in the cutoff frequency in both functional path and monitoring results.
		Value HPF1 corner frequency definition
		0x00 350 kHz
		0x01 700 kHz
		0x02 1.4 MHz
		0x03 RESERVED
		0x04 300 KHz
		AWR2243 / xWR6243 devices
		HPF1 corner frequency for each profile is encoded in 1 byte
		Value HPF1 corner frequency definition
		0x00 175 kHz
		0x01 235 kHz
		0x02 350 kHz
		0x03 700 kHz
PF_HPF2_COR- NER_FREQ	1	xWR294x/xWR254x devices:
		HPF2 corner frequency for each profile is encoded in 1
		byte. Note1: Both HPF1 and HPF2 necessarily must have the same corner frequency in xWR294x/xWR254x devices. Note2: Using the 1.4MHz setting might cause high inac- curacies in the cutoff frequency in both functional path and monitoring results.
		Value HPF2 corner frequency definition
		Continued on next page

0x00 350 kHz 0x01 700 kHz 0x02 1.4 MHz 0x03 RESERVED 0x04 300 KHz AWR2243 / xWR6243 devices	
0x02 1.4 MHz 0x03 RESERVED 0x04 300 KHz AWR2243 / xWR6243 devices	
0x03 RESERVED 0x04 300 KHz AWR2243 / xWR6243 devices	
0x04 300 KHz AWR2243 / xWR6243 devices	
AWR2243 / xWR6243 devices	
HPF2 corner frequency for each profile is encoded	i in 1
byte	
Value HPF2 corner frequency definition	
0x00 350 kHz	
0x01 700 kHz	
0x02 1.4 MHz	
0x03 2.8 MHz	
PF_RX_GAIN 1 This field defines RX gain for continuous streaming n	10de.
Bit Definition	
b5:0 RX_GAIN	
This field defines RX gain for each channel.	
1 LSB = 1 dB	
Valid values: AWR2243 : All even values from 32 to 52	
xWR6x43 : All even values from 30 to 48	
xWR294x : All even values from 24 to 44	
xWR254x : All even values from 28 to 44	
b7:6 RF_GAIN_TARGET	
The RF gain target	for
AWR2243/xWR6243/xWR294x/xWR254x vices:	de-
Value RF gain target RF gain targe	t
(AWR2243) (xWR294x/xWR2	54x)
00 30 dB 32 dB	
01 33 dB 34 dB	
10 36 dB 36 dB	
11 RESERVED	
Refer Profile configuration API for more info.	

VCO_SELECT	1	Bit	Description
		b0	FORCE_VCO_SEL (Not supported for produc- tion in xWR6243, debug purpose only) 0 Use internal VCO selection
			1 Forced external VCO selection
		b2:1	VCO_SEL 0 VCO1 AWR2243: 76 – 78GHz xWR294x/xWR254x: 76 - 77GHz 60G devices: 57 - 60.75GHz
			1 VCO2 AWR2243: 77 – 81GHz xWR294x/xWR254x: 76 - 80.5GHz / 76.5 - 81GHz (based on VCO2_RANGE_CON- FIG in AWR_CAL_MON_FREQUENCY_TX_ POWER_LIMITS_SB) 60G devices: 60 – 64GHz
			2 VCO3 77G devices: RESERVED Set it to 0b0 xWR6243: 56 – 58GHz
			NOTE: xWR6243 device: VCO3 is available only on selected xAWR6243 device variants.
		b7:3	RESERVED 0b00_0000
RESERVED	1	0x00	
RESERVED	1	0x00	

NOTE:	Continuous streaming (CW) mode is useful for RF lab characteri-
	zation and debug. In this mode, the device is configured to transmit
	a single continuous wave (CW - 0 slope) tone at a specific RF fre-
	quency continuously.

5.5.5 Sub block 0x0104 – AWR_CONT_STREAMING_MODE_EN_SB

This sub block contains configuration needed to enable continuous streaming mode from the device.

Table 5.31 describes the contents of this sub block.

Table 5.31: AWR_CONT_STREAMING_MODE_EN_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0104
SBLKLEN	2	Value = 8
CONT_STREAM- ING_EN	2	ValueDefinition0x0000Disable continuous streaming mode0x0001Enable continuous streaming mode
RESERVED	2	0x0000

5.5.6 Sub block 0x0105 - AWR_ADVANCED_FRAME_CONF_SB

This sub block contains advanced frame configuration options. Table 5.32 describes the contents of this sub block.

Table 5.32: AWR_ADVANCED_FRAME_CONF_SB contents

Field Name	Number of bytes	Descriptio	n
SBLKID	2	Value = 0x0105	
SBLKLEN	2	Value = 152	
NUM_SUB- FRAMES	1	Number of sub frames enabled in this frame Valid range: 1 to 4	
FORCE_SIN- GLE_PROFILE	1	0x00 Th go	efinition he profile index set in Chirp Config API message overns which profile is used when that chirp is ansmitted
		sa fra fra N	he profile index indicated in Chirp Config mes- age is ignored and all the chirps in each sub ame use a single profile as indicated by that sub ame's profile index set in this message. OTE: This Field is not used/applicable for loop- ack sub-frame.

LOOPBACK_	1	Bit	Definition
CFG		b0	LOOPBACK_CFG_EN 0 Disable
			1 Enable
		b2:1	SUB_FRAME_ID Sub frame ID for which the loop-back configura- tion applies
		b7:3	RESERVED
SUB_ FRAMETRIG- GER	1	0x00	Disabled (default mode, i.e no trigger is required in SW triggered mode and a pulse trigger is re- quired every burst start in Hw triggered mode)
		0x01	Enabled (Need to trigger each sub-frame ei- ther by SW in software triggered mode through AWR_SUBFRAME_START_CONF_SB API or HW pulse in hardware triggered mode) NOTE: Disable WDT if this mode is enabled.
SF1_PROFILE_ INDX	2	to 0x01. Valid rar	Pplicable only if FORCE_SINGLE_PROFILE is set Please refer to that field for description. nge: 0 to 3 licable for loop-back sub-frame
SF1_CHIRP_ START_INDX	2	Valid rar This file NOTE : I	dex of the first chirp for the first burst in sub frame 1 nge: 0 to 511 d is Not applicable for loop-back sub-frame If ADVANCE_CHIRP_CONFIG_EN is set then this not used/applicable.
SF1_NUM_ UNIQUE_ CHIRPS_PER_ BURST	2	Valid rar This fiel NOTE : I	of unique chirps per burst nge: 1 to 512 d Not applicable for loop-back sub-frame If ADVANCE_CHIRP_CONFIG_EN is set then this not used/applicable.

Table 5.32 – continued from previous page				
SF1_NUM_ LOOPS_PER_ BURST	2	Number of times to loop through the unique chirps in each burst, without gaps, using HW. Valid range: 1 to 255 NOTE : If ADVANCE_CHIRP_CONFIG_EN is set then this Field definition is modified. ADVANCE_CHIRP_CONFIG mode: This field configures the total number of chirps in a burst L. This should be pro- grammed as per below calculation. L = X * Y, where X is 1 to 512 (HW RAM) and Y is 1 to 128 (HW loops) The value of L should be a multiple of 4 (assuming each chirp is min 25us duration) i.e 1, 4, 8, 12, 16, 20, 32768 (max). The FW needs to prepare and update HW chirp RAM dynamically in advance chirp con- fig API, this puts some restriction on minimum number of chirps in a burst/frame. Valid range 1 to 32768		
SF1_BURST_ PERIOD	4	BURST_PERIOD \geq (NUM_LOOPS_PER_BURST×(Sum total of all unique chirp times per burst) + <i>InterBurstBlank-Time</i> , where <i>InterBurstBlankTime</i> is primarily for sensor calibration / monitoring, thermal control, and some minimum time needed for triggering next burst. InterBurstBlankTime \geq 110 μ s typical, refer a NOTE end of this API for more info. NOTE: Across bursts, if the value (Sum total of all unique chirp times per burst), is not a constant, then the actual available blank time can vary and needs to be accounted for. 1 LSB = 5 ns Valid range: 55 μ s to 1.342 s		
SF1_CHIRP_ START_INDX_ OFFSET	2	The chirp start index for each burst is determined as the chirp start index of the previous burst plus SFx_START_INDX_OFFSET × BURST_INDX i.e. CHIRP_START_INDX = SFx_CHIRP_START_INDX + (SFx_CHIRP_START_INDX_OFFSET × BURST_INDEX) Valid range: 0 to 511 A value of 0 can be used to repeat the same set of unique chirps across bursts. Non-zero values allow spanning a larger number of unique chirps (across bursts). This field Not applicable for loop-back sub-frame NOTE : If ADVANCE_CHIRP_CONFIG_EN is set then this Field is not used/applicable.		
SF1_NUM_ BURSTS	2	Number of bursts constituting this sub frame Valid range: 1 to 512 Valid range: 1 to 16 for loop-back sub-frame		

		z – continuca nom previous page
SF1_NUM_ OUTER_LOOPS	2	Number of times to loop over the set of above defined bursts, for this sub frame. Valid range: 1 to 64 This filed is Not applicable for loop-back sub-frame
RESERVED	2	0x0000
SF1_PERIOD	4	$\begin{array}{l} {\sf PERIOD} \geq {\sf Sum} \text{ total time of all bursts} + {\it InterSubFrame-BlankTime,} \\ {\sf where, Sum total time of all bursts} = {\sf Num Outer Loops}^* \\ {\sf Num Bursts}^* {\sf Burst Period.} \\ {\it InterSubFrameBlankTime} \text{ is primarily for sensor calibration/monitoring, thermal control, transferring out any safety} \\ {\sf monitoring data if requested, hardware reconfiguration for next sub frame, retriggering of next SF.} \\ {\sf InterSubFrameBlankTime} \geq 300 \ \mu \text{s typical, refer a NOTE} \\ end of this API for more info. \\ {\sf Add 150} \ \mu \text{s to } {\it InterSubFrameBlankTime} \text{ if data-path} \\ {\sf re-configuration needed in sub-frame boundary due to} \\ {\sf change in profile.} \\ {\sf 1 LSB} = 5 \ \text{ns} \\ \\ {\sf Valid range 300} \ \mu \text{s to } 1.342 \ \text{s} \end{array}$
RESERVED	4	0x0000000
RESERVED	4	0x0000000
SF2_PROFILE_ INDX	2	This is applicable only if FORCE_SINGLE_PROFILE is set to 0x01. Please refer to that field for description. Valid range: 0 to 3
SF2_CHIRP_ START_INDX	2	Start index of the first chirp for the first burst in sub frame 2 Valid range: 0 to 511 This field Not applicable for loop-back sub-frame NOTE : If ADVANCE_CHIRP_CONFIG_EN is set then this Field is not used/applicable.
SF2_NUM_ UNIQUE_ CHIRPS_PER_ BURST	2	Number of unique chirps per burst Valid range: 1 to 512 This field Not applicable for loop-back sub-frame NOTE : If ADVANCE_CHIRP_CONFIG_EN is set then this Field is not used/applicable.

Table 5.32 – continued from previous page			
SF2_NUM_ LOOPS_PER_ BURST	2	Number of times to loop through the unique chirps in each burst, without gaps, using HW. Valid range: 1 to 255 NOTE : If ADVANCE_CHIRP_CONFIG_EN is set then this Field definition is modified. ADVANCE_CHIRP_CONFIG mode: This field configures the total number of chirps in a burst L. This should be pro- grammed as per below calculation. L = X * Y, where X is 1 to 512 (HW RAM) and Y is 1 to 128 (HW loops) The value of L should be a multiple of 4 (assuming each chirp is min 25us duration) i.e 1, 4, 8, 12, 16, 20, 32768 (max). The FW needs to prepare and update HW chirp RAM dynamically in advance chirp con- fig API, this puts some restriction on minimum number of chirps in a burst/frame. Valid range 1 to 32768	
SF2_BURST_ PERIOD	4	BURST_PERIOD \geq (NUM_LOOPS_PER_BURST)*(Sum total of all unique chirp times per burst) + <i>InterBurstBlank-Time</i> , where <i>InterBurstBlankTime</i> is primarily for sensor calibration / monitoring, thermal control, and some minimum time needed for triggering next burst. InterBurstBlankTime \geq 110 μ s typical, refer a NOTE end of this API for more info. NOTE: Across bursts, if the value (Sum total of all unique chirp times per burst), is not a constant, then the actual available blank time can vary and needs to be accounted for. 1 LSB = 5 ns Valid range: 55 μ s to 1.342 s	
SF2_CHIRP_ START_INDX_ OFFSET	2	The chirp start index for each burst is determined as the chirp start index of the previous burst plus SFx_START_INDX_OFFSET * BURST_INDX i.e. CHIRP_START_INDX = SFx_CHIRP_START_INDX + (SFx_CHIRP_START_INDX_OFFSET × BURST_INDEX) Valid range: 0 to 511 A value of 0 can be used to repeat the same set of unique chirps across bursts. Non-zero values allow spanning a larger number of unique chirps (across bursts). This field Not applicable for loop-back sub-frame NOTE : If ADVANCE_CHIRP_CONFIG_EN is set then this Field is not used/applicable.	
SF2_NUM_ BURSTS	2	Number of bursts constituting this sub frame Valid range: 1 to 512 Valid range: 1 to 16 for loop-back sub-frame	

		z – continucu nom previous page
SF2_NUM_ OUTER_LOOPS	2	Number of times to loop over the set of above defined bursts, for this sub frame. Valid range: 1 to 64 This filed is Not applicable for loop-back sub-frame
RESERVED	2	0x0000
SF2_PERIOD	4	PERIOD \geq Sum total time of all bursts + <i>InterSubFrame-BlankTime</i> , Where, Sum total time of all bursts = Num Outer Loops * Num Bursts * Burst Period. <i>InterSubFrameBlankTime</i> is primarily for sensor calibration / monitoring, thermal control, transferring out any safety monitoring data if requested, hardware reconfiguration for next sub frame, retriggering of next SF. InterSubFrameBlankTime \geq 300 μ s typical, refer a NOTE end of this API for more info. Add 150 μ s to <i>InterSubFrameBlankTime</i> if data-path re-configuration needed in sub-frame boundary due to change in profile. 1 LSB = 5 ns Valid range: 300 μ s to 1.342 s
RESERVED	4	0x0000000
RESERVED	4	0x0000000
SF3_PROFILE_ INDX	2	This is applicable only if FORCE_SINGLE_PROFILE is set to 0x01. Please refer to that field for description. Valid range: 0 to 3
SF3_CHIRP_ START_INDX	2	Start index of the first chirp in this sub frame Valid range: 0 to 511 This field Not applicable for loop-back sub-frame NOTE : If ADVANCE_CHIRP_CONFIG_EN is set then this Field is not used/applicable.
SF3_NUM_ UNIQUE_ CHIRPS_PER_ BURST	2	Number of unique chirps per burst Valid range: 1 to 512 This field Not applicable for loop-back sub-frame NOTE : If ADVANCE_CHIRP_CONFIG_EN is set then this Field is not used/applicable.

Table 5.32 – continued from previous page				
SF3_NUM_ LOOPS_PER_ BURST	2	Number of times to loop through the unique chirps in each burst, without gaps, using HW. Valid range: 1 to 255 NOTE : If ADVANCE_CHIRP_CONFIG_EN is set then this Field definition is modified. ADVANCE_CHIRP_CONFIG mode: This field configures the total number of chirps in a burst L. This should be pro- grammed as per below calculation. L = X * Y, where X is 1 to 512 (HW RAM) and Y is 1 to 128 (HW loops) The value of L should be a multiple of 4 (assuming each chirp is min 25us duration) i.e 1, 4, 8, 12, 16, 20, 32768 (max). The FW needs to prepare and update HW chirp RAM dynamically in advance chirp con- fig API, this puts some restriction on minimum number of chirps in a burst/frame. Valid range 1 to 32768		
SF3_BURST_ PERIOD	4	BURST_PERIOD \geq (NUM_LOOPS_PER_BURST)*(Sum total of all unique chirp times per burst) + <i>InterBurstBlank-Time</i> , where <i>InterBurstBlankTime</i> is primarily for sensor calibration / monitoring, thermal control, and some minimum time needed for triggering next burst. InterBurstBlankTime \geq 110 μ s typical, refer a NOTE end of this API for more info. NOTE: Across bursts, if the value (Sum total of all unique chirp times per burst), is not a constant, then the actual available blank time can vary and needs to be accounted for. 1 LSB = 5 ns Valid range: 55 μ s to 1.342 s		
SF3_CHIRP_ START_INDX_ OFFSET	2	The chirp start index for each burst is determined as the chirp start index of the previous burst plus SFx_START_INDX_OFFSET * BURST_INDX i.e. CHIRP_START_INDX = SFx_CHIRP_START_INDX + (SFx_CHIRP_START_INDX_OFFSET × BURST_INDEX) Valid range: 0 to 511 A value of 0 can be used to repeat the same set of unique chirps across bursts. Non-zero values allow spanning a larger number of unique chirps (across bursts). This field Not applicable for loop-back sub-frame NOTE : If ADVANCE_CHIRP_CONFIG_EN is set then this Field is not used/applicable.		
SF3_NUM_ BURSTS	2	Number of bursts constituting this sub frame Valid range: 1 to 512 Valid range: 1 to 16 for loop-back sub-frame		

	1	
SF3_NUM_ OUTER_LOOPS	2	Number of times to loop over the set of above defined bursts, for this sub frame. Valid range: 1 to 64 This filed is Not applicable for loop-back sub-frame
RESERVED	2	0x0000
SF3_PERIOD	4	$\begin{array}{l} {\sf PERIOD} \geq {\sf Sum} \mbox{ total time of all bursts + InterSubFrame-BlankTime,} \\ {\sf Where, Sum total time of all bursts = Num Outer Loops * Num Bursts * Burst Period. \\ {\sf InterSubFrameBlankTime} \mbox{ is primarily for sensor calibration / monitoring, thermal control, transferring out any safety monitoring data if requested, hardware reconfiguration for next sub frame, retriggering of next SF. \\ {\sf InterSubFrameBlankTime} \geq 300 \ \mu \mbox{ stypical, refer a NOTE end of this API for more info.} \\ {\sf Add 150} \ \mu \mbox{ s to } {\sf InterSubFrameBlankTime} \mbox{ if data-path re-configuration needed in sub-frame boundary due to change in profile.} \\ {\sf 1 LSB = 5 ns} \\ {\sf Valid range: 300} \ \mu \mbox{ s to } 1.342 \ \mbox{ s} \end{array}$
RESERVED	4	0x0000000
RESERVED	4	0x0000000
SF4_PROFILE_ INDX	2	This is applicable only if FORCE_SINGLE_PROFILE is set to 0x01. Please refer to that field for description. Valid range: 0 to 3
SF4_CHIRP_ START_INDX	2	Start index of the first chirp in this sub frame Valid range: 0 to 511 This field Not applicable for loop-back sub-frame NOTE : If ADVANCE_CHIRP_CONFIG_EN is set then this Field is not used/applicable.
SF4_NUM_ UNIQUE_ CHIRPS_PER_ BURST	2	Number of unique chirps per burst Valid range: 1 to 512 This field Not applicable for loop-back sub-frame NOTE : If ADVANCE_CHIRP_CONFIG_EN is set then this Field is not used/applicable.

	Table 5.3	2 – continued from previous page
SF4_NUM_ LOOPS_PER_ BURST	2	Number of times to loop through the unique chirps in each burst, without gaps, using HW. Valid range: 1 to 255 NOTE : If ADVANCE_CHIRP_CONFIG_EN is set then this Field definition is modified. ADVANCE_CHIRP_CONFIG mode: This field configures the total number of chirps in a burst L. This should be pro- grammed as per below calculation. L = X * Y, where X is 1 to 512 (HW RAM) and Y is 1 to 128 (HW loops) The value of L should be a multiple of 4 (assuming each chirp is min 25us duration) i.e 1, 4, 8, 12, 16, 20, 32768 (max). The FW needs to prepare and update HW chirp RAM dynamically in advance chirp con- fig API, this puts some restriction on minimum number of chirps in a burst/frame. Valid range 1 to 32768
SF4_BURST_ PERIOD	4	BURST_PERIOD \geq (NUM_LOOPS_PER_BURST)*(Sum total of all unique chirp times per burst) + <i>InterBurstBlank-Time</i> , where <i>InterBurstBlankTime</i> is primarily for sensor calibration / monitoring, thermal control, and some minimum time needed for triggering next burst. InterBurstBlankTime \geq 110 μ s typical, refer a NOTE end of this API for more info. NOTE: Across bursts, if the value (Sum total of all unique chirp times per burst), is not a constant, then the actual available blank time can vary and needs to be accounted for. 1 LSB = 5 ns Valid range: 55 μ s to 1.342 s
SF4_CHIRP_ START_INDX_ OFFSET	2	The chirp start index for each burst is determined as the chirp start index of the previous burst plus SFx_START_INDX_OFFSET * BURST_INDX i.e. CHIRP_START_INDX = SFx_CHIRP_START_INDX + (SFx_CHIRP_START_INDX_OFFSET × BURST_INDEX) Valid range: 0 to 511 A value of 0 can be used to repeat the same set of unique chirps across bursts. Non-zero values allow spanning a larger number of unique chirps (across bursts). This field Not applicable for loop-back sub-frame NOTE : If ADVANCE_CHIRP_CONFIG_EN is set then this Field is not used/applicable.
SF4_NUM_ BURSTS	2	Number of bursts constituting this sub frame Valid range: 1 to 512 Valid range: 1 to 16 for loop-back sub-frame

SF4_NUM_ OUTER_LOOPS	2	Number of times to loop over the set of above defined bursts, for this sub frame. Valid range: 1 to 64 This filed is Not applicable for loop-back sub-frame		
RESERVED	2	0x0000		
SF4_PERIOD	4	$\begin{array}{l} {\rm SF_PERIOD} \geq {\rm Sum \ total \ time \ of \ all \ bursts \ + \ InterSub-FrameBlankTime,} \\ {\rm where, \ Sum \ total \ time \ of \ all \ bursts \ = \ Num \ Outer \ Loops \ * \\ {\rm Num \ Bursts \ * \ Burst \ Period.} \\ {\rm InterSubFrameBlankTime \ is \ primarily \ for \ sensor \ calibration \ / \ monitoring, \ thermal \ control, \ transferring \ out \ any \ safety \ monitoring \ data \ if \ requested, \ hardware \ reconfiguration \ for \ next \ sub \ frame, \ retriggering \ of \ next \ SF. \ InterSubFrameBlankTime \ \geq \ 300 \ \mu s \ typical, \ refer \ a \ NOTE \ end \ of \ this \ API \ for \ more \ info. \ Add \ 150 \ \mu s \ to \ InterSubFrameBlankTime \ if \ \ data-path \ re-configuration \ needed \ in \ sub-frame \ boundary \ due \ to \ change \ in \ profile. \ 1 \ LSB \ = \ 5 \ ns \ Valid \ range: \ 300 \ \mu s \ to \ 1.342 \ s \ \ to \ safety $		
RESERVED	4	0x0000000		
RESERVED	4	0x0000000		
NUM_FRAMES	2	Number of frames to transmit (1 frame = all enabled sub frames). If set to 0, frames are transmitted endlessly till Frame Stop message is received. Valid range: 0 to 65535		
TRIGGER_SE- LECT	2	0x0001 SWTRIGGER (Software API based trigger- ing): Frame is triggered upon receiving AWR_ FRAMESTARTSTOP_CONF_SB. There could be several tens of micro seconds uncertainty in trig- gering. This mode is not applicable if this device is configured as MULTICHIP_SLAVE in AWR_ CHAN_CONF_SB.		
		0x0002 HWTRIGGER (Hardware SYNC_IN based trig- gering): Each frame is triggered by rising edge of pulse in SYNC_IN pin, after receiving AWR_ FRAMESTARTSTOP_CONF_SB (this is to pre- vent spurious transmission). w.r.t. the SYNC_ IN pulse, the actual transmission has 5ns un- certainty in SINGLECHIP and only a 300 ps un- certainty (due to tight inter-chip synchronization needed) in MULTICHIP sensor applications as defined in AWR_CHAN_CONF_SB.		

Table 5.32 – continued	from	previous	page
------------------------	------	----------	------

FRAME_TRIG- GER_DELAY	4	Optional time delay from the SYNC_IN trigger to the oc- currence of frame chirps. Applicable only in SINGLECHIP sensor applications, as defined in AWR_CHAN_CONF_ SB. It is recommended only for staggering the transmis- sion of multiple radar sensors around the car for interfer- ence avoidance, if needed. Typical range is 0 to few tens of micro seconds. Units: 1 LSB = 5 ns
RESERVED	4	0x0000000
RESERVED	4	0x0000000

NOTE1:	If hardware trigger mode is used with SUBFRAMETRIGGER = 0, then the trigger should be issued for each burst. If SUB-FRAMETRIGGER = 1, then the trigger needs to be issued for each sub-frame.
NOTE2:	If hardware triggered mode is used, the SYNC_IN pulse width should be less than 4 us. Also, the minimum pulse width of SYNC_ IN should be 25 ns.
NOTE3:	If frame trigger delay is used with hardware triggered mode, then external SYNC_IN pulse periodicity should take care of the config- ured frame trigger delay and frame periodicity. The external pulse should be issued only after the sum total of frame trigger delay and frame periodicity. See figure below
NOTE4:	In Hw triggered mode, the Hw pulse should be issued or periodicity of pulse is configured such that, the pulse is generated only 150us after the completion of previous frame/burst (The pulse should not be issued before end of previous frame/burst). The time delta between end of previous frame/burst and raising edge of Hw pulse recommended to be $<$ 300us.
NOTE5:	The PF_DIGITAL_OUTPUT_SAMPLING_RATE impacts the LVD- S/CSI2 data rate in a sub-frame, so it is recommended to analyze timing impact if different sample rate is used across chirps in a sub- frame.
NOTE6:	If the devices' self-triggered periodic monitoring features are en- abled, the user needs to set the overall frame period taking into consideration the monitoring periodicities (refer to CALIB_MON_ TIME_UNIT in AWR_CALIB_MON_TIME_UNIT_CONF_SB).
NOTE7:	Please refer Table 11.4 and Table 11.5 for details on minimum inter- burst and inter sub-frame/frame blank time requirements.
NOTE8:	If advance chirp configuration is enabled then this API takes around 1.8ms to execute in RadarSS sub System for 128 chirps. The error checks for each parameters of advance chirp is done in frame configuration API. This option can be disabled by using AD- VANCE_CHIRP_ERROR_CHK_DIS option in AWR_RF_RADAR_ MISC_CTL_SB API. If this error check takes more than 50ms due to large number of chirps then it is recommended to disable RadarSS WDT while executing this API.
NOTE9:	Due to data synchronizers in the synthesizer chirp starting path, there can be 0/1.1 ns bimodal jitter in the starting of each RF chirp wrt RX ADC sampling. This can lead to a small chirp to chirp phase jitter whose magnitude depends on IF frequency. For example, this translates to $360^{\circ} \times 1.1$ ns $\times 1$ MHz = 0.4° at 1-MHz IF in range dimension; 4° for 10-MHz IF, and 8° for 20-MHz IF. If the inter- chirp jitter mitigation feature is enabled in products where it is avail- able, this jitter will be mitigated from inter-chirp perspective and be present only as an inter-burst, inter-sub-frame and inter-frame jitter, with the same magnitude.

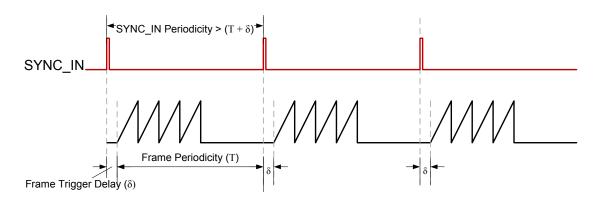


Figure 5.3: Frame trigger delay in case of external hardware trigger

5.5.7 Sub block 0x0106 – AWR_PERCHIRPPHASESHIFT_CONF_SB

This sub block defines static phase shift configurations per chirp in each of the TXs. The API is applicable only in certain devices (Please refer data sheet). This API will be honored after enabling PERCHIRP_PHASESHIFTER_EN in AWR_RF_RADAR_MISC_CTL_SB. Table 5.33 describes the contents of this sub block.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0106
SBLKLEN	2	Value = 12
CHIRP_START_ INDX	2	Start index of the chirp for configuring the phase shifter Valid range 0 to 511
CHIRP_END_ INDX	2	End index of the chirp for configuring the phase shifter Valid range 0 to 511
TX0_PHASE_ SHIFTER	1	TX0 phase shift valueBitsTX0 phase shift definitionb1:0RESERVED (set it to 0b00)b7:2TX0 phase shift value1 LSB = $360^{\circ}/2^{6} = 5.625^{\circ}$ Valid range: 0 to 63

 Table 5.33:
 AWR_PERCHIRPPHASESHIFT_CONF_SB contents

-				
TX1_PHASE_	1	TX1 phase shift value		
SHIFTER		Bits TX1 phase shift definition		
		b1:0 RESERVED (set it to 0b00)		
		b7:2 TX1 phase shift value 1 LSB = $360^{\circ}/2^{6} = 5.625^{\circ}$ Valid range: 0 to 63		
TX2_PHASE_	1	TX2 phase shift value		
SHIFTER		Bits TX2 phase shift definition		
		b1:0 RESERVED (set it to 0b00)		
		b7:2 TX2 phase shift value 1 LSB = $360^{\circ}/2^{6} = 5.625^{\circ}$ Valid range: 0 to 63		
TX3_PHASE_ SHIFTER	1	TX3 phase shift value (only applicable for xWR294x/xWR254x)		
		Bits TX3 phase shift definition		
		b1:0 RESERVED (set it to 0b00)		
		b7:2 TX3 phase shift value 1 LSB = $360^{\circ}/2^{6} = 5.625^{\circ}$ Valid range: 0 to 63		

NOTE1:	Phase shifter(PS) settings are applied in advance at max -5us or at -(Idle_time-1.28us-DfeLagTime) from the knee of the ramp. If idle time is > 6.28us then PS is applied always at -5us and if idle time < 6.28us then PS is applied at -(Idle time-1.28us-DfeLagTime) from
NOTE2:	knee of the ramp as shown in figure below. Where DfeLagTime is internal DFE lag time (Please refer rampgen calculator). It is recommended to configure TX start time > -5us or -(Idle_time- 1.28us-DfeLagTime) based on PS apply time as shown in figure below.

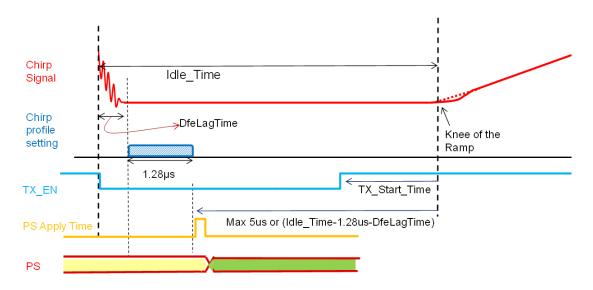


Figure 5.4: TX PS apply timing in a chirp

5.5.8 Sub block 0x0107 – AWR_PROG_FILT_COEFF_RAM_SET_SB

This sub block can be used to program the coefficients for the programmable filter. This is a new feature added in **AWR2243/xWR6243/xWR294x/xWR254x**.

The programmable filter, when enabled, overrides the device's hard-coded digital decimation filter and allows the user to obtain any desired filter response by programming appropriate filter coefficients. The programmable filter's sampling rate is 2x Output Rate programmed for the profile. The programmable filter's output is down-sampled by 2 to form the device's ADC data output. The programmable filter allow for a trade-off between digital filter chain settling time and close-in anti-alias attenuation. In AWR2243/xWR6243, the Maximum DFE outout sampling rate in real mode is 25Msps and in complex mode is 22.5Msps. In xWR294x and xWR254x, only real ADC mode is supported. The maximum DFE output sampling rate is limited to 45 Msps.

A real-coefficient FIR with up to 63 taps (16-bit coefficients) is supported in both Complex and real output mode in AWR2243/xWR6243 devices and only in Real mode in xWR294x and xWR254x. The maximum number of filter coefficients (or taps) is subject to the limit mentioned in 5.34 and 5.35.

Filter normalization: For a Low Pass Filter example usage, in order to get 0dB gain at 0Hz (and match the device's default filter gain), the sum of all filter coefficients should be 2^{15} . A higher sum can cause filter saturation and is not recommended. A lower sum is allowed and will result in lower gain (e.g. 6dB lower if the sum is 2^{14}). Note that the maximum coefficient magnitude <

 2^{15} .

Table 5.34:	Programmable filter DFE sampling rate and max number of taps for
	AWR2243/xWR6243

11010240/ X 0100240			
number of n Complex			

Table 5.35: Programmable filter DFE sampling rate and max number of taps for xWR294x/xWR254x

DFE sampling	Max number of
rate Fs (Msps)	taps
>=25, <=45	18
>=12.5, <25	42
>=6.25, <12.5	63
else	63

NOTE: This API should be issued before AWR_PROFILE_CONF_SET_ SB.

Table 5.36 describes the contents of this sub block.

Table 5.36: AWR_PROG_FILT_COEFF_RAM_SET_SB contents	ļ
---	---

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0107
SBLKLEN	2	Value = 212
COEFF_ARRAY	208	The array of coefficients for the programmable filter, across all profiles, to be stored in the coefficient RAMS. Each tap is a 16-bit signed <1.15, s> number. The exact set of taps to be used for a given profile can be specified through AWR_PROG_FILT_CONF_SB NOTE: All the filter taps across profiles are to be provided in one shot. There is a HW constraint that each profile's filter taps should start at four 32-bit word aligned address (i.e., the coefficients corresponding to any profile should start at array index which is a multiple of 8). Unused coef- ficients shall be initialized to zero.

5.5.9 Sub block 0x0108 - AWR_PROG_FILT_CONF_SET_SB

This sub block can be used to configure the coefficients for the programmable filter and associate them to a certain profile.

The API is applicable only in xWR1642/IWR6843/xWR1843/**AWR2243**/**xWR6243**/**xWR294x**/**xWR254x**. This API should be issued before AWR_PROFILE_CONF_SET_SB. Table 5.37 describes the contents of this sub block.

Field Name Number **Description** of bytes SBLKID 2 Value = 0x01082 SBLKLEN Value = 8PROFILE INDX 1 This field indicates the profile Index for which this configuration applies. PROG FILT The index of the first coefficient of the programmable fil-1 COEFF START ter taps corresponding to this profile in the coefficient RAM INDEX programmed using AWR PROG FILT COEFF SET SB NOTE: The profile's filter tap start index shall be 8 tap aligned (four 32-bit word aligned address). PROG FILT 1 The length (number of taps) of the filter corresponding to LENGTH this profile. Together with the previous field, this determines the set of coefficients picked up from the coefficient RAM to form the filter taps for this profile. NOTE: This has to be an even number. For odd-length filters, a 0 (zero) tap needs to be appended at the end to make the length even. This is a HW constraint. PROG FILT 1 Relevant only for the Complex output mode with the pro-FREQ SHIFT grammable filter. Determines the magnitude of the fre-FACTOR quency shift do be done before filtering using the realcoefficient programmable filter. This is not applicable to xWR294x and xWR254x devices. 1 LSB = 0.01 \times Fs shift, where Fs is the output sampling rate, specified as PF_DIGITAL_OUTPUT_SAMPLING_ RATE in AWR_PROFILE_CONF_SET_SB

 Table 5.37:
 AWR_PROG_FILT_CONF_SET_SB

NOTE1:	PROG_FILT_COEFF_START_INDEX should be 8 tap aligned (four 32-bit word aligned address)
NOTE2:	Programmable filter should be enabled for all the profiles config- ured in a frame. Programmable filter getting switched (enabled or disabled) within a frame is not supported.
NOTE3:	Programmable filter APIs (AWR_PROG_FILT_COEFF_RAM_ SET_SB and AWR_PROG_FILT_CONF_SET_SB) should not be issued when frames are ongoing.

5.5.10 Sub block 0x0109 - AWR_CALIB_MON_TIME_UNIT_CONF_SB

This API sub block is used to set calibration and monitoring time unit.

Table 5.38: AWR_CALIB_MON_TIME_UNIT_CONF_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x0109	
SBLKLEN	2	Value = 12	

Table 5.38 – continued from previous page					
CALIB_MON_ TIME_UNIT	2	Defines the basic time unit, in terms of which calibration and/or monitoring periodicities are to be defined.			
		If any monitoring functions are desired and enabled, the monitoring infrastructure automatically inherits this time unit as the period over which the various monitors are cyclically executed; so this should be set to the desired FTTI.			
		For calibrations, a separate CALIB_PERIODICITY can be specified, as a multiple of this time unit, in AWR_RUN_TIME_CALIBRATION_CONF_AND_TRIGGER_SB NOTE: Even though calibrations many not be desired every time unit, every time unit shall be made long enough to include active chirping time, time required for all enabled calibrations and monitoring functions.			
		1 LSB = Duration of one frame Recommendation: See examples in Section 12 Default value in Device: 100 Valid range : 40ms to 250ms (Derive actual count value from programmed frame period)			
		NOTE: In cascade mode this value shall be config- ured based on monitoring time required to monitor all cascade devices. For example in MONITORING_MODE 0 (Auto mode) typical CALIB_MON_TIME_UNIT value is 4x (4 chip cas- cade system) compared to single chip monitor duration. Host shall program cascade system CALIB_MON_TIME_ UNIT value in all devices (4x in Auto mode), the RadarSS schedules the monitors in round robin fashion using NUM_OF_CASCADED_DEV and DEVICE_ID settings. In MONITORING_MODE 1 (API based trigger), this value shall be configured based on monitoring time required to monitor all cascade devices using API based trigger.			

NUM_OF_CAS- CADED_DEV	1	The number of cascaded devices in System. This configuration by default set to value 1 in single chip mode. In Cascade mode, this configuration can be set to Max num of devices in the cascade system and this needs to be set based on MONITORING_MODE setting. This con- trol helps the device to schedule autonomous monitors in round robin fashion to avoid inter device interference. if MONITORING_MODE is 0 (Autonomous Mode - De- vice automatically controls the sequence of monitoring trig- gers), then recommended to set this configuration to Max num of devices (Example value 4 in 4-chip cascade sys- tem). if MONITORING_MODE is 1 (API based trigger Mode - Host controls the sequence of monitoring triggers), then recommended to set this configuration to value 1 irrespec- tive of num of cascade devices. Default value: 1
DEVICE_ID	1	Device Index value for each devices in cascade System. This configuration by default set to value 0 in single chip mode. In Cascade mode, this configuration can be set to value 0, 1, 2, 3 depending on Max num of devices in the cascade system and this needs to be set based on MONITORING_ MODE setting. This control helps the device to schedule autonomous monitors in round robin fashion to avoid inter device interference. if MONITORING_MODE is 0 (Autonomous Mode - De- vice automatically controls the sequence of monitoring trig- gers), then recommended to set this configuration to 0 (master), 1 (slave), 2(slave), 3(slave) in 4-chip cascade system. if MONITORING_MODE is 1 (API based trigger Mode - Host controls the sequence of monitoring triggers), then recommended to set this configuration to value 0 in all cas- cade devices. Default value: 0

MONITORING_ MODE	1	Monitoring mode. Mostly applicable for cascade devices (recommended) to control execution of monitoring types, refer AWR_ MONITOR_TYPE_TRIG_CONF_SB for more details . 0 Autonomous monitoring trigger (default in single chip mode)	
		1 API based monitoring trigger (recommended in cascade mode) NOTE: This feature is supported only on AWR2243/xWR6243/xWR294x/xWR254x devices. NOTE: Disable WDT if API based monitoring trigger is enabled.	
RESERVED	3	0x00_0000	

NOTE1:	Even if no explicit calibration or monitoring execution is desired by the user, CALIB_MON_TIME_UNIT field MUST be set to honor the mentioned valid range. This is because the device internally needs to perform PLL calibrations to keep them in lock, and their execution
	requires this parameter to be within this mentioned valid range.
NOTE2:	The Minimum total blank time in a CALIB_MON_TIME_UNIT shall
	be 1ms to run internal APLL and SYNTH calibrations + \sim 12.5%
	of CALIB MON TIME UNIT for WDT clearing time if WDT is en-
	abled. Refer to Table 12.10, Table 12.11 for the duration of run time
	monitors and Table 12.14 for software overheads.
NOTE3:	The CALIB_MON_TIME_UNIT is applicable for one frame trigger
NOTES.	
	API. Once frame is stopped then FTTI will reset, CALIB_MON_
	TIME_UNIT is not applicable across multiple SW frame trigger API.
NOTE4:	In case of single frame configured in frame config API then set
	CALIB MON TIME UNIT to one to run all monitors. It is rec-
	ommended to use ONE TIME CALIB ENABLE MASK in AWR
	RUN_TIME_CALIBRATION_CONF_AND_TRIGGER_SB API to
	run one shot calibrations before frame trigger in single frame case.

5.5.11 Sub block 0x010A – AWR_RUN_TIME_CALIBRATION_CONF_AND_ TRIGGER_SB

This API is used to trigger one time calibrations instantaneously or schedule periodic run time calibrations, which will be scheduled while framing in inter-burst idle time (Min available idle time of 250 μ s is required).

$\textbf{Table 5.39: AWR_RUN_TIME_CALIBRATION_CONF_AND_TRIGGER_SB}$

Field Name	Number	Description	
	of bytes		
SBLKID	2	Value = 0x010A	
SBLKLEN	2	Value = 2	24
ONE_TIME_ CALIB_ENABLE_ MASK	4	Upon receiving this trigger message, one time calibration of various RF/analog aspects are triggered if the corre- sponding bits in this field are set to 1. The response is in the form of an asynchronous event sent to the host. The calibrations, if enabled, are performed after the completion of any ongoing calibration cycle, and the calibration results take effect from the frame that begins after the asynchronous event response is sent from the BSS. APLL and SYNTH calibrations are done always internally irrespective of bits are enabled or not, the time required for these calibrations must be allocated.	
		Bit	Definition
		b0	RESERVED
		b1	RESERVED
		b2	RESERVED
		b3	RESERVED
		b4	LODIST_CALIBRATION_EN
		b5	RESERVED
		b6	RESERVED
		b7	RESERVED
		b8	PD_CALIBRATION_EN
		b9	TX_POWER_CALIBRATION_EN
		b10	RX_GAIN_CALIBRATION_EN
		b11	TX_PHASESHIFTER_CALIBRATION_EN (only for xWR294x/xWR254x)
		b12	RESERVED
		b31:13	RESERVED 0b0000_0000_0000_0000_000
		Default v	

contents

PERIODIC_ CALIB_ENABLE_ MASK	4	Automatic periodic triggering of calibrations of various RF/analog aspects can be set up by the host issuing this message with corresponding bits in this field set to 1.	
		Bit	Definition
		b0	RESERVED
		b1	RESERVED
		b2	RESERVED
		b3	RESERVED
		b4	LODIST_CALIBRATION_EN
		b5	RESERVED
		b6	RESERVED
		b7	RESERVED
		b8	PD_CALIBRATION_EN
		b9	TX_POWER_CALIBRATION_EN
		b10	RX_GAIN_CALIBRATION_EN
		b11	TX_PHASESHIFTER_CALIBRATION_EN (only for xWR294x/xWR254x)
		b12	RESERVED
		b31:13 RESERVED APLL and SYNTH calibrations are done always internally (at a periodicity of 1 second) irrespective of bits are enabled or not, the time required for these calibrations must be allocated. Refer to Table 12.5 for the duration of run time calibrations Default value: 0 NOTE: In cascade mode it is recommended to disable (set value 0 in this field) automated periodic calibration for phase synchronization.	

		9 – continueu nom previous page
CALIBRATION_ PERIODICITY	4	This field is applicable only for those calibrations which are enabled to be done periodically in the PERIODIC_CALIB_ ENABLE_MASK field. This field indicates the desired periodicity of calibrations. If this field is set to N, the results of the first calibration (based on ONE_TIME_CALIB_ENABLE_MASK) are applicable for the first N CALIB_MON_TIME_UNITs. The results of the next calibration are applicable for the next N CALIB_MON_TIME_UNITs, and so on.
		Recommendation: Set CALIBRATION_PERIODIC- ITY such that frequency of calibrations is greater than or equal to 1 second.
		1 LSB = 1 CALIB_MON_TIME_UNIT, as specified in AWR_CALIB_MON_TIME_UNIT_CONF_SB.
		If the user does not wish to receive calibration reports when periodic calibrations are not enabled, then the user should set CALIBRATION_PERIODICITY to 0 Default value: 0 Valid Range: 0 (Disable), 4 to 100 (value 1 is not a valid value, this will cause internal APLL and SYNTH calibrations to stop) NOTE: In cascade mode it is recommended to disable (set value 0 in this field) automated periodic calibration for phase synchronization.
ENABLE_CAL_	1	Bit Definition
REPORT		b0 ENABLE_SUMMARY_REPORT 0 Summary reports are disabled 1 Summary reports are enabled Default value: 0
		b7:1 RESERVED NOTE1: If calibration reports are enabled, the reports will be sent every 1 second whenever internal calibrations (APLL and SYNTH) are triggered and at every CALIBRA- TION_PERIODICITY when the user enabled calibrations are triggered. NOTE2: If user has not enabled any one time calibrations, but if calibration report is enabled, then after issuing this API, the firmware will attempt to run the APLL and SYNTH calibrations and the calibration report will be immediately sent out.
RESERVED	1	0x00
L	1	1

	4	D:+	Definition
TX_POWER_ CAL_MODE	1	Bit	Definition
CAL_WODE		b0	TX_POWER_CAL_MODE
			0 Update TX gain setting from LUT and do a closed loop calibration (OLPC + CLPC)
			1 Update TX gain settings from LUT only
			(OLPC only)
			OLPC: Open Loop Power Control. In this
			mode the TX stage codes are set based
			on a coarse measurement and a LUT generated for every temperature and the
			stage codes are picked from the LUT
			CLPC: Closed Loop Power Control. In this
			mode the TX stage codes are picked from
			the coarse LUT as generated in OLPC step. Later the TX power is measured
			and the TX stage codes are corrected to
			achieve the desired TX power accuracy.
			Default value: 0
		b7:1	RESERVED
CAL_TEMP_ INDEX_OVER- RIDE_ENABLE	1	device's ing fron	d enables the Host to override the use of internal temperature readings for choos- t end calibration settings (e.g. bias cur- x Gain, Tx Gain and TX phase LUT). Definition
		b0	TX_TEMP_INDEX_OVERRIDE_EN
		b1	RX_TEMP_INDEX_OVERRIDE_EN
		b2	LODIST_TEMP_INDEX_OVERRIDE_EN
		b3	TXPHASE_TEMP_INDEX_OVERRIDE_EN
		b7:4	RESERVED
		Value	Definition
		0	Override disable
		1	Override enable
			value: 0 (Override disable, use device tempera-
		ture)	This feature is supported only on
			3/xWR294x/xWR254x devices.
			If any of the override bits are enabled, AWR_RF_ should not be invoked again.

		1	1 10
CAL_TEMP_ INDEX_TX	1	This override front end.	temperature index is used to calibrate Tx
		Index Value	Definition
		0	Index for temperature [< -30] degC
		1	Index for to temperature [-30, -20] degC
		2	Index for to temperature [-20, -10] degC
		3	Index for to temperature [-10, 0] degC
		4	Index for to temperature [0, 10] degC
		5	Index for to temperature [10, 20] degC
		6	Index for to temperature [20, 30] degC
		7	Index for to temperature [30, 40] degC
		8	Index for to temperature [40, 50] degC
		9	Index for to temperature [50, 60] degC
		10	Index for to temperature [60, 70] degC
		11	Index for to temperature [70, 80] degC
		12	Index for to temperature [80, 90] degC
		13	Index for to temperature [90, 100] degC
		14	Index for to temperature [100, 110] degC
		15	Index for to temperature [110, 120] degC
		16	Index for to temperature [120, 130] degC
		17	Index for to temperature [130, 140] degC
		18	Index for to temperature [> 140] degC

			1 10
CAL_TEMP_ INDEX_RX	1	This override front end.	temperature index is used to calibrate Rx
		Index Value	Definition
		0	Index for temperature [< -30] degC
		1	Index for to temperature [-30, -20] degC
		2	Index for to temperature [-20, -10] degC
		3	Index for to temperature [-10, 0] degC
		4	Index for to temperature [0, 10] degC
		5	Index for to temperature [10, 20] degC
		6	Index for to temperature [20, 30] degC
		7	Index for to temperature [30, 40] degC
		8	Index for to temperature [40, 50] degC
		9	Index for to temperature [50, 60] degC
		10	Index for to temperature [60, 70] degC
		11	Index for to temperature [70, 80] degC
		12	Index for to temperature [80, 90] degC
		13	Index for to temperature [90, 100] degC
		14	Index for to temperature [100, 110] degC
		15	Index for to temperature [110, 120] degC
		16	Index for to temperature [120, 130] degC
		17	Index for to temperature [130, 140] degC
		18	Index for to temperature [> 140] degC

			rom previous page
CAL_TEMP_ INDEX_LODIST	1	This override distribution of Index Value	temperature index is used to calibrate LO front end. Definition
		0	Index for temperature [< -30] degC
		1	Index for to temperature [-30, -20] degC
		2	Index for to temperature [-20, -10] degC
		3	Index for to temperature [-10, 0] degC
		4	Index for to temperature [0, 10] degC
		5	Index for to temperature [10, 20] degC
		6	Index for to temperature [20, 30] degC
		7	Index for to temperature [30, 40] degC
		8	Index for to temperature [40, 50] degC
		9	Index for to temperature [50, 60] degC
		10	Index for to temperature [60, 70] degC
		11	Index for to temperature [70, 80] degC
		12	Index for to temperature [80, 90] degC
		13	Index for to temperature [90, 100] degC
		14	Index for to temperature [100, 110] degC
		15	Index for to temperature [110, 120] degC
		16	Index for to temperature [120, 130] degC
		17	Index for to temperature [130, 140] degC
		18	Index for to temperature [> 140] degC
CAL_TEMP_IN- DEX_TXPHASE	1	This override phase shifter of	temperature index is used to calibrate TX of front end.
		Index Value	Definition
		0	Index for temperature [< 5] degC
		1	Index for temperature [5, 50] degC
		2	Index for temperature [50, 95] degC
		3	Index for temperature [> 95] degC

NOTE1:	The API AWR_RUN_TIME_CALIBRATION_CONF_AND_ TRIGGER_SB can be issued when the device is framing, the calibration periodicity update or one time calibrations can be done while frames are running.
NOTE2:	The CAL_TEMP_INDEX_OVERRIDE_ENABLE is supported only for one time calibrations enabled using ONE_TIME_CALIB_ ENABLE_MASK, the periodic run time calibrations are recom- mended to be disabled using PERIODIC_CALIB_ENABLE_MASK.
NOTE3:	In case of single frame configured in frame config API then it is recommended to use ONE_TIME_CALIB_ENABLE_MASK in AWR_RUN_TIME_CALIBRATION_CONF_AND_TRIGGER_SB API to run one shot calibrations before frame trigger.

5.5.12 Sub block 0x010B - AWR_DIGITAL_COMP_EST_CONTROL_SB

This API can be used to compensate various RX and gain/phase offsets and same API can be used to estimation the same using TX frequency shift.

NOTE1:	This API is supported only on AWR2243/xWR294x/xWR254x de- vices. Please refer latest DFP release note for more info.
NOTE2:	Issue this API first in the sequence before AWR_PROFILE_CONF_ SET_SB API.
NOTE3:	The Digital TX frequency shift enable mode in below API is for de- bug purpose only, the functional phase shifter will not be opera- tional when this mode is used. It is recommended to re-issue pro- file config API after disabling this mode before running functional frames.
NOTE4:	An application for the digital delay compensation field may be to digitally compensate for linear IF frequency dependent phase mismatch (e.g. mismatch across devices in cascaded operation, caused by DIG_SYNC_IN path mismatches). The residual phase error can be up to +/-0.5 degree.
NOTE5:	The digital compensation is applied to the RX signal in below order: DIGTIAL_RX_DELAY_COMP, DIGITAL_RX_FREQ_SHIFT followed DIGITAL_RX_PHASE_SHIFT_COMP

Table 5.40: AWR_DIGITAL_COMP_EST_CONTROL_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x010B
SBLKLEN	2	Value = 72

PROFILE_INDX	1		This field indicates the profile Index for which this configu- ration applies.	
DIGITAL_COMP_ EN	1	This field can be used to enable or disable different digital compensation provided in this API. Bits Assignment		
			Digital RX gain compensation enable NOTE: This field is NOT applicable for xWR254x devices.	
		b1	Digital RX phase compensation enable	
			Digital RX delay compensation enable NOTE : If ADC_START_TIME_RES is set to 1 in AWR_RF_MISC_CTL_SB, this feature is not sup- ported.	
		b3	Digital RX frequency shift enable	
			Digital TX frequency shift enable (For debug purpose only)	
		b31:5 Value 0: Value 1:		
RESERVED	2	0x0000		
DIGITAL_RX_ GAIN_COMP	4	One byte	al gain compensation for each RX channels per RX (8-bit signed number). his field is NOT applicable for xWR254x devices.	
		Byte	Assignment	
		0	RX0 digital gain	
		1	RX1 digital gain	
		2	RX2 digital gain	
			RX3 digital gain	
			0.1 dB, signed nge: -120 to 119	

DIGITAL_RX_ PHASE_SHIFT_ COMP	8	The digital phase shift compensation for each RX channels Two bytes per RX Bytes Assignment 1:0 RX0 digital phase shift 3:2 RX1 digital phase shift 5:4 RX2 digital phase shift 7:6 RX3 digital phase shift 1 LSB = $360^{\circ}/2^{16} \approx 0.0055^{\circ}$, unsigned Valid Range: 0 to 65535 NOTE: This field is NOT applicable when ADC_OUT_FMT	
		is 00 (real output)	
DIGITAL_RX_ DELAY_COMP	4	The digital delay compensation for each RX channels One byte per RX (8-bit unsigned number)	
		Byte Assignment	
		0 RX0 digital delay	
		1 RX1 digital delay	
		2 RX2 digital delay	
		3 RX3 digital delay	
		1 LSB = 556 ps/16, unigned	
		Valid Range: 0 to 255	
		The RX ADC output is delayed by this amount. The LSB	
		becomes twice of the above if ADC low power mode is enabled.	
RESERVED	16	0x0000000	

DIGITAL_RX_ FREQ_SHIFT	8	The digital frequency shift compensation for each RX channels Two bytes per RX
		Bytes Assignment
		, .
		1:0 RX0 digital frequency shift
		3:2 RX1 digital frequency shift
		5:4 RX2 digital frequency shift
		7:6 RX3 digital frequency shift
		1 LSB = $(ADCSamplingRateHz *$
		floor(100MHz/ADCSamplingRateHz)) *
		$1/2^{16}, signed$
		Valid Range: -32768 to 32767
		The frequency range of interest in RX digital output is
		shifted by this amount. As an example, this may be used
		to view the spectrum beyond the conventional [0 to Output
		Sampling Rate] range in Complex 1X mode, say [FREQ_
		SHIFT to Output Sampling Rate + FREQ_SHIFT].
		NOTE: This field is NOT applicable when ADC_OUT_FMT
		is 00 (real output)

DIGITAL_TX_ FREQ_SHIFT	8	The digital frequency shift compensation for each TX channels, this is supported only for TX0 and TX1 in AWR2243. xWR6243 supports digital frequency shift for all 3 TX channels. Two bytes per TX Bytes Assignment 1:0 TX0 digital frequency shift 3:2 TX1 digital frequency shift 5:4 TX2 digital frequency shift (RESERVED for AWR2243) 7:6 TX3 digital frequency shift (applicable only for xWR294x/xWR254x) 1 LSB = $100MHz/2^{16}$, <i>signed</i> Valid Range: -32768 to 32767 The frequency of the TX output may be shifted wrt the RX mixer LO frequency by this amount. If such functionality is not desired, this register should be set to 0. This register cannot be used in conjunction with TX phase shifter. This may be useful in factory calibration of IF frequency dependent effects. As an example, in cascaded appli- cations, the JE frequency at which a corner reflector's	
		1 LSB = $100MHz/2^{16}$, signed Valid Range: -32768 to 32767	
		mixer LO frequency by this amount. If such functionality is not desired, this register should be set to 0. This register	
		NOTE: The TX frequency shifting involves some sharing of digital modulation hardware, which imposes following constraints: Not more than 2 distinct non-zero values can be set in DIGITAL_TX_FREQ_SHIFT TX0, TX1, TX2, TX3 The valid values of DIGITAL_TX_FREQ_SHIFT TX2 are	
		either 0 or same as that for TX3. Not more than 2 TX's in the device can be simultaneously enabled in the Chirp Configuration API's if using DIGITAL_ TX_FREQ_SHIFT in this API	
RESERVED	16	0x0000000	

5.5.13 Sub block 0x010C - AWR_RX_GAIN_TEMPLUT_SET_SB

This API can be used to overwrite the RX gain temperature LUT used in firmware. This API should be issued after profile configuration API.

Table 5.41: AWR_RX_GAIN_TEMPLUT_SET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x010C
SBLKLEN	2	Value = 28
PROFILE_INDX	1	This field indicates the profile Index for which this configu- ration applies.
RESERVED	1	0x00

RX_GAIN_CODE19Byte0:RX gain code for temperature $\{-30, -20\}$ °C Byte1:RX gain code for temperature $[-30, -20)$ °C Byte2:RX gain code for temperature $[-10, 0)$ °C Byte3:RX gain code for temperature $[-10, 0)$ °C Byte4:RX gain code for temperature $[10, 0)$ °C Byte4:RX gain code for temperature $[10, 0)$ °C Byte4:RX gain code for temperature $[10, 20)$ °C Byte5:RX gain code for temperature $[20, -10)$ °C Byte4:RX gain code for temperature $[20, 30)$ °C Byte5:RX gain code for temperature $[20, 30)$ °C Byte7:RX gain code for temperature $[50, 60)$ °C Byte10:RX gain code for temperature $[50, 60)$ °C Byte11:RX gain code for temperature $[70, 100)$ °C Byte12:RX gain code for temperature $[10, 110)$ °C Byte13:RX gain code for temperature $[10, 110)$ °C Byte13:RX gain code for temperature $[110, 120)$ °C Byte13:RX gain code for temperature $[120, 130)$ °C Byte13:RX gain code for temperature $[120, 130)$ °C Byte13:RX gain code for temperature $[120, 130)$ °C Byte13:RX gain code for temperature $[120, 140)$ °C Byte13:RX gain code for temperature $[210, 100]$ °C Byte13:RX gain code for temperature $[210, 100]$ °C Byte13:RX gain code for temperature $[120, 130]$ °C Byte13:RX gain code for temperature $[120, 130]$ °C Byte13:RX gain code for temperature $[120, 140]$ °C Each byte is encoded as follows AWR2243AwrR2243AwrR2243WR6243CODE KSain Code Sain CoDE <th></th> <th>Table 5.4</th> <th>1 – contin</th> <th>ued from previous page</th>		Table 5.4	1 – contin	ued from previous page			
Byte2:RX gain code for temperature [-20, -10) °CByte3:RX gain code for temperature [-10, 0) °CByte4:RX gain code for temperature [0, 10) °CByte5:RX gain code for temperature [10, 20) °CByte6:RX gain code for temperature [20, 30) °CByte7:RX gain code for temperature [20, 30) °CByte8:RX gain code for temperature [50, 60) °CByte9:RX gain code for temperature [60, 70) °CByte10:RX gain code for temperature [60, 70) °CByte11:RX gain code for temperature [60, 70) °CByte12:RX gain code for temperature [60, 70) °CByte13:RX gain code for temperature [90, 100) °CByte14:RX gain code for temperature [90, 100) °CByte15:RX gain code for temperature [100, 110) °CByte16:RX gain code for temperature [100, 100) °CByte17:RX gain code for temperature [100, 100) °CByte18:RX gain code for temperature [100, 100) °CByte19:RX gain code for temperature [100, 100) °CByte19:RX gain code for temperature [100, 100) °CByte11:RX gain code for temperature [100, 100) °CByte13:RX gain code for temperature [100, 100) °CByte14:RX gain code for temperature [100, 100) °CByte15:RX gain code for temperature [100, 100) °CByte18:RX gain code for temperature [100, 100) °CByte19:RT gain code for temperature [100, 100) °CByte18:RX gain code for temperature [100, 100) °CByte19:RT gain is IF_ GAIN_CODELavainwWR243:Bits	RX_GAIN_CODE	19	Byte0:	RX gain code for temperature ${<}\text{-30}\ ^\circ\text{C}$			
Byte3:RX gain code for temperature $[-10, 0)$ °CByte4:RX gain code for temperature $[0, 10)$ °CByte5:RX gain code for temperature $[10, 20)$ °CByte6:RX gain code for temperature $[20, 30)$ °CByte7:RX gain code for temperature $[30, 40)$ °CByte8:RX gain code for temperature $[30, 40)$ °CByte9:RX gain code for temperature $[30, 60)$ °CByte10:RX gain code for temperature $[50, 60)$ °CByte11:RX gain code for temperature $[50, 60)$ °CByte12:RX gain code for temperature $[80, 90)$ °CByte13:RX gain code for temperature $[90, 100)$ °CByte14:RX gain code for temperature $[90, 100)$ °CByte15:RX gain code for temperature $[90, 100)$ °CByte14:RX gain code for temperature $[10, 110)$ °CByte15:RX gain code for temperature $[10, 110)$ °CByte16:RX gain code for temperature $[10, 120)$ °CByte17:RX gain code for temperature $[10, 100)$ °CByte18:RX gain code for temperature $[10, 100)$ °CByte19:RX gain code for temperature $[10, 100)$ °CByte19:RX gain code for temperature $[10, 100)$ °CByte19:RX gain code for temperature $[10, 100]$ °CByte19:RX gain code for temperature			Byte1:	RX gain code for temperature [-30, -20) $^\circ\text{C}$			
Byte4:RX gain code for temperature [0, 10) °CByte5:RX gain code for temperature [10, 20) °CByte6:RX gain code for temperature [20, 30) °CByte7:RX gain code for temperature [30, 40) °CByte8:RX gain code for temperature [30, 60) °CByte9:RX gain code for temperature [30, 60) °CByte10:RX gain code for temperature [50, 60) °CByte11:RX gain code for temperature [50, 60) °CByte12:RX gain code for temperature [30, 100) °CByte13:RX gain code for temperature [30, 100) °CByte14:RX gain code for temperature [10, 110) °CByte15:RX gain code for temperature [10, 110) °CByte16:RX gain code for temperature [10, 110) °CByte17:RX gain code for temperature [10, 140) °CByte18:RX gain code for temperature [10, 140) °CByte19:RX gain code for temperature [10, 140) °CByte18:RX gain code for temperature [10, 140) °CByte19:RX gain code for temperature [10, 140) °CByte18:RX gain code for temperature [10, 140 °CEach byte is encoded as followsAWR2243/kWR6243:BitsDefinitionb4:0IF_GAIN_CODEVAIWE243/kWR6243:BitsDefinitionb4:10:IF_GAIN_CODEValueRF Gain0Maximum RF gain1Maximum RF gain1Maximum RF gain1Maximum RF gain1Maximum RF gain1Maximum RF gain2Maximum RF gain			Byte2:	RX gain code for temperature [-20, -10) $^\circ\text{C}$			
Byte5:RX gain code for temperature [10, 20) °CByte6:RX gain code for temperature [20, 30) °CByte7:RX gain code for temperature [30, 40) °CByte8:RX gain code for temperature [40, 50) °CByte9:RX gain code for temperature [50, 60) °CByte10:RX gain code for temperature [60, 70) °CByte11:RX gain code for temperature [60, 90) °CByte12:RX gain code for temperature [90, 100) °CByte13:RX gain code for temperature [90, 100) °CByte14:RX gain code for temperature [10, 120) °CByte15:RX gain code for temperature [100, 120) °CByte16:RX gain code for temperature [130, 140) °CByte17:RX gain code for temperature [130, 140) °CByte18:RX gain code for temperature [140, 120) °CByte18:RX gain code for temperature [140, 120) °CByte11:RX gain code for temperature [140, 120) °CByte13:RX gain code for temperature [140, 140) °CByte14:RX gain code for temperature [140, 140) °CByte13:RX gain code for temperature [140, 140 °CEach byte is encoded as followsAWR2243/kWR6243:BitsDefinitionb4:0IF_GAIN_CODEIF_GAIN_CODEIF gain is IF_GAIN_CODE ×2 = 6 dBValid Range:Temperature < 10degC: The max IFA gain code			Byte3:	RX gain code for temperature [-10, 0) $^\circ\text{C}$			
Byte6:RX gain code for temperature [20, 30) °CByte7:RX gain code for temperature [30, 40) °CByte8:RX gain code for temperature [40, 50) °CByte9:RX gain code for temperature [50, 60) °CByte10:RX gain code for temperature [60, 70) °CByte11:RX gain code for temperature [70, 80) °CByte12:RX gain code for temperature [90, 100) °CByte13:RX gain code for temperature [90, 100) °CByte14:RX gain code for temperature [100, 110) °CByte15:RX gain code for temperature [100, 110) °CByte16:RX gain code for temperature [100, 130) °CByte17:RX gain code for temperature [130, 140) °CByte18:RX gain code for temperature [140, 140) °CByte18:RX gain code for temperature [140, 140) °CByte18:RX gain code for temperature [140, 140) °CByte19:Byte18:BitsDefinitionb4:0IF_GAIN_CODEIF_GAIN_CODEIF gain is IF_GAIN_CODE ×2 - 6 dBValid Range:Temperature < 10degC: The max IFA gain code			Byte4:	RX gain code for temperature [0, 10) $^\circ\text{C}$			
Byte7:RX gain code for temperature [30, 40) °CByte8:RX gain code for temperature [40, 50) °CByte9:RX gain code for temperature [50, 60) °CByte10:RX gain code for temperature [50, 60) °CByte11:RX gain code for temperature [60, 70) °CByte12:RX gain code for temperature [70, 80) °CByte13:RX gain code for temperature [90, 100) °CByte14:RX gain code for temperature [90, 100) °CByte15:RX gain code for temperature [10, 110) °CByte16:RX gain code for temperature [10, 120) °CByte17:RX gain code for temperature [10, 140) °CByte18:RX gain code for temperature [110, 140) °CByte18:RX gain code for temperature ≥ 140 °CEach byte is encoded as followsAWR2243/WR6243:BitsDefinitionb4:0IF_GAIN_CODEIF gain is IF_GAIN_CODEIF gain is IF_GAIN_CODEIF gain is IF_GAIN_CODEAWR2243 device:ValueRF Gain0Maximum RF gain = 2.5 dB2Maximum RF gain = 0 for an and an			Byte5:	RX gain code for temperature [10, 20) $^\circ\text{C}$			
Byte8:RX gain code for temperature [40, 50) °CByte9:RX gain code for temperature [50, 60) °CByte10:RX gain code for temperature [60, 70) °CByte11:RX gain code for temperature [70, 80) °CByte12:RX gain code for temperature [70, 80) °CByte13:RX gain code for temperature [90, 100) °CByte14:RX gain code for temperature [100, 110) °CByte15:RX gain code for temperature [100, 110) °CByte16:RX gain code for temperature [100, 140) °CByte17:RX gain code for temperature [100, 140) °CByte18:RX gain code for temperature [130, 140) °CByte11:RX gain code for temperature [100, 140) °CByte13:RX gain code for temperature [100, 140) °CByte14:RX gain code for temperature [100, 140) °CByte17:RX gain code for temperature [100, 140) °CByte18:RX gain code for temperature [100, 140) °CByte19:Byte19:Byte19:Definitionb4:0IF_GAIN_CODEIF_GAIN_CODEVMR2243/WR6243:BitsDefinitionb4:0IF_GAIN_CODEValud Range: Temperature < 10degC: The max IFA gain code supported is 12 (24dB). Temperature <10 (24dB). Temperature <10 (26dB). 1 LSB = 2 dBb7:5RF_GAIN_CODEAWR2243 device: ValueValueValueRF Gain0Maximum RF gain - 2.5 dB2Maximum RF gain - 5 dBXWR6243 device: ValueValueValueRF Gain0Maximum RF gain - 3.5 dB			Byte6:	RX gain code for temperature [20, 30) $^\circ\text{C}$			
Byte9:RX gain code for temperature [50, 60) °CByte10:RX gain code for temperature [60, 70) °CByte11:RX gain code for temperature [70, 80) °CByte12:RX gain code for temperature [80, 90) °CByte13:RX gain code for temperature [90, 100) °CByte14:RX gain code for temperature [100, 110) °CByte15:RX gain code for temperature [110, 120) °CByte16:RX gain code for temperature [110, 120) °CByte17:RX gain code for temperature [130, 140) °CByte18:RX gain code for temperature [130, 140) °CByte18:Definitionb4:0IF_GAIN_CODEIF gain is IF_GAIN_CODEValid Range: Temperature >= 10degC: The max IFA gain code supported is 15 (30dB). 1 LSB = 2 dBb7:5RF_GAIN_CODE AWR2243 device: ValueValueRF Gain0Maximum RF gain = 0 dB2Maximum RF gain = 0 dBxWR6243 device: ValueValueRF Gain0Maximum RF gain = 3.5 dB			Byte7:	RX gain code for temperature [30, 40) $^\circ\text{C}$			
Byte10:RX gain code for temperature [60, 70) °CByte11:RX gain code for temperature [70, 80) °CByte12:RX gain code for temperature [80, 90) °CByte13:RX gain code for temperature [90, 100) °CByte14:RX gain code for temperature [100, 110) °CByte15:RX gain code for temperature [100, 110) °CByte16:RX gain code for temperature [110, 120) °CByte17:RX gain code for temperature [110, 120) °CByte18:RX gain code for temperature [130, 140) °CByte17:RX gain code for temperature [130, 140) °CByte18:RX gain code for temperature ≥140 °CEach byte is encoded as followsAWR2243/xWR6243:BitsDefinitionb4:0IF_GAIN_CODEIF gain is IF_GAIN_CODE ×2 - 6 dBValid Range: Temperature >= 10degC: The max IFA gain code supported is 12 (24dB). Temperature >= 10degC: The max IFA gain code supported is 15 (30dB). 1 LSB = 2 dBb7:5RF_GAIN_CODE AWR2243 device: ValueValueRF Gain0Maximum RF gain - 2.5 dB2Maximum RF gain - 5 dBxWR6243 device: ValueValueRF Gain0Maximum RF gain1Maximum RF gain1Maximum RF gain1Maximum RF gain2Maximum RF gain3Maximum RF gain4Maximum RF gain4Maximum RF gain4Maximum RF gain5Maximum RF gain4Maximum RF gain5Maximum			Byte8:	RX gain code for temperature [40, 50) $^\circ\text{C}$			
Byte11:RX gain code for temperature [70, 80) °CByte12:RX gain code for temperature [80, 90) °CByte13:RX gain code for temperature [90, 100) °CByte14:RX gain code for temperature [10, 110) °CByte15:RX gain code for temperature [110, 120) °CByte16:RX gain code for temperature [120, 130) °CByte17:RX gain code for temperature [130, 140) °CByte18:RX gain code for temperature [130, 140) °CByte18:RX gain code for temperature ≥140 °CEach byte is encoded as followsAWR2243/xWR6243:BitsDefinitionb4:0IF_GAIN_CODEIF gain is IF_GAIN_CODE ×2 − 6 dBValid Range:Temperature >= 10degC: The max IFA gain codesupported is 12 (24dB).Temperature >= 10degC: The max IFA gain codesupported is 15 (30dB).1 LSB = 2 dBb7:5RF_GAIN_CODEAWR2243 device:ValueRF Gain0Maximum RF gain - 5 dB2Maximum RF gain1Maximum RF gain1Maximum RF gain2Nature RF Gain0Maximum RF gain1Maximum RF gain - 3.5 dB2Maximum RF gain - 6 dB			Byte9:	RX gain code for temperature [50, 60) $^\circ\text{C}$			
Byte12:RX gain code for temperature [80, 90) °CByte13:RX gain code for temperature [90, 100) °CByte14:RX gain code for temperature [100, 110) °CByte15:RX gain code for temperature [110, 120) °CByte16:RX gain code for temperature [120, 130) °CByte17:RX gain code for temperature [130, 140) °CByte18:RX gain code for temperature [130, 140) °CByte18:RX gain code for temperature [130, 140) °CByte18:RX gain code for temperature [130, 140) °CEach byte is encoded as followsAWR2243/xWR6243:BitsDefinitionb4:0IF_GAIN_CODEIF gain is IF_GAIN_CODE ×2 - 6 dBValid Range:Temperature < 10degC: The max IFA gain code			Byte10:	RX gain code for temperature [60, 70) $^\circ\text{C}$			
Byte13: RX gain code for temperature [90, 100) °C Byte14: RX gain code for temperature [100, 110) °C Byte15: RX gain code for temperature [110, 120) °C Byte16: RX gain code for temperature [120, 130) °C Byte17: RX gain code for temperature [130, 140) °C Byte18: RX gain code for temperature ≥140 °C Each byte is encoded as follows AWR2243/xWR6243: Bits Definition b4:0 IF_GAIN_CODE IF gain is IF_GAIN_CODE ×2 - 6 dB Valid Range: Temperature < 10degC: The max IFA gain code			Byte11:	RX gain code for temperature [70, 80) $^\circ C$			
Byte14: RX gain code for temperature [100, 110) °C Byte15: RX gain code for temperature [110, 120) °C Byte16: RX gain code for temperature [120, 130) °C Byte16: RX gain code for temperature [130, 140) °C Byte17: RX gain code for temperature ≥140 °C Each byte is encoded as follows AWR2243/xWR6243: Bits Definition b4:0 IF_GAIN_CODE IF gain is IF_GAIN_CODE IF gain is 1F_GAIN_CODE ×2 - 6 dB Valid Range: Temperature < 10degC: The max IFA gain code supported is 12 (24dB).			Byte12:	RX gain code for temperature [80, 90) $^\circ extsf{C}$			
Byte15: RX gain code for temperature [110, 120) °C Byte16: RX gain code for temperature [120, 130) °C Byte17: RX gain code for temperature [130, 140) °C Byte18: RX gain code for temperature ≥140 °C Each byte is encoded as follows AWR2243/xWR6243: Bits Definition b4:0 IF_GAIN_CODE IF gain is IF_GAIN_CODE ×2 - 6 dB Valid Range: Temperature < 10degC: The max IFA gain code			Byte13:	RX gain code for temperature [90, 100) $^\circ\text{C}$			
Byte16: RX gain code for temperature [120, 130) °C Byte17: RX gain code for temperature [130, 140) °C Byte18: RX gain code for temperature ≥140 °C Each byte is encoded as follows AWR2243/xWR6243: Bits Definition b4:0 IF_GAIN_CODE IF gain is IF_GAIN_CODE ×2 - 6 dB Valid Range: Temperature < 10degC: The max IFA gain code			Byte14:	RX gain code for temperature [100, 110) $^\circ\text{C}$			
Byte17: RX gain code for temperature [130, 140) °C Byte18: RX gain code for temperature ≥140 °C Each byte is encoded as follows AWR2243/xWR6243: Bits Definition b4:0 IF_GAIN_CODE IF gain is IF_GAIN_CODE ×2 - 6 dB Valid Range: Temperature < 10degC: The max IFA gain code			Byte15:	RX gain code for temperature [110, 120) $^\circ\text{C}$			
Byte18: RX gain code for temperature ≥140 °C Each byte is encoded as follows AWR2243/xWR6243: Bits Definition b4:0 IF_GAIN_CODE IF gain is IF_GAIN_CODE ×2 - 6 dB Valid Range: Temperature < 10degC: The max IFA gain code supported is 12 (24dB). Temperature >= 10degC: The max IFA gain code supported is 15 (30dB). 1 LSB = 2 dB b7:5 RF_GAIN_CODE AWR2243 device: Value RF Gain 0 Maximum RF gain - 2.5 dB 2 Maximum RF gain - 5 dB xWR6243 device: Value RF Gain 0 Maximum RF gain - 5 dB 2 Maximum RF gain - 3.5 dB 2 Maximum RF gain - 3.5 dB 2 Maximum RF gain - 6 dB			Byte16:	RX gain code for temperature [120, 130) $^\circ C$			
Each byte is encoded as follows AWR2243/xWR6243: Bits Definition b4:0 IF_GAIN_CODE IF gain is IF_GAIN_CODE ×2 - 6 dB Valid Range: Temperature < 10degC: The max IFA gain code supported is 12 (24dB). Temperature >= 10degC: The max IFA gain code supported is 12 (24dB). Temperature >= 10degC: The max IFA gain code supported is 15 (30dB). 1 LSB = 2 dB b7:5 RF_GAIN_CODE AWR2243 device: Value RF Gain 0 Maximum RF gain - 2.5 dB 2 Maximum RF gain - 5 dB xWR6243 device: Value RF Gain 0 Maximum RF gain - 5 dB 2 Maximum RF gain - 3.5 dB 2 Maximum RF gain - 3.5 dB 2 Maximum RF gain - 6 dB			Byte17:	RX gain code for temperature [130, 140) $^\circ$ C			
AWR2243; Bits Definition b4:0 IF_GAIN_CODE IF gain is IF_GAIN_CODE ×2 - 6 dB Valid Range: Temperature < 10degC: The max IFA gain code			Byte18:	: RX gain code for temperature \geq 140 $^{\circ}$ C			
Bits Definition b4:0 IF_GAIN_CODE IF gain is IF_GAIN_CODE ×2 - 6 dB Valid Range: Temperature < 10degC: The max IFA gain code			-				
b4:0 IF_GAIN_CODE IF gain is IF_GAIN_CODE ×2 - 6 dB Valid Range: Temperature < 10degC: The max IFA gain code supported is 12 (24dB). Temperature >= 10degC: The max IFA gain code supported is 15 (30dB). 1 LSB = 2 dB b7:5 RF_GAIN_CODE AWR2243 device: Value RF Gain 0 Maximum RF gain - 2.5 dB 2 Maximum RF gain - 5 dB xWR6243 device: Value RF Gain 0 Maximum RF gain - 5 dB 2 Maximum RF gain - 3.5 dB 2 Maximum RF gain - 3.5 dB 2 Maximum RF gain - 6 dB							
IF gain is IF_GAIN_CODE ×2 - 6 dB Valid Range: Temperature < 10degC: The max IFA gain code supported is 12 (24dB). Temperature >= 10degC: The max IFA gain code supported is 15 (30dB). 1 LSB = 2 dB b7:5 RF_GAIN_CODE AWR2243 device : Value RF Gain 0 Maximum RF gain - 2.5 dB 2 Maximum RF gain - 5 dB xWR6243 device : Value RF Gain 0 Maximum RF gain - 5 dB 2 Maximum RF gain - 5 dB 2 Maximum RF gain - 3.5 dB 2 Maximum RF gain - 3.5 dB							
Temperature < 10degC: The max IFA gain code supported is 12 (24dB). Temperature >= 10degC: The max IFA gain code supported is 15 (30dB). 1 LSB = 2 dBb7:5RF_GAIN_CODE AWR2243 device: Value Value 1Maximum RF gain 1 0 Maximum RF gain - 2.5 dB 2 Maximum RF gain - 5 dB 2 Value RF Gain 0 Maximum RF gain - 5 dBtd>ture Value RF Gain 0 Maximum RF gain - 5 dB 2 Maximum RF gain - 3.5 dB 2 Maximum RF gain - 6 dB							
supported is 12 (24dB). Temperature >= 10degC: The max IFA gain code supported is 15 (30dB). 1 LSB = 2 dB b7:5 RF_GAIN_CODE AWR2243 device: Value RF Gain 0 Maximum RF gain - 2.5 dB 2 Maximum RF gain - 5 dB xWR6243 device: Value RF Gain 0 Maximum RF gain - 5 dB 2 Value RF Gain 1 Maximum RF gain - 5 dB 2 Maximum RF gain - 3.5 dB 2 Maximum RF gain - 3.5 dB 2 Maximum RF gain - 6 dB				•			
Temperature >= 10degC: The max IFA gain code supported is 15 (30dB). 1 LSB = 2 dB b7:5 RF_GAIN_CODE AWR2243 device: Value RF Gain 0 Maximum RF gain - 2.5 dB 2 Maximum RF gain - 5 dB xWR6243 device: Value RF Gain 0 Maximum RF gain - 3.5 dB 2 Maximum RF gain - 3.5 dB 2 Maximum RF gain - 6 dB							
1 LSB = 2 dB b7:5 RF_GAIN_CODE AWR2243 device: Value RF Gain 0 Maximum RF gain 1 Maximum RF gain - 2.5 dB 2 Maximum RF gain - 5 dB xWR6243 device: Value RF Gain 0 Maximum RF gain 1 Maximum RF gain - 3.5 dB 2 Maximum RF gain - 6 dB							
b7:5 RF_GAIN_CODE AWR2243 device: Value RF Gain 0 Maximum RF gain 1 Maximum RF gain - 2.5 dB 2 Maximum RF gain - 5 dB XWR6243 device: Value RF Gain 0 Maximum RF gain 1 Maximum RF gain - 3.5 dB 2 Maximum RF gain - 6 dB							
AWR2243 device: ValueValueRF Gain0Maximum RF gain1Maximum RF gain - 2.5 dB2Maximum RF gain - 5 dB2Maximum RF gain - 5 dBxWR6243 device: ValueRF Gain0Maximum RF gain1Maximum RF gain - 3.5 dB2Maximum RF gain - 6 dB							
Value RF Gain 0 Maximum RF gain 1 Maximum RF gain - 2.5 dB 2 Maximum RF gain - 5 dB xWR6243 device: Value RF Gain 0 Maximum RF gain 1 Maximum RF gain - 3.5 dB 2 Maximum RF gain - 6 dB			b7:5				
1Maximum RF gain - 2.5 dB2Maximum RF gain - 5 dB2WR6243 device:ValueRF Gain0Maximum RF gain1Maximum RF gain - 3.5 dB2Maximum RF gain - 6 dB							
1Maximum RF gain - 2.5 dB2Maximum RF gain - 5 dB2WR6243 device:ValueRF Gain0Maximum RF gain1Maximum RF gain - 3.5 dB2Maximum RF gain - 6 dB				0 Maximum RF gain			
2 Maximum RF gain — 5 dB xWR6243 device : Value RF Gain 0 Maximum RF gain 1 Maximum RF gain — 3.5 dB 2 Maximum RF gain — 6 dB				· ·			
xWR6243 device: Value RF Gain 0 Maximum RF gain 1 Maximum RF gain – 3.5 dB 2 Maximum RF gain – 6 dB				-			
0Maximum RF gain1Maximum RF gain - 3.5 dB2Maximum RF gain - 6 dB				-			
1Maximum RF gain - 3.5 dB2Maximum RF gain - 6 dB				Value RF Gain			
2 Maximum RF gain – 6 dB				0 Maximum RF gain			
				1 Maximum RF gain – 3.5 dB			
Continued on next page				2 Maximum RF gain – 6 dB			
				Continued on next page			

Table 5.41 – continued from previous page

		xWR294 Bits	x/xWR254 Definitio	4x device : n			
		b4:0	IF_GAIN_CODE IF gain is IF_GAIN_CODE $ imes 2-10~{ m dB}$ Valid Range: 0 - 10				
		b7:5		N_CODE Ix/xWR254x device: RF Gain			
			0	Maximum RF gain			
			1	Maximum RF gain $-$ 4 dB			
			2	Maximum RF gain $-7 dB$			
			3	Maximum RF gain — 8.5 dB			
RESERVED	1	0x00					
RESERVED	2	0x0000					

5.5.14 Sub block 0x010D – AWR_TX_GAIN_TEMPLUT_SET_SB

This API can be used to overwrite the TX gain temperature LUT used in firmware. This API should be issued after profile configuration API.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x010D
SBLKLEN	2	Value = 68
PROFILE_INDX	1	This field indicates the profile Index for which this configu- ration applies
RESERVED	1	0x00

Table 5.42: AWR_TX_GAIN_TEMPLUT_SET_SB contents

	Table 5.4		ued from previous page
TX0_GAIN_	19	Byte0:	TX0 gain code for temperature ${<}\text{-}30\ ^\circ\text{C}$
CODE		Byte1:	TX0 gain code for temperature [-30, -20) $^\circ\text{C}$
		Byte2:	TX0 gain code for temperature [-20, -10) $^\circ\text{C}$
		Byte3:	TX0 gain code for temperature [-10, 0) $^\circ\text{C}$
		Byte4: TX0 gain code for temperature [0, 10) $^{\circ}$ C	
		Byte5:	TX0 gain code for temperature [10, 20) $^\circ\text{C}$
		Byte6:	TX0 gain code for temperature [20, 30) $^\circ\text{C}$
		Byte7:	TX0 gain code for temperature [30, 40) $^\circ\text{C}$
		Byte8:	TX0 gain code for temperature [40, 50) $^\circ\text{C}$
		Byte9:	TX0 gain code for temperature [50, 60) $^\circ\text{C}$
		Byte10:	TX0 gain code for temperature [60, 70) $^\circ\text{C}$
		Byte11:	TX0 gain code for temperature [70, 80) $^\circ\text{C}$
		Byte12:	TX0 gain code for temperature [80, 90) $^\circ\text{C}$
		Byte13:	TX0 gain code for temperature [90, 100) $^\circ\text{C}$
		Byte14:	TX0 gain code for temperature [100, 110) $^\circ\text{C}$
		Byte15:	TX0 gain code for temperature [110, 120) $^\circ\text{C}$
		Byte16:	TX0 gain code for temperature [120, 130) $^\circ\text{C}$
		Byte17:	TX0 gain code for temperature [130, 140) $^\circ\text{C}$
		-	TX0 gain code for temperature ≥140 °C e is encoded as follows / xWR6243 devices: Definition
		b5:0	STG_CODE Higher values for higher gain
		b7:6	RESERVED
		-	x/xWR254x devices:
		Bits	Definition
		b7:0	STG_CODE
			Higher values for higher gain
RESERVED	1	0x00	

Table 5.42 – continued from previous page

	Table 5.4	z = contin	ued from previous page
TX1_GAIN_	19	Byte0:	TX1 gain code for temperature ${<}\text{-30}\ ^\circ\text{C}$
CODE		Byte1:	TX1 gain code for temperature [-30, -20) $^\circ\text{C}$
		Byte2:	TX1 gain code for temperature [-20, -10) $^\circ\text{C}$
		Byte3:	TX1 gain code for temperature [-10, 0) $^\circ\text{C}$
		Byte4:	TX1 gain code for temperature [0, 10) $^\circ C$
		Byte5:	TX1 gain code for temperature [10, 20) $^\circ\text{C}$
		Byte6:	TX1 gain code for temperature [20, 30) $^\circ\text{C}$
		Byte7:	TX1 gain code for temperature [30, 40) $^\circ\text{C}$
		Byte8:	TX1 gain code for temperature [40, 50) $^\circ\text{C}$
		Byte9:	TX1 gain code for temperature [50, 60) $^\circ\text{C}$
		Byte10:	TX1 gain code for temperature [60, 70) $^\circ\text{C}$
		Byte11:	TX1 gain code for temperature [70, 80) $^\circ\text{C}$
		Byte12:	TX1 gain code for temperature [80, 90) $^\circ\text{C}$
		Byte13:	TX1 gain code for temperature [90, 100) $^\circ\text{C}$
		Byte14:	TX1 gain code for temperature [100, 110) $^\circ\text{C}$
		Byte15:	TX1 gain code for temperature [110, 120) $^\circ\text{C}$
		Byte16:	TX1 gain code for temperature [120, 130) $^\circ\text{C}$
		Byte17:	TX1 gain code for temperature [130, 140) $^\circ\text{C}$
		-	TX1 gain code for temperature ≥140 °C e is encoded as follows / xWR6243 devices: Definition
		b5:0	STG_CODE Higher values for higher gain
		b7:6	RESERVED
			x/xWR254x devices:
		Bits	Definition
		b7:0	STG_CODE
		0.00	Higher values for higher gain
RESERVED	1	0x00	

Table 5.42 – continued from previous page

	Table 5.4	2 – contin	ued from previous page
TX2_GAIN_	19	Byte0:	TX2 gain code for temperature ${<}\text{-}30\ ^\circ\text{C}$
CODE		Byte1:	TX2 gain code for temperature [-30, -20) $^\circ\text{C}$
		Byte2:	TX2 gain code for temperature [-20, -10) $^\circ\text{C}$
		Byte3:	TX2 gain code for temperature [-10, 0) $^\circ\text{C}$
		Byte4:	TX2 gain code for temperature [0, 10) $^\circ\text{C}$
		Byte5:	TX2 gain code for temperature [10, 20) $^\circ\text{C}$
		Byte6:	TX2 gain code for temperature [20, 30) $^\circ\text{C}$
		Byte7:	TX2 gain code for temperature [30, 40) $^\circ\text{C}$
		Byte8:	TX2 gain code for temperature [40, 50) $^\circ\text{C}$
		Byte9:	TX2 gain code for temperature [50, 60) $^\circ\text{C}$
		Byte10:	TX2 gain code for temperature [60, 70) $^\circ\text{C}$
		Byte11:	TX2 gain code for temperature [70, 80) $^\circ\text{C}$
		Byte12:	TX2 gain code for temperature [80, 90) $^\circ\text{C}$
		Byte13:	TX2 gain code for temperature [90, 100) $^\circ\text{C}$
		Byte14:	TX2 gain code for temperature [100, 110) $^\circ\text{C}$
		Byte15:	TX2 gain code for temperature [110, 120) $^\circ\text{C}$
		Byte16:	TX2 gain code for temperature [120, 130) $^\circ\text{C}$
		Byte17:	TX2 gain code for temperature [130, 140) $^\circ\text{C}$
		Byte18:	TX2 gain code for temperature $\geq\!\!140~^\circ\text{C}$
			e is encoded as follows
		Bits	/xWR6243 devices: Definition
		b5:0	STG CODE
		50.0	Higher values for higher gain
		b7:6	RESERVED
			x/xWR254x devices:
		Bits	
		b7:0	STG_CODE Higher values for higher gain
RESERVED	1	0x00	
RESERVED	2	0x000	
NESERVED	۷		

Table 5.42 – continued from previous page

5.5.15 Sub block 0x010E - AWR_LOOPBACK_BURST_CONF_SET_SB

This API can be used to introduce loopback chirps within the functional frames. This loopback chirps will be introduced only if advanced frame configuration is used where user can define which sub-frame contains loopback chirps. The following loopback configuration will apply to one burst and user can program up to 16 different loopback configurations in 16 different bursts of a given sub-frame. User has to ensure that the corresponding sub-frame is defined in AWR_

ADVANCED_FRAME_CONF_SB and sufficient time is given to allow the loopback bursts to be transmitted.

NOTE1:	If user desires to enable loopback chirps within functional frames, then this API should be issued after AWR_PROFILE_CONF_SET_ SB
NOTE2:	Only profile based phase shifter is supported in loopback config- uration. Per-chirp phase shifter if enabled will not be reflected in loopback chirps.
NOTE3:	For the sub-frame in which loopback is desired, user should set SFx_NUM_UNIQUE_CHIRPS_PER_BURST as 1 and can use SFx_NUM_LOOPS_PER_BURST for multiple chirps in the burst.

Table 5.43:	AWR	LOOPBACK	BURST	CONF	SET	SB	contents
10010 01101					_~	_~~	0011001100

Field Name	Number of bytes	Descrip	otion	
SBLKID	2	Value =	0x010E	
SBLKLEN	2	Value =	48	
LOOPBACK_SEL	1	Value	Definition	
		0	No loopback	
		1	IF loopback (loopback of an IF test signal into the RX IF stages)	
		2	AWR2243/xWR6243: PS loopback (loopback of an RF test signal from TX phase shifter outputs to RX LNA input) xWR294x/xWR254x: - LO loopback	
		3 AWR2243/xWR6243: PA loopback (loopback an RF test signal from TX PA outputs to RX LN input with On-off-keying modulation in the path) xWR294x/xWR254x: - PA loopback (loopback an RF test signal from TX PA outputs to RX LN input with QPSK modulation in the path)		
		4	Rx FE disabled (RX RF i.e. Mixer and LNA are disabled and no loopback is engaged)	
		Others	RESERVED	
BASE_PRO- FILE_INDX	1	Base profile used for loopback chirps to configure the RF/analog/digital front end sections. But the configurations of some sections may get overwritten by the parameters configured below. Valid values 0 to 3		

BURST_INDX	1	Indicates the index of the burst in the loopback sub-frame for which this configuration applies Valid values 0 to 15					
RESERVED	1	0x00					
FREQ_CONST	4	Start frequency for loopback. The start frequency configured here should be within profile's sweep bandwidth. For 77GHz Devices (76GHz to 81GHz): 1 LSB = $3.6e9/2^{26}$ Hz ≈ 53.644 Hz Valid range: 0x5471C71C to 0x5A000000 For 60GHz Devices (57GHz to 64GHz): 1 LSB = $2.7e9/2^{26}$ Hz ≈ 40.233 Hz Valid range: Only even numbers from 0x5471C71C to 0x5ED097B4					
SLOPE_CONST	2	Frequency slope for loopback burst (16 bit signed number) For 77GHz Devices (76GHz to 81GHz): 1 LSB = $3.6e9 \times 900/2^{26} \approx 48.279$ kHz/ μ s Valid range: -2072 to 2072 For 60GHz Devices (57GHz to 64GHz): 1 LSB = $2.7e9 \times 900/2^{26} \approx 36.21$ kHz/ μ s Valid range: Only even numbers between -6905 and 6905					
RESERVED	2	0x0000					
TX_BACKOFF	4	Bits Definition					
		b7:0 TX0 back off 1 LSB = 1 dB					
		b15:8 TX1 back off 1 LSB = 1 dB					
		b23:16 TX2 back off 1 LSB = 1 dB					
		b31:24 TX3 back off (only for xWR294x/xWR254x) 1 LSB = 1 dB					
		This setting is applicable only in PA loop-back mode.					

RX_GAIN	2	Bits	Definit	tion				
		b5:0	RX_GAIN This field defines RX gain for each profile 1 LSB = 1 dB AWR2243 devices - all even values from 32 to 52 xWR6x43 devices - all even values from 30 to 48 xWR294x devices - all even values from 24 to 44 xWR254x devices - all even values from 28 to 44 This setting is applicable in all loop-back modes.					
		b7:6	_			86243/xWR294x/xW	'R254	
			Value	RF gain (AWR2243	-	RF gain target (xWR294x/xWR25	4x)	
			00	30 dB		32 dB		
			01	33 dB		34 dB		
			10	36 dB		36 dB		
			11	RESERVED)			
			Refer	profile config	uration	API for more info.		
				etting is app ack modes.	licable	only in PA and PS/	LO	
		b15:8	RESE	RVED				
TX_ENABLE	1	Bits	Definit	tion				
		b0	TX0 E	nable				
		b1	TX1 E	nable				
		b2	TX2 E	nable (PS LE	3 not su	pported for TX2)		
		b3	TX3 xWR2	Enable 94x/xWR254	(only x)	applicable	for	
		b7:4 This set	RESE ting is a	RVED opplicable in a	all loop-l	back modes.		
RESERVED	1	0x00						

BPM_CONFIG	2	Bit	Definition				
		b0	RESERVED				
		b1	CONST_BPM_VAL_TX0_ON Value of Binary Phase Shift value for TX0, during chirp				
		b2	RESERVED				
		b3	CONST_BPM_VAL_ For TX1	TX1_ON			
		b4	RESERVED				
		b5	CONST_BPM_VAL_ For TX2	TX2_ON			
		b6	RESERVED				
		b7	CONST_BPM_VAL_ xWR294x/xWR254x) For TX3		(only for		
		b15:6 This set modes.	setting is applicable only in PA and PS loop-back				
DIGITAL_COR-	2	Bits	its Digital corrections				
RECTION_ DISABLE		b0	 IQMM correction disable (Applicable only in PS and PA loopback modes, In case of IF loopback mode, IQMM is disabled by default) 0 - Enable, 1 - Disable 				
		b1	Digital Inter-RX Gair able 0 - Enable, 1 - Disabl This setting is applica	e			
		b15:2	RESERVED				
IF_LOOPBACK_ FREQ	1	Value	IF Loopback frequency	Value	IF Loopback frequency		
		0	180 kHz	8	4.02 MHz		
		1	240 kHz	9	5 MHz		
		2	360 kHz	10	6 MHz		
		3	720 kHz	11	7.5 MHz		
		4	1 MHz	12	8.03 MHz		
		5	2 MHz	13	9 MHz		
		6	2.5 MHz 14 10 MHz				
		7	3 MHz	255-15	RESERVED		
IF_LOOPBACK_ MAG	1	1 LSB = Valid rar	10 mV nge: 1 to 63				

PS0_PGA_	1	AWR22/	13/vWB62	43 devices:	•		
GAIN_INDEX				in Amplifier		This config	ures the
(AWR2243) /		-		back path a	-	-	
COMMON_		PS loopl	back.				
BUF_GAIN_SEL		Value	PGA	gain	Value	PGA	gain
(xWR294x/xWR254	+x)		value			value	
		0	PGA is O)FF	15	-3 dB	
		1	-22 dB		16	-2 dB	
		2	-16 dB		17	-1 dB	
		3	-15 dB		18	0 dB	
		4	-14 dB		19	1 dB	
		5	-13 dB		20	2 dB	
		6	-12 dB		21	3 dB	
		7	-11 dB		22	4 dB	
		8	-10 dB		23	5 dB	
		9	-9 dB		24	6 dB	
		10	-8 dB		25	7 dB	
		11	-7 dB		26	8 dB	
		12	-6 dB		27	9 dB	
		13	-5 dB		255-28	RESERV	ED
		14	-4 dB				
		xWR294	x/xWR25	4x devices:			
			-	es the QPSI	-		
		Value	Common Buffer Ga		Value	Common Buffer Ga	in
		48	0dB		19	-10dB	
		29	-1dB		18	-11dB	
		25	-2dB		17	-13dB	
		24	-3dB		16	-14dB	
		23	-5dB		15	-18dB	
		22	-6dB		0	-19dB	
		21	-7dB				
		20	-8dB				
L							

PS1_PGA_ GAIN_INDEX	1	Program	imable Ga	243 devices ain Amplifier aback path a	Setting: 1	-	
(AWR2243) / LO_ LOOPBACK		Phase s PS loopl	•	раск рата	ampillier g	ain for TXT	basec
BUF_GAIN_SEL (xWR294x/xWR254	łx)	Value	PGA value	gain	Value	PGA value	gain
		0	PGA is C)FF	15	-3 dB	
		1	-22 dB		16	-2 dB	
		2	-16 dB		17	-1 dB	
		3	-15 dB		18	0 dB	
		4	-14 dB		19	1 dB	
		5	-13 dB		20	2 dB	
		6	-12 dB		21	3 dB	
		7	-11 dB		22	4 dB	
		8	-10 dB		23	5 dB	
		9	-9 dB		24	6 dB	
		10	-8 dB		25	7 dB	
		11	-7 dB		26	8 dB	
		12	-6 dB		27	9 dB	
		13	-5 dB		255-28	RESERVE	D
				4x devices es the loopba		in the LO lo	opbac
		NOTE: If setting I	t is recom	and xWR25 mended to k n -7dB to a eratures.	eep LO lo		
		Value			Value	Loopback	gain
		96	0 dB		28	-15 dB	
		51	-1 dB		27	-16 dB	
		47	-2 dB		26	-17 dB	
		44	-3 dB		25	-18 dB	
					20		
		42	-4 dB		23 24	-19 dB	
		42 40					
			-4 dB		24	-19 dB	
		40	-4 dB -5 dB		24 23	-19 dB -21 dB	
		40 38	-4 dB -5 dB -6 dB		24 23 22	-19 dB -21 dB -22 dB	
		40 38 36	-4 dB -5 dB -6 dB -7 dB		24 23 22 21	-19 dB -21 dB -22 dB -23 dB	
		40 38 36 35	-4 dB -5 dB -6 dB -7 dB -8 dB		24 23 22 21 20	-19 dB -21 dB -22 dB -23 dB -25 dB	
		40 38 36 35 34	-4 dB -5 dB -6 dB -7 dB -8 dB -9 dB		24 23 22 21 20 19	-19 dB -21 dB -22 dB -23 dB -25 dB -26 dB	
		40 38 36 35 34 33	-4 dB -5 dB -6 dB -7 dB -8 dB -9 dB -10 dB		24 23 22 21 20 19 18	-19 dB -21 dB -22 dB -23 dB -25 dB -25 dB -26 dB -27 dB	

Copyright © 2021, Texas Instruments Incorporated

170

		· · · · ·
PS_LOOP- BACK_FREQ (AWR2243) / LO_LOOP- BACK_FREQ (xWR294x/xWR254	4 4x)	AWR2243/xWR6243 devices: Phase shifter loop back frequency in kHz: The TX phase shifter's phase shift command word is linearly varied at a rate configured by this field to achieve a frequency shift. 1 LSB = 1 kHz Bits Definition
		b15:0 TX0 Loopback Frequency
		b31:16 TX1 Loopback Frequency xWR294x/xWR254x devices: LO loopback modulation frequency in Hz. The allowed frequencies are listed below. 1 LSB = 1 Hz. LO loopback frequency
		0 Hz
		180000 Hz
		300000 Hz
		360000 Hz
		500000 Hz
		1000000 Hz
		1500000 Hz
		2500000 Hz
		3000000 Hz
		4017857 Hz
		4500000 Hz
		5000000 Hz
		7500000 Hz
		8035714 Hz
		9000000 Hz
		20454545 Hz
RESERVED	4	RESERVED

Table 5.43 – continued	from	previous	page
------------------------	------	----------	------

PA_LOOP- BACK_FREQ (AWR2243)	2	frequen coupling modula	lue is a 100 MHz divincy: The PA output is g to the RX LNA inp tion frequency and ca loopback signal from	s fed to a out. Thi an be us	a modulator before is field govern the ed to separate the
		•	cy at the Receiver. for a 1 MHz frequenc	v cot this	to 100
			MHz frequency, set th		
		to ensu	To ensure no leakage ire that 100MHz/LOOI of bin width	-	-
		For e.g	. if user choses 25Ms	• •	•
			s/chirp, then LOOPB/ ill ensure no leakage	ACK_FRE	-Q 01 64 (=1.5625
		This fi	eld is RESERVED ir	ו xWR29	4x and xWR254x
		devices	s, a separate field	d "PA_L	OOPBACK_FREQ
		quency	94x/xWR254x)'' will b ⁄.	e used to	Set the PALD fre-
PA_LOOPBACK_ BUF_GAIN_SEL	1		nfigures the PA loopb ble for xWR294x and x		
		Value	PA LB Buffer Gain	Value	PA LB Buffer Gain
		48	0dB	19	-10dB
		27	-1dB	18	-11dB
		25	-2dB	17	-13dB
		24	-3dB	16	-15dB
		23	-4dB	15	-17dB
		22	-5dB	14	-18dB
		21	-6dB	0	-19dB
		20	-7dB		
			A loopback signal stre lues lower than -10dB.		omes inaccurate for
RESERVED	1	0x0000			

PA_LOOP- 4 xWR294x/xWR254x devices: PA loopback modulation frequencies are listed by low. (xWR294x/xWR254x) 1 LSB = 1 Hz. PA loopback frequency 0 Hz 180000 Hz 300000 Hz 360000 Hz 360000 Hz	
(xWR294x/xWR254x) low. 1 LSB = 1 Hz. PA loopback frequency 0 Hz 180000 Hz 300000 Hz	
1 LSB = 1 Hz. PA loopback frequency 0 Hz 180000 Hz 300000 Hz)e-
PA loopback frequency 0 Hz 180000 Hz 300000 Hz	
0 Hz 180000 Hz 300000 Hz	
180000 Hz 300000 Hz	
300000 Hz	
360000 Hz	
500000 Hz	
1000000 Hz	
1500000 Hz	
2500000 Hz	
3000000 Hz	
4017857 Hz	
4500000 Hz	
5000000 Hz	
7500000 Hz	
8035714 Hz	
9000000 Hz	
20454545 Hz	

NOTE:	The expected signal strength change with change in index value is only approximately indicated for PS <n>_PGA_GAIN_INDEX. Typi- cally, the loopback path is the dominant path only in top 10 indices (highest PGA gain values). For lower indices (lower PGA gain val- ues), parasitic paths in the RF system can start dominating the loop-back measurements, and under such conditions, inter channel imbalances measured using such LB path, and LB signal SNR etc. can show degraded performance, with the degradation attributed to</n>
	the loop-back path and not the functional path/circuits/system.

5.5.16 Sub block 0x010F - AWR_DYN_CHIRP_CONF_SET_SB

This API can be used to dynamically change the chirp configuration while frames are on-going. The configuration will be stored in software and the new configuration will be applied after receiving the AWR_DYN_CHIRP_ENABLE_SB API.

Table 5.44: AWR_DYN_CHIRP_CONF_SET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x010F
SBLKLEN	2	Value = 200
CHIRP_ROW_ SELECT	1	Value = 200BitsDescriptionb3:0RESERVEDb7:4If user does not wish to reconfigure all 3 chirp rows, then the following mode can be used to configure only one row per chirp which enables the user to configure 48 chirps in one API, effectively saving on the reconfiguration time. If CHIRP_ROW_SE- LECT[7:4] is non-zero, then the API parameters
CHIRP_SEG- MENT_SELECT	1	Valid range 0 to 31. Indicates the segment of the chirp RAM that the 16 chirp definitions in this sub block map to

PROGRAM_	2	Bits	Descrip	tion
MODE		b0	Value	Definition
			0	Program the new configuration when AWR_DYN_CHIRP_ENABLE API is issued
			1	Program the new configuration imme- diately NOTE: User has to ensure that the chirps which are being reconfigured are not the ones which are currently in use for chirping
		b15:1	RESER	VED
CHIRP1_R1	4	Bits	Definitio	n
		b3:0		.E_INDX nge 0 to 3
		b7:4	RESER	VED
		b13:8	For 77G 1 LSB = Valid ra For 60G 1 LSB =	SLOPE_VAR GHz Devices (76GHz to 81GHz): $= 3.6e9 \times 900/2^{26} \approx 48.279$ kHz nge: 0 to 63 GHz Devices (57GHz to 64GHz): $= 2.7e9 \times 900/2^{26} \approx 36.21$ kHz nge: Only even numbers from 0 to 63
		b15:14	RESER	VED
		b19:16 b23:20 b29:24	TX_EN/ Bit b0 b1 b2 b2 RESER RESER	Definition TX0 Enable TX1 Enable TX2 Enable TX3 Enable (only for xWR294x/xWR254x VED
		b29.24	RESER	
		051.50	NEGEN	

CHIRP1_R2	4	Bits	Definition	
		b22:0	FREQ_START_VAR For 77GHz Devices (76GHz to 81GHz): 1 LSB = $3.6e9/2^{26} \approx 53.644$ Hz Valid range: 0 to 8388607 For 60GHz Devices (57GHz to 64GHz): 1 LSB = $2.7e9/2^{26} \approx 40.233$ Hz Valid range: Only even numbers from 0 to 8388607	
		b31:23	RESERVED	
CHIRP1_R3	4	Bits	Definition	
		b11:0	IDLE_TIME_VAR 1 LSB = 10 ns Valid range: 0 to 4095	
		b15:12	RESERVED	
		b27:16	ADC_START_TIME_VAR 1 LSB = 10 ns Valid range: 0 to 4095	
		b31:28	RESERVED	
CHIRP2_R1	4	See des	cription for CHIRP1_R1	
CHIRP2_R2	4	See description for CHIRP1_R2		
CHIRP2_R3	4	See des	cription for CHIRP1_R3	
CHIRP16_R1	4	See des	cription for CHIRP1_R1	
CHIRP16_R2	4	See des	cription for CHIRP1_R2	
CHIRP16_R3	4	See des	cription for CHIRP1_R3	

NOTE: If user wants to update the chirp ram rows using dynamic chirp config API in runtime then it is must to use same dynamic chirp config API (instead of legacy chirp config API) to configure all chirp parameters during sensor initialization.

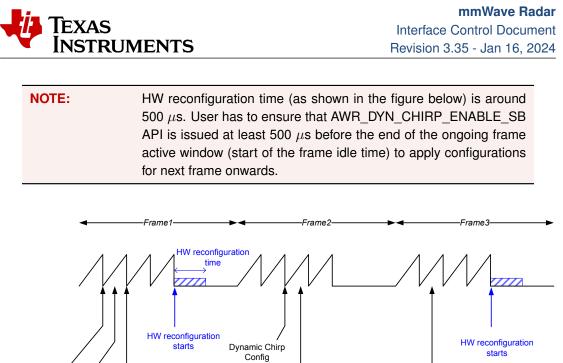
5.5.17 Sub block 0x0110 – AWR_DYN_PERCHIRP_PHASESHIFTER_CONF_SET_ SB

This API can be used to dynamically change the per-chirp phase shifter configuration (applicable only in certain devices) while frames are on-going. The configuration will be stored in software and the new configuration will be applied after receiving the AWR_DYN_CHIRP_ENABLE_SB API.

NOTE:	This API is not supported in xWR294x and xWR254x. Please use
	AWR_ADV_DYN_PERCHIRP_PHASESHIFTER_CONF_SET_SB
	for configuring all 4TX phase shifts dynamically in xWR294x and
	xWR254x.

Table 5.45: AWR_DYN_PERCHIRP_PHASESHIFTER_CONF_SB contents

Field Name	Number of bytes	Description				
SBLKID	2	Value = 0x0110				
SBLKLEN	2	Value = 56				
RESERVED	1	0x00				
CHIRP_SEG- MENT_SELECT	1	Indicates the segment of the chirp RAM that the 16 chirp definitions in this sub block map to. Valid range 0 to 31				
CHIRP1_	1	TX0 phase shift value				
TX0_PHASE_ SHIFTER		Bits TX0 phase shift definition				
SHIFTER		b1:0 RESERVED (set it to 0b00)				
		b7:2 TX0 phase shift value 1 LSB = $360^{\circ}/2^{6} = 5.625^{\circ}$ Valid range: 0 to 63				
CHIRP1_	1	TX1 phase shift value				
TX1_PHASE_ SHIFTER		Bits TX1 phase shift definition				
		b1:0 RESERVED (set it to 0b00)				
		b7:2 TX1 phase shift value 1 LSB = $360^{\circ}/2^{6} = 5.625^{\circ}$ Valid range: 0 to 63				
CHIRP1_	1	TX2 phase shift value				
TX2_PHASE_		Bits TX1 phase shift definition				
SHIFTER		b1:0 RESERVED (set it to 0b00)				
		b7:2 TX1 phase shift value 1 LSB = $360^{\circ}/2^{6} = 5.625^{\circ}$ Valid range: 0 to 63				
CHIRP2_ TX0_PHASE_ SHIFTER	1	See description for CHIRP1_TX0_PHASE_SHIFTER				
CHIRP2_ TX1_PHASE_ SHIFTER	1	See description for CHIRP2_TX1_PHASE_SHIFTER				


CHIRP2_ TX2_PHASE_ SHIFTER	1	See des	scription f	or CHIRP3_TX2_PHASE_SHIFTER	
CHIRP16_ TX0_PHASE_ SHIFTER	1	See des	See description for CHIRP1_TX0_PHASE_SHIFTER		
CHIRP16_ TX1_PHASE_ SHIFTER	1	See description for CHIRP2_TX1_PHASE_SHIFTER			
CHIRP16_ TX2_PHASE_ SHIFTER	1	See description for CHIRP3_TX2_PHASE_SHIFTER			
PROGRAM_	2	Bits	Descrip	tion	
MODE		b0	Value	Definition	
			0	Program the new configuration when AWR_DYN_CHIRP_ENABLE API is issued	
			1	Program the new configuration imme- diately NOTE: User has to ensure that the chirps which are being reconfigured are not the ones which are currently in use for chirping	
		b15:1	RESER	VED	

5.5.18 Sub block 0x0111 – AWR_DYN_CHIRP_ENABLE_SB

This API can be used to trigger the copy of chirp configuration from software to hardware. The copy will be performed at the end of the ongoing frame active window (start of the frame idle time).

	Table 5.46:	AWR	DYN	CHIRP	ENABLE	SB contents
--	-------------	-----	-----	-------	--------	-------------

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0111
SBLKLEN	2	Value = 8
RESERVED	4	0x0000000

Dynamic Chirp Config Dynamic Chirp Enable Dynamic Per-chirp phase shifter config Dynamic Chirp Enable

Figure 5.5: Dynamic chirp configuration use case timing diagram

5.5.19 Sub block 0x0112 - AWR_INTERCHIRP_BLOCKCONTROLS_SB

This API can be used to program the inter-chip turn on and turn off times or various RF blocks.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0112
SBLKLEN	2	Value = 44
RX02_RF_ TURN_OFF_ TIME	2	Time to wait after ramp end before turning off RX0 and RX2 RF stages. 1 LSB = 10 ns Valid range: -1024 to 1023
RX13_RF_ TURN_OFF_ TIME	2	Time to wait after ramp end before turning off RX1 and RX3 RF stages. 1 LSB = 10 ns Valid range: -1024 to 1023

 ${\bf Table \ 5.47: \ AWR_INTERCHIRP_BLOCKCONTROLS_SB \ contents}$

Table 5.47 – continued from previous page			
RX02_BB_ TURN_OFF_ TIME	2	Time to wait after ramp end before turning off RX0 and RX2 baseband stages. 1 LSB = 10 ns Valid range: -1024 to 1023	
RX13_BB_ TURN_OFF_ TIME	2	Time to wait after ramp end before turning off RX1 and RX3 baseband stages. 1 LSB = 10 ns Valid range: -1024 to 1023	
RX02_RF_PRE_ ENABLE_TIME	2	Time before TX Start Time when RX0 and RX2 RF stages are to be put in fast-charge state. 1 LSB = 10 ns Valid range: -1024 to 1023	
RX13_RF_PRE_ ENABLE_TIME	2	Time before TX Start Time when RX1 and RX3 RF stages are to be put in fast-charge state. 1 LSB = 10 ns Valid range: -1024 to 1023	
RX02_BB_PRE_ ENABLE_TIME	2	Time before TX Start Time when RX1 and RX3 baseband stages are to be put in fast-charge state. 1 LSB = 10 ns Valid range: -1024 to 1023	
RX13_BB_PRE_ ENABLE_TIME	2	Time before TX Start Time when RX2 and RX4 baseband stages are to be put in fast-charge state. 1 LSB = 10 ns Valid range: -1024 to 1023	
RX02_RF_ TURN_ON_ TIME	2	Time before TX Start Time when RX1 and RX3 RF stages are to be enabled. 1 LSB = 10 ns Valid range: -1024 to 1023	
RX13_RF_ TURN_ON_ TIME	2	Time before TX Start Time when RX2 and RX4 RF stages are to be enabled. 1 LSB = 10 ns Valid range: -1024 to 1023	
RX02_BB_ TURN_ON_ TIME	2	Time before TX Start Time when RX1 and RX3 baseband stages are to be enabled. 1 LSB = 10 ns Valid range: -1024 to 1023	
RX13_BB_ TURN_ON_ TIME	2	Time before TX Start Time when RX2 and RX4 baseband stages are to be enabled. 1 LSB = 10 ns Valid range: -1024 to 1023	
RX_LO_CHAIN_ TURN_OFF_ TIME	2	Time to wait after ramp end before turning off RX LO chain. 1 LSB = 10 ns Valid range: -1024 to 1023	

TX_LO_CHAIN_ TURN_OFF_ TIME	2	Time to wait after ramp end before turning off TX LO chain. 1 LSB = 10 ns Valid range: -1024 to 1023
RX_LO_CHAIN_ TURN_ON_TIME	2	Time before TX Start Time when the RX LO chain is to be enabled. 1 LSB = 10 ns Valid range: -1024 to 1023
TX_LO_CHAIN_ TURN_ON_TIME	2	Time before TX Start Time when the TX LO chain is to be enabled. 1 LSB = 10 ns Valid range: -1024 to 1023
RESERVED	4	0x0000000
RESERVED	4	0x0000000

NOTE:	The minimum inter-chirp time should be greater than maximum of the following
	1. abs(RX02_RF_TURN_OFF_TIME) + max(abs(RX02_RF_ PRE_ENABLE_TIME), abs(RX02_RF_TURN_ON_TIME))
	2. abs(RX13_RF_TURN_OFF_TIME) + max(abs(RX13_RF_ PRE_ENABLE_TIME), abs(RX13_RF_TURN_ON_TIME))
	3. abs(RX02_BB_TURN_OFF_TIME) + max(abs(RX02_BB_ PRE_ENABLE_TIME), abs(RX02_BB_TURN_ON_TIME))
	4. abs(RX13_BB_TURN_OFF_TIME) + max(abs(RX13_BB_ PRE_ENABLE_TIME), abs(RX13_BB_TURN_ON_TIME)
	5. abs(RX_LO_TURN_OFF_TIME) + abs(RX_LO_TURN_ ON_TIME)
	6. abs(TX_LO_TURN_OFF_TIME) + abs(TX_LO_TURN_ON_ TIME)

5.5.20 Sub block 0x0113 – AWR_SUBFRAME_START_CONF_SB

This API can be used to trigger each sub-frame individually in software triggered mode. This API takes effect only when the advanced frame configuration indicates that each sub-frame needs to be individually triggered by the user.

Field Name	Number of bytes	Descrip	tion	
SBLKID	2	Value =	0x0113	
SBLKLEN	2	Value =	8	
START_CMD	2	Bits	Definitio	n
		b15:0	Value	Definition
			0x0000	No effect
			0x0001	Trigger next sub-frame in software trig- gered sub-frame mode
RESERVED	2	0x0000		

${\bf Table \ 5.48: \ AWR_SUBFRAME_START_CONF_SB \ contents}$

aft	the user wishes to trigger each sub-frame independently, then er advanced frame config, the FRAME START command should
do su	issued once using AWR_FRAMESTARTSTOP_CONF_SB. This es not start any sub-frames but it will prepare the hardware for b-frame trigger. Next any subsequent sub-frame trigger will start e sub-frames
tha is be the FF fra	the user wishes to use sub-frame trigger, he has to ensure at sub-frame trigger command is issued $k \cdot N$ times where k the number of sub-frames in each frame and N is the num- r of frames. If the user wishes to stop frames in between, en he has to issue the FRAME STOP command (using AWR_ AMESTARTSTOP_CONF_SB) only after $k \cdot M$ triggers of sub- me trigger command (where M is an integer). i.e. FRAME TOP command can be issued only at frame boundaries
wa the	software based sub-frame trigger mode is chosen by the user, atchdog feature will not be available. User has to ensure that watchdog is disabled before enabling the software based sub- me trigger mode.
the the ma iss	sub-frame trigger or hardware trigger mode is used to trigger e frames/sub-frames and if frames need to be stopped before e specified number of frames, then the the FRAME_STOP com- and using AWR_FRAMESTARTSTOP_CONF_SB API should be sued while the frame is on-going. If the frames are stopped while e device is idle, it can lead to errors.

5.5.21 Sub block 0x0115 - AWR_ADVANCE_CHIRP_CONF_SB

This API sub-block defines the programming of advanced chirp configurations for each chirp parameters to generate a waveform pattern in a frame/burst. This API provides ability to program fixed delta increment (Delta dither) for certain chirp parameters (eg. chirp start frequency, idle time, phase shifter, etc.), on top of unique dithers selected from configurable look-up-table (LUT Dither). The configurable look-up-table is an array of values loaded into a pre-configured "Generic SW Chirp Parameter LUT" The size of the generic LUT is 12kB and user has the flexibility to program any number of unique dithers for each chirp parameters. Thus the user can achieve fixed increment, or LUT based dither, or a combination of both.

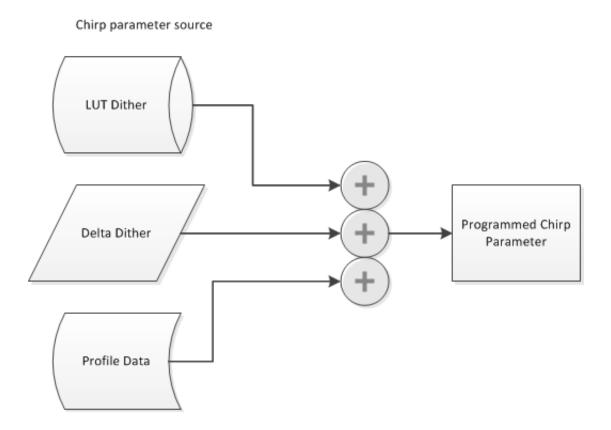


Figure 5.6: Advance chirp parameter dither sources and program

Using this API, four types of control can be achieved on each parameters of a chirp.

1. Fixed value for all chirps: To generate sequence of chirps which never changes, then only

one value can be programmed in LUT (LUT Dither), i.e NUM_OF_PATTERNS (P) = 1 and LUT_PARAM_UPDATE_PERIOD (K) = 0

- 2. Unique chirps: Index every LUT_PARAM_UPDATE_PERIOD (K) chirps in LUT to generate unique sequence of chirps.
- Delta increment every DELTA_PARAM_UPDATE_PERIOD (N) chirps: On top of sequence of unique chirps from LUT, the fixed delta increment (Delta dither) can be done every N chirps.
- 4. The set of chirp parameters across bursts and sub-frames can be different by setting offset to LUT in BURST_LUT_INDEX_OFFSET and SF_LUT_INDEX_OFFSET.

When using the Advanced Chirp Config API, there are some implications to frame config and advanced frame config APIs. Specifically, the CHIRP_START_INDX and CHIRP_END_INDX fields are no longer applicable, and the NUM_LOOPS field has a different meaning in the sense that this field now denotes the total number of chirps in the frame/burst. Please refer AWR_FRAME_ CONF_SET_SB and AWR_ADVANCED_FRAME_CONF_SB APIs with the updated field descriptions as below.

The total number of chirps L in a burst should be programmed as per below calculation in frame configuration API (using the NUM_LOOPS field).

L = X * Y, where X is 1 to 512 (supported HW CHIRP RAM) and Y is 1 to 128 (supported HW CHIRP LOOPS) The value of L should be a multiple of 4 (assuming each chirp is min 25us duration) i.e 1, 4, 8, 12, 16, 20, ... 32768 (max). The FW needs to prepare and update HW CHIRP RAM dynamically in advance chirp config API, this puts some restriction on minimum number of chirps in a burst/frame.

NOTE1: NOTE2:	The Legacy AWR_CHIRP_CONF_SET_SB, AWR_DYN_CHIRP_ CONF_SET_SB, AWR_PERCHIRPPHASESHIFT_CONF_SB, AWR_DYN_PERCHIRP_PHASESHIFTER_CONF_SET_SB and AWR_BPM_CHIRP_CONF_SET_SB APIs are not supported if device is configured with Advanced Chirp Config API enabled in AWR_RF_RADAR_MISC_CTL_SB or vice versa. The per chirp phase shifter and BPM configurations are part of this
	API.
NOTE3:	The parameters in this API are not applicable to loop-back sub- frames AWR_LOOPBACK_BURST_CONF_SET_SB. If loop-back sub-frames are needed, it is recommended to be configured in the last sub-frame (SF) of AWR_ADVANCED_FRAME_CONF_SB API.
NOTE4:	The dynamic update of this API is allowed at frame boundary along with the Generic SW Chirp Parameters, as long as the LUT ad- dresses modified differ from the addresses used in the current on- going frame. The dynamic chirp enable API AWR_DYN_CHIRP_ ENABLE_SB shall be issued at least 500us before end of current active window of frame (500us before start of idle time of the frame) to apply the dynamic configurations in immediate next frame.
NOTE5:	The RF frequency used for measurement in monitors are derived only from profile settings (start frequency and slope) and not from the advance chirp configuration API, if fixed delta increment is used to change the start frequency every chirp, it is recommended to have a separate profile for monitors which covers full RF bandwidth of interest.

Table 5.49 describes the contents of this sub block. All the fields in this API are specific to selected CHIRP_PARAM_INDEX in this API, this API needs to be programmed ten times for each of the chirp parameters defined in CHIRP_PARAM_INDEX field in below API.

The Delta Dither is optional and can be disabled by setting DELTA_PARAM_UPDATE_PERIOD (N) = 0 and SFn_CHIRP_PARAM_DELTA = 0.

The LUT Dither is mandatory and at least one dither parameter value (it can be value zero) shall be programmed for all chirp parameters in generic LUT, same dither value can be programmed to all chirps in a burst/frame by setting LUT_PARAM_UPDATE_PERIOD (K) = 0.

Table 5.49:	AWR_	_ADVANCE_	_CHIRP_	_CONF_	SB	contents
-------------	------	-----------	---------	--------	----	----------

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0115
SBLKLEN	2	Value = 60

Continued on next page

Copyright © 2021, Texas Instruments Incorporated

CHIRP_PARAM_ INDEX	1	This field indicates the chirp parameter that the current API configures. The mapping and availability of dither modes are as below:			
		Index	Parameter	Delta Dither	LUT Dither
		0	CHIRP_PROFILE_SELECT	No	Yes
		1	CHIRP_FREQ_START_VAR	Yes	Yes
		2	CHIRP_FREQ_SLOPE_VAR	Yes	Yes
		3	CHIRP_IDLE_TIME_VAR	Yes	Yes
		4	CHIRP_ADC_START_TIME_ VAR	Yes	Yes
		5	CHIRP_TX_EN	No	Yes
		6	CHIRP_BPM_VAL	No	Yes
		7	TX0_PHASE_SHIFTER	Yes	Yes
		8	TX1_PHASE_SHIFTER	Yes	Yes
		9	TX2_PHASE_SHIFTER	Yes	Yes
		10	TX3_PHASE_SHIFTER	Yes	Yes
		with th	Reserved arameters referred to here are the ne name referred to in AWR_CH d in AWR_PERCHIRPPHASESH	HIRP_CO	NF_SET_
GLOBAL_RE- SET_MODE	1	This field indicates the reset mode of the programmed pattern. It indicates when the fixed delta accumulation (Delta Dither) or the programmed dither pattern from LUT (LUT Dither) resets back to its initial value. This is a global reset occurs for all the chirp parameters. This value should be same for all chirp parameter. Mode Definition			
		0	Reset at the end of Frame Note: This reset mode is r using advanced frame confi	••	rted when
		1	Reset at the end of Sub-Fra	me	
		2	Reset at the end of Burst		
		255-3	Reserved		
RESERVED	2	0x000	0		

PARAM CON-	1	Bits	Definition
TROL		0	Disable the chirp parameter
		-	Value Definition
			0 Chirp parameter is enabled.
			1 Chirp parameter is disabled.
			Param control should always be enabled for CHIRP_PROFILE_SELECT, CHIRP_TX_EN, CHIRP_BPM_VAL.
			When param control is disabled for CHIRP_ FREQ_START_VAR, CHIRP_FREQ_SLOPE_ VAR, CHIRP_IDLE_TIME_VAR, CHIRP_ADC_ START_TIME_VAR 0 dither values are applied. When param control is disabled for TXn_
			PHASE_SHIFTER TX Phase shifter values are used from PF_TX_PHASE_SHIFTER field of AWR_PROFILE_CONF_SET_SB.
		7-1	RESERVED
RESERVED	3	0x0000	
DELTA_RESET_ PERIOD (M)	2	Reset the M chirps	delta increment (Delta Dither) sequence every
		Valid range: 0 – 32768	
		Value	Definition
		0	Reset only as per RESET MODE option
		1	Delta increment is disabled
		32768-2	Reset every M chirps in addition to RESET MODE option
			period should be integer multiple of DELTA_ JPDATE_PERIOD (N)
DELTA_PARAM_ UPDATE_PE- RIOD (N)	2	The chirp parameter will be incremented by SFn_CHIRP_ PARAM_DELTA (Delta Dither) every N chirps.	
1		Valid range: 0 – 16384	
		Value	Definition
		0	Delta increment is disabled
		16384-1	The fixed delta value will be incremented once after every N chirps.

SF0_CHIRP_ PARAM_DELTA	4	This field indicates the delta increment (Delta Dither) value for sub-frame 0 (Also applicable for legacy frame config API) that should be accumulated and added to each chirp based on update period N. This accumulated fixed dither value which increments every N chirps is added to LUT dither value derived for same chirp, The sum of accumulated dither and LUT dither derived for each chirp is added to profile setting of same chirp parameter in HW. As some parameters may need signed values, all the Bytes in this field should be populated with appropriate sign extension.
		NOTE: If ADC_START_TIME_RES is set to 1 in AWR_RF_ MISC_CTL_SB, when AWR_ADVANCE_CHIRP_CONF_ SB API is issued for CHIRP_ADC_START_TIME_VAR, it is recommended to program SF0_CHIRP_PARAM_DELTA to 0. Only LUT based dither can be used for CHIRP_ ADC_START_TIME_VAR. Refer to the Fixed Delta Chirp Parameter LUT description Table 5.50 for the definition of this field when each param- eter is selected. This feature is enabled only for certain chirp parameter types as defined in this table.

SF1_CHIRP_ PARAM_DELTA	4	This field indicates the delta increment (Delta Dither) value for sub-frame 1 (Not applicable for legacy frame config API) that should be accumulated and added to each chirp based on update period N. This accumulated fixed dither value which increments every N chirps is added to LUT dither value derived for same chirp, The sum of accumulated dither and LUT dither derived for each chirp is added to profile setting of same chirp parameter in HW.
		As some parameters may need signed values, all the Bytes in this field should be populated with appropri- ate sign extension.
		NOTE : If ADC_START_TIME_RES is set to 1 in AWR_RF_ MISC_CTL_SB, when AWR_ADVANCE_CHIRP_CONF_ SB API is issued for CHIRP_ADC_START_TIME_VAR, it is recommended to program SF1_CHIRP_PARAM_DELTA to 0. Only LUT based dither can be used for CHIRP_ ADC_START_TIME_VAR.
		Refer to the Fixed Delta Chirp Parameter LUT description Table 5.50 for the definition of this field when each param- eter is selected. This feature is enabled only for certain chirp parameter types as defined in this table.

SF2_CHIRP_ PARAM_DELTA	4	This field indicates the delta increment (Delta Dither) value for sub-frame 2 (Not applicable for legacy frame config API) that should be accumulated and added to each chirp based on update period N. This accumulated fixed dither value which increments every N chirps is added to LUT dither value derived for same chirp, The sum of accumulated dither and LUT dither derived for each chirp is added to profile setting of same chirp parameter in HW. As some parameters may need signed values, all the Bytes in this field should be populated with appropriate sign extension.
		NOTE : If ADC_START_TIME_RES is set to 1 in AWR_RF_ MISC_CTL_SB, when AWR_ADVANCE_CHIRP_CONF_ SB API is issued for CHIRP_ADC_START_TIME_VAR, it is recommended to program SF2_CHIRP_PARAM_DELTA to 0. Only LUT based dither can be used for CHIRP_ ADC_START_TIME_VAR. Refer to the Fixed Delta Chirp Parameter LUT description table Table 5.50 for the definition of this field when each
		parameter is selected. This feature is enabled only for cer- tain chirp parameter types as defined in this table.

	10010 0.1	lo continucu	nom previous page
SF3_CHIRP_ PARAM_DELTA	4	for sub-frame 3 (Not applicable for legacy frame config API) that should be accumulated and added to each chirp based on update period N. This accumulated fixed dither value which increments every N chirps is added to LUT dither value derived for same chirp, The sum of accumulated dither and LUT dither derived for each chirp is added to profile setting of same chirp parameter in HW. As some parameters may need signed values, all the Bytes in this field should be populated with appropriate sign extension. NOTE : If ADC_START_TIME_RES is set to 1 in AWR_RF_ MISC_CTL_SB, when AWR_ADVANCE_CHIRP_CONF_ SB API is issued for CHIRP_ADC_START_TIME_VAR, it is recommended to program SF3_CHIRP_PARAM_DELTA to 0. Only LUT based dither can be used for CHIRP_ ADC_START_TIME_VAR. Refer to the Fixed Delta Chirp Parameter LUT description Table 5.50 for the definition of this field when each param- eter is selected. This feature is enabled only for certain	
			er types as defined in this table.
RESERVED	4	RESERVED	
LUT_RESET_ PERIOD (J)	2		sequence (LUT Dither) every J chirps
		Valid range: 0	
		Value	Definition
		0	Reset only as per RESET MODE option
		1	Fixed 0th indexed LUT value programmed for all chirps
		32768-2	Reset every J chirps in addition to RESET MODE option
			riod should be integer multiple of LUT_ ATE_PERIOD (K)

LUT_PARAM_ UPDATE_PE- RIOD (K)	2	The chirp parameter (LUT Dither) will be updated with new value from LUT every K chirps.			
		Valid range: 0 – 16384			
		Value	Definition		
		0	Fixed 0th indexed LUT value programmed for all chirps		
		16384-1	Index to LUT will be incremented once af- ter every K chirps and corresponding LUT value is used.		
LUT_PATTERN_ ADDRESS_OFF- SET	2	This field provides the start address offset within the Generic SW Chirp Parameter LUT which holds dither parameters (LUT Dither) for this CHIRP_PARAM_INDEX.			
		The first chirp of the burst/frame picks the dither from 0th index to LUT with this address offset and dithers for next chirps will be derived based on pattern configuration defined in this API.			
		The Generic ble 5.52 and	t has to be multiple 4 bytes (word boundary) SW chirp parameters are described in Ta- it can be loaded in to LUT using AWR_ HIRP_GENERIC_LUT_LOAD_SB API.		
NUM_OF_PAT- TERNS (P)	2	•	rides the number of unique dither parameters T (LUT Dither).		
		Valid range: 1 0 is not a valid			
			on is used to perform array out of bound error x to LUT in FW.		
		1			

	Table 5.4	9 – continued from previous page
BURST_LUT_ INDEX_OFFSET	2	Only relevant when using Advanced Frame Config API. Provides flexibility to have an offset in index to LUT (LUT Dither) from one burst to the next burst. This field provides the LUT index start offset for subsequent bursts in advanced frame config API. The chirp LUT start index for each burst is determined as the chirp LUT start index of the previous burst plus BURST_LUT_INDEX_OFFSET. This feature helps to loop set of different chirps in subse- quent bursts in a sub-frame. Valid Range: 0 to P 0 – No offset (default) 1 to P – LUT index start offset for each burst. NOTE1 : The first burst in second or higher sub-frame is always indexing to SF_LUT_INDEX_OFFSET parameter in LUT. NOTE2 : The LUT_RESET_PERIOD can not be more than number of chirps in a burst if this feature is used.
SF_LUT_INDEX_ OFFSET	2	Only relevant when using Advanced Frame Config API. Provides flexibility to have an offset in index to LUT (LUT Dither) from one subframe to the next subframe. This field provides the LUT index start offset for subsequent sub-frames in advanced frame config. The chirp LUT start index for first burst in each SF is determined as the chirp LUT start index of the previous SF plus SF_LUT_INDEX_ OFFSET. This feature helps to loop set of different chirps in subsequent sub-frames. Valid Range: 0 to P 0 – No offset (default) 1 to P - LUT index start offset for each sub-frame (SF). NOTE1 : The first SF in advance frame is always indexing to 0th parameter in LUT. NOTE2 : The LUT_RESET_PERIOD can not be more than number of chirps in a sub-frame if this feature is used.

LUT_CHIRP_ PARAM_SIZE	1	This field is applicable only for LUT chirp parameters (LUT Dither) of type CHIRP_FREQ_START_VAR, CHIRP_ IDLE_TIME_VAR and CHIRP_ADC_START_TIME_VAR. This feature can be used to reduce the size of the param- eter in LUT if dynamic range of the parameter is small.			
		Valid Range: 0 to 2 CHIRP_PARAM_INDEX type value 0 value 1 value 2			
		CHIRP_FREQ_START_VAR 4 bytes 2 bytes 1 byte			
		CHIRP_IDLE_TIME_VAR 2 bytes 1 byte -			
		CHIRP_ADC_START_ 2 bytes 1 byte - TIME_VAR			
		Default Value: 0 (default size) NOTE : If ADC_START_TIME_RES is set to 1 in AWR_ RF_MISC_CTL_SB, LUT_CHIRP_PARAM_SIZE should always be set to 2 bytes in AWR_ADVANCE_CHIRP_ CONF_SB API when it is issued for CHIRP_ADC_START_ TIME_VAR.			
LUT_CHIRP_ PARAM_SCALE	1	This field is applicable only for LUT chirp parameters (LUT Dither) of type CHIRP_FREQ_START_VAR, CHIRP_ IDLE_TIME_VAR and CHIRP_ADC_START_TIME_VAR. This feature can be used to reduce the size of the parame- ter in LUT if granularity of the resolution can be increased.			
		Valid Range: 0 to 16 The actual parameter value for the defined chirp is given by: 2 ^{SCALE} * LUT_PARAM_VALUE Default Value: 0 (no scale) NOTE : If ADC_START_TIME_RES is set to 1 in AWR_RF_ MISC_CTL_SB, LUT_CHIRP_PARAM_SCALE should be			
		programmed to 0 when AWR_ADVANCE_CHIRP_CONF_ SB API is issued for CHIRP_ADC_START_TIME_VAR.			
		Refer to the corresponding rows in the Generic SW Chirp Parameter LUT description Table 5.52 for more info.			

		<u> </u>
MAX_TX_ PHASE_ SHIFTER_ INTERNAL_ DITHER	2	This field is applicable only if SFn_CHIRP_PARAM_ DELTA increment (Delta Dither) is enabled for TXn_ PHASE_SHIFTER parameter. It controls the TX phase quantization process. The device's internal TX phase shifters are 6 bit. For deriving the internal 6 bit phase, the 16 bit SFn_CHIRP_PARAM_DELTA is accumulated in the firmware every chirp. The accumulator's output is added with a random number from 0 to this field's value. The 6 MSBs of the adder's output are used as the internal 6 bit phase for that chirp. Valid Range: 0 to 4096 Default Value: 0 (no dither)
RESERVED	8	RESERVED

Fixed Delta Chirp Parameter description table:

Here is the description of SFn_CHIRP_PARAM_DELTA for each relevant parameter in Advanced Chirp Config API. This fixed delta is being incremented every N chirps as per update period defined in this API and the start value of the accumulator is 0 for first chirp. The accumulated delta is being added to LUT dither value and to the profile config setting in HW. This fixed delta increment feature helps to reduce the need of dedicated chirp RAM for each chirp if pattern can be generated in fixed increment fashion for each chirp.

Table 5.50: ADV_CHIRP_FIXED_DELTA_PARAM desc	ription
--	---------

Parameter	LSB definition	Description
CHIRP_FREQ_ START_VAR	For 77GHz Devices (76GHz to 81GHz): 1 LSB = $3.6e9/2^{26}$ Hz \approx 53.644 Hz Signed Valid Range: -0x058E38E3 to 0x058E38E3 +/-5GHz range (Depending on max range of VCO) For 60GHz Devices (57GHz to 64Ghz): 1 LSB = $2.7e9/2^{26} \approx 40.23$ Hz Signed Valid Range: -0x05ED097B to 0x05ED097B +/-4GHz range (Depending on max range of VCO)	The start frequency dither fixed delta increment value. This field is signed and has higher dynamic range compared to legacy chirp configuration API. Limitations: If accumulated delta dither + LUT dither value for a chirp is negative or >= 450MHz then Fw internally has to update the start freq of the profile of corresponding chirp dynamically in HW and this leads to limitation as mentioned below. If accumulated delta dither + LUT dither value is negative or >= +/-450MHz for 2nd chirp in a burst then due to Hw limitation the both first and 2nd chirps will be programmed with same start frequency i.e accumulated delta + LUT dither belongs to 2nd chirp. The chirps beyond 1st chirp will have proper start frequency programmed as expected, the 1st chirp start frequency would be bad, so it is recommended to discard the first chirp. NOTE : The Profile start freq + Accumu- lated delta dither + LUT dither for a chirp should not exceed the VCO range. NOTE : If GLOBAL_RESET_MODE is set to 0 (end of frame) or 1 (end of sub- frame) then above limitation is applica- ble at start of each burst of a sub-frame.

	Table 5.50 – continued fro	mi previous page
CHIRP_FREQ_ SLOPE_VAR	For 77GHz Devices (76GHz to 81GHz): 1 LSB = $3.6e9 \times 900/2^{26} \approx$ 48.279 kHz Signed Valid Range: -63 to 63 +/-3MHz/us range For 60GHz Devices (57GHz to 64Ghz): 1 LSB = $2.7e9 \times 900/2^{26} \approx$ 36.21 kHz Signed Valid Range: -63 to 63 +/-2.28MHz/us range	The slope dither fixed delta increment value. This field is signed Limitations: If accumulated delta dither + LUT dither value for a chirp is negative or >= 3MHz/us then Fw internally has to update the slope of the profile of corresponding chirp dynamically in HW and this leads to limitation as mentioned below. If accumulated delta dither + LUT dither value is negative or >= +/-3MHz for 2nd chirp in a burst then due to Hw limitation the both first and 2nd chirps will be programmed with same slope i.e accumulated delta dither + LUT dither belongs to 2nd chirp. The chirps beyond 1st chirp will have proper slope programmed as expected, the 1st chirp slope would be bad, so it is recom- mended to discard the first chirp. NOTE : The Profile slope + Accumulated delta dither + LUT dither for a chirp should not exceed the max slope range of VCO. NOTE : If GLOBAL_RESET_MODE is set to 0 (end of frame) or 1 (end of sub- frame) then above limitation is applica- ble at start of each burst of a sub-frame.
CHIRP_IDLE_ TIME_VAR	1 LSB = 10 ns, unsigned Valid range: 0 to 4095 0 to 40.95us range	The idle time dither fixed delta incre- ment value. This field is unsigned. NOTE : The Accumulated delta dither + LUT dither for a chirp should not exceed the max idle time dither value 40.95us (4095 value).

1 LSB = 10 ns, unsigned Valid range: 0 to 4095 0 to 40.95us range	The ADC start time dither fixed delta increment value. This field is unsigned. NOTE : The Accumulated delta dither + LUT dither for a chirp should not exceed the max ADC start time dither value 40.95us (4095 value). NOTE : If ADC_START_TIME_RES is set to 1 in AWR_RF_MISC_CTL_ SB, only LUT based dither can be used when AWR_ADVANCE_CHIRP_ CONF_SB API is issued for CHIRP_ ADC_START_TIME_VAR. The chirp delta parameters specified below should be programmed to 0: • SF0_CHIRP_PARAM_DELTA, SF1_CHIRP_PARAM_DELTA, SF3_CHIRP_PARAM_DELTA, DELTA_PARAM_UPDATE_ PERIOD in AWR_ADVANCE_ CHIRP_CONF_SB API.
1 LSB = $360^{\circ}/2^{16}$ = 0.005493° , unsigned Valid range: 0 to 65535 $0to360^{\circ}$ range	The per chirp TX0 phase shifter fixed delta increment value. This field is un- signed and has finer resolution com- pared to LUT per chirp dither value. Please review the notes below for more information on the phase resolution sup- ported in hardware and how it relates to delta increment values.
1 LSB = $360^{\circ}/2^{16}$ = 0.005493° , unsigned Valid range: 0 to 65535 $0to360^{\circ}$ range	The per chirp TX1 phase shifter fixed delta increment value. This field is un- signed and has finer resolution com- pared to LUT per chirp dither value. Please review the notes below for more information on the phase resolution sup- ported in hardware and how it relates to delta increment values.
	Valid range: 0 to 4095 0 to 40.95us range 1 LSB = $360^{\circ}/2^{16}$ = 0.005493°, unsigned Valid range: 0 to 65535 0to360° range 1 LSB = $360^{\circ}/2^{16}$ = 0.005493°, unsigned Valid range: 0 to 65535

TX2_PHASE_ SHIFTER	1 LSB = $360^{\circ}/2^{16}$ = 0.005493° , unsigned Valid range: 0 to 65535 $0to360^{\circ}$ range	The per chirp TX2 phase shifter fixed delta increment value. This field is un- signed and has finer resolution com- pared to LUT per chirp dither value. Please review the notes below for more information on the phase resolution sup- ported in hardware and how it relates to delta increment values.
TX3_PHASE_ SHIFTER	1 LSB = $360^{\circ}/2^{16}$ = 0.005493° , unsigned Valid range: 0 to 65535 $0to360^{\circ}$ range	The per chirp TX3 phase shifter fixed delta increment value. This field is un- signed and has finer resolution com- pared to LUT per chirp dither value. Please review the notes below for more information on the phase resolution sup- ported in hardware and how it relates to delta increment values.

NOTE1:	If fixed delta dither is used to generate the pattern then it is rec- ommended to program same start frequency in profile config API for each chirps in a frame. Each chirp can have different profiles associated with it except start frequency.
NOTE2:	The number of chirps programmed in a burst/frame shall be multi- ple of 4. Exception: a single chirp can be programmed in a burst.
NOTE3:	The device's internal TX phase shifters are 6 bit $(5.625^{\circ} \text{ resolution})$. For deriving the internal 6 bit phase, the delta increment value is accumulated in the firmware every chirp. 6 MSBs of the accumulator's output is used as the 6 bit phase for that chirp.

5.5.22 Sub block 0x0116 - AWR_ADVANCE_CHIRP_GENERIC_LUT_LOAD_SB

This API sub-block loads the unique dither values for each chirp on Generic SW Chirp Parameter LUT at offset address defined in AWR_ADVANCE_CHIRP_CONF_SB API. This LUT can be used to pre-load dither patterns for each chirp parameters and provides the flexibility to program any number of unique dithers for each chirp parameters.

NOTE1:	The Generic SW Chirp Parameter LUT can be modified by the host dynamically, as long as the LUT addresses modified differ from the addresses used in the current frame.
NOTE2:	The dynamic update of this API is effective immediately and does not depend on AWR_DYN_CHIRP_ENABLE_SB API. This might impact the ongoing chirps if timing of the update is not handled properly as if ongoing chirps use same fields/addresses in LUT. It is recommended to perform proper timing analysis before updating the LUT dynamically considering SPI communication delays.
NOTE3:	The total size of Generic SW Chirp Parameter LUT is 12kB.
NOTE4:	The start address offset of all chirp parameter in LUT shall be mul- tiple of 4 bytes (word boundary), that means minimum 4 bytes in LUT shall be allocated to each chirp parameter.
NOTE5:	At least one dither parameter value shall be programmed for each chirp parameter type (10 types) in generic LUT, same value can be programmed to all chirps in a burst/frame using Advance chirp config API, LUT_PARAM_UPDATE_PERIOD (K) = 0 configuration.

Table 5.51 describes the contents of this sub block.

Table 5.51: AWR_ADVANCE_CHIRP_GENERIC_LUT_LOAD_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0116
SBLKLEN	2	Value = 232
RESERVED	12	0x0000
LUT_ADDRESS_ OFFSET	2	Start address offset in LUT at which to populate the bytes of patterns. Address offset has to be multiple 4 bytes (word boundary)
NUM_OF_ BYTES	2	Number of valid bytes to load in LUT Valid range: 4 to 212 bytes, must be multiple of 4 bytes.
DATA_BYTES	212	Byte array to load in to the Generic SW Chirp Parameter LUT. The description and size of the chirp parameters defined in Table 5.52 below.
		NOTE : The size of this sub-block is fixed to total 232 bytes, hence it is recommended to group multiple chirp parameters and send in chunks.

Generic SW Chirp Parameter LUT parameters description table:

Here is the description of chirp parameter dithers which are programmed at LUT_PATTERN_ ADDRESS_OFFSET address in Generic LUT defined in Advanced Chirp Config API. The index

to this LUT is being incremented every K chirps as per update period defined in Advanced Chirp Config API and the index to LUT is 0 (at offset address) for first chirp. This LUT dither is being added to accumulated delta value and to the profile config setting in HW. This generic LUT helps to program unique dithers in device chirp RAM only for certain chirp parameters based on waveform generation need, there is no need to program the dithers for chirp parameters which are not required to be dithered unlike legacy AWR_CHIRP_CONF_SET_SB API.

LSB definition and Size	Description
Valid Range: 0 to 6 Size: 4 bits for each pa- rameter Min Size in LUT: 4 Bytes (Up to 8 parameters)	Each byte can hold profile index parameter for 2 chirps in LUT. Index 0 and 1 refer to the first and second parameters in LUT. Bit Parameter Field b3:0 0th Profile index parameter in LUT (Mandatory field) b7:4 1st Profile index parameter in LUT (optional - in case 0th fixed profile wants to be used for all chirps in a burst/frame)
۲ ۲	Valid Range: 0 to 6 Size: 4 bits for each pa- rameter Min Size in LUT: 4 Bytes (Up

Table 5.52: ADV_CHIRP_GENERIC_LUT_PARAM description

Table 5.52 – continued nom previous page			
CHIRP_FREQ_ START_VAR	For 77GHz Devices (76GHz to 81GHz): 1 LSB = $3.6e9/2^{26} * 2^{SCALE}$ Hz Signed Valid Range: -0x058E38E3 to 0x058E38E3 +/-5GHz range (Depending on	The start frequency dither value for each chirp to be added to the profile's start frequency. This value is signed and has higher dynamic range com- pared to legacy chirp configuration API.	
	max range of VCO)	Limitations: If accumulated delta + LUT dither	
	For 60GHz Devices (57GHz to 64Ghz): 1 LSB = $2.7e9/2^{26} * 2^{SCALE}$ Hz Signed Valid Range: -0x05ED097B to 0x05ED097B	value for a chirp is –ve or $>= 450$ MHz then Fw internally has to update the start freq of the profile of correspond- ing chirp dynamically in HW and this leads to limitation as mentioned below.	
	+/-4GHz range (Depending on max range of VCO)	If accumulated delta + LUT dither value is -ve or $>= +/-450$ MHz for 2nd chirp in a burst then due to Hw limitation the both first and 2nd chirps	
	Size: 1 or 2 or 4 Bytes Configurable based on LUT_ CHIRP_PARAM_SIZE defined in Advanced chirp config API. Min Size in LUT: 4 Bytes (Up to 4 parameters in case size is 1 byte)	will be programmed with same start frequency i.e accumulated delta + LUT dither belongs to 2nd chirp. The chirps beyond 1st chirp will have proper start frequency as expected, so it is recommended to discard the first chirp in this case.	
	Scale: 0 to 16 Configurable based on LUT_ CHIRP_PARAM_SCAL de- fined in Advanced chirp config API.	NOTE : The Profile start freq + Accumulated delta + LUT dither for a chirp should not exceed the VCO range.	

	Table 5.52 – continued from	i previous page
CHIRP_FREQ_ SLOPE_VAR	For 77GHz Devices (76GHz to 81GHz): 1 LSB = $3.6e9 \times 900/2^{26} \approx$ 48.279 kHz Signed Valid Range: -63 to 63 +/-3MHz/us range For 60GHz Devices (57GHz to 64Ghz): 1 LSB = $2.7e9 \times 900/2^{26} \approx$ 36.21 kHz Signed Valid Range: -63 to 63 +/-2.28MHz/us range Size: 1 byte Min Size in LUT: 4 Bytes (Up to 4 parameters)	The slope dither value. This value is signed Limitations: If accumulated delta + LUT dither value for a chirp is -ve or $>=$ 3MHz/us then Fw internally has to update the slope of the profile of corresponding chirp dynamically in HW and this leads to limitation as mentioned below. If accumulated delta + LUT dither value is -ve or $>=$ +/-3MHz for 2nd chirp in a burst then due to Hw limitation the both first and 2nd chirps will be programmed with same slope i.e accumulated delta + LUT dither belongs to 2nd chirp. The chirps beyond 1st chirp will have proper slope as expected, so it is recommended to discard the first chirp in this case. NOTE : The Profile slope + Accumulated delta + LUT dither for a chirp should not exceed the max slope range of VCO.
CHIRP_IDLE_ TIME_VAR	1 LSB = $10ns * 2^{SCALE}$, unsigned Valid range: 0 to 4095 0 to 40.95us range Size: 1 or 2 Bytes Configurable based on LUT_ CHIRP_PARAM_SIZE defined in Advanced chirp config API. Min Size in LUT: 4 Bytes (Up to 4 parameters in case size is 1 byte) Scale: 0 to 8 Configurable based on LUT_ CHIRP_PARAM_SCAL de- fined in Advanced chirp config API.	The idle time dither value. This value is unsigned. NOTE : The Accumulated delta dither + LUT dither for a chirp should not ex- ceed the max idle time dither value 40.95us (4095 value).

	Table 5.52 – continued from	i pierieue puge
CHIRP_ADC_	If ADC_START_TIME_RES	The ADC start time dither value. This
START_TIME_	is set to 0 (10ns) in AWR_	value is unsigned.
VAR	ADVANCE_CHIRP_CONF_	
	SB	If ADC_START_TIME_RES is set
	1 LSB = $10ns * 2^{SCALE}$,	to 0 (10ns) in AWR ADVANCE
	unsigned	CHIRP_CONF_SB
	Valid range: 0 to 4095	NOTE: The Accumulated delta dither
	0 to 40.95us range	+ LUT dither for a chirp should not
	Size: 1 or 2 Bytes	exceed the max ADC start time dither
	Configurable based on LUT_	value 40.95us (4095 value).
	CHIRP_PARAM_SIZE defined	
	in Advanced chirp config API.	If ADC_START_TIME_RES is set to
	Min Size in LUT: 4 Bytes (Up	1 (1ns) in AWR_ADVANCE_CHIRP_
	to 4 parameters in case size is	CONF_SB
	1 byte)	Adc start time is computed using
		values programmed in bits [11:0] and
	Scale: 0 to 8	bits [15:12]
	Configurable based on LUT_	Resolution for bits [11:0] is 10 ns and
	CHIRP PARAM SCAL de-	for bits [11:0] is 1ns
	fined in Advanced chirp config	ADC Start Time value in ns = CHIRP_
	API.	ADC_START_TIME_VAR[11:0] *
		10ns + CHIRP_ADC_START_TIME_
	IF ADC START TIME RES	VAR[15:12] * 1ns
	is set to 1 (1ns) in AWR	
	ADVANCE CHIRP CONF	NOTE: The Accumulated delta dither
	SB 1 LSB = 1 ns for bits	+ LUT dither for a chirp should not ex-
	[15:12], unsigned	ceed the max ADC start time dither
	1 LSB = 10 ns for bits [11:0],	value 40.959us (40959 value).
	unsigned	
	Valid range: 0 to 4095 for bits	
	[11:0]	
	Valid range: 0 to 9 for bits	
	[15:12]	
	0 to 40.959us range	
	Size: 2 Bytes	
	Min Size in LUT: 4 Bytes	
	Scale: 0 Scaling is not	
	supported with 1ns resolution	

		•	1.0
CHIRP_TX_EN	Valid Range: 0 to 15	1	te can hold TX enable mask ter for 2 chirps in LUT. Index
	Size: 4 bits for each pa- rameter		refer to the first and second ters in LUT.
	Min Size in LUT: 4 Bytes (Up to 8 parameters)	Bit Field	Parameter
		b0	TX0 enable mask for 0th pa- rameter in LUT (Mandatory field)
		b1	TX1 enable mask for 0th pa- rameter in LUT (Mandatory field)
		b2	TX2 enable mask for 0th pa- rameter in LUT (Mandatory field)
		b3	TX3 enable mask for 0th pa- rameter in LUT (Mandatory field)
		b4	TX0 enable mask for 1st pa- rameter in LUT (optional)
		b5	TX1 enable mask for 1st pa- rameter in LUT (optional)
		b6	TX2 enable mask for 1st pa- rameter in LUT (optional)
		b7	TX3 enable mask for 1st pa- rameter in LUT (optional)

		•	1 5
CHIRP_BPM_ VAL	Valid Range: 0 to 15 Size: 4 bits for each pa-	paramet	yte can hold TX BPM value ter for 2 chirps in LUT. Index refer to the first and second
	rameter		ters in LUT.
	Min Size in LUT: 4 Bytes (Up	Bit	Parameter
	to 8 parameters)	Field	i arameter
		b0	TX0 BPM value for 0th pa- rameter in LUT (Mandatory field)
		b1	TX1 BPM value for 0th pa- rameter in LUT (Mandatory field)
		b2	TX2 BPM value for 0th pa- rameter in LUT (Mandatory field)
		b3	TX3 BPM value for 0th pa- rameter in LUT (Mandatory field)
		b4	TX0 BPM value for 1st pa- rameter in LUT (optional)
		b5	TX1 BPM value for 1st pa- rameter in LUT (optional)
		b6	TX2 BPM value for 1st pa- rameter in LUT (optional)
		b7	TX3 BPM value for 0th pa- rameter in LUT (Mandatory field)
TX0_PHASE_ SHIFTER	1 LSB = $360^{\circ}/2^{6} = 5.625^{\circ}$, unsigned		chirp TX0 phase shifter value. ue is unsigned
	Valid range: 0 to 63	Bits	TX0 phase shift definition
	$0to360^{\circ}$ range	b1:0	RESERVED (set it to 0b00)
	Size: 1 byte Min Size in LUT: 4 Bytes (Up to 4 parameters)	b7:2	TX0 phase shift value
TX1_PHASE_ SHIFTER	1 LSB = $360^{\circ}/2^{6} = 5.625^{\circ}$, unsigned		chirp TX1 phase shifter value. ue is unsigned
	Valid range: 0 to 63	Bits	TX1 phase shift definition
	$0to360^{\circ}$ range	b1:0	RESERVED (set it to 0b00)
	Size: 1 byte Min Size in LUT: 4 Bytes (Up to 4 parameters)	b7:2	TX1 phase shift value

TX2_PHASE_ SHIFTER	1 LSB = $360^{\circ}/2^{6} = 5.625^{\circ}$, unsigned	The per chirp TX2 phase shifter value. This value is unsigned	
	Valid range: 0 to 63 0to360° range Size: 1 byte Min Size in LUT: 4 Bytes (Up to 4 parameters)	BitsTX2 phase shift definitionb1:0RESERVED (set it to 0b00)b7:2TX2 phase shift value	
TX3_PHASE_ SHIFTER	1 LSB = $360^{\circ}/2^{6} = 5.625^{\circ}$, unsigned Valid range: 0 to 63 $0to360^{\circ}$ range Size: 1 byte Min Size in LUT: 4 Bytes (Up to 4 parameters)	The per chirp TX3 phase shifter value.This value is unsignedBitsTX3 phase shift definitionb1:0RESERVED (set it to 0b00)b7:2TX3 phase shift value	

Limitations:

Limitation 1:	 The first chirp in a burst (AFC) or in a legacy frame shall be discarded due to Hw limitation in below cases: If start frequency dither is negative for 2nd chirp of a burst/frame (either due to delta increment or due to LUT value). Workaround: program a small negative dither for 1st chirp in LUT. If start frequency dither is >= +/-450MHz for 2nd chirp of a burst/frame (either due to delta increment or due to LUT value). Workaround: Discard 1st chirp data
	 Workaround: Discard 1st chirp data. If slope dither is negative for 2nd chirp of a burst/frame (either due to delta increment or due to LUT value). Workaround: program a small negative dither for 1st chirp in LUT. If slope dither is >= +/-3MHz/us for 2nd chirp of a burst/frame (either due to delta increment or due to LUT value). Workaround: Discard 1st chirp data.
Limitation 2:	The minimum chirp duration or cycle time shall be 25us if advance chirp feature is used (vs 13us in case of legacy chirp config API is used).

5.5.23 Sub block 0x0117 - AWR_MONITOR_TYPE_TRIG_CONF_SB

This is only on **AWR2243**, **xWR294x and xWR254x** devices. This API helps to maintain monitoring timing synchronization in cascaded devices to avoid mutual interference of monitors running in different devices in the cascade sensor. The host must trigger the monitor of types below to avoid interference if MONITORING_MODE is set to '1' in AWR_CALIB_MON_TIME_UNIT_CONF_SB. The monitors can be categorized into 3 types. The AWR_AE_RF_MONITOR_TYPE_TRIGGER_ DONE_SB AE will be sent once monitor type is executed.

Monitor Types	Description
Туре 0	Non-transmitting monitor, The execution of non-transmitting moni-
	tors does not cause RF interference to monitors executing on other
	devices. Therefore, they can be executed in parallel across all de-
	vices in the cascade. These include monitors which receive a test
	signal through RX LNA and digital monitors.
Туре 1	Transmitting but not receiving (test signal), The monitors that trans-
	mit but don't receive any test signal through RX LNA are not sus-
	ceptible to interference. Therefore, they can be executed in parallel
	across all devices in the cascade, but not when monitors that re-
	ceive test signals through RX LNA are executing.
Туре 2	Transmitting and receiving (test signal), The monitors that transmit
	and also receive test signal through RX LNA are susceptible to in-
	terference. They can be executed sequentially so as to create time
	separation between monitoring chirps of different devices.

Table 5.53:Types of Monitors

Manian	Table 5.54: Wollitor Categorization
Monitor Type	Monitors
Туре 0	The run time digital monitors in AWR_MONITOR_RF_DIG_ PERIODIC_CONF_SB Bit Definition b0 PERIODIC_CONFG_REGISTER_READ_EN b2 DFE_STC_EN b3 FRAME TIMING MONITORING EN
	The analog monitors in AWR_MONITOR_ANALOG_ENABLES_ CONF_SBBitDefinitionb0TEMPERATURE_MONITORb1RX_GAIN_PHASE_MONITORb2RX_NOISE_FIGURE_MONITORb3RX_IFSTAGE_MONITORb14SYNTH_FREQ_MONITORb15EXTERNAL_ANALOG_SIGNALS_MONITORb19INTERNAL_PMCLKLO_SIGNALS_MONITORb21INTERNAL_GPADC_SIGNALS_MONITORb22PLL_CONTROL_VOLTAGE_MONITORb23DCC_CLOCK_FREQ_MONITORb24RX_SATURATION_DETECTOR_MONITORb25RX_SIG_IMG_BAND_MONITOR
Type 1	The analog monitors in AWR_MONITOR_ANALOG_ENABLES_ CONF_SBBitDefinitionb4TX0_POWER_MONITORb5TX1_POWER_MONITORb6TX2_POWER_MONITORb7TX0_BALLBREAK_MONITORb8TX1_BALLBREAK_MONITORb9TX2_BALLBREAK_MONITORb16INTERNAL_TX0_SIGNALS_MONITORb17INTERNAL_TX1_SIGNALS_MONITORb18INTERNAL_TX2_SIGNALS_MONITOR
Туре 2	The analog monitors in AWR_MONITOR_ANALOG_ENABLES_ CONF_SBBitDefinitionb10TX_GAIN_PHASE_MISMATCH_MONITORb11TX0_PHASE_SHIFTER_MONITORb12TX1_PHASE_SHIFTER_MONITORb13TX2_PHASE_SHIFTER_MONITORb26RX_MIXER_INPUT_POWER_MONITOR

 Table 5.54:
 Monitor Categorization

Table 5.55: AWR_MONITOR_TYPE_TRIG_CONF_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0117
SBLKLEN	2	Value = 12
MON_TRIG_ TYPE_ENABLE	1	The bit mask for monitor trigger type to control sequence of execution of monitors. Bit Definition
		b0 Trigger Type 0 monitors
		b1 Trigger Type 1 monitors
		b2 Trigger Type 2 monitors
		b7:3 RESERVED 0: Disable 1: Enable
RESERVED	7	0x0

NOTE1:	The Host can trigger all 3 types of monitor at same time or can trigger each type one after other based on system requirement, in case host is triggering monitor types one after other, then it is recommended to follow order type 0, type 1 and type 2 respectively.
NOTE2:	The Host must wait for AWR_AE_RF_MONITOR_TYPE_ TRIGGER_DONE_SB AE before issuing trigger for next mon- itor type.
NOTE3:	The Host must ensure all types of monitors are executed within defined device FTTI interval, otherwise device can not finish all the monitors within FTTI and will report failure AE AWR_CAL_MON_TIMING_FAIL_REPORT_AE_SB

5.5.24 Sub block 0x0118 – AWR_ADVANCE_CHIRP_DYN_LUT_ADDR_OFFSET_ CFG_SB

This API sub-block can be used to configure LUT address offset dynamically for each chirp parameters defined in AWR_ADVANCE_CHIRP_CONF_SB API. This API helps to update only the LUT offset address for chirp parameters when LUT data is modified at frame boundary dynamically while frames are running. The dynamic chirp enable API AWR_DYN_CHIRP_ENABLE_SB shall be issued after issuing this API at least 500us before end of current active window of frame (500us before start of idle time of the frame) to apply the dynamic configurations in immediate

next frame.

Table 5.56 describes the contents of this sub block.

Table 5.56: AWR_ADVANCE_CHIRP_DYN_LUT_ADDR_OFFSET_CFG_SB contents

Field Name	Number	Description
	of bytes	
SBLKID	2	Value = 0x0118
SBLKLEN	2	Value = 40
ADDRESS_ MASK_EN	2	Enable mask for LUT address offset dynamic update, the address is updated for following enabled chirp parameters. Value 1: Enable Value 0: Disable Bit Definition
		b0 Enable CHIRP_PROFILE_SELECT
		b1 Enable CHIRP_FREQ_START_VAR
		b2 Enable CHIRP_FREQ_SLOPE_VAR
		b3 Enable CHIRP_IDLE_TIME_VAR
		b4 Enable CHIRP_ADC_START_TIME_VAR
		b5 Enable CHIRP_TX_EN
		b6 Enable CHIRP_BPM_VAL
		b7 Enable TX0_PHASE_SHIFTER
		b8 Enable TX1_PHASE_SHIFTER
		b9 Enable TX2_PHASE_SHIFTER
		b10 Enable TX3_PHASE_SHIFTER
		b15:11 RESERVED
RESERVED	2	0x0000

Table 5.56 – Continued from previous page				
LUT_ADDRESS_ OFFSET	22	This field provides the start address offset within the Generic SW Chirp Parameter LUT which holds dither parameters (LUT Dither) for each chirp parameter, each address offset is 2 bytes. The address will be updated only if ADDRESS_MASK_EN is SET.		
		Bytes Definition		
		Bytes LUT_ADDRESS_OFFSET for CHIRP_PROFILE_ 1:0 SELECT		
		Bytes LUT_ADDRESS_OFFSET for CHIRP_FREQ_ 3:2 START_VAR		
		Bytes LUT_ADDRESS_OFFSET for CHIRP_FREQ_ 5:4 SLOPE_VAR		
		Bytes LUT_ADDRESS_OFFSET for CHIRP_IDLE_ 7:6 TIME_VAR		
		Bytes LUT_ADDRESS_OFFSET for CHIRP_ADC_ 9:8 START_TIME_VAR		
		Bytes LUT_ADDRESS_OFFSET for CHIRP_TX_EN 11:10		
		Bytes LUT_ADDRESS_OFFSET for CHIRP_BPM_VAL 13:12		
		Bytes LUT_ADDRESS_OFFSET for TX0_PHASE_ 15:14 SHIFTER		
		Bytes LUT_ADDRESS_OFFSET for TX1_PHASE_ 17:16 SHIFTER		
		Bytes LUT_ADDRESS_OFFSET for TX2_PHASE_ 19:18 SHIFTER		
		Bytes LUT_ADDRESS_OFFSET for TX3_PHASE_ 21:20 SHIFTER		
		Address offset has to be multiple 4 bytes (word boundary)		
RESERVED	10	RESERVED		

5.5.25 Sub block 0x0119 - AWR_ADV_TX_GAIN_TEMPLUT_SET_SB

This is only applicable in xWR294x and xWR254x devices. This API can be used to overwrite the TX gain temperature LUT for any TX channel used in firmware. This API should be issued after profile configuration API.

Table 5.57: AWR_ADV_TX_GAIN_TEMPLUT_SET_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x0119	
SBLKLEN	2	Value = 44	
PROFILE_INDX	1	This field indicates the profile Index for which this configu- ration applies	
TX_INDEX	1	This field indicates the TX channel to which this configura- tion applies.	
		0 TX0 channel	
		1 TX1 channel	
		2 TX2 channel	
		3 TX3 channel	
TX_GAIN_CODE	19	Byte0: TX gain code for temperature $<$ -30 $^{\circ}$ C	
		Byte1: TX gain code for temperature [-30, -20) °C	
		Byte2: TX gain code for temperature [-20, -10) $^{\circ}$ C	
		Byte3: TX gain code for temperature [-10, 0) °C	
		Byte4: TX gain code for temperature [0, 10) $^{\circ}$ C	
		Byte5: TX gain code for temperature [10, 20) °C	
		Byte6: TX gain code for temperature [20, 30) °C	
		Byte7: TX gain code for temperature [30, 40) °C	
		Byte8: TX gain code for temperature [40, 50) °C	
		Byte9: TX gain code for temperature [50, 60) °C	
		Byte10: TX gain code for temperature [60, 70) °C	
		Byte11: TX gain code for temperature [70, 80) °C	
		Byte12: TX gain code for temperature [80, 90) °C	
		Byte13: TX gain code for temperature [90, 100) $^{\circ}$ C	
		Byte14: TX gain code for temperature [100, 110) °C	
		Byte15: TX gain code for temperature [110, 120) $^{\circ}$ C	
		Byte16: TX gain code for temperature [120, 130) °C	
		Byte17: TX gain code for temperature [130, 140) $^{\circ}$ C	
		Byte18: TX gain code for temperature \geq 140 °C Each byte is encoded as follows	
		Bits Definition	
		b7:0 STG_CODE Higher values for higher gain	
RESERVED	1	0x00	

RESERVED	16	0x00
RESERVED	2	0x0000

5.5.26 Sub block 0x011A – AWR_ADV_DYN_PERCHIRP_PHASESHIFTER_CONF_ SET_SB

This API can be used to dynamically change the per-chirp phase shifter configuration (applicable only in xWR294x and xWR254x) while frames are on-going. The configuration will be stored in software and the new configuration will be applied after receiving the AWR_DYN_CHIRP_ENABLE_SB API.

Table 5.58:	AWR_	_ADV_	_DYN_	_PERCHIRP_	_PHASESHIFTER_	_CONF_SB
				conte	ents	

Field Name	Number Description		
Field Name	of bytes	Description	
	-		
SBLKID	2	Value = 0x011A	
SBLKLEN	2	Value = 92	
RESERVED	3	0×000000	
CHIRP_SEG- MENT_SELECT	1	Indicates the segment of the chirp RAM that the 16 chirp definitions in this sub block map to. Valid range 0 to 31	
CHIRP1_	1	TX0 phase shift value	
TX0_PHASE_		Bits TX0 phase shift definition	
SHIFTER		b1:0 RESERVED (set it to 0b00)	
		b7:2 TX0 phase shift value 1 LSB = $360^{\circ}/2^{6} = 5.625^{\circ}$ Valid range: 0 to 63	
CHIRP1_	1	TX1 phase shift value	
TX1_PHASE_		Bits TX1 phase shift definition	
SHIFTER		b1:0 RESERVED (set it to 0b00)	
		b7:2 TX1 phase shift value 1 LSB = $360^{\circ}/2^{6} = 5.625^{\circ}$ Valid range: 0 to 63	
CHIRP1_	1	TX2 phase shift value	
TX2_PHASE_		Bits TX2 phase shift definition	
SHIFTER		b1:0 RESERVED (set it to 0b00)	
		b7:2 TX2 phase shift value 1 LSB = $360^{\circ}/2^{6} = 5.625^{\circ}$ Valid range: 0 to 63	

CHIRP1_ TX3_PHASE_ SHIFTER	1	TX3 phase shift valueBitsTX3 phase shift definitionb1:0RESERVED (set it to 0b00)b7:2TX3 phase shift value1 LSB = $360^{\circ}/2^{6} = 5.625^{\circ}$ Valid range: 0 to 63
CHIRP2_ TX0_PHASE_ SHIFTER	1	See description for CHIRP1_TX0_PHASE_SHIFTER
CHIRP2_ TX1_PHASE_ SHIFTER	1	See description for CHIRP1_TX1_PHASE_SHIFTER
CHIRP2_ TX2_PHASE_ SHIFTER	1	See description for CHIRP1_TX2_PHASE_SHIFTER
CHIRP2_ TX3_PHASE_ SHIFTER	1	See description for CHIRP1_TX3_PHASE_SHIFTER
CHIRP16_ TX0_PHASE_ SHIFTER	1	See description for CHIRP1_TX0_PHASE_SHIFTER
CHIRP16_ TX1_PHASE_ SHIFTER	1	See description for CHIRP1_TX1_PHASE_SHIFTER
CHIRP16_ TX2_PHASE_ SHIFTER	1	See description for CHIRP1_TX2_PHASE_SHIFTER
CHIRP16_ TX3_PHASE_ SHIFTER	1	See description for CHIRP1_TX3_PHASE_SHIFTER
RESERVED	18	0x0

PROGRAM_	2	Bits	Descrip	tion
MODE		b0	Value	Definition
			0	Program the new configuration when AWR_DYN_CHIRP_ENABLE API is issued
			1	Program the new configuration imme- diately NOTE: User has to ensure that the chirps which are being reconfigured are not the ones which are currently in use for chirping
		b15:1	RESER	VED

5.6 Sub blocks related to AWR_RF_DYNAMIC_CONF_GET_SB

5.6.1 Sub block 0x0120 - AWR_PROFILE_CONF_GET_SB

This sub block reads the parameters of a given profile. The profile details are available as part of the acknowledgment. The structure is same as AWR_PROFILE_CONF_SET_SB Table 5.59 describes the contents of this sub block.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0120
SBLKLEN	2	Value = 8
PROFILE_INDX	2	Valid range 0 to 3 Index of the profile which is to be read
RESERVED	2	0x0000

Table 5.59: AWR_PROFILE_CONF_GET_SB contents

5.6.2 Sub block 0x0121 – AWR_CHIRP_CONF_GET_SB

This sub block reads the parameters of a given chirp. The profile details are available as part of the acknowledgement. The structure is same as AWR_CHIRP_CONF_SET_SB Table 5.60 describes the contents of this sub block.

Table 5.60: AWR_CHIRP_CONF_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0121
SBLKLEN	2	Value = 8
CHIRP_START_ INDX	2	Valid range 0 to 511 Starting index of the chirp which is to be read
CHIRP_END_ INDX	2	Valid range 0 to 511 Ending index of the chirp which is to be read

5.6.3 Sub block 0x0122 – AWR_FRAME_CONF_GET_SB

This sub block reads the parameters of the configured frame. The profile details are available as part of the acknowledgement. The structure is same as AWR_FRAME_CONF_SET_SB Table 5.61 describes the contents of this sub block.

	Table 5.61:	AWR	FRAME	CONF	GET	SB contents
--	-------------	-----	-------	------	-----	-------------

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0122
SBLKLEN	2	Value = 4

5.6.4 Sub block 0x0123 – RESERVED

5.6.5 Sub block 0x0124 – RESERVED

5.6.6 Sub block 0x0125 - AWR_ADV_FRAME_CONF_GET_SB

This sub block reads the parameters of the configured frame. The profile details are available as part of the acknowledgement. The structure is same as AWR_ADVANCED_FRAME_CONF_ SET_SB

Table 5.62 describes the contents of this sub block.

Table 5.62: AWR_ADV_FRAME_CONF_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0125
SBLKLEN	2	Value = 4

- 5.6.7 Sub block 0x0126 RESERVED
- 5.6.8 Sub block 0x0127 RESERVED
- 5.6.9 Sub block 0x0128 RESERVED
- 5.6.10 Sub block 0x0129 RESERVED
- 5.6.11 Sub block 0x012A RESERVED
- 5.6.12 Sub block 0x012B RESERVED

5.6.13 Sub block 0x012C - AWR_RX_GAIN_TEMPLUT_GET_SB

This API is issued to read the temperature based RX gain LUT used by the firmware. This API should be issued after the profile configuration API. The acknowledgement packet sent in response to this API will contain the LUT. The structure is same as AWR_RX_GAIN_LUT_SET_SB.

Table 5.63: AWR_RX_GAIN_TEMPLUT_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x012C
SBLKLEN	2	Value = 8
PROFILE_INDX	1	Profile index for which the RX gain LUT is desired
RESERVED	3	0x00000

5.6.14 Sub block 0x012D – AWR_TX_GAIN_TEMPLUT_GET_SB

This API is issued to read the temperature based TX gain LUT used by the firmware. This API should be issued after the profile configuration API. The acknowledgement packet sent in response to this API will contain the LUT. The structure is same as AWR_TX_GAIN_LUT_SET_SB.

 Table 5.64:
 AWR_TX_GAIN_TEMPLUT_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x012D
SBLKLEN	2	Value = 8

Table 5.64 – continued from previous page				
PROFILE_INDX	1	Profile index for which the TX gain LUT is desired		
RESERVED	3	0x00000		

5.6.15 Sub block 0x0139 – AWR_ADV_TX_GAIN_TEMPLUT_GET_SB

This API is issued to read the temperature based TX gain LUT (per TX channel) used by the firmware. This API should be issued after the profile configuration API. The acknowledgement packet sent in response to this API will contain the LUT. The structure is same as AWR_ADV_TX_GAIN_LUT_SET_SB.

Table 5.65: AWR_ADV_TX_GAIN_TEMPLUT_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0139
SBLKLEN	2	Value = 24
PROFILE_INDX	1	Profile index for which the TX gain LUT is desired
TX_INDEX	1	TX index for which the TX gain LUT is desired
RESERVED	16	0x00000
RESERVED	2	0x00000

5.7 Sub blocks related to AWR_FRAME_TRIG_MSG

5.7.1 Sub block 0x0140 - AWR_FRAMESTARTSTOP_CONF_SB

This sub block starts or stops transmission of frames. Table 5.66 describes the contents of this sub block.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0140
SBLKLEN	2	Value = 8

Table 5.66: AWR_FRAMESTARTSTOP_CONF_SB contents

START_STOP_	2	Value	Definition
CMD		0x0000	Stop the transmission of frames after the current frame is over at frame boundary
		0x0001	Trigger a frame in software triggered mode. In hardware SYNC_IN triggered mode, this command allows subsequent SYNC_IN trig- ger to be honored
		0x0002	Stop the transmission of frames after the current sub-frame is over at sub-frame boundary
		0x0003	Stop the transmission of frames after the current burst is over at burst boundary
		0x0004	Stop the transmission of frames imme- diately which are waiting for HW trigger or sub-frame trigger (applicable only for HW/sub-frame triggered mode when active frames are not running)
RESERVED	2	0x0000	

NOTE1:	When Frame Stop command with 'option-0' is sent to RadarSS, the frame will be stopped after completing all the chirps of a Frame/Advance frame.
NOTE2:	In non periodic Hw triggered mode or in sub-frame triggered mode, if frame needs to be stopped immediately then frame stop com- mand with 'option-4' can be used. The 'option-4' can not be used when active frames are running.
NOTE3:	Recommended to re-issue frame configuration API if frame is not stopped at sub-frame boundary, this is to re-config CSI2 or LVDS data path configuration in MSS.

5.8 Sub blocks related to AWR_RF_ADVANCED_FEATURES_ CONF_SET_MSG

5.8.1 Sub block 0x0180 – AWR_BPM_COMMON_CONF_SET_SB

This API sub block defines static configurations related to BPM (Binary Phase Modulation) feature in each of the TXs. E.g. the source of the BPM pattern (one constant value for each chirp as defined, or intra-chirp pseudo random BPM pattern as found by a programmable LFSR or a programmable sequence inside each chirp), are defined here. Table 5.67 describes the contents of this sub block.

Field Name	Number of bytes	Descrip	tion			
SBLKID	2	Value =	0x0180			
SBLKLEN	2	Value =	20			
BPM_MODE_	2	Bits	Descrip	tion		
CFG		b1:0	BPM_S	RC_SEL (select source of BPM pattern)		
			Value	Definition		
			00	CHIRP_CONFIG_BPM (refer to AWR_BPM_CHIRP_CONF_SB)		
			01	RESERVED		
			10 RESERVED			
			11 RESERVED			
		b15:2	RESER	VED		
RESERVED	2	0x0000				
RESERVED	2	0x0000				
RESERVED	2	0x0000				
RESERVED	4	0x00000	0000			
RESERVED	4	0x00000	0000			

Table 5.67: AWR_BPM_COMMON_CONF_SET_SB contents

5.8.2 Sub block 0x0181 - AWR_BPM_CHIRP_CONF_SET_SB

This sub block defines static configurations related to BPM (Binary Phase Modulation) feature in each of the TXs.

Table 5.68 describes the contents of this sub block.

Table 5.68:	AWR_{-}	_BPM_	CHIRP_	_CONF_	SET_	\mathbf{SB}	contents
-------------	-----------	-------	--------	--------	------	---------------	----------

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0181
SBLKLEN	2	Value = 12
CHIRP_START_ INDX	2	Start index of the chirp for configuring the constant BPM Valid range 0 to 511
CHIRP_END_ INDX	2	End index of the chirp for configuring the constant BPM Valid range 0 to 511

CONST_BPM_	2	Bit	Definition
VAL		b0	RESERVED
		b1	CONST_BPM_VAL_TX0_TXON Value of Binary Phase Shift value for TX0, during chirp
		b2	RESERVED
		b3	CONST_BPM_VAL_TX1_TXON Value of Binary Phase Shift value for TX1, during chirp
		b4	RESERVED
		b5	CONST_BPM_VAL_TX2_TXON Value of Binary Phase Shift value for TX2, during chirp
		b6	RESERVED
		b7	CONST_BPM_VAL_TX3_TXON (only for xWR294x and xWR254x) Value of Binary Phase Shift value for TX3, during chirp
		b15:8	RESERVED
RESERVED	2	0x0000	

NOTE1:	BPM values are configured using TX phase shifter and applied at
	TX_START_TIME.

5.8.3 Sub block 0x0182 - AWR_POWER_SAVE_MODE_CONF_SET_SB

This sub block defines the power saving modes and API configuration Table 5.69 describes the contents of this sub block.

Table 5.69:	AWR	POWER	SAVE	MODE	CONF	SET	SB	contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0182
SBLKLEN	2	Value = 24

		· · · ·			
LOWPOWER_ STATE TRANSI-	2	Low power state transition commands are defined as below			
_		Mode Definition			
TION_CMD		0 RESERVED.			
		1 ENTER_RF_PWR_DOWN, device enters RF power down state from normal active state.			
		2 EXIT_RF_PWR_DOWN, device exits the RF power down state back to its previous state.			
		3 - RESERVED			
		65535			
		NOTE: Values other than 1 and 2 are not supported in xWR6243 device. It is not recommended to configure			
		other values in this field, it can cause the device to be in undesirable state.			
RESERVED	2	RESERVED			
RESERVED	16	RESERVED			

NOTE 1:	This API is only applicable to xWR6243 devices in this release.
NOTE 2:	These low power state transitions are executed at the lowest priority in RADARSS. It is recommended to provide at least 1ms delay after issuing a AWR_POWER_SAVE_MODE_CONF_SET_SB API and before any other command is issued to the RADARSS. This will ensure that RADARSS has enough time to complete the previous transition before receiving other commands.

5.9 Sub blocks related to AWR_RF_STATUS_GET_MSG

5.9.1 Sub block 0x0220 - AWR_RF_VERSION_GET_SB

This sub block reads RF HW and FW versions. The information returned by the device will be in the format as given in AWR_RFVERSION_SB.

Table 5.70 describes the contents of the request sub block

Table 5.70:	AWR_	$_{\rm RF}$	VERSION_	_GET_	$_SB$	contents
-------------	------	-------------	----------	-------	--------	----------

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0220
SBLKLEN	2	Value = 4

Response to AWR_RFVERSION_GET_SB

AWR_RFVERSION_SB sub block is sent by the radar device in response to AWR_RFVERSION_ GET_SB. Note that SBLKID for both AWR_RFVERSION_GET_SB and AWR_RFVERSION_SB are same.

Table 5.71 describes the contents of the response sub block.

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x0220		
SBLKLEN	2	Value = 20		
HW_VARIANT	1	HW variant number		
HW_VERSION_ MAJOR	1	HW version major number		
HW_VERSION_ MINOR	1	HW version minor number		
BSS_FW_VER- SION_MAJOR	1	BSS FW version major number		
BSS_FW_VER- SION_MINOR	1	BSS FW version minor number		
BSS_FW_VER- SION_BUILD	1	BSS FW version build number		
BSS_FW_VER- SION_DEBUG	1	BSS FW version debug number		
BSS_FW_VER- SION_YEAR	1	Year of BSS FW version release		
BSS_FW_VER- SION_MONTH	1	Month of BSS FW version release		
BSS_FW_VER- SION_DAY	1	Day of BSS FW version release		
BSS_FW_VER- SION_PATCH_ MAJOR	1	BSS FW version patch major number		

Table 5.71:AWR_RF_VERSION_SB response contents

BSS_FW_VER- SION_PATCH_ MINOR	1	BSS FW version patch minor number	
BSS_FW_VER- SION_PATCH_ YEAR	1	Year of BSS FW patch release	
BSS_FW_VER- SION_PATCH_ MONTH	1	Month of BSS FW patch release	
BSS_FW_VER- SION_PATCH_ DAY	1	Day of BSS FW patch release	
BSS_FW_ PATCH_BUILD_ DEBUG_VER- SION	1	BitDefinitionb3:0DEBUG version numberb7:4BUILD version number	

5.9.2 Sub block 0x0221 – AWR_RF_CPUFAULT_STATUS_GET_SB

This sub block provides the RF BSS CPU fault information. Table 5.72 describes the content of this sub block.

Table 5.72: A	WR_RF	_CPUFAULT_	_STATUS_	_GET_	SB contents
---------------	-------	------------	----------	-------	-------------

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0221
SBLKLEN	2	Value = 4

AWR_RF_CPUFAULT_STATUS_SB is sent in response to AWR_RF_CPUFAULT_STATUS_GET_SB.

Table 5.73 describes the content of AWR_RF_CPUFAULT_STATUS_SB

Table 5.73: AWR_RF_CPUFAULT_STATUS_GET_SB response contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0221
SBLKLEN	2	Value = 36

FAULT_TYPE	1	Value	Definition	
		0	RF Processor Undefined Instruction Abort	
		1	RF Processor Instruction pre-fetch Abort	
		2	RF Processor Data Access Abort	
		3	RF Processor Firmware Fatal Error	
		0x4 - 0xFE	RESERVED	
		0xFF	No fault	
RESERVED	1	0x00		
LINE_NUM	2		case of FAULT type is 0x3, provides the number at which fatal error occurred.	
FAULT_LR	4	The instructio	n PC address at which Fault occurred	
FAULT_PREV_ LR	4		dress of the function from which fault function ed (Call stack LR)	
FAULT_SPSR	4	The CPSR re	gister value at which fault occurred	
FAULT_SP	4	The SP regist	er value at which fault occurred	
FAULT_CAUSE_ ADDRESS	4	The address access at which Fault occurred (valid only for fault type 0x0 to 0x2)		
FAULT_ERROR_ STATUS	2	The status of Error (Error Cause type – valid only for fault type 0x0 to 0x2) 0x000 BACKGROUND_ERR		
		0x001 ALIC	GNMENT_ERR	
		0x002 DEB	BUG_EVENT	
		0x00D PER	MISSION_ERR	
		0x008 SYN	ICH_EXTER_ERR	
		0x406 ASY	NCH_EXTER_ERR	
		0x409 SYN	ICH_ECC_ERR	
		0x408 ASY	NCH_ECC_ERR	
FAULT_ERROR_ SOURCE	1	The Source of the Error (Error Source type - valid only for fault type 0x0 to 0x2)		
		0x0 ERF	R_SOURCE_AXI_MASTER	
			R_SOURCE_ATCM	
		-	R_SOURCE_BTCM	
FAULT_AXI_ER- ROR_TYPE	1	type 0x0 to 0>		
			_DECOD_ERR	
		0x1 AXI_	_SLAVE_ERR	

		1 1 5
FAULT_AC- CESS_TYPE	1	The Error Access type - valid only for fault type 0x0 to 0x2)0x0READ_ERR0x1WRITE_ERR
FAULT_RECOV- ERY_TYPE	1	The Error Recovery type (Error Recovery type - Valid only for fault type 0x0 to 0x2)0x0UNRECOVERY0x1RECOVERY
RESERVED	2	0x0000

5.9.3 Sub block 0x0222 – AWR_RF_ESMFAULT_STATUS_GET_SB

This sub block provides the information regarding additional RF sub system faults.

NOTE:	This API has been deprecated on xWR294x and xWR254x de-
	vices. Please use the updated API - AWR_RF_ADV_ESMFAULT_
	STATUS_GET_SB.

Table 5.74 describes the content of this sub block.

Table 5.74:	AWR	\mathbf{RF}	ESMFAULT	STATUS	GET	SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0222
SBLKLEN	2	Value = 4

The response to above request is given in the AWR_RF_ESMFAULT_STATUS_SB. Table 5.75 describes the contents of AWR_RF_ESMFAULT_STATUS_SB.

 Table 5.75:
 AWR_RF_ESMFAULT_STATUS_SB response contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0222
SBLKLEN	2	Value = 12

ESM_GROUP1_ ERRORS	4	Bit	Error Information 0 – No Error , 1 – ESM Error
		b0	RAMPGEN SB ERROR
		b0	RESERVED
		b2	-
		-	GPADC_RAM_SB_ERROR
		b3	VIM_RAM_SB_ERROR
		b4	RESERVED
		b5	VIM_SELFTEST_ERRROR
		b6	B0TCM_SB_ERROR
		b7	B1TCM_SB_ERROR
		b8	CCMR4_SELFTEST_ERROR
		b9	ATCM_SB_ERROR
		b10	RAMPGEN_SELFTEST_ERROR
		b11	RAMPGEN_PAR_SELFTST_ERROR
		b12	SEQ_EXT_SELFTEST_ERROR
		b13	SEQ_EXT_SB_ERROR
		b14	RESERVED
		b15	AGC_RAM_SB_ERROR
		b16	B1TCM PAR CHK ERROR
		b17	BOTCM PAR CHK ERROR
		b18	ATCM PAR CHK ERROR
		b19	MB MSS2BSS SB ERROR
		b20	MB BSS2MSS SB ERROR
		b20	RESERVED
		031.21	

mmWave Radar Interface Control Document Revision 3.35 - Jan 16, 2024

Iable 5.75 – continued from previous page					
ESM_GROUP2_	4	Bit	Error Information		
ERRORS		b0	DFE_STC_ERROR		
		b1	CR4_STC_ERROR		
		b2	CCMR4_COMP_ERROR		
		b3	B0TCM_DB_ERROR		
		b4	B1TCM_DB_ERROR		
		b5	ATCM_DB_ERROR		
		b6	DCC_ERROR		
		b7	SEQ_EXT_ERROR		
		b8	SYNT_FREQ_MON_ERROR		
		b9	RESERVED		
		b10	RAMPGEN_DB_ERROR		
		b11	BUBBLE_CORRECTION_FAIL		
		b12	RAMPGEN_LOCSTEP_ERROR		
		b13	RTI_RESET_ERROR		
		b14	GPADC_RAM_DB_ERROR		
		b15	VIM_COMP_ERROR		
		b16	CR4_LIVE_LOCK_ERROR		
		b17	WDT_NMI_ERROR		
		b18	VIM_RAM_DB_ERROR		
		b19	RAMPGEN_PAR_ERROR		
		b20	SEQ_EXT_DB_ERROR		
		b21	DMA_MPU_ERROR		
		b22	AGC_RAM_DB_ERROR		
		b23	CRC_COMP_ERROR		
		b24	WAKEUP_STS_ERROR		
		b25	SHORT_CIRCUIT_ERROR		
		b26	B1TCM_PAR_ERROR		
		b27	B0TCM_PAR_ERROR		
		b28	ATCM_PAR_ERROR		
		b29	MB_MSS2BSS_DB_ERROR		
		b30	MB_BSS2MSS_DB_ERROR		
		b31	CCC_ERROR		

Table 5.75 – continued from previous page

5.9.4 Sub block 0x0223 - AWR_RF_DIEID_GET_SB

This sub block provides the information regarding the Die ID of the device.

Table 5.76:	AWR_	$RF_{}$	_DIEID_	_GET_	SB contents
-------------	------	---------	---------	-------	-------------

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0223
SBLKLEN	2	Value = 4

The response to above request is given in the AWR_RF_DIEID_STATUS_SB. Table 5.77 describes the contents of AWR_RF_DIEID_STATUS_SB.

Table 5.77: AWR_RF_DIEID_ST	TATUS_SB response contents
-----------------------------------	----------------------------

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0223
SBLKLEN	2	Value = 36
DIEID_HEXVAL0	4	Die Id Hex value 0
DIEID_HEXVAL1	4	Die Id Hex value 1
DIEID_HEXVAL2	4	Die Id Hex value 2
DIEID_HEXVAL3	4	Die Id Hex value 3
RESERVED	4	0x0000000

5.9.5 Sub block 0x0224 – AWR_RF_BOOTUPBIST_STATUS_GET_SB

This sub block provides the information regarding boot up self-test status. Table 5.78 describes the content of this sub block.

 Table 5.78:
 AWR_RF_BOOTUPBIST_STATUS_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0224
SBLKLEN	2	Value = 4

The response of this sub block will be AWR_RF_BOOTUPBIST_STATUS_DATA_SB with content

as shown in Table 5.79

Table 5.79: AWR_RF_BOOTUPBIST_STATUS_DATA_SB response contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0224
SBLKLEN	2	Value = 20

RF POWERUP	4	1 - PAS	S, 0 - FAIL
BIST_STATUS_		Bit	Status Information
FLAGS		b0	ROM CRC check (RESERVED in xWR294x/xWR254x)
		b1	CR4 and VIM lockstep test
		b2	RESERVED
		b3	VIM test
		b4	STC test of diagnostic
		b5	CR4 STC
		b6	CRC test
		b7	RAMPGEN memory ECC test
		b8	DFE Parity test
		b9	DFE memory ECC
		b10	RAMPGEN lockstep test
		b11	FRC lockstep test
		b12	DFE memory PBIST
		b13	RAMPGEN memory PBIST
		b14	PBIST test
		b15	WDT test
		b16	ESM test
		b17	DFE STC
		b18	RESERVED
		b19	ATCM, BTCM ECC test
		b20	ATCM, BTCM parity test
		b21	DCC test
		b22	RESERVED
		b23	RESERVED
		b24	FFT test (RESERVED in xWR254x)
		b25	RTI test
		b26	PCR test (RESERVED in xWR294x/xWR254x)
		b27	Bus Safety test (RESERVED in xWR254x)
		b28	ECC aggregator test
		b29	MPU test
		b31:30	RESERVED
POWERUP_ TIME	4	RF BIST 1 LSB =	FSS power up time 5 ns
RESERVED	4	0x00000	0000

Table 5.79 – continued from previous page			
RESERVED	4	0x0000000	

NOTE: Bootup digital monitoring status are not applicable for QM devices

5.9.6 Sub block 0x0226 – AWR_RF_ADV_ESMFAULT_STATUS_GET_SB

This sub block provides the information regarding additional RF sub system faults for xWR294x and xWR254x devices.

Table 5.80 describes the content of this sub block.

Table 5.80: AWR_RF_ADV_ESMFAULT_STATUS_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0226
SBLKLEN	2	Value = 4

The response to above request is given in the AWR_RF_ADV_ESMFAULT_STATUS_SB. Table 5.81 describes the contents of AWR_RF_ADV_ESMFAULT_STATUS_SB.

Table 5.81: AWR_RF_ADV_ESMFAULT_STATUS_SB response contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0226
SBLKLEN	2	Value = 28

[inded from previous page
ESM_GROUP1_ ERRORS_LSB	4	Bit	Error Information 0 – No Error , 1 – ESM Error
		b0	RAMPGEN_SB_ERROR
		b1	PROG_FILT_SELFTEST_ERROR
		b2	GPADC_RAM_SB_ERROR
		b3	VIM_RAM_SB_ERROR
		b4	DFE_PARITY_AND_OUT_ERROR (RESERVED in xWR254x devices)
		b5	VIM_SELFTEST_ERRROR
		b6	B0TCM_SB_ERROR
		b7	B1TCM_SB_ERROR
		b8	CCMR4_SELFTEST_ERROR
		b9	ATCM_SB_ERROR
		b10	RAMPGEN_SELFTEST_ERROR
		b11	RAMPGEN_PAR_SELFTST_ERROR
		b12	SEQ_EXT_SELFTEST_ERROR
		b13	SEQ_EXT_SB_ERROR
		b14	PROG_FILT_PARITY_ERROR
		b15	AGC_RAM_SB_ERROR
		b16	B1TCM_PAR_CHK_ERROR
		b17	B0TCM_PAR_CHK_ERROR
		b18	ATCM_PAR_CHK_ERROR
		b19	ECC_AGG_DED_ERROR
		b20	ECC_AGG_SEC_ERROR
		b21	RESERVED
		b22	RESERVED
		b23	RESERVED
		b24	RESERVED
		b25	PROG_FILT_UERR
		b26	PROG_FILT_SERR
		b27	FRC_SELFTEST_ERROR
		b28	FRC_ERROR
		b29	RESERVED
		b30	BUS_SAFETY_PCR_ERROR (RESERVED in xWR254x)
		b31	BUS_SAFETY_BSS_SLV_ERROR (RESERVED in xWR254x)

ESM_GROUP1_ ERRORS_MSB	4	Bit	Error Information 0 – No Error , 1 – ESM Error
		b0	BUS_SAFETY_BSS_MST_ERROR (RE- SERVED in xWR254x)
		b1	BUS_SAFETY_STATIC_MEM_ERROR (RE- SERVED in xWR254x)
		b2	$BUS_SAFETY_MBOX_ERROR$ (RESERVED in xWR254x)
		b3	BUS_SAFETY_SEC_AGGREGATED_ERROR (RESERVED in xWR254x)
		b31-b4	RESERVED
RESERVED	4	0x0000000	

mmWave Radar Interface Control Document Revision 3.35 - Jan 16, 2024

ESM_GROUP2_ ERRORS4BitError Informationb0DFE_STC_ERRORb1CR4_STC_ERRORb2CCMR4_COMP_ERRORb3B0TCM_DB_ERRORb4B1TCM_DB_ERRORb5ATCM_DB_ERRORb6DCC_ERRORb7SEQ_EXT_ERRORb8SYNT_FREQ_MON_ERRORb9DFE_PARITY_OR_OUT_ERRORb10RAMPGEN_DB_ERRORb11BUBBLE_CORRECTION_FAILb12RAMPGEN_LOCSTEP_ERRORb13RTI_RESET_ERRORb14GPADC_RAM_DB_ERRORb15VIM_COMP_ERRORb16CR4_LIVE_LOCK_ERRORb17WDT_NMI_ERRORb18VIM_RAM_DB_ERRORb19RAMPGEN_PAR_ERRORb19RAMPGEN_PAR_ERRORb20SEQ_EXT_DB_ERRORb21DMA_MPU_ERRORb22AGC_RAM_DB_ERRORb23CRC_COMP_ERRORb24WAKEUP_STS_ERRORb25SHORT_CIRCUIT_ERRORb26B1TCM_PAR_ERRORb27B0TCM_PAR_ERRORb28ATCM_PAR_ERRORb29RESERVEDb30RESERVEDb31CCC_ERRORb23RESERVEDb31CCC_ERRORb2440x0000000	[inued from previous page	
bit CR4_STC_ERROR b1 CR4_STC_ERROR b2 CCMR4_COMP_ERROR b3 B0TCM_DB_ERROR b4 B1TCM_DB_ERROR b5 ATCM_DB_ERROR b6 DCC_ERROR b7 SEQ_EXT_ERROR b8 SYNT_FREQ_MON_ERROR b9 DFE_PARITY_OR_OUT_ERROR b11 BUBBLE_CORRECTION_FAIL b12 RAMPGEN_LOCSTEP_ERROR b13 RTI_RESET_ERROR b14 GPADC_RAM_DB_ERROR b15 VIM_COMP_ERROR b16 CR4_LIVE_LOCK_ERROR b17 WDT_NMI_ERROR b18 VIM_RAM_DB_ERROR b19 RAMPGEN_PAR_ERROR b20 SEQ_EXT_DB_ERROR b21 DMA_MPU_ERROR b22 AGC_RAM_DB_ERROR b23 CRC_COMP_ERROR b24 WAKEUP_STS_ERROR b25 SHORT_CIRCUIT_ERROR b26 B1TCM_PAR_ERROR b27 B0TCM_PAR_ERROR b28 ATCM_PAR_ERROR b29 RESERVED b30		4	Bit	Error Information	
b2CCMR4_COMP_ERRORb3BOTCM_DB_ERRORb4BITCM_DB_ERRORb5ATCM_DB_ERRORb6DCC_ERRORb7SEQ_EXT_ERRORb8SYNT_FREQ_MON_ERRORb9DFE_PARITY_OR_OUT_ERRORb10RAMPGEN_DB_ERRORb11BUBBLE_CORRECTION_FAILb12RAMPGEN_LOCSTEP_ERRORb13RTI_RESET_ERRORb14GPADC_RAM_DB_ERRORb15VIM_COMP_ERRORb16CR4_LIVE_LOCK_ERRORb17WDT_NMI_ERRORb18VIM_RAM_DB_ERRORb20SEQ_EXT_DB_ERRORb21DMA_MPU_ERRORb22AGC_RAM_DB_ERRORb23CRC_COMP_ERRORb24WAKEUP_STS_ERRORb25SHORT_CIRCUIT_ERRORb26BITCM_PAR_ERRORb27BOTOM_PAR_ERRORb28ATCM_PAR_ERRORb29RESERVEDb30RESERVEDb31CCC_ERRORRESERVED4b31CCC_ERROR	ERRORS		b0	DFE_STC_ERROR	
b3 BOTCM_DB_ERROR b4 B1TCM_DB_ERROR b5 ATCM_DB_ERROR b6 DCC_ERROR b7 SEQ_EXT_ERROR b8 SYNT_FREQ_MON_ERROR b9 DFE_PARITY_OR_OUT_ERROR b10 RAMPGEN_DB_ERROR b11 BUBBLE_CORRECTION_FAIL b12 RAMPGEN_LOCSTEP_ERROR b13 RTI_RESET_ERROR b14 GPADC_RAM_DB_ERROR b15 VIM_COMP_ERROR b16 CR4_LIVE_LOCK_ERROR b17 WDT_NMI_ERROR b18 VIM_RAM_DB_ERROR b20 SEQ_EXT_DB_ERROR b21 DMA_MPU_ERROR b22 AGC_RAM_DB_ERROR b23 CRC_COMP_ERROR b24 WAKEUP_STS_ERROR b25 SHORT_CIRCUIT_ERROR b26 B1TCM_PAR_ERROR b27 B0TCM_PAR_ERROR b28 ATCM_PAR_ERROR b29 RESERVED b30 RESERVED b31 CCC_ERROR			b1	CR4_STC_ERROR	
b4B1TCM_DB_ERRORb5ATCM_DB_ERRORb6DCC_ERRORb7SEQ_EXT_ERRORb8SYNT_FREQ_MON_ERRORb9DFE_PARITY_OR_OUT_ERRORb10RAMPGEN_DB_ERRORb11BUBBLE_CORRECTION_FAILb12RAMPGEN_LOCSTEP_ERRORb13RTI_RESET_ERRORb14GPADC_RAM_DB_ERRORb15VIM_COMP_ERRORb16CR4_LIVE_LOCK_ERRORb17WDT_NMI_ERRORb18VIM_RAM_DB_ERRORb20SEQ_EXT_DB_ERRORb21DMA_MPU_ERRORb22AGC_RAM_DB_ERRORb23CRC_COMP_ERRORb24WAKEUP_STS_ERRORb25SHORT_CIRCUIT_ERRORb26B1TCM_PAR_ERRORb27B0TCM_PAR_ERRORb28ATCM_PAR_ERRORb29RESERVEDb30RESERVEDb31CCC_ERRORB40x0000000			b2	CCMR4_COMP_ERROR	
b5ATCM_DB_ERRORb6DCC_ERRORb7SEQ_EXT_ERRORb8SYNT_FREQ_MON_ERRORb9DFE_PARITY_OR_OUT_ERRORb10RAMPGEN_DB_ERRORb11BUBBLE_CORRECTION_FAILb12RAMPGEN_LOCSTEP_ERRORb13RTI_RESET_ERRORb14GPADC_RAM_DB_ERRORb15VIM_COMP_ERRORb16CR4_LIVE_LOCK_ERRORb17WDT_NMI_ERRORb18VIM_RAM_DB_ERRORb20SEQ_EXT_DB_ERRORb21DMA_MPU_ERRORb22AGC_RAM_DB_ERRORb23CRC_COMP_ERRORb24WAKEUP_STS_ERRORb25SHORT_CIRCUIT_ERRORb26B1TCM_PAR_ERRORb27B0TCM_PAR_ERRORb28ATCM_PAR_ERRORb29RESERVEDb30RESERVEDb31CCC_ERRORRESERVED40x0000000			b3	B0TCM_DB_ERROR	
b6DCC_ERRORb7SEQ_EXT_ERRORb8SYNT_FREQ_MON_ERRORb9DFE_PARITY_OR_OUT_ERRORb10RAMPGEN_DB_ERRORb11BUBBLE_CORRECTION_FAILb12RAMPGEN_LOCSTEP_ERRORb13RTI_RESET_ERRORb14GPADC_RAM_DB_ERRORb15VIM_COMP_ERRORb16CR4_LIVE_LOCK_ERRORb17WDT_NMI_ERRORb18VIM_RAM_DB_ERRORb20SEQ_EXT_DB_ERRORb21DMA_MPU_ERRORb22AGC_RAM_DB_ERRORb23CRC_COMP_ERRORb24WAKEUP_STS_ERRORb25SHORT_CIRCUIT_ERRORb26B1TCM_PAR_ERRORb27B0TCM_PAR_ERRORb28ATCM_PAR_ERRORb29RESERVEDb30RESERVEDb31CCC_ERRORRESERVED40<0000000			b4	B1TCM_DB_ERROR	
b7SEQ_EXT_ERRORb8SYNT_FREQ_MON_ERRORb9DFE_PARITY_OR_OUT_ERRORb10RAMPGEN_DB_ERRORb11BUBBLE_CORRECTION_FAILb12RAMPGEN_LOCSTEP_ERRORb13RTI_RESET_ERRORb14GPADC_RAM_DB_ERRORb15VIM_COMP_ERRORb16CR4_LIVE_LOCK_ERRORb17WDT_NMI_ERRORb18VIM_RAM_DB_ERRORb20SEQ_EXT_DB_ERRORb21DMA_MPU_ERRORb22AGC_RAM_DB_ERRORb23CRC_COMP_ERRORb24WAKEUP_STS_ERRORb25SHORT_CIRCUIT_ERRORb26B1TCM_PAR_ERRORb27BOTCM_PAR_ERRORb28ATCM_PAR_ERRORb29RESERVEDb30RESERVEDb31CCC_ERRORRESERVED4			b5	ATCM_DB_ERROR	
b8SYNT_FREQ_MON_ERRORb9DFE_PARITY_OR_OUT_ERRORb10RAMPGEN_DB_ERRORb11BUBBLE_CORRECTION_FAILb12RAMPGEN_LOCSTEP_ERRORb13RTI_RESET_ERRORb14GPADC_RAM_DB_ERRORb15VIM_COMP_ERRORb16CR4_LIVE_LOCK_ERRORb17WDT_NMI_ERRORb18VIM_RAM_DB_ERRORb20SEQ_EXT_DB_ERRORb21DMA_MPU_ERRORb22AGC_RAM_DB_ERRORb23CRC_COMP_ERRORb24WAKEUP_STS_ERRORb25SHORT_CIRCUIT_ERRORb26B1TCM_PAR_ERRORb27B0TCM_PAR_ERRORb28ATCM_PAR_ERRORb29RESERVEDb30RESERVEDb31CCC_ERROR			b6	DCC_ERROR	
b9DFE_PARITY_OR_OUT_ERRORb10RAMPGEN_DB_ERRORb11BUBBLE_CORRECTION_FAILb12RAMPGEN_LOCSTEP_ERRORb13RTI_RESET_ERRORb14GPADC_RAM_DB_ERRORb15VIM_COMP_ERRORb16CR4_LIVE_LOCK_ERRORb17WDT_NMI_ERRORb18VIM_RAM_DB_ERRORb20SEQ_EXT_DB_ERRORb21DMA_MPU_ERRORb22AGC_RAM_DB_ERRORb23CRC_COMP_ERRORb24WAKEUP_STS_ERRORb25SHORT_CIRCUIT_ERRORb26B1TCM_PAR_ERRORb27B0TCM_PAR_ERRORb28ATCM_PAR_ERRORb29RESERVEDb30RESERVEDb31CCC_ERRORRESERVED40x0000000			b7	SEQ_EXT_ERROR	
b10RAMPGEN_DB_ERRORb11BUBBLE_CORRECTION_FAILb12RAMPGEN_LOCSTEP_ERRORb13RTI_RESET_ERRORb14GPADC_RAM_DB_ERRORb15VIM_COMP_ERRORb16CR4_LIVE_LOCK_ERRORb17WDT_NMI_ERRORb18VIM_RAM_DB_ERRORb20SEQ_EXT_DB_ERRORb21DMA_MPU_ERRORb22AGC_RAM_DB_ERRORb23CRC_COMP_ERRORb24WAKEUP_STS_ERRORb25SHORT_CIRCUIT_ERRORb26B1TCM_PAR_ERRORb27B0TCM_PAR_ERRORb28ATCM_PAR_ERRORb29RESERVEDb30RESERVEDb31CCC_ERROR			b8	SYNT_FREQ_MON_ERROR	
b11BUBBLE_CORECTION_FAILb12RAMPGEN_LOCSTEP_ERRORb13RTI_RESET_ERRORb14GPADC_RAM_DB_ERRORb15VIM_COMP_ERRORb16CR4_LIVE_LOCK_ERRORb17WDT_NMI_ERRORb18VIM_RAM_DB_ERRORb20SEQ_EXT_DB_ERRORb21DMA_MPU_ERRORb22AGC_RAM_DB_ERRORb23CRC_COMP_ERRORb24WAKEUP_STS_ERRORb25SHORT_CIRCUIT_ERRORb26B1TCM_PAR_ERRORb27B0TCM_PAR_ERRORb28ATCM_PAR_ERRORb29RESERVEDb30RESERVEDb31CCC_ERRORRESERVED40x0000000			b9	DFE_PARITY_OR_OUT_ERROR	
b12RAMPGEN_LOCSTEP_ERRORb13RTI_RESET_ERRORb13RTI_RESET_ERRORb14GPADC_RAM_DB_ERRORb15VIM_COMP_ERRORb16CR4_LIVE_LOCK_ERRORb17WDT_NMI_ERRORb18VIM_RAM_DB_ERRORb19RAMPGEN_PAR_ERRORb20SEQ_EXT_DB_ERRORb21DMA_MPU_ERRORb22AGC_RAM_DB_ERRORb23CRC_COMP_ERRORb24WAKEUP_STS_ERRORb25SHORT_CIRCUIT_ERRORb26B1TCM_PAR_ERRORb27B0TCM_PAR_ERRORb29RESERVEDb30RESERVEDb31CCC_ERRORRESERVED40x0000000			b10	RAMPGEN_DB_ERROR	
b13RTI_RESET_ERRORb13RTI_RESET_ERRORb14GPADC_RAM_DB_ERRORb15VIM_COMP_ERRORb16CR4_LIVE_LOCK_ERRORb17WDT_NMI_ERRORb18VIM_RAM_DB_ERRORb19RAMPGEN_PAR_ERRORb20SEQ_EXT_DB_ERRORb21DMA_MPU_ERRORb22AGC_RAM_DB_ERRORb23CRC_COMP_ERRORb24WAKEUP_STS_ERRORb25SHORT_CIRCUIT_ERRORb26B1TCM_PAR_ERRORb27B0TCM_PAR_ERRORb28ATCM_PAR_ERRORb29RESERVEDb30RESERVEDb31CCC_ERRORRESERVED40<0000000			b11	BUBBLE_CORRECTION_FAIL	
b14GPADC_RAM_DB_ERRORb14GPADC_RAM_DB_ERRORb15VIM_COMP_ERRORb16CR4_LIVE_LOCK_ERRORb17WDT_NMI_ERRORb18VIM_RAM_DB_ERRORb19RAMPGEN_PAR_ERRORb20SEQ_EXT_DB_ERRORb21DMA_MPU_ERRORb22AGC_RAM_DB_ERRORb23CRC_COMP_ERRORb24WAKEUP_STS_ERRORb25SHORT_CIRCUIT_ERRORb26B1TCM_PAR_ERRORb27B0TCM_PAR_ERRORb28ATCM_PAR_ERRORb29RESERVEDb30RESERVEDb31CCC_ERROR			b12	RAMPGEN_LOCSTEP_ERROR	
b15VIM_COMP_ERRORb16CR4_LIVE_LOCK_ERRORb17WDT_NMI_ERRORb18VIM_RAM_DB_ERRORb19RAMPGEN_PAR_ERRORb20SEQ_EXT_DB_ERRORb21DMA_MPU_ERRORb22AGC_RAM_DB_ERRORb23CRC_COMP_ERRORb24WAKEUP_STS_ERRORb25SHORT_CIRCUIT_ERRORb26B1TCM_PAR_ERRORb27B0TCM_PAR_ERRORb28ATCM_PAR_ERRORb29RESERVEDb30RESERVEDb31CCC_ERROR			b13	RTI_RESET_ERROR	
b16CR4_LIVE_LOCK_ERRORb17WDT_NMI_ERRORb17WDT_NMI_ERRORb18VIM_RAM_DB_ERRORb19RAMPGEN_PAR_ERRORb20SEQ_EXT_DB_ERRORb21DMA_MPU_ERRORb22AGC_RAM_DB_ERRORb23CRC_COMP_ERRORb24WAKEUP_STS_ERRORb25SHORT_CIRCUIT_ERRORb26B1TCM_PAR_ERRORb27B0TCM_PAR_ERRORb28ATCM_PAR_ERRORb29RESERVEDb30RESERVEDb31CCC_ERROR			b14	GPADC_RAM_DB_ERROR	
b17WDT_NMI_ERRORb18VIM_RAM_DB_ERRORb19RAMPGEN_PAR_ERRORb20SEQ_EXT_DB_ERRORb21DMA_MPU_ERRORb22AGC_RAM_DB_ERRORb23CRC_COMP_ERRORb24WAKEUP_STS_ERRORb25SHORT_CIRCUIT_ERRORb26B1TCM_PAR_ERRORb27B0TCM_PAR_ERRORb28ATCM_PAR_ERRORb29RESERVEDb30RESERVEDb31CCC_ERRORRESERVED4			b15	VIM_COMP_ERROR	
b18VIM_RAM_DB_ERRORb19RAMPGEN_PAR_ERRORb20SEQ_EXT_DB_ERRORb21DMA_MPU_ERRORb22AGC_RAM_DB_ERRORb23CRC_COMP_ERRORb24WAKEUP_STS_ERRORb25SHORT_CIRCUIT_ERRORb26B1TCM_PAR_ERRORb27B0TCM_PAR_ERRORb28ATCM_PAR_ERRORb29RESERVEDb30RESERVEDb31CCC_ERRORRESERVED4			b16	CR4_LIVE_LOCK_ERROR	
b19RAMPGEN_PAR_ERRORb20SEQ_EXT_DB_ERRORb21DMA_MPU_ERRORb22AGC_RAM_DB_ERRORb23CRC_COMP_ERRORb24WAKEUP_STS_ERRORb25SHORT_CIRCUIT_ERRORb26B1TCM_PAR_ERRORb27B0TCM_PAR_ERRORb28ATCM_PAR_ERRORb29RESERVEDb30RESERVEDb31CCC_ERRORRESERVED4			b17	WDT_NMI_ERROR	
b20SEQ_EXT_DB_ERRORb21DMA_MPU_ERRORb21DMA_MPU_ERRORb22AGC_RAM_DB_ERRORb23CRC_COMP_ERRORb24WAKEUP_STS_ERRORb25SHORT_CIRCUIT_ERRORb26B1TCM_PAR_ERRORb27B0TCM_PAR_ERRORb28ATCM_PAR_ERRORb29RESERVEDb30RESERVEDb31CCC_ERRORRESERVED4			b18	VIM_RAM_DB_ERROR	
b21DMA_MPU_ERRORb22AGC_RAM_DB_ERRORb23CRC_COMP_ERRORb24WAKEUP_STS_ERRORb25SHORT_CIRCUIT_ERRORb26B1TCM_PAR_ERRORb27B0TCM_PAR_ERRORb28ATCM_PAR_ERRORb29RESERVEDb30RESERVEDb31CCC_ERRORRESERVED4			b19	RAMPGEN_PAR_ERROR	
b22AGC_RAM_DB_ERRORb23CRC_COMP_ERRORb24WAKEUP_STS_ERRORb25SHORT_CIRCUIT_ERRORb26B1TCM_PAR_ERRORb27B0TCM_PAR_ERRORb28ATCM_PAR_ERRORb29RESERVEDb30RESERVEDb31CCC_ERRORRESERVED4			b20	SEQ_EXT_DB_ERROR	
b23CRC_COMP_ERRORb24WAKEUP_STS_ERRORb25SHORT_CIRCUIT_ERRORb26B1TCM_PAR_ERRORb27B0TCM_PAR_ERRORb28ATCM_PAR_ERRORb29RESERVEDb30RESERVEDb31CCC_ERRORRESERVED4			b21	DMA_MPU_ERROR	
b24WAKEUP_STS_ERRORb25SHORT_CIRCUIT_ERRORb26B1TCM_PAR_ERRORb27B0TCM_PAR_ERRORb28ATCM_PAR_ERRORb29RESERVEDb30RESERVEDb31CCC_ERRORRESERVED4			b22	AGC_RAM_DB_ERROR	
b25SHORT_CIRCUIT_ERRORb26B1TCM_PAR_ERRORb27B0TCM_PAR_ERRORb28ATCM_PAR_ERRORb29RESERVEDb30RESERVEDb31CCC_ERRORRESERVED4			b23	CRC_COMP_ERROR	
b26B1TCM_PAR_ERRORb27B0TCM_PAR_ERRORb28ATCM_PAR_ERRORb29RESERVEDb30RESERVEDb31CCC_ERRORRESERVED4			b24	WAKEUP_STS_ERROR	
b27 B0TCM_PAR_ERROR b28 ATCM_PAR_ERROR b29 RESERVED b30 RESERVED b31 CCC_ERROR RESERVED 4			b25	SHORT_CIRCUIT_ERROR	
b28 ATCM_PAR_ERROR b29 RESERVED b30 RESERVED b31 CCC_ERROR RESERVED 4			b26	B1TCM_PAR_ERROR	
b29 RESERVED b30 RESERVED b31 CCC_ERROR RESERVED 4			b27	B0TCM_PAR_ERROR	
b30 RESERVED b31 CCC_ERROR RESERVED 4			b28	ATCM_PAR_ERROR	
b31 CCC_ERROR RESERVED 4 0x00000000			b29	RESERVED	
RESERVED 4 0x0000000			b30	RESERVED	
			b31	CCC_ERROR	
RESERVED 4 0x0000000	RESERVED	4	0x00000	0000	
	RESERVED	4	0x0000000		

Table 5.81 – continued from previous page

5.10 Sub blocks related to AWR_RF_MONITORING_REPORT_GET_ MSG

5.10.1 Sub block 0x0260 - AWR_RF_DFE_STATISTICS_REPORT_GET_SB

Table 5.82 describes the content of this sub block.

NOTE:	This API is not applicable for xWR294x and xWR254x devices.
	Please use API AWR_RF_REAL_CHAN_DFE_STATISTICS_
	REPORT_GET_SB for DFE statistics on xWR294x and xWR254x.

Table 5.82: AWR_RF_DFE_STATISTICS_REPORT_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0260
SBLKLEN	2	Value = 4

The response of this sub block will be AWR_RF_DFE_STATISTICS_REPORT_SB with content as shown in Table 5.83

Table 5.83: AWR_R	RF_DFE_	STATISTICS_	_REPORT_	_SB response contents
--------------------------	---------	-------------	----------	-----------------------

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0260
SBLKLEN	2	Value = 196
PF0_RX0_ICH	2	Residual DC value in I chain for profile 0, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input
PF0_RX0_QCH	2	Residual DC value in Q chain for profile 0, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input (Not applicable for REAL mode and xWR294x/xWR254x devices)
PF0_RX0_ISQ	2	RMS power in I chain for profile 0, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input

		· · · · ·
PF0_RX0_QSQ	2	RMS power in Q chain for profile 0, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input (Not applicable for REAL mode and xWR294x/xWR254x devices)
PF0_RX0_IQ- CORR	4	Cross correlation between I and Q chains for profile 0, RX channel 0 (post DC and IQ mismatch correction) represented by a 32 bit signed number $1 \text{ LSB} = 1 \text{V}^2/2^{30}$ referred to ADC input (Not applicable for REAL mode and xWR294x/xWR254x devices)
PF0_RX1_ICH	2	Residual DC value in I chain for profile 0, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input
PF0_RX1_QCH	2	Residual DC value in Q chain for profile 0, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input (Not applicable for REAL mode and xWR294x/xWR254x devices)
PF0_RX1_ISQ	2	RMS power in I chain for profile 0, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number $1 \text{ LSB} = 1 \text{ V}^2/2^{15}$ referred to ADC input
PF0_RX1_QSQ	2	RMS power in Q chain for profile 0, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input (Not applicable for REAL mode and xWR294x/xWR254x devices)
PF0_RX1_IQ- CORR	4	Cross correlation between I and Q chains for profile 0, RX channel 1 (post DC and IQ mismatch correction) represented by a 32 bit signed number $1 \text{ LSB} = 1 \text{ V}^2/2^{30}$ referred to ADC input (Not applicable for REAL mode and xWR294x/xWR254x devices)
PF0_RX2_ICH	2	Residual DC value in I chain for profile 0, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input

PF0_RX2_QCH	2	Residual DC value in Q chain for profile 0, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input (Not applicable for REAL mode and xWR294x/xWR254x devices)	
PF0_RX2_ISQ	2	RMS power in I chain for profile 0, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input	
PF0_RX2_QSQ	2	RMS power in Q chain for profile 0, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input (Not applicable for REAL mode and xWR294x/xWR254x devices)	
PF0_RX2_IQ- CORR	4	Cross correlation between I and Q chains for profile 0, RX channel 2 (post DC and IQ mismatch correction) represented by a 32 bit signed number 1 LSB = $1V^2/2^{30}$ referred to ADC input (Not applicable for REAL mode and xWR294x/xWR254x devices)	
PF0_RX3_ICH	2	Residual DC value in I chain for profile 0, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input	
PF0_RX3_QCH	2	Residual DC value in Q chain for profile 0, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit signed number $1 \text{ LSB} = 1 \text{V}/2^{15}$ referred to ADC input (Not applicable for REAL mode and xWR294x/xWR254x devices)	
PF0_RX3_ISQ	2	RMS power in I chain for profile 0, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input	
PF0_RX3_QSQ	2	RMS power in Q chain for profile 0, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number $1 \text{ LSB} = 1\text{V}^2/2^{15}$ referred to ADC input (Not applicable for REAL mode and xWR294x/xWR254x devices)	

Table 5.65 – Continued from previous page			
PF0_RX3_IQ- CORR	4	Cross correlation between I and Q chains for profile 0, RX channel 3 (post DC and IQ mismatch correction) represented by a 32 bit signed number $1 \text{ LSB} = 1\text{V}^2/2^{30}$ referred to ADC input (Not applicable for REAL mode and xWR294x/xWR254x devices)	
PF1_RX0_ICH	2	Residual DC value in I chain for profile 1, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input	
PF1_RX0_QCH	2	Residual DC value in Q chain for profile 1, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input (Not applicable for REAL mode and xWR294x/xWR254x devices)	
PF1_RX0_ISQ	2	RMS power in I chain for profile 1, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number $1 \text{ LSB} = 1 \text{V}^2 / 2^{15}$ referred to ADC input	
PF1_RX0_QSQ	2	RMS power in Q chain for profile 1, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input (Not applicable for REAL mode and xWR294x/xWR254x devices)	
PF1_RX0_IQ- CORR	4	Cross correlation between I and Q chains for profile 1, RX channel 0 (post DC and IQ mismatch correction) represented by a 32 bit signed number 1 LSB = $1V^2/2^{30}$ referred to ADC input (Not applicable for REAL mode and xWR294x/xWR254x devices)	
PF1_RX1_ICH	2	Residual DC value in I chain for profile 1, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input	
PF1_RX1_QCH	2	Residual DC value in Q chain for profile 1, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input (Not applicable for REAL mode and xWR294x/xWR254x devices)	

		o - continucu nom previous page
PF1_RX1_ISQ	2	RMS power in I chain for profile 1, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input
PF1_RX1_QSQ	2	RMS power in Q chain for profile 1, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number $1 \text{ LSB} = 1 \text{V}^2/2^{15}$ referred to ADC input (Not applicable for REAL mode and xWR294x/xWR254x devices)
PF1_RX1_IQ- CORR	4	Cross correlation between I and Q chains for profile 1, RX channel 1 (post DC and IQ mismatch correction) represented by a 32 bit signed number 1 LSB = $1V^2/2^{30}$ referred to ADC input (Not applicable for REAL mode and xWR294x/xWR254x devices)
PF1_RX2_ICH	2	Residual DC value in I chain for profile 1, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input
PF1_RX2_QCH	2	Residual DC value in Q chain for profile 1, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input (Not applicable for REAL mode and xWR294x/xWR254x devices)
PF1_RX2_ISQ	2	RMS power in I chain for profile 1, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number $1 \text{ LSB} = 1 \text{V}^2/2^{15}$ referred to ADC input
PF1_RX2_QSQ	2	RMS power in Q chain for profile 1, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number $1 \text{ LSB} = 1 \text{V}^2/2^{15}$ referred to ADC input (Not applicable for REAL mode and xWR294x/xWR254x devices)
PF1_RX2_IQ- CORR	4	Cross correlation between I and Q chains for profile 1, RX channel 2 (post DC and IQ mismatch correction) represented by a 32 bit signed number 1 LSB = $1V^2/2^{30}$ referred to ADC input (Not applicable for REAL mode and xWR294x/xWR254x devices)

		o continued nom previous page
PF1_RX3_ICH	2	Residual DC value in I chain for profile 1, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input
PF1_RX3_QCH	2	Residual DC value in Q chain for profile 1, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input (Not applicable for REAL mode and xWR294x/xWR254x devices)
PF1_RX3_ISQ	2	RMS power in I chain for profile 1, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input
PF1_RX3_QSQ	2	RMS power in Q chain for profile 1, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number $1 \text{ LSB} = 1 \text{ V}^2/2^{15}$ referred to ADC input (Not applicable for REAL mode and xWR294x/xWR254x devices)
PF1_RX3_IQ- CORR	4	Cross correlation between I and Q chains for profile 1, RX channel 3 (post DC and IQ mismatch correction) represented by a 32 bit signed number $1 \text{ LSB} = 1 \text{V}^2/2^{30}$ referred to ADC input (Not applicable for REAL mode and xWR294x/xWR254x devices)
PF2_RX0_ICH	2	Residual DC value in I chain for profile 2 RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit signed number $1 \text{ LSB} = 1 \text{ V}/2^{15}$ referred to ADC input
PF2_RX0_QCH	2	Residual DC value in Q chain for profile 2, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit signed number $1 \text{ LSB} = 1 \text{ V}/2^{15}$ referred to ADC input (Not applicable for REAL mode and xWR294x/xWR254x devices)
PF2_RX0_ISQ	2	RMS power in I chain for profile 2, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input

PF2_RX0_QSQ	2	RMS power in Q chain for profile 2, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input (Not applicable for REAL mode and xWR294x/xWR254x devices)
PF2_RX0_IQ- CORR	4	Cross correlation between I and Q chains for profile 2, RX channel 0 (post DC and IQ mismatch correction) represented by a 32 bit signed number $1 \text{ LSB} = 1 \text{ V}^2/2^{30}$ referred to ADC input (Not applicable for REAL mode and xWR294x/xWR254x devices)
PF2_RX1_ICH	2	Residual DC value in I chain for profile 2, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit signed number $1 \text{ LSB} = 1 \text{V}/2^{15}$ referred to ADC input
PF2_RX1_QCH	2	Residual DC value in Q chain for profile 2, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input (Not applicable for REAL mode and xWR294x/xWR254x devices)
PF2_RX1_ISQ	2	RMS power in I chain for profile 2, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input
PF2_RX1_QSQ	2	RMS power in Q chain for profile 2, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input (Not applicable for REAL mode and xWR294x/xWR254x devices)
PF2_RX1_IQ- CORR	4	Cross correlation between I and Q chains for profile 2, RX channel 1 (post DC and IQ mismatch correction) represented by a 32 bit signed number $1 \text{ LSB} = 1 \text{ V}^2/2^{30}$ referred to ADC input (Not applicable for REAL mode and xWR294x/xWR254x devices)
PF2_RX2_ICH	2	Residual DC value in I chain for profile 2, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input

		o - continueu nom previous page
PF2_RX2_QCH	2	Residual DC value in Q chain for profile 2, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input (Not applicable for REAL mode and xWR294x/xWR254x devices)
PF2_RX2_ISQ	2	RMS power in I chain for profile 2, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input
PF2_RX2_QSQ	2	RMS power in Q chain for profile 2, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input (Not applicable for REAL mode and xWR294x/xWR254x devices)
PF2_RX2_IQ- CORR	4	Cross correlation between I and Q chains for profile 2, RX channel 2 (post DC and IQ mismatch correction) represented by a 32 bit signed number $1 \text{ LSB} = 1 \text{V}^2/2^{30}$ referred to ADC input (Not applicable for REAL mode and xWR294x/xWR254x devices)
PF2_RX3_ICH	2	Residual DC value in I chain for profile 2, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input
PF2_RX3_QCH	2	Residual DC value in Q chain for profile 2, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input (Not applicable for REAL mode and xWR294x/xWR254x devices)
PF2_RX3_ISQ	2	RMS power in I chain for profile 2, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input
PF2_RX3_QSQ	2	RMS power in Q chain for profile 2, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number $1 \text{ LSB} = 1 \text{ V}^2/2^{15}$ referred to ADC input (Not applicable for REAL mode and xWR294x/xWR254x devices)

Table 3.05 - Continued from previous page		
PF2_RX3_IQ- CORR	4	Cross correlation between I and Q chains for profile 2, RX channel 3 (post DC and IQ mismatch correction) represented by a 32 bit signed number $1 \text{ LSB} = 1 \text{V}^2/2^{30}$ referred to ADC input (Not applicable for REAL mode and xWR294x/xWR254x devices)
PF3_RX0_ICH	2	Residual DC value in I chain for profile 3 RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input
PF3_RX0_QCH	2	Residual DC value in Q chain for profile 3, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input (Not applicable for REAL mode and xWR294x/xWR254x devices)
PF3_RX0_ISQ	2	RMS power in I chain for profile 3, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number $1 \text{ LSB} = 1 \text{V}^2 / 2^{15}$ referred to ADC input
PF3_RX0_QSQ	2	RMS power in Q chain for profile 3, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input (Not applicable for REAL mode and xWR294x/xWR254x devices)
PF3_RX0_IQ- CORR	4	Cross correlation between I and Q chains for profile 3, RX channel 0 (post DC and IQ mismatch correction) represented by a 32 bit signed number $1 \text{ LSB} = 1 \text{ V}^2/2^{30}$ referred to ADC input (Not applicable for REAL mode and xWR294x/xWR254x devices)
PF3_RX1_ICH	2	Residual DC value in I chain for profile 3, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input
PF3_RX1_QCH	2	Residual DC value in Q chain for profile 3, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit signed number $1 \text{ LSB} = 1 \text{ V}/2^{15}$ referred to ADC input (Not applicable for REAL mode and xWR294x/xWR254x devices)

PF3_RX1_ISQ	2	RMS power in I chain for profile 3, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input
PF3_RX1_QSQ	2	RMS power in Q chain for profile 3, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input (Not applicable for REAL mode and xWR294x/xWR254x devices)
PF3_RX1_IQ- CORR	4	Cross correlation between I and Q chains for profile 3, RX channel 1 (post DC and IQ mismatch correction) represented by a 32 bit signed number $1 \text{ LSB} = 1 \text{ V}^2/2^{30}$ referred to ADC input (Not applicable for REAL mode and xWR294x/xWR254x devices)
PF3_RX2_ICH	2	Residual DC value in I chain for profile 3, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input
PF3_RX2_QCH	2	Residual DC value in Q chain for profile 3, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input (Not applicable for REAL mode and xWR294x/xWR254x devices)
PF3_RX2_ISQ	2	RMS power in I chain for profile 3, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input
PF3_RX2_QSQ	2	RMS power in Q chain for profile 3, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input (Not applicable for REAL mode and xWR294x/xWR254x devices)
PF3_RX2_IQ- CORR	4	Cross correlation between I and Q chains for profile 3, RX channel 2 (post DC and IQ mismatch correction) represented by a 32 bit signed number $1 \text{ LSB} = 1 \text{ V}^2/2^{30}$ referred to ADC input (Not applicable for REAL mode and xWR294x/xWR254x devices)

PF3 RX3 ICH	2	Residual DC value in I chain for profile 3, RX channel 3
		(post DC and IQ mismatch correction) represented by a 16 bit signed number
		1 LSB = $1V/2^{15}$ referred to ADC input
PF3_RX3_QCH	2	Residual DC value in Q chain for profile 3, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input (Not applicable for REAL mode and xWR294x/xWR254x devices)
PF3_RX3_ISQ	2	RMS power in I chain for profile 3, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number $1 \text{ LSB} = 1 \text{V}^2/2^{15}$ referred to ADC input
PF3_RX3_QSQ	2	RMS power in Q chain for profile 3, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input (Not applicable for REAL mode and xWR294x/xWR254x devices)
PF3_RX3_IQ- CORR	4	Cross correlation between I and Q chains for profile 3, RX channel 3 (post DC and IQ mismatch correction) represented by a 32 bit signed number 1 LSB = $1V^2/2^{30}$ referred to ADC input (Not applicable for REAL mode and xWR294x/xWR254x devices)

5.10.2 Sub block 0x0261 – AWR_RF_REAL_CHAN_DFE_STATISTICS_REPORT_ GET_SB

Table 5.84 describes the content of this sub block.

 Table 5.84:
 AWR_RF_REAL_CHAN_DFE_STATISTICS_REPORT_GET_SB

 contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0261
SBLKLEN	2	Value = 4

The response of this sub block will be AWR_RF_REAL_CHAN_DFE_STATISTICS_REPORT_SB with content as shown in Table 5.85

$\textbf{Table 5.85: AWR_RF_REAL_CHAN_DFE_STATISTICS_REPORT_SB}$

		response contents
Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0261
SBLKLEN	2	Value = 116
PF0_RX0_ICH	2	Residual DC value in I chain for profile 0, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input
PF0_RX0_ISQ	2	RMS power in I chain for profile 0, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number $1 \text{ LSB} = 1 \text{V}^2/2^{15}$ referred to ADC input
PF0_RX1_ICH	2	Residual DC value in I chain for profile 0, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input
PF0_RX1_ISQ	2	RMS power in I chain for profile 0, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number $1 \text{ LSB} = 1 \text{ V}^2/2^{15}$ referred to ADC input
PF0_RX2_ICH	2	Residual DC value in I chain for profile 0, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input
PF0_RX2_ISQ	2	RMS power in I chain for profile 0, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number $1 \text{ LSB} = 1 \text{ V}^2/2^{15}$ referred to ADC input
PF0_RX3_ICH	2	Residual DC value in I chain for profile 0, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit signed number $1 \text{ LSB} = 1 \text{V}/2^{15}$ referred to ADC input
PF0_RX3_ISQ	2	RMS power in I chain for profile 0, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input
PF1_RX0_ICH	2	Residual DC value in I chain for profile 1, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit signed number $1 \text{ LSB} = 1 \text{V}/2^{15}$ referred to ADC input

	Table 5.0	as – continued from previous page
PF1_RX0_ISQ	2	RMS power in I chain for profile 1, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input
PF1_RX1_ICH	2	Residual DC value in I chain for profile 1, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input
PF1_RX1_ISQ	2	RMS power in I chain for profile 1, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input
PF1_RX2_ICH	2	Residual DC value in I chain for profile 1, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input
PF1_RX2_ISQ	2	RMS power in I chain for profile 1, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input
PF1_RX3_ICH	2	Residual DC value in I chain for profile 1, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input
PF1_RX3_ISQ	2	RMS power in I chain for profile 1, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number $1 \text{ LSB} = 1 \text{V}^2/2^{15}$ referred to ADC input
PF2_RX0_ICH	2	Residual DC value in I chain for profile 2 RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input
PF2_RX0_ISQ	2	RMS power in I chain for profile 2, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number $1 \text{ LSB} = 1 \text{V}^2/2^{15}$ referred to ADC input
PF2_RX1_ICH	2	Residual DC value in I chain for profile 2, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input

	Table 5.0	35 – continued from previous page
PF2_RX1_ISQ	2	RMS power in I chain for profile 2, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input
PF2_RX2_ICH	2	Residual DC value in I chain for profile 2, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input
PF2_RX2_ISQ	2	RMS power in I chain for profile 2, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number $1 \text{ LSB} = 1 \text{V}^2/2^{15}$ referred to ADC input
PF2_RX3_ICH	2	Residual DC value in I chain for profile 2, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit signed number $1 \text{ LSB} = 1 \text{ V}/2^{15}$ referred to ADC input
PF2_RX3_ISQ	2	RMS power in I chain for profile 2, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input
PF3_RX0_ICH	2	Residual DC value in I chain for profile 3 RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input
PF3_RX0_ISQ	2	RMS power in I chain for profile 3, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input
PF3_RX1_ICH	2	Residual DC value in I chain for profile 3, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input
PF3_RX1_ISQ	2	RMS power in I chain for profile 3, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number $1 \text{ LSB} = 1 \text{V}^2 / 2^{15}$ referred to ADC input
PF3_RX2_ICH	2	Residual DC value in I chain for profile 3, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input

		5 – continued from previous page
PF3_RX2_ISQ	2	RMS power in I chain for profile 3, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input
PF3_RX3_ICH	2	Residual DC value in I chain for profile 3, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input
PF3_RX3_ISQ	2	RMS power in I chain for profile 3, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input
PF4_RX0_ICH	2	Residual DC value in I chain for profile 4, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input
PF4_RX0_ISQ	2	RMS power in I chain for profile 4, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number $1 \text{ LSB} = 1 \text{ V}^2/2^{15}$ referred to ADC input
PF4_RX1_ICH	2	Residual DC value in I chain for profile 4, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input
PF4_RX1_ISQ	2	RMS power in I chain for profile 4, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number $1 \text{ LSB} = 1 \text{ V}^2/2^{15}$ referred to ADC input
PF4_RX2_ICH	2	Residual DC value in I chain for profile 4, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input
PF4_RX2_ISQ	2	RMS power in I chain for profile 4, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number $1 \text{ LSB} = 1 \text{V}^2/2^{15}$ referred to ADC input
PF4_RX3_ICH	2	Residual DC value in I chain for profile 4, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input

		so – continued from previous page
PF4_RX3_ISQ	2	RMS power in I chain for profile 4, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input
PF5_RX0_ICH	2	Residual DC value in I chain for profile 5, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input
PF5_RX0_ISQ	2	RMS power in I chain for profile 5, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input
PF5_RX1_ICH	2	Residual DC value in I chain for profile 5, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input
PF5_RX1_ISQ	2	RMS power in I chain for profile 5, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input
PF5_RX2_ICH	2	Residual DC value in I chain for profile 5, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input
PF5_RX2_ISQ	2	RMS power in I chain for profile 5, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input
PF5_RX3_ICH	2	Residual DC value in I chain for profile 5, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input
PF5_RX3_ISQ	2	RMS power in I chain for profile 5, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number $1 \text{ LSB} = 1 \text{V}^2 / 2^{15}$ referred to ADC input
PF6_RX0_ICH	2	Residual DC value in I chain for profile 6, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input
		- · ·

PF6_RX0_ISQ	2	RMS power in I chain for profile 6, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input
PF6_RX1_ICH	2	Residual DC value in I chain for profile 6, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input
PF6_RX1_ISQ	2	RMS power in I chain for profile 6, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number $1 \text{ LSB} = 1 \text{V}^2/2^{15}$ referred to ADC input
PF6_RX2_ICH	2	Residual DC value in I chain for profile 6, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input
PF6_RX2_ISQ	2	RMS power in I chain for profile 6, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number $1 \text{ LSB} = 1 \text{ V}^2/2^{15}$ referred to ADC input
PF6_RX3_ICH	2	Residual DC value in I chain for profile 6, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input
PF6_RX3_ISQ	2	RMS power in I chain for profile 6, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input

5.11 Sub blocks related to AWR_RF_MISC_CONF_SET_MSG

- 5.11.1 Sub block 0x02C0 RESERVED
- 5.11.2 Sub block 0x02C1 RESERVED

5.11.3 Sub block 0x02C2 - AWR_RF_TEST_SOURCE_CONFIG_SET_SB

This sub block is used to configure the test source of BSS

NOTE1:	The test source configuration APIs are supported only for debug
	purpose. Please refer latest DFP release note for more info.
NOTE2:	After test source usage, it is recommend to disable the test source
	and issue profile configuration API again for normal functionality of
	radar.

Table 5.86 describes the content of this sub block.

Table 5.86:	AWR	RF	TEST	SOURCE	_CONFIG_	SET_	_SB contents	3
-------------	-----	----	------	--------	----------	------	--------------	---

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x02C2		
SBLKLEN	2	Value = 72		
POSITION_VEC1	[2+2+2]	Relative position in Cartesian coordinate from radar to objects, [x, y, z] (all signed, though for y, only unsigned makes sense if forward looking: our radar is on y=0 plane). Object 0 [x,y,z] 1 LSB = 1 cm Valid Range: y: 0 to 32767 cm, x & z: \pm 32767 cm		
VELOCITY_ VEC1	[2+2+2]	Relative velocity in Cartesian coordinate, similar to position vector (all signed) Object 0 1 LSB = 1 cm/s Valid Range = +/- 5000 (i.e. +/-180 kmph)		
SIG_LEV_VEC1	[2]	Reflecting objects' signal level at ADC output, relative to ADC Full Scale 1 LSB = -0.1 dBFS Valid range: 0 to 950 The same field may be used to emulate enable/disable each object by programming appropriate levels.		
BOUNDARY_ MIN_VEC1	[2+2+2]	Boundary minimum limit for each of x, y, z. When the current position crosses this boundary, the emu- lator returns the corresponding coordinate to the originally programmed value. Object 1 [x,y,z] 1 LSB = 1 cm Valid Range: y: 0 to 32767 cm, x & z: \pm 32767 cm		
BOUNDARY_ MAX_VEC1	[2+2+2]	Boundary maximum limit for each of x, y, z. When the current position crosses this boundary, the emu- lator returns the corresponding coordinate to the originally programmed value. Object 1 [x,y,z] 1 LSB = 1 cm Valid Range: y: 0 to 32767 cm, x & z: \pm 32767 cm		

POSITION_VEC2[2+2+2]Relative position in Cartesian coordinate from radar to objects. [x, y, z] (all signed, though for y, only unsigned makes sense if forward looking: our radar is on y=0 plane). Object 1 [x,y,z] 1 LSB = 1 cm Valid Range: y: 0 to 32767 cm, x & z: ±32767 cmVELOCITY VEC2[2+2+2]Relative velocity in Cartesian coordinate, similar to position vector (all signed) Object 1 1 LSB = 1 cm/s Valid Range = +/- 5000 (i.e. +/-180 kmph)SIG_LEV_VEC2[2]Reflecting objects' signal level at ADC output, relative to ADC Full Scale 1 LSB = -0.1 dBFS Valid range: 0 to 950 The same field may be used to emulate enable/disable each object 1 [x,y,z] 1 LSB = -0.1 dBFS Valid range: 0 to 950 The same field may be used to emulate enable/disable each object 1 [x,y,z] 1 LSB = 1 cmBOUNDARY_ MIN_VEC2[2+2+2]Boundary minimum limit for each of x, y, z. When the current position crosses this boundary, the emulator returns the corresponding coordinate to the originally programmed value. Object 1 [x,y,z] 1 LSB = 1 cm Valid Range: y: 0 to 32767 cm, x & z: ±32767 cmBOUNDARY_ MAX_VEC2[2+2+2]Boundary maximum limit for each of x, y, z. When the current position crosses this boundary, the emulator returns the corresponding coordinate to the originally programmed value. Object 1 [x,y,z] 1 LSB = 1 cm Valid Range: y: 0 to 32767 cm, x & z: ±32767 cmRX_ANT_POS_ XZ8Receiver Antenna positions to be modeled. The radar is on y=0 plane. Only x and z coordinates to be provided. 1 LSB = 1 cm Valid Range: y: 0 to 32767 cm, x & z: ±32767 cmRX_ANT_POS_ XZ8Receiver Antenna positions to be modeled. The radar is on y=0 plane. Only x and z coordinates to be prov			
VEC2vector (all signed) Object 1 1 LSB = 1 cm/s Valid Range = +/- 5000 (i.e. +/-180 kmph)SIG_LEV_VEC2[2]Reflecting objects' signal level at ADC output, relative to ADC Full Scale 1 LSB = -0.1 dBFS Valid range: 0 to 950 The same field may be used to emulate enable/disable each object by programming appropriate levels.BOUNDARY_ MIN_VEC2[2+2+2]Boundary minimum limit for each of x, y, z. When the current position crosses this boundary, the emu- lator returns the corresponding coordinate to the originally programmed value. Object 1 [x,y,z] 1 LSB = 1 cm Valid Range: y: 0 to 32767 cm, x & z: ±32767 cmBOUNDARY_ MAX_VEC2[2+2+2]Boundary maximum limit for each of x, y, z. When the current position crosses this boundary, the emu- lator returns the corresponding coordinate to the originally programmed value. Object 1 [x,y,z] 1 LSB = 1 cm Valid Range: y: 0 to 32767 cm, x & z: ±32767 cmBOUNDARY_ MAX_VEC2[2+2+2]Boundary maximum limit for each of x, y, z. When the current position crosses this boundary, the emu- lator returns the corresponding coordinate to the originally programmed value. Object 1 [x,y,z] 1 LSB = 1 cm Valid Range: y: 0 to 32767 cm, x & z: ±32767 cmRX_ANT_POS_ XZ8Receiver Antenna positions to be modeled. The radar is on y=0 plane. Only x and z coordinates to be provided. 1 LSB = Wavelength/8 Valid range = ±15 wave lengths Byte 0: RX0 X coordinate (may be 0 as reference) Byte 1: RX0 Z (may be 0 as reference) Byte 3: RX1 Z Byte 4: RX2 X Byte 5: RX2 Z Byte 6: RX3 X Byte 7: RX3 Z	POSITION_VEC2	[2+2+2]	jects, [x, y, z] (all signed, though for y, only unsigned makes sense if forward looking: our radar is on y=0 plane). Object 1 [x,y,z] 1 LSB = 1 cm
ADC Full Scale1 LSB = -0.1 dBFSValid range: 0 to 950The same field may be used to emulate enable/disableeach object by programming appropriate levels.BOUNDARY_ MIN_VEC2[2+2+2]Boundary minimum limit for each of x, y, z.When the current position crosses this boundary, the emulator returns the corresponding coordinate to the originally programmed value. Object 1 [x,y,z]BOUNDARY_ MAX_VEC2[2+2+2]BOUNDARY_ MAX_VEC2[2+2+2]BOUNDARY_ MAX_VEC2[2+2+2]BOUNDARY_ MAX_VEC2[2+2+2]BOUNDARY_ MAX_VEC2[2+2+2]BOUNDARY_ MAX_VEC2[2+2+2]BOUNDARY_ 		[2+2+2]	vector (all signed) Object 1 1 LSB = 1 cm/s
MIN_VEC2When the current position crosses this boundary, the emulator returns the corresponding coordinate to the originally programmed value. Object 1 [x,y,z] 1 LSB = 1 cm Valid Range: y: 0 to 32767 cm, x & z: ±32767 cmBOUNDARY_ MAX_VEC2[2+2+2]Boundary maximum limit for each of x, y, z. When the current position crosses this boundary, the emulator returns the corresponding coordinate to the originally programmed value. Object 1 [x,y,z] 	SIG_LEV_VEC2	[2]	ADC Full Scale 1 LSB = -0.1 dBFS Valid range: 0 to 950 The same field may be used to emulate enable/disable
MAX_VEC2When the current position crosses this boundary, the emulator returns the corresponding coordinate to the originally programmed value. Object 1 [x,y,z] 1 LSB = 1 cm Valid Range: y: 0 to 32767 cm, x & z: ±32767 cmRX_ANT_POS_ XZ8Receiver Antenna positions to be modeled. The radar is on y=0 plane. Only x and z coordinates to be provided. 1 LSB = Wavelength/8 Valid range = ±15 wave lengths Byte 0: RX0 X coordinate (may be 0 as reference) Byte 1: RX0 Z (may be 0 as reference) 	_	[2+2+2]	When the current position crosses this boundary, the emu- lator returns the corresponding coordinate to the originally programmed value. Object 1 [x,y,z] 1 LSB = 1 cm
XZ The radar is on y=0 plane. Only x and z coordinates to be provided. 1 LSB = Wavelength/8 Valid range = ±15 wave lengths Byte 0: RX0 X coordinate (may be 0 as reference) Byte 1: RX0 Z (may be 0 as reference) Byte 2: RX1 X Byte 3: RX1 Z Byte 4: RX2 X Byte 5: RX2 Z Byte 6: RX3 X Byte 7: RX3 Z		[2+2+2]	When the current position crosses this boundary, the emu- lator returns the corresponding coordinate to the originally programmed value. Object 1 [x,y,z] 1 LSB = 1 cm
RESERVED 6 RESERVED		8	The radar is on y=0 plane. Only x and z coordinates to be provided. 1 LSB = Wavelength/8 Valid range = \pm 15 wave lengths Byte 0: RX0 X coordinate (may be 0 as reference) Byte 1: RX0 Z (may be 0 as reference) Byte 2: RX1 X Byte 2: RX1 X Byte 3: RX1 Z Byte 4: RX2 X Byte 5: RX2 Z Byte 6: RX3 X
	RESERVED	6	RESERVED

MISC_FUNC_	1	Bits	Descript	ion
CTRL		b0	DIS_DITHER Value Definition	
			0	DITHER is enabled in test source data
			1	DITHER is disabled in test source data
			Note: Th device.	is feature is supported only on AWR2243
		b7:1	RESER\	/ED
RESERVED	1	Reserve	ed for 4 by	tes alignment

NOTE:	Test source is not characterized and tuned to 60GHz in xWR6x43
	devices.

5.11.4 Sub block 0x02C3 - AWR_RF_TEST_SOURCE_ENABLE_SET_SB

This sub block is used to enable test source of BSS Table 5.87 describes the content of this sub block.

Field Name	Number of bytes	Descrip	tion			
SBLKID	2	Value =	0x02	C3		
SBLKLEN	2	Value =	Value = 8			
TS_EN	2	Bit Definition				
		b0	0	Disable (revert to normal functionality)		
			1	Enable (enter test source functionality)		
		b15:1	RES	SERVED		
RESERVED	2	0x0000				

Table 5.87: AWR_RF_TEST_SOURCE_ENABLE_SET_SB contents

5.11.5 Sub block 0x02C4 – 0x02CB RESERVED

5.11.6 Sub block 0x02CC – AWR_RF_LDO_BYPASS_SB

This sub block enables LDO bypass option within BSS.

CAUTION:	Do not enable RF LDO bypass option when the PMIC is config-
	ured to supply 1.3V to VIN_13RF1 and VIN_13RF2 analog and RF
	power supply inputs. This may damage the device. Typically in TI
	EVMs, PMIC is configured to supply 1.3V to the RF supplies.

Table 5.88 describes the content of this sub block.

Field Name	Number of bytes	Description					
SBLKID	2	Value =	0x02CC				
SBLKLEN	2	Value =	8				
RFLDO_BY- PASS_EN	2	-	NOTE: This field is RESERVED for xWR294x/xWR254x devices.				
		AWR22 Bit	43/xWR6 Descrip	243 devices	:		
		b0	Value	Description			
			0	RF LDO no	t bypassed		
			1	RF LDO by	passed		
		b1 Value Description					
		0 PA LDO enabled					
		1 PA LDO disabled When simultaneous 3 TX are to be used, to avoid package reliability issues, VIN_13RF2 is shorted to VOUT_PA on the board and the PA LDO should be disabled.					
		b15:2	RESER				
		The usa	ige of the	se configurat	•	he table below	
		USECA	SE		LDO_ BYPASS	PA_LDO_ DISABLE	
		1.3V VII 13RF2 s		and VIN_	0	0	
		1.0V VIN_13RF1 and VIN_ 1 0 13RF2 supplies					
		1.0V VIN_13RF1 and VIN_ 1 1 13RF2 supplies and VIN_ 13RF2 shorted to VOUT_ PA				1	

Table 5.88: $AWR_RF_LDO_BYPASS_SB$ contents

SUPPLY_MONI- TOR_IRDROP	1	 IR drop is the voltage drop from the PMIC output to the device pin. The user should program the voltage drop in percentage units which will be used for adjusting the thresholds for measuring the external supplies. Value Description 0 IR drop of 0% 1 IR drop of 3% 2 IR drop of 6% 3 IR drop of 9%
IO_SUPPLY_ INDICATOR	1	NOTE: This field is RESERVED for xWR294x/xWR254x devices. IO supply indicator for correct monitoring of IO supply Value Description 0 3.3 V IO supply 1 1.8 V IO supply

5.11.7 Sub block 0x02CD - AWR_RF_PALOOPBACK_CFG_SB

This sub block enables/disables PA loopback for all enabled profiles. This is used to debug both the TX and RX chains are working correctly.

NOTE:	The PA loop-back configuration API is supported only for debug
	purpose. Please refer latest DFP release note for more info.

Table 5.89 describes the content of this sub block for AWR2243/xWR6243, and Table **??** describes the content of this sub-block for xWR294x and xWR254x devices.

NOTE:	If monitoring is enabled with the loopback APIs (subblock
	0x02CD, 0x02CE, 0x02CF), then loopback will not work after
	montoring is complete. To use loopback with monitoring, use
	AWR_ADVANCED_FRAME_CONF_SB with AWR_LOOPBACK_
	BURST_CONF_SB.

Table 5.89: AWR_RF_PALOOPBACK_CFG_SB contents for AWR2243/xWR6243 devices

Field Name	Number of bytes	Description			
SBLKID	2	Value = 0x02CD			
SBLKLEN	2	Value = 8			
PA_LOOPBACK_ FREQ	2	This value is a 100 MHz divider which sets the loopback frequency For e.g. for a 1 MHz frequency, set this to 100 For a 2 MHz frequency, set this to 50 NOTE: To ensure no leakage of signal power, user has to ensure that 100 MHz/LOOPBACK_FREQ is an integer multiple of bin width For e.g. if user choses 25 Msps sampling rate and 2048 samples/chirp, then LOOPBACK_FREQ of 64 (=1.5625 MHz) will ensure no leakage			
PA_LOOPBACK_	1	Value Description			
EN		0 PA loopback is not enabled			
		1 PA loopback is enabled			
RESERVED	1	0x00			

$\begin{array}{c} \textbf{Table 5.90: AWR_RF_PALOOPBACK_CFG_SB \ contents \ for} \\ xWR294x/xWR254x \ devices \end{array}$

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x02CD		
SBLKLEN	2	Value = 14		
PA_LOOPBACK_ FREQ	4	PA loopback modulation frequency in Hz. NOTE: Please refer to PA_LOOPBACK_FREQ field in AWR_LOOPBACK_BURST_CONF_SET_SB for the list of allowed frequencies.		
PA_LOOPBACK_	1	Value Description		
EN		0 PA loopback is not enabled		
		1 PA loopback is enabled		
RESERVED	1	0x00		
COMMON_BUF_ GAIN_SEL	1	This field configures the QPSK buffer gain in both the PA and the LO loopback paths in xWR294x and xWR254x. NOTE: Please refer to COMMON_BUF_GAIN_SEL field in AWR_LOOPBACK_BURST_CONF_SET_SB for the list of gain codes.		

PA_LOOPBACK_ BUF_GAIN_SEL	1	This configures the PA loopback buffer gain. NOTE: Please refer to PA_LOOPBACK_BUF_GAIN_SEL field in AWR_LOOPBACK_BURST_CONF_SET_SB for the list of gain codes.				
RESERVED	2	0x0000				

5.11.8 Sub block 0x02CE – AWR_RF_PSLOOPBACK_CFG_SB

This sub block enables/disables PS (phase shifter) loopback for all enabled profiles. This is used to debug the TX (before the PA) and RX chains.

NOTE:	The PS loop-back configuration API is not applicable to xWR294x/xWR254x devices. They will have a separate LO loop-back configuration API.
NOTE:	The PS loop-back configuration API is supported only for debug purpose. Please refer latest DFP release note for more info.

Table 5.91 describes the content of this sub block.

NOTE:	If monitoring is enabled with the loopback APIs (subblock
	0x02CD, 0x02CE, 0x02CF), then loopback will not work after
	montoring is complete. To use loopback with monitoring, use
	AWR_ADVANCED_FRAME_CONF_SB with AWR_LOOPBACK_
	BURST_CONF_SB.

Table 5.91: AW	$R_RF_$	PSLOOPBACK_	_CFG_	SB contents
-----------------------	---------	-------------	-------	-------------

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x02CE		
SBLKLEN	2	Value = 12		
PS_LOOPBACK_ FREQ	2	Loop back frequency in kHz 1 LSB = 1 kHz		
RESERVED	2	0x0000		
PS_LOOPBACK_	1	Value Definition		
EN		0 PS loopback is not enabled		
		1 PS loopback is enabled		

PS_LOOPBACK_	1	Bit	Bit Definition				
TXID		b0	TX0 is used for loopback				
		b1	TX1 is u	sed for	loopback		
		b7:2	RESER	/ED			
PGA_GAIN_IN-	1						
DEX		Value	PGA value	gain	Value	PGA value	gain
		0	PGA is (OFF	15	-3 dB	
		1	-22 dB		16	-2 dB	
		2	-16 dB		17	-1 dB	
		3	-15 dB		18	0 dB	
		4	-14 dB		19	1 dB	
		5	-13 dB		20	2 dB	
		6	-12 dB		21	3 dB	
		7	-11 dB		22	4 dB	
		8	-10 dB		23	5 dB	
		9	-9 dB		24	6 dB	
		10	-8 dB		25	7 dB	
		11	-7 dB		26	8 dB	
		12	-6 dB		27	9 dB	
		13	-5 dB		255-28	RESER\	/ED
		14	-4 dB				
RESERVED	1	0x00					

NOTE:	The expected signal strength change with change in index value is only approximately indicated for PS <n>_PGA_GAIN_INDEX. Typi- cally, the loopback path is the dominant path only in top 10 indices (highest PGA gain values). For lower indices (lower PGA gain val-</n>
	ues), parasitic paths in the RF system can start dominating the loop-back measurements, and under such conditions, inter channel
	imbalances measured using such LB path, and LB signal SNR etc. can show degraded performance, with the degradation attributed to the loop-back path and not the functional path/circuits/system.

5.11.9 Sub block 0x02CF - AWR_RF_IFLOOPBACK_CFG_SB

This sub block enables/disables IF loopback for all enabled profiles. This is used to debug the RX IF chain.

NOTE:	The IF loop-back configuration API is supported only for debug pur-
	pose. Please refer latest DFP release note for more info.

Table 5.92 describes the content of this sub block.

NOTE:	If monitoring is enabled with the loopback APIs (subblock
	0x02CD, 0x02CE, 0x02CF), then loopback will not work after
	montoring is complete. To use loopback with monitoring, use
	AWR_ADVANCED_FRAME_CONF_SB with AWR_LOOPBACK_
	BURST_CONF_SB.

		ЪΠ		ana	CD / /
Table 5.92:	AWR	KF.	IFLOOPBACK	CFG	SB contents

Field Name	Number of bytes	Description			
SBLKID	2	Value =	0x02CF		
SBLKLEN	2	Value =	8		
IF_LOOPBACK_	2	Value	IF Loopback frequency value		
FREQ		0	180 kHz		
		1	240 kHz		
		2	360 kHz		
		3	720 kHz		
		4	1 MHz		
		5	2 MHz		
		6	2.5 MHz		
		7	3 MHz		
		8	4.017857 MHz		
		9	5 MHz		
		10	6 MHz		
		11	7.5 MHz		
		12	8.035714 MHz		
		13	9 MHz		
		14	10 MHz		
		65535- 15	RESERVED		
IF_LOOPBACK_	1	Value	Definition		
EN		0	IF loopback is not enabled		
		1	IF loopback is enabled		
RESERVED	1	0x00			

5.11.10 Sub block 0x02D0 - AWR_RF_GPADC_CFG_SET_SB

This sub block enables the GPADC reads for external inputs (available only in xWR1642/xWR1843/xWR6843/AWR224

NOTE:	This API is not supported in xWR294x/xWR254x. The external
	analog signals can be monitored using the MSS GPADC from the
	customer application.

Table 5.93 describes the content of this sub block.

Field Name	Number of bytes	Description			
SBLKID	2	Value = 0x02D0			
SBLKLEN	2	Value = 32			
SIGNAL_INPUT_ ENABLES	1	This field indicates the sets of externally fed DC sig nals which are to be monitored using GPADC. When each bit in this field is set, the corresponding signal is monitored Bit Definition			
		0 ANALOGTEST1			
		1 ANALOGTEST2			
		2 ANALOGTEST3			
		3 ANALOGTEST4			
		4 ANAMUX			
		5 VSENSE			
		Others RESERVED			
SIGNAL_ BUFFER_EN- ABLES	1	This field indicates the sets of externally fed DC signals which are to be buffered before being fed to the GPADC. When each bit in this field is set, the corresponding signal is buffered before the GPADC. Bit SIGNAL			
		0 ANALOGTEST1			
		1 ANALOGTEST2			
		2 ANALOGTEST3			
		3 ANALOGTEST4			
		4 ANAMUX			
		Others RESERVED			

Table 5.93: $AWR_RF_GPADC_CFG_SET_SB$ contents

ANATEST1 CFG	2	Bit Definition
ANATESTI_OFG	2	
		b7:0 Number of samples to collect 1 sample takes 1.6 μs
		b15:8 Settling time 1 LSB = 0.8 μ s Valid range: 0 to 12 μ s Valid programming condition: all the signals that are en- abled should take a total of < 100 μ s including the programmed settling times and measurement time per enabled signal.
ANATEST2_CFG	2	Bit Definition
		b7:0 Number of samples to collect 1 sample takes 1.6 μ s
		b15:8 Settling time 1 LSB = $0.8 \ \mu s$ Valid range: 0 to 12 μs Valid programming condition: all the signals that are en- abled should take a total of < 100 μs including the programmed settling times and measurement time per enabled signal.
ANATEST3_CFG	2	Bit Definition
		b7:0 Number of samples to collect 1 sample takes 1.6 μ s
		b15:8 Settling time 1 LSB = $0.8 \ \mu s$ Valid range: 0 to 12 μs Valid programming condition: all the signals that are en- abled should take a total of < 100 μs including the programmed settling times and measurement time per enabled signal.
ANATEST4_CFG	2	Bit Definition
		b7:0 Number of samples to collect 1 sample takes 1.6 μs
		b15:8 Settling time 1 LSB = $0.8 \ \mu s$ Valid range: 0 to 12 μs Valid programming condition: all the signals that are en- abled should take a total of < 100 μs including the programmed settling times and measurement time per enabled signal.

ANAMUX_CFG	2	Bit	Definition
		b7:0	Number of samples to collect 1 sample takes 1.6 μ s
		abled s	Settling time 1 LSB = 0.8 μ s Valid range: 0 to 12 μ s ogramming condition: all the signals that are en- hould take a total of < 100 μ s including the med settling times and measurement time per signal.
VSENSE_CFG	2	Bit	Definition
		b7:0	Number of samples to collect 1 sample takes 1.6 μ s
		abled s	Settling time 1 LSB = 0.8 μ s Valid range: 0 to 12 μ s ogramming condition: all the signals that are en- hould take a total of < 100 μ s including the imed settling times and measurement time per signal.
RESERVED	2	0x0000	
RESERVED	4	0x00000	0000
RESERVED	4	0x00000	0000
RESERVED	4	0x00000	0000

The response to the AWR_RF_GPADC_CFG_SET_SB is an async event AWR_AE_RF_GPADC_ RESULT_DATA_SB which contains the measured values for each of the enabled channels.

NOTE: The actual measurement of these GPADC signal are done in interburst or frame idle time and the result AE sub block will be sent only after completing all the measurements.

- 5.11.11 Sub block 0x02D1 RESERVED
- 5.11.12 Sub block 0x02D2 RESERVED
- 5.11.13 Sub block 0x02D3 RESERVED
- 5.11.14 Sub block 0x02D4 RESERVED

5.11.15 Sub block 0x02D5 – AWR_RF_LOLOOPBACK_CFG_SB

This sub block enables/disables LO loopback for all enabled profiles. This is used to debug the TX (before the PA) and RX chains. This is only applicable for xWR294x/xWR254x devices.

NOTE:	The LO loop-back configuration API is supported only for debug
	purpose. Please refer latest DFP release note for more info.

Table 5.94 describes the content of this sub block.

NOTE:	If monitoring is enabled with the loopback APIs (subblock
	0x02CD, 0x02CE, 0x02CF), then loopback will not work after
	montoring is complete. To use loopback with monitoring, use
	AWR_ADVANCED_FRAME_CONF_SB with AWR_LOOPBACK_
	BURST_CONF_SB.

Table 5.94:	AWR	\mathbf{BF}	LOLOOPBACK	CFG	SB contents
Table 0.01.	1111110	TUT	LOLOOI DHON	UI U	

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x02D5
SBLKLEN	2	Value = 12
LO_LOOPBACK_ FREQ	4	Loop back frequency in Hz NOTE: Please refer to LO_LOOPBACK_FREQ field in AWR_LOOPBACK_BURST_CONF_SET_SB for the list of allowed frequencies.
LO_LOOPBACK_ EN	1	Value Definition
		0 LO loopback is not enabled
		1 LO loopback is enabled
COMMON_BUF_ GAIN_SEL	1	This field configures the QPSK buffer gain in both the PA and the LO loopback paths in xWR294x/xWR254x. NOTE: Please refer to COMMON_BUF_GAIN_SEL field in AWR_LOOPBACK_BURST_CONF_SET_SB for the list of gain codes.
LO_LOOPBACK_ BUF_GAIN_SEL	1	This configures the LO loopback buffer gain. NOTE: Please refer to LO_LOOPBACK_BUF_GAIN_SEL field in AWR_LOOPBACK_BURST_CONF_SET_SB for the list of gain codes.
RESERVED	1	0x00

5.12 Sub blocks related to AWR_RF_MISC_CONF_GET_MSG

5.12.1 Sub block 0x02E0 to 0x2E9 – RESERVED

5.12.2 Sub block 0x02EA – AWR_RF_TEMPERATURE_GET_SB

This sub block provides the device temperature sensor information.

Table 5.95 describes the content of this sub block.

NOTE:	Use AWR_MONITOR_TEMPERATURE_CONF_SB to read peri-
	odic temperature during functional frames instead of AWR_RF_
	TEMPERATURE_GET_SB

Table 5.95: AWR_RF_TEMPERATURE_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x02EA
SBLKLEN	2	Value = 4

AWR_RF_TEMPERATURE_DATA_SB sub block is sent by the radar device in response to AWR_ RF_TEMPERATURE_GET_SB.

Table 5.96: AWR_RF_TEMPERATURE_DATA_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x02EA
SBLKLEN	2	Value = 28
TIME	4	BSS local Time from device power up 1 LSB = 1 ms
TEMP_RX0_ SENS	2	RX0 temperature sensor reading (signed value) 1 LSB = 1° C
TEMP_RX1_ SENS	2	RX1 temperature sensor reading (signed value) 1 LSB = 1° C
TEMP_RX2_ SENS	2	RX2 temperature sensor reading (signed value) 1 LSB = 1° C
TEMP_RX3_ SENS	2	RX3 temperature sensor reading (signed value) 1 LSB = 1° C
TEMP_TX0_ SENS	2	TX0 temperature sensor reading (signed value) 1 LSB = 1° C
TEMP_TX1_ SENS	2	TX1 temperature sensor reading (signed value) 1 LSB = 1° C
TEMP_TX2_ SENS	2	TX2 temperature sensor reading (signed value) 1 LSB = 1° C
TEMP_PM_ SENS	2	PM temperature sensor reading (signed value) 1 LSB = 1°C

TEMP_DIG1_ SENS / TEMP_	2	AWR2243/xWR6243 devices: Digital temperature sensor reading (signed value)
TX3_SENS		xWR294x/xWR254x devices:
		TX3 temperature sensor reading (signed value)
		1 LSB = 1°C
TEMP_DIG2_ SENS	2	Digital temperature sensor reading (signed value) [Appli- cable only in xWR1642/xWR6843/xWR1843]
		xWR294x/xWR254x devices: This field is RESERVED.
		1 LSB = 1°C

Table 5.96 – continued from previous page

5.13 Sub blocks related to AWR_RF_ASYNC_EVENT_MSG1

NOTE1:	All the Monitoring Async events will be sent out periodically at CALIB_MON_TIME_UNIT frame rate (FTTI). The RadarSS/BSS has a queue to hold max 8 transmit API messages (AEs or Responses), the host shall service all the AEs before start of the next FTTI epoch to avoid RadarSS Queue full CPU fault fatal error.
NOTE2:	In reporting mode 1 (Quiet mode) if any failure in RadarSS ana- log or digital monitors, the AWR2243 device will send AWR_AE_ MSS_RFERROR_STATUS_SB AE with ERROR_STATUS_FLAG 0x7 in redundant with failure monitoring report. AWR_AE_MSS_ RFERROR_STATUS_SB AE is a redundant failure report for the failure in Quiet mode.
NOTE3:	The ERROR_CODE returned part of monitor AE message reports are informative purpose only, these error codes are helpful to debug the cause for monitor failure. Application can log these information
	and share with TI in case of any runtime errors. The information about these error codes are documented in "API Error Codes" section in page 406.

5.13.1 Sub block 0x1000 – RESERVED

5.13.2 Sub block 0x1001 - RESERVED

5.13.3 Sub block 0x1002 – AWR_AE_RF_CPUFAULT_SB

This sub block indicates CPU fault status of BIST SS. Table 5.97 describes the content of this sub block.

Table 5.97: AWR_AE_RF_CPUFAULT_SB response contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x1002	
SBLKLEN	2	Value = 36	
FAULT_TYPE	1	Value Definition	
		0 RF Processor Undefined Instruction Abort	
		1 RF Processor Instruction pre-fetch Abort	
		2 RF Processor Data Access Abort	
		3 RF Processor Firmware Fatal Error	
		0x4 - RESERVED	
		0xFE	
		0xFF No fault	

ERROR_CODE 1 The error code for the fault occurred. The error code for the fault occurred. The error generated due to wrong configuration of the device or HW Error Definition Code 0 Undefined error code 1 Rampgen is not triggered from FRC or to be for the device or the device	ed either	
1 Rampgen is not triggered from FRC or		
(FRC is running)	Hw pulse	
2 Burst start and end counts are not ma rampgen	atching in	
3 Chirp start and end counts are not ma rampgen	atching in	
4 Calibration/Monitoring chirps not finish burst	ed at pre	
5 RadarSS TX mailbox queue full		
6 Sequencer extension copy error for a ch	nirp	
7 Temperature sensor data is invalid		
8 Test source configuration time failure		
9 - RESERVED		
0xFF		
LINE_NUM 2 Valid only in case of FAULT type is 0x3, profirmware line number at which fatal error occurrent		
FAULT_LR 4 The instruction PC address at which Fault occurr	ed	
FAULT_PREV_4The return address of the function from which fau has been called (Call stack LR)	The return address of the function from which fault function has been called (Call stack LR)	
FAULT_SPSR 4 The CPSR register value at which fault occurred		
FAULT_SP 4 The SP register value at which fault occurred		
FAULT_CAUSE_ 4 The address access at which Fault occurred (valid fault type 0x0 to 0x2)	id only for	

Table 5.97 – continued from previous page

		n – continueu nom previous page
FAULT_ERROR_ STATUS	2	The status of Error (Error Cause type – valid only for fault type 0x0 to 0x2) 0x000 BACKGROUND_ERR
		0x001 ALIGNMENT_ERR
		0x002 DEBUG_EVENT
		0x00D PERMISSION_ERR
		0x008 SYNCH_EXTER_ERR
		0x406 ASYNCH_EXTER_ERR
		0x409 SYNCH_ECC_ERR
		0x408 ASYNCH_ECC_ERR
FAULT_ERROR_ SOURCE	1	The Source of the Error (Error Source type - valid only for fault type 0x0 to 0x2)
		0x0 ERR_SOURCE_AXI_MASTER
		0x1 ERR_SOURCE_ATCM
		0x2 ERR_SOURCE_BTCM
FAULT_AXI_ER- ROR_TYPE	1	The AXI Error type (Error Source type - valid only for fault type 0x0 to 0x2)
		0x0 AXI_DECOD_ERR
		0x1 AXI_SLAVE_ERR
FAULT_AC- CESS_TYPE	1	The Error Access type (Error Access type - valid only for fault type 0x0 to 0x2)0x0READ_ERR
		0x1 WRITE_ERR
FAULT_RECOV- ERY_TYPE	1	The Error Recovery type (Error Recovery type - Valid only for fault type 0x0 to 0x2) 0x0 UNRECOVERY 0x1 RECOVERY
RESERVED	2	0x0000
NESERVED	<u>ک</u>	0x0000

Table 5.97 – continued from previous page

5.13.4 Sub block 0x1003 – AWR_AE_RF_ESMFAULT_SB

This sub block indicates the status of any other faults in the BIST SS.

NOTE:	This ASYNC event has been deprecated on xWR294x/xWR254x
	devices. Please use the updated ASYNC event - AWR_AE_RF_
	ADV_ESMFAULT_SB.

Table 5.98 describes the content of this sub block.

Table 5.98: $AWR_AE_RF_ESMFAULT_STATUS_SB$ response contents

Field Name	Number of bytes	Description	
SBLKID	2	Value =	0x1003
SBLKLEN	2	Value =	12
ESM_GROUP1_ ERRORS	4	Bit	Error Information 0 – No Error , 1 – ESM Error
		b0	RAMPGEN_SB_ERROR
		b1	RESERVED
		b2	GPADC_RAM_SB_ERROR
		b3	VIM_RAM_SB_ERROR
		b4	RESERVED
		b5	VIM_SELFTEST_ERRROR
		b6	B0TCM_SB_ERROR
		b7	B1TCM_SB_ERROR
		b8	CCMR4_SELFTEST_ERROR
		b9	ATCM_SB_ERROR
		b10	RAMPGEN_SELFTEST_ERROR
		b11	RAMPGEN_PAR_SELFTST_ERROR
		b12	SEQ_EXT_SELFTEST_ERROR
		b13	SEQ_EXT_SB_ERROR
		b14	RESERVED
		b15	AGC_RAM_SB_ERROR
		b16	B1TCM_PAR_CHK_ERROR
		b17	B0TCM_PAR_CHK_ERROR
		b18	ATCM_PAR_CHK_ERROR
		b19	MB_MSS2BSS_SB_ERROR
		b20	MB_BSS2MSS_SB_ERROR
		b24:21	RESERVED
		b25	PROG_FILT_FATAL_DB_ECC_ERROR
		b31:26	RESERVED

mmWave Radar Interface Control Document Revision 3.35 - Jan 16, 2024

	Table 5.9	8 – conti	nued from previous page
ESM_GROUP2_	4	Bit	Error Information
ERRORS		b0	DFE_STC_ERROR
		b1	CR4_STC_ERROR
		b2	CCMR4_COMP_ERROR
		b3	B0TCM_DB_ERROR
		b4	B1TCM_DB_ERROR
		b5	ATCM_DB_ERROR
		b6	DCC_ERROR
		b7	SEQ_EXT_ERROR
		b8	SYNT_FREQ_MON_ERROR
		b9	RESERVED
		b10	RAMPGEN_DB_ERROR
		b11	BUBBLE_CORRECTION_FAIL
		b12	RAMPGEN_LOCSTEP_ERROR
		b13	RTI_RESET_ERROR
		b14	GPADC_RAM_DB_ERROR
		b15	VIM_COMP_ERROR
		b16	CR4_LIVE_LOCK_ERROR
		b17	WDT_NMI_ERROR
		b18	VIM_RAM_DB_ERROR
		b19	RAMPGEN_PAR_ERROR
		b20	SEQ_EXT_DB_ERROR
		b21	DMA_MPU_ERROR
		b22	AGC_RAM_DB_ERROR
		b23	CRC_COMP_ERROR
		b24	WAKEUP_STS_ERROR
		b25	SHORT_CIRCUIT_ERROR
		b26	B1TCM_PAR_ERROR
		b27	B0TCM_PAR_ERROR
		b28	ATCM_PAR_ERROR
		b29	MB_MSS2BSS_DB_ERROR
		b30	MB_BSS2MSS_DB_ERROR
		b31	CCC_ERROR

Table 5.98 – continued from previous page

NOTE: The Programmable filter Parity error and double bit ECC fatal errors are connected to ESM Group 1 lines, these fatal errors must be handled in Host in case of AWR2243/xWR6243 device.

5.13.5 Sub block 0x1004 - AWR_AE_RF_INITCALIBSTATUS_SB

This sub block indicates the initial calibrations of RF BIST SS are complete. Table 5.99 describes the content of this sub block.

Field Name	Number of bytes	Description		
SBLKID	2	Value =	0x1004	
SBLKLEN	2	Value =	24	
CALIBRATION_ STATUS	4	This field indicates the status of each calibration (0 – FAIL, 1 – PASS). If a particular calibration was not enabled, then its corresponding field should be ignored. Bit Definition (0 – FAIL, 1 – PASS)		
		b0	Synth VCO3 tuning (Available only on selected xWR6243 device variants, RESERVED for other devices)	
		b1	APLL tuning	
		b2	SYNTH VCO1 tuning	
		b3	SYNTH VCO2 tuning	
		b4	LODIST calibration	
		b5	RX ADC DC offset calibration	
		b6	HPF cutoff calibration	
		b7	LPF cutoff calibration	
		b8	Peak detector calibration	
		b9	TX Power calibration	
		b10	RX gain calibration	
		b11	TX Phase calibration	
		b12	RX IQMM calibration (not applicable for xWR294x/xWR254x devices)	
		b31:13	RESERVED	

 Table 5.99:
 AWR_AE_RF_INITCALIBSTATUS_SB response contents

	14510 0.0	0 00110	nued from previous page	
CALIBRATION_ UPDATE	4		d indicates if a particular calibration data has been in hardware. (0 – no update, 1 – updated) Definition	
		b0	Synth VCO3 tuning (Available only on selected xWR6243 device variants, RESERVED for other devices)	
		b1	APLL tuning	
		b2	SYNTH VCO1 tuning	
		b3	SYNTH VCO2 tuning	
		b4	LODIST calibration	
		b5	RX ADC DC offset calibration	
		b6	HPF cutoff calibration	
		b7	LPF cutoff calibration	
		b8	Peak detector calibration	
		b9	TX Power calibration	
		b10	RX gain calibration	
		b11	TX Phase calibration	
		b12	RX IQMM calibration (not applicable for xWR294x/xWR254x devices)	
		b31:13	RESERVED	
TEMPERATURE	2	Measured temperature, based on average of temperature sensors near all enabled TX and RX channels at the time of calibration. 1 LSB = $1^{\circ}C$		
RESERVED	2	0x0000		
TIME_STAMP	4	This field indicates time stamp at the time of performing calibration updates. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)		
RESERVED	4	0x0000000		

Table 5.99 – continued from previous page

5.13.6 Sub block 0x1005 - RESERVED

5.13.7 Sub block 0x1006 - RESERVED

5.13.8 Sub block 0x1007 - AWR_AE_RF_ADV_ESMFAULT_SB

This sub block indicates the status of any other faults in the BIST SS in xWR294x/xWR254x devices.

Table 5.100 describes the content of this sub block.

$\textbf{Table 5.100: AWR_AE_RF_ADV_ESMFAULT_STATUS_SB response contents}$

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x1007	
SBLKLEN	2	Value = 28	

in xWR254x devices) b5 VIM_SELFTEST_ERRROR b6 B0TCM_SB_ERROR b7 B1TCM_SB_ERROR b8 CCMR4_SELFTEST_ERROR b9 ATCM_SB_ERROR b10 RAMPGEN_SELFTEST_ERROR b10 RAMPGEN_SELFTEST_ERROR b11 RAMPGEN_PAR_SELFTST_ERROR b12 SEQ_EXT_SELFTEST_ERROR b13 SEQ_EXT_SB_ERROR b14 PROG_FILT_PARITY_ERROR b15 AGC_RAM_SB_ERROR b16 B1TCM_PAR_CHK_ERROR b17 B0TCM_PAR_CHK_ERROR b18 ATCM_PAR_CHK_ERROR b19 ECC_AGG_DED_ERROR b20 ECC_AGG_SEC_ERROR b21 RESERVED b22 RESERVED b23 RESERVED b24 RESERVED b25 PROG_FILT_UERR b26 PROG_FILT_SERR b27 FRC_SELFTEST_ERROR b28 FRC_ERROR b29 RESERVED			
b0 RAMPGEN_SB_ERROR b1 PROG_FILT_SELFTEST_ERROR b2 GPADC_RAM_SB_ERROR b3 VIM_RAM_SB_ERROR b4 DFE_PARITY_AND_OUT_ERROR (RESERVED in xWR254x devices) b5 VIM_SELFTEST_ERROR b6 BOTCM_SB_ERROR b7 B1TCM_SB_ERROR b8 CCMR4_SELFTEST_ERROR b9 ATCM_SB_ERROR b10 RAMPGEN_SELFTEST_ERROR b11 RAMPGEN_PAR_SELFTST_ERROR b12 SEQ_EXT_SB_ERROR b13 SEQ_EXT_SB_ERROR b14 PROG_FILT_PARITY_ERROR b15 AGC_RAM_SB_ERROR b16 B1TCM_PAR_CHK_ERROR b17 BOTCM_PAR_CHK_ERROR b18 ATCM_PAR_CHK_ERROR b19 ECC_AGG_DED_ERROR b20 ECC_AGG_SEC_ERROR b21 RESERVED b22 RESERVED b23 RESERVED b24 RESERVED b25 PROG_FILT_SERR b26 PROG_FILT_SERR b27 FRC_ERROR b28 FRC_ERROR </td <td>4</td> <td>ы</td> <td></td>	4	ы	
b1 PROG_FILT_SELFTEST_ERROR b2 GPADC_RAM_SB_ERROR b3 VIM_RAM_SB_ERROR b4 DFE_PARITY_AND_OUT_ERROR (RESERVED in xWR254x devices) b5 VIM_SELFTEST_ERROR b6 BOTCM_SB_ERROR b7 B1TCM_SB_ERROR b8 CCMR4_SELFTEST_ERROR b9 ATCM_SB_ERROR b10 RAMPGEN_SELFTEST_ERROR b11 RAMPGEN_PAR_SELFTST_ERROR b12 SEQ_EXT_SB_ERROR b13 SEQ_EXT_SB_ERROR b14 PROG_FILT_PARITY_ERROR b15 AGC_RAM_SB_ERROR b16 B1TCM_PAR_CHK_ERROR b17 BOTCM_PAR_CHK_ERROR b18 ATCM_PAR_CHK_ERROR b19 ECC_AGG_DED_ERROR b20 ECC_AGG_SEC_ERROR b21 RESERVED b22 RESERVED b23 RESERVED b24 RESERVED b25 PROG_FILT_VERR b26 PROG_FILT_SERR b27 FRC_ERROR b28 FRC_ERROR b29 RESERVED		b0	
b2 GPADC_RAM_SB_ERROR b3 VIM_RAM_SB_ERROR b4 DFE_PARITY_AND_OUT_ERROR (RESERVED in xWR254x devices) b5 VIM_SELFTEST_ERROR b6 B0TCM_SB_ERROR b7 B1TCM_SB_ERROR b8 CCMR4_SELFTEST_ERROR b9 ATCM_SB_ERROR b10 RAMPGEN_SELFTEST_ERROR b11 RAMPGEN_SELFTEST_ERROR b12 SEQ_EXT_SELFTEST_ERROR b13 SEQ_EXT_SELFTEST_ERROR b14 PROG_FILT_PARITY_ERROR b15 AGC_RAM_SB_ERROR b16 B1TCM_PAR_CHK_ERROR b17 B0TCM_PAR_CHK_ERROR b18 ATCM_PAR_CHK_ERROR b19 ECC_AGG_DED_ERROR b20 ECC_AGG_SEC_ERROR b21 RESERVED b22 RESERVED b23 RESERVED b24 RESERVED b25 PROG_FILT_VERR b26 PROG_FILT_SERR b27 FRC_ERROR b28 FRC_ERROR b29 RESERVED b30 BUS_SAFETY_PCR_ERROR (R			
b3 VIM_RAM_SB_ERROR b4 DFE_PARITY_AND_OUT_ERROR (RESERVED in xWR254x devices) b5 VIM_SELFTEST_ERROR b6 B0TCM_SB_ERROR b7 B1TCM_SB_ERROR b8 CCMR4_SELFTEST_ERROR b9 ATCM_SB_ERROR b10 RAMPGEN_SELFTEST_ERROR b10 RAMPGEN_PAR_SELFTST_ERROR b11 RAMPGEN_PAR_SELFTST_ERROR b12 SEQ_EXT_SB_ERROR b13 SEQ_EXT_SB_ERROR b14 PROG_FILT_PARITY_ERROR b15 AGC_RAM_SB_ERROR b16 B1TCM_PAR_CHK_ERROR b17 B0TCM_PAR_CHK_ERROR b18 ATCM_PAR_CHK_ERROR b19 ECC_AGG_DED_ERROR b20 ECC_AGG_SEC_ERROR b21 RESERVED b22 RESERVED b23 RESERVED b24 RESERVED b25 PROG_FILT_UERR b26 PROG_FILT_SERR b27 FRC_SELFTEST_ERROR b28 FRC_ERROR b29 RESERVED b28 FRC_ERROR		-	
b4 DFE_PARITY_AND_OUT_ERROR (RESERVED in xWR254x devices) b5 VIM_SELFTEST_ERROR b6 B0TCM_SB_ERROR b7 B1TCM_SB_ERROR b8 CCMR4_SELFTEST_ERROR b9 ATCM_SB_ERROR b10 RAMPGEN_SELFTEST_ERROR b11 RAMPGEN_SELFTEST_ERROR b12 SEQ_EXT_SB_ERROR b13 SEQ_EXT_SB_ERROR b14 PROG_FILT_PARITY_ERROR b15 AGC_RAM_SB_ERROR b16 B1TCM_PAR_CHK_ERROR b17 B0TCM_PAR_CHK_ERROR b18 ATCM_PAR_CHK_ERROR b19 ECC_AGG_DED_ERROR b20 ECC_AGG_SEC_ERROR b21 RESERVED b22 RESERVED b23 RESERVED b24 RESERVED b25 PROG_FILT_UERR b26 PROG_FILT_SERR b27 FRC_SELFTEST_ERROR b28 FRC_ERROR b29 RESERVED b28 FRC_ERROR b29 RESERVED b20 BUS_SAFETY_PCR_ERROR (RESERVED in		-	
b5VIM_SELFTEST_ERRORb6B0TCM_SB_ERRORb7B1TCM_SB_ERRORb8CCMR4_SELFTEST_ERRORb9ATCM_SB_ERRORb10RAMPGEN_SELFTEST_ERRORb11RAMPGEN_PAR_SELFTST_ERRORb12SEQ_EXT_SELFTEST_ERRORb13SEQ_EXT_SB_ERRORb14PROG_FILT_PARITY_ERRORb15AGC_RAM_SB_ERRORb16B1TCM_PAR_CHK_ERRORb17B0TCM_PAR_CHK_ERRORb18ATCM_PAR_CHK_ERRORb20ECC_AGG_DED_ERRORb21RESERVEDb22RESERVEDb23RESERVEDb24RESERVEDb25PROG_FILT_UERRb26PROG_FILT_SERRb27FRC_SELFTEST_ERRORb28FRC_ERRORb29RESERVEDb30BUS_SAFETY_PCR_ERROR (RESERVED in			DFE_PARITY_AND_OUT_ERROR (RESERVED
b6 B0TCM_SB_ERROR b7 B1TCM_SB_ERROR b8 CCMR4_SELFTEST_ERROR b9 ATCM_SB_ERROR b10 RAMPGEN_SELFTEST_ERROR b11 RAMPGEN_PAR_SELFTST_ERROR b12 SEQ_EXT_SB_ERROR b13 SEQ_EXT_SB_ERROR b14 PROG_FILT_PARITY_ERROR b15 AGC_RAM_SB_ERROR b16 B1TCM_PAR_CHK_ERROR b17 B0TCM_PAR_CHK_ERROR b18 ATCM_PAR_CHK_ERROR b19 ECC_AGG_DED_ERROR b20 ECC_AGG_SEC_ERROR b21 RESERVED b22 RESERVED b23 RESERVED b24 RESERVED b25 PROG_FILT_SERR b26 PROG_FILT_SERR b27 FRC_SELFTEST_ERROR b28 FRC_ERROR b29 RESERVED b28 FRC_ERROR b29 RESERVED b30 BUS_SAFETY_PCR_ERROR (RESERVED in		b5	,
b7B1TCM_SB_ERRORb8CCMR4_SELFTEST_ERRORb9ATCM_SB_ERRORb10RAMPGEN_SELFTEST_ERRORb11RAMPGEN_PAR_SELFTST_ERRORb12SEQ_EXT_SELFTEST_ERRORb13SEQ_EXT_SB_ERRORb14PROG_FILT_PARITY_ERRORb15AGC_RAM_SB_ERRORb16B1TCM_PAR_CHK_ERRORb17B0TCM_PAR_CHK_ERRORb18ATCM_PAR_CHK_ERRORb19ECC_AGG_DED_ERRORb20ECC_AGG_SEC_ERRORb21RESERVEDb22RESERVEDb23RESERVEDb24RESERVEDb25PROG_FILT_UERRb26PROG_FILT_SERRb27FRC_SELFTEST_ERRORb28FRC_ERRORb29RESERVEDb30BUS_SAFETY_PCR_ERROR (RESERVED in		b6	
b9ATCM_SB_ERRORb10RAMPGEN_SELFTEST_ERRORb11RAMPGEN_PAR_SELFTST_ERRORb12SEQ_EXT_SELFTEST_ERRORb13SEQ_EXT_SB_ERRORb14PROG_FILT_PARITY_ERRORb15AGC_RAM_SB_ERRORb16B1TCM_PAR_CHK_ERRORb17B0TCM_PAR_CHK_ERRORb18ATCM_PAR_CHK_ERRORb19ECC_AGG_DED_ERRORb20ECC_AGG_SEC_ERRORb21RESERVEDb22RESERVEDb23RESERVEDb24RESERVEDb25PROG_FILT_UERRb26PROG_FILT_SERRb27FRC_SELFTEST_ERRORb28FRC_ERRORb29RESERVEDb30BUS_SAFETY_PCR_ERROR (RESERVED in		b7	
b10 RAMPGEN_SELFTEST_ERROR b11 RAMPGEN_PAR_SELFTST_ERROR b12 SEQ_EXT_SELFTEST_ERROR b13 SEQ_EXT_SB_ERROR b14 PROG_FILT_PARITY_ERROR b15 AGC_RAM_SB_ERROR b16 B1TCM_PAR_CHK_ERROR b17 B0TCM_PAR_CHK_ERROR b18 ATCM_PAR_CHK_ERROR b19 ECC_AGG_DED_ERROR b20 ECC_AGG_SEC_ERROR b21 RESERVED b22 RESERVED b23 RESERVED b24 RESERVED b25 PROG_FILT_UERR b26 PROG_FILT_SERR b27 FRC_SELFTEST_ERROR b28 FRC_ERROR b29 RESERVED b28 FRC_ERROR b29 RESERVED b30 BUS_SAFETY_PCR_ERROR (RESERVED in		b8	CCMR4_SELFTEST_ERROR
b11RAMPGEN_PAR_SELFTST_ERRORb12SEQ_EXT_SELFTEST_ERRORb13SEQ_EXT_SB_ERRORb14PROG_FILT_PARITY_ERRORb15AGC_RAM_SB_ERRORb16B1TCM_PAR_CHK_ERRORb17B0TCM_PAR_CHK_ERRORb18ATCM_PAR_CHK_ERRORb19ECC_AGG_DED_ERRORb20ECC_AGG_SEC_ERRORb21RESERVEDb23RESERVEDb24RESERVEDb25PROG_FILT_UERRb26PROG_FILT_SERRb27FRC_SELFTEST_ERRORb28FRC_ERRORb29RESERVEDb30BUS_SAFETY_PCR_ERROR (RESERVED in		b9	ATCM_SB_ERROR
b12SEQ_EXT_SELFTEST_ERRORb13SEQ_EXT_SB_ERRORb14PROG_FILT_PARITY_ERRORb15AGC_RAM_SB_ERRORb16B1TCM_PAR_CHK_ERRORb17B0TCM_PAR_CHK_ERRORb18ATCM_PAR_CHK_ERRORb19ECC_AGG_DED_ERRORb20ECC_AGG_SEC_ERRORb21RESERVEDb22RESERVEDb23RESERVEDb24RESERVEDb25PROG_FILT_UERRb26PROG_FILT_SERRb27FRC_SELFTEST_ERRORb28FRC_ERRORb29RESERVEDb30BUS_SAFETY_PCR_ERROR (RESERVED in		b10	RAMPGEN_SELFTEST_ERROR
b13 SEQ_EXT_SB_ERROR b14 PROG_FILT_PARITY_ERROR b15 AGC_RAM_SB_ERROR b16 B1TCM_PAR_CHK_ERROR b17 B0TCM_PAR_CHK_ERROR b18 ATCM_PAR_CHK_ERROR b19 ECC_AGG_DED_ERROR b20 ECC_AGG_SEC_ERROR b21 RESERVED b22 RESERVED b23 RESERVED b24 RESERVED b25 PROG_FILT_UERR b26 PROG_FILT_SERR b27 FRC_SELFTEST_ERROR b28 FRC_ERROR b29 RESERVED b30 BUS_SAFETY_PCR_ERROR (RESERVED in		b11	RAMPGEN_PAR_SELFTST_ERROR
b14 PROG_FILT_PARITY_ERROR b15 AGC_RAM_SB_ERROR b16 B1TCM_PAR_CHK_ERROR b17 B0TCM_PAR_CHK_ERROR b17 B0TCM_PAR_CHK_ERROR b18 ATCM_PAR_CHK_ERROR b19 ECC_AGG_DED_ERROR b20 ECC_AGG_SEC_ERROR b20 ECC_AGG_SEC_ERROR b21 RESERVED b22 RESERVED b23 RESERVED b23 RESERVED b24 RESERVED b25 PROG_FILT_UERR b26 PROG_FILT_SERR b26 PROG_FILT_SERR b27 FRC_SELFTEST_ERROR b28 FRC_ERROR b29 RESERVED b30 BUS_SAFETY_PCR_ERROR (RESERVED in		b12	SEQ_EXT_SELFTEST_ERROR
b15 AGC_RAM_SB_ERROR b16 B1TCM_PAR_CHK_ERROR b17 B0TCM_PAR_CHK_ERROR b18 ATCM_PAR_CHK_ERROR b19 ECC_AGG_DED_ERROR b20 ECC_AGG_SEC_ERROR b21 RESERVED b22 RESERVED b22 RESERVED b23 RESERVED b24 RESERVED b25 PROG_FILT_UERR b26 PROG_FILT_SERR b27 FRC_SELFTEST_ERROR b28 FRC_ERROR b29 RESERVED b30 BUS_SAFETY_PCR_ERROR (RESERVED in		b13	SEQ_EXT_SB_ERROR
b16 B1TCM_PAR_CHK_ERROR b17 B0TCM_PAR_CHK_ERROR b18 ATCM_PAR_CHK_ERROR b19 ECC_AGG_DED_ERROR b20 ECC_AGG_SEC_ERROR b21 RESERVED b22 RESERVED b23 RESERVED b24 RESERVED b25 PROG_FILT_UERR b26 PROG_FILT_SERR b27 FRC_SELFTEST_ERROR b28 FRC_ERROR b29 RESERVED b30 BUS_SAFETY_PCR_ERROR (RESERVED in		b14	PROG_FILT_PARITY_ERROR
b17 B0TCM_PAR_CHK_ERROR b18 ATCM_PAR_CHK_ERROR b19 ECC_AGG_DED_ERROR b20 ECC_AGG_SEC_ERROR b21 RESERVED b22 RESERVED b23 RESERVED b24 RESERVED b25 PROG_FILT_UERR b26 PROG_FILT_SERR b27 FRC_SELFTEST_ERROR b28 FRC_ERROR b29 RESERVED b30 BUS_SAFETY_PCR_ERROR (RESERVED in		b15	AGC_RAM_SB_ERROR
b18 ATCM_PAR_CHK_ERROR b19 ECC_AGG_DED_ERROR b20 ECC_AGG_SEC_ERROR b21 RESERVED b22 RESERVED b22 RESERVED b23 RESERVED b24 RESERVED b25 PROG_FILT_UERR b26 PROG_FILT_SERR b27 FRC_SELFTEST_ERROR b28 FRC_ERROR b29 RESERVED b30 BUS_SAFETY_PCR_ERROR (RESERVED in		b16	B1TCM_PAR_CHK_ERROR
b19 ECC_AGG_DED_ERROR b20 ECC_AGG_SEC_ERROR b21 RESERVED b22 RESERVED b22 RESERVED b23 RESERVED b24 RESERVED b25 PROG_FILT_UERR b26 PROG_FILT_SERR b27 FRC_SELFTEST_ERROR b28 FRC_ERROR b29 RESERVED b30 BUS_SAFETY_PCR_ERROR (RESERVED in		b17	B0TCM_PAR_CHK_ERROR
b20ECC_AGG_SEC_ERRORb21RESERVEDb22RESERVEDb23RESERVEDb24RESERVEDb25PROG_FILT_UERRb26PROG_FILT_SERRb27FRC_SELFTEST_ERRORb28FRC_ERRORb29RESERVEDb30BUS_SAFETY_PCR_ERROR (RESERVED in		b18	ATCM_PAR_CHK_ERROR
b21 RESERVED b22 RESERVED b23 RESERVED b24 RESERVED b25 PROG_FILT_UERR b26 PROG_FILT_SERR b27 FRC_SELFTEST_ERROR b28 FRC_ERROR b29 RESERVED b30 BUS_SAFETY_PCR_ERROR (RESERVED in		b19	ECC_AGG_DED_ERROR
b22RESERVEDb23RESERVEDb24RESERVEDb25PROG_FILT_UERRb26PROG_FILT_SERRb27FRC_SELFTEST_ERRORb28FRC_ERRORb29RESERVEDb30BUS_SAFETY_PCR_ERROR (RESERVED in		b20	ECC_AGG_SEC_ERROR
b23 RESERVED b24 RESERVED b25 PROG_FILT_UERR b26 PROG_FILT_SERR b26 PROG_FILT_SERR b27 FRC_SELFTEST_ERROR b28 FRC_ERROR b28 RESERVED b30 BUS_SAFETY_PCR_ERROR (RESERVED in		b21	RESERVED
b24 RESERVED b25 PROG_FILT_UERR b26 PROG_FILT_SERR b27 FRC_SELFTEST_ERROR b28 FRC_ERROR b29 RESERVED b30 BUS_SAFETY_PCR_ERROR (RESERVED in		b22	RESERVED
b25 PROG_FILT_UERR b26 PROG_FILT_SERR b27 FRC_SELFTEST_ERROR b28 FRC_ERROR b29 RESERVED b30 BUS_SAFETY_PCR_ERROR (RESERVED in		b23	RESERVED
b26 PROG_FILT_SERR b27 FRC_SELFTEST_ERROR b28 FRC_ERROR b29 RESERVED b30 BUS_SAFETY_PCR_ERROR (RESERVED in		b24	RESERVED
b27 FRC_SELFTEST_ERROR b28 FRC_ERROR b29 RESERVED b30 BUS_SAFETY_PCR_ERROR (RESERVED in		b25	PROG_FILT_UERR
b28 FRC_ERROR b29 RESERVED b30 BUS_SAFETY_PCR_ERROR (RESERVED in		b26	PROG_FILT_SERR
b29 RESERVED b30 BUS_SAFETY_PCR_ERROR (RESERVED in		b27	FRC_SELFTEST_ERROR
b30 BUS_SAFETY_PCR_ERROR (RESERVED in		b28	FRC_ERROR
		b29	RESERVED
		b30	
b31 BUS_SAFETY_BSS_SLV_ERROR (RESERVED in xWR254x)		b31	BUS_SAFETY_BSS_SLV_ERROR (RESERVED in xWR254x)

Table 5.100 – continued from previous page

ESM_GROUP1_ ERRORS_MSB	4	Bit	Error Information 0 – No Error , 1 – ESM Error
		b0	BUS_SAFETY_BSS_MST_ERROR (RE- SERVED in xWR254x)
		b1	BUS_SAFETY_STATIC_MEM_ERROR (RE- SERVED in xWR254x)
		b2	$BUS_SAFETY_MBOX_ERROR$ (RESERVED in xWR254x)
		b3	BUS_SAFETY_SEC_AGGREGATED_ERROR (RESERVED in xWR254x)
		b31-b4	RESERVED
RESERVED	4	0x0000000	

Table 5.100 – continued from previous page

mmWave Radar Interface Control Document Revision 3.35 - Jan 16, 2024

			linued from previous page
ESM_GROUP2_	4	Bit	Error Information
ERRORS		b0	DFE_STC_ERROR
		b1	CR4_STC_ERROR
		b2	CCMR4_COMP_ERROR
		b3	B0TCM_DB_ERROR
		b4	B1TCM_DB_ERROR
		b5	ATCM_DB_ERROR
		b6	DCC_ERROR
		b7	SEQ_EXT_ERROR
		b8	SYNT_FREQ_MON_ERROR
		b9	DFE_PARITY_OR_OUT_ERROR
		b10	RAMPGEN_DB_ERROR
		b11	BUBBLE_CORRECTION_FAIL
		b12	RAMPGEN_LOCSTEP_ERROR
		b13	RTI_RESET_ERROR
		b14	GPADC_RAM_DB_ERROR
		b15	VIM_COMP_ERROR
		b16	CR4_LIVE_LOCK_ERROR
		b17	WDT_NMI_ERROR
		b18	VIM_RAM_DB_ERROR
		b19	RAMPGEN_PAR_ERROR
		b20	SEQ_EXT_DB_ERROR
		b21	DMA_MPU_ERROR
		b22	AGC_RAM_DB_ERROR
		b23	CRC_COMP_ERROR
		b24	WAKEUP_STS_ERROR
		b25	SHORT_CIRCUIT_ERROR
		b26	B1TCM_PAR_ERROR
		b27	B0TCM_PAR_ERROR
		b28	ATCM_PAR_ERROR
		b29	RESERVED
		b30	RESERVED
		b31	CCC_ERROR
RESERVED	4	0x0000000	
RESERVED	4	0x0000	0000
h			

Table 5.100 – continued from previous page

5.13.9 Sub block 0x1008 – RESERVED

5.13.10 Sub block 0x1009 - RESERVED

5.13.11 Sub block 0x100A – AWR_AE_RF_MONITOR_TYPE_TRIGGER_DONE_SB

This sub block indicates that, the triggered monitor types are done with execution and Host can use this signal to trigger next type of monitor.

Table 5.101 describes the content of this sub block.

Table 5.101: AWR_AE_RF_MONITOR_TYPE_TRIGGER_DONE_SB response contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x100A	
SBLKLEN	2	Value = 16	
MON_TRIG_ TYPE_DONE	1	The bit mask to indicate execution status of monitortriggered type.BitDefinitionb0Done Status of Type 0 monitor triggerb1Done Status of Type 1 monitor triggerb2Done Status of Type 2 monitor triggerb31:3RESERVED	
RESERVED	3	0x0	
TIME_STMP	4	The device time stamp at which this AE is sent out 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)	
RESERVED	4	0x0	

NOTE1:	The Done status for each type is cleared only once in end of FTTI interval, example the AE report for type 2 will contains done status bit set for all types.
NOTE2:	If Trigger is done with all 3 bits set (Triggering all 3 types in one go), then still this AE will be sent 3 times for 3 types irrespective of number of trigger.

5.13.12 Sub block 0x100B - AWR_AE_RF_FRAME_TRIGGER_RDY_SB

This sub block indicates that the slave device is now ready to receive the external sync in for frame triggers, this does not indicate physical trigger of frames in Hw triggered mode. In SW triggered mode, this async event indicates that frame is triggered by Sw.

Table 5.102 describes the content of this sub block.

Table 5.102: AWR_AE_RF_FRAME_TRIGGER_RDY_SB response contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x100B
SBLKLEN	2	Value = 4

5.13.13 Sub block 0x100C - AWR_AE_RF_GPADC_RESULT_DATA_SB

This sub block indicates that GPADC measurement is complete and it also contains the measured data of each of the enabled channels. The data for channels which are not enabled can be ignored.

Table 5.103 describes the content of this sub block.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x100C
SBLKLEN	2	Value = 76
ANATEST1_MIN_ DATA	2	Minimum GPADC reading across the captured samples for ANATEST1 input 1 LSB = 1.8V/1024
ANATEST1_ MAX_DATA	2	Maximum GPADC reading across the captured samples for ANATEST1 input 1 LSB = 1.8V/1024
ANATEST1_ AVG_DATA	2	Average GPADC reading across the captured samples for ANATEST1 input 1 LSB = 1.8V/1024
ANATEST2_MIN_ DATA	2	Minimum GPADC reading across the captured samples for ANATEST2 input 1 LSB = 1.8V/1024
ANATEST2_ MAX_DATA	2	Maximum GPADC reading across the captured samples for ANATEST2 input 1 LSB = 1.8V/1024
ANATEST2_ AVG_DATA	2	Average GPADC reading across the captured samples for ANATEST2 input 1 LSB = 1.8V/1024
ANATEST3_MIN_ DATA	2	Minimum GPADC reading across the captured samples for ANATEST3 input 1 LSB = 1.8V/1024

ANATEST3_ MAX_DATA2Maximum GPADC reading across the captured samples for ANATEST3 input 1 LSB = 1.8V/1024ANATEST3_ AVG_DATA2Average GPADC reading across the captured samples for ANATEST4 input 1 LSB = 1.8V/1024ANATEST4_MIN_ DATA2Maximum GPADC reading across the captured samples for ANATEST4 input 1 LSB = 1.8V/1024ANATEST4_ MAX_DATA2Maximum GPADC reading across the captured samples for ANATEST4 input 1 LSB = 1.8V/1024ANATEST4_ AVG_DATA2Average GPADC reading across the captured samples for ANATEST4 input 1 LSB = 1.8V/1024ANATUX_MIN_ AVG_DATA2Minimum GPADC reading across the captured samples for ANATEST4 input 1 LSB = 1.8V/1024ANAMUX_MIN_ AVG_DATA2Minimum GPADC reading across the captured samples for ANATEST4 input 1 LSB = 1.8V/1024ANAMUX_MIN_ DATA2Maximum GPADC reading across the captured samples for ANAMUX input 1 LSB = 1.8V/1024ANAMUX_MAX_ DATA2Minimum GPADC reading across the captured samples for ANAMUX input 1 LSB = 1.8V/1024VSENSE_MIN_ DATA2Minimum GPADC reading across the captured samples for VSENSE input 1 LSB = 1.8V/1024VSENSE_MAX_ DATA2Maximum GPADC reading across the captured samples for VSENSE input 1 LSB = 1.8V/1024VSENSE_MAX_ DATA2Maximum GPADC reading across the captured samples for VSENSE input 1 LSB = 1.8V/1024VSENSE_MAX_ DATA20Moximum GPADC reading across the captured samples for VSENSE input 1 LSB = 1.8V/1024RESERVED2000 <th colspan="3">Table 5.103 – continued from previous page</th>	Table 5.103 – continued from previous page		
AVG_DATAANATEST3 input 1 LSB = 1.8V/1024ANATEST4_MIN_ DATA2Minimum GPADC reading across the captured samples for ANATEST4 input 1 LSB = 1.8V/1024ANATEST4_ MAX_DATA2Maximum GPADC reading across the captured samples for ANATEST4 input 1 LSB = 1.8V/1024ANATEST4_ AVG_DATA2Average GPADC reading across the captured samples for ANATEST4 input 1 LSB = 1.8V/1024ANATEST4_ AVG_DATA2Average GPADC reading across the captured samples for ANATEST4 input 1 LSB = 1.8V/1024ANAMUX_MIN_ DATA2Minimum GPADC reading across the captured samples for ANAMUX input 1 LSB = 1.8V/1024ANAMUX_MAX_ DATA2Maximum GPADC reading across the captured samples for ANAMUX input 1 LSB = 1.8V/1024ANAMUX_MAX_ DATA2Average GPADC reading across the captured samples for ANAMUX input 1 LSB = 1.8V/1024ANAMUX_AVG_ DATA2Average GPADC reading across the captured samples for VSENSE_MIN_ DATAVSENSE_MIN_ DATA2Minimum GPADC reading across the captured samples for VSENSE input 1 LSB = 1.8V/1024VSENSE_MAX_ DATA2Maximum GPADC reading across the captured samples for VSENSE input 1 LSB = 1.8V/1024VSENSE_AVG_ DATA2Average GPADC reading across the captured samples for VSENSE input 1 LSB = 1.8V/1024VSENSE_AVG_ DATA2Average GPADC reading across the captured samples for VSENSE input 1 LSB = 1.8V/1024RESERVED ATA20x0000RESERVED ATA20x0000RESERVED ATA20x0000	_	2	ANATEST3 input
DATAANATEST4 input 1 LSB = 1.8V/1024ANATEST4_ MAX_DATA2Maximum GPADC reading across the captured samples for ANATEST4 input 1 LSB = 1.8V/1024ANATEST4_ AVG_DATA2Average GPADC reading across the captured samples for ANATEST4 input 1 LSB = 1.8V/1024ANAMUX_MIN_ DATA2Minimum GPADC reading across the captured samples for ANAMUX input 1 LSB = 1.8V/1024ANAMUX_MAX_ DATA2Maximum GPADC reading across the captured samples for ANAMUX input 1 LSB = 1.8V/1024ANAMUX_MAX_ DATA2Maximum GPADC reading across the captured samples for ANAMUX input 1 LSB = 1.8V/1024ANAMUX_AVG_ DATA2Average GPADC reading across the captured samples for ANAMUX input 1 LSB = 1.8V/1024VSENSE_MIN_ DATA2Minimum GPADC reading across the captured samples for VSENSE input 1 LSB = 1.8V/1024VSENSE_MIN_ DATA2Maximum GPADC reading across the captured samples for VSENSE input 1 LSB = 1.8V/1024VSENSE_MAX_ DATA2Maximum GPADC reading across the captured samples for VSENSE input 1 LSB = 1.8V/1024VSENSE_AVG_ DATA2Ox0000RESERVED20x0000RESERVED20x0000RESERVED20x0000RESERVED40x0000000RESERVED40x0000000	_	2	ANATEST3 input
MAX_DATAANATEST4 input 1 LSB = 1.8V/1024ANATEST4_ AVG_DATA2Average GPADC reading across the captured samples for ANATEST4 input 1 LSB = 1.8V/1024ANAMUX_MIN_ DATA2Minimum GPADC reading across the captured samples for ANAMUX input 1 LSB = 1.8V/1024ANAMUX_MAX_ DATA2Maximum GPADC reading across the captured samples for ANAMUX input 1 LSB = 1.8V/1024ANAMUX_MAX_ DATA2Maximum GPADC reading across the captured samples for ANAMUX input 1 LSB = 1.8V/1024ANAMUX_AVG_ DATA2Average GPADC reading across the captured samples for ANAMUX input 1 LSB = 1.8V/1024VSENSE_MIN_ DATA2Minimum GPADC reading across the captured samples for VSENSE input 1 LSB = 1.8V/1024VSENSE_MAX_ DATA2Maximum GPADC reading across the captured samples for VSENSE input 1 LSB = 1.8V/1024VSENSE_MAX_ DATA2Maximum GPADC reading across the captured samples for VSENSE input 1 LSB = 1.8V/1024VSENSE_MAX_ DATA2Average GPADC reading across the captured samples for VSENSE input 1 LSB = 1.8V/1024VSENSE_AVG_ DATA2Average GPADC reading across the captured samples for VSENSE input 1 LSB = 1.8V/1024RESERVED20x0000RESERVED20x0000RESERVED20x0000RESERVED20x0000RESERVED40x0000000RESERVED40x0000000RESERVED40x0000000		2	ANATEST4 input
AVG_DATAANATEST4 input 1 LSB = 1.8V/1024ANAMUX_MIN_ DATA2Minimum GPADC reading across the captured samples for ANAMUX input 1 LSB = 1.8V/1024ANAMUX_MAX_ DATA2Maximum GPADC reading across the captured samples for ANAMUX input 1 LSB = 1.8V/1024ANAMUX_AVG_ DATA2Average GPADC reading across the captured samples for ANAMUX input 1 LSB = 1.8V/1024VSENSE_MIN_ DATA2Average GPADC reading across the captured samples for VSENSE input 1 LSB = 1.8V/1024VSENSE_MAX_ DATA2Minimum GPADC reading across the captured samples for VSENSE input 1 LSB = 1.8V/1024VSENSE_MAX_ DATA2Maximum GPADC reading across the captured samples for VSENSE input 1 LSB = 1.8V/1024VSENSE_MAX_ DATA2Average GPADC reading across the captured samples for VSENSE input 1 LSB = 1.8V/1024VSENSE_AVG_ DATA20x0000RESERVED20x0000RESERVED20x0000RESERVED40x0000000RESERVED40x0000000RESERVED40x0000000	—	2	ANATEST4 input
DATAANAMUX input 1 LSB = 1.8V/1024ANAMUX_MAX_ DATA2Maximum GPADC reading across the captured samples for ANAMUX input 1 LSB = 1.8V/1024ANAMUX_AVG_ DATA2Average GPADC reading across the captured samples for ANAMUX input 1 LSB = 1.8V/1024VSENSE_MIN_ DATA2Minimum GPADC reading across the captured samples for VSENSE input 1 LSB = 1.8V/1024VSENSE_MAX_ DATA2Minimum GPADC reading across the captured samples for VSENSE input 1 LSB = 1.8V/1024VSENSE_MAX_ DATA2Maximum GPADC reading across the captured samples for VSENSE input 1 LSB = 1.8V/1024VSENSE_AVG_ DATA2Average GPADC reading across the captured samples for VSENSE input 1 LSB = 1.8V/1024VSENSE_AVG_ DATA2Ox0000RESERVED20x0000RESERVED20x0000RESERVED20x0000RESERVED40x0000000RESERVED40x0000000RESERVED40x0000000	_	2	ANATEST4 input
DATAANAMUX input 1 LSB = 1.8V/1024ANAMUX_AVG DATA2Average GPADC reading across the captured samples for ANAMUX input 1 LSB = 1.8V/1024VSENSE_MIN_ DATA2Minimum GPADC reading across the captured samples for VSENSE input 1 LSB = 1.8V/1024VSENSE_MAX_ DATA2Maximum GPADC reading across the captured samples for VSENSE input 1 LSB = 1.8V/1024VSENSE_MAX_ DATA2Average GPADC reading across the captured samples for VSENSE input 1 LSB = 1.8V/1024VSENSE_AVG_ DATA2Average GPADC reading across the captured samples for VSENSE input 1 LSB = 1.8V/1024RESERVED20x0000RESERVED20x0000RESERVED20x0000RESERVED20x0000RESERVED40x0000000RESERVED40x0000000RESERVED40x0000000		2	ANAMUX input
DATAANAMUX input 1 LSB = 1.8V/1024VSENSE_MIN_ DATA2Minimum GPADC reading across the captured samples for VSENSE input 1 LSB = 1.8V/1024VSENSE_MAX_ DATA2Maximum GPADC reading across the captured samples for VSENSE input 1 LSB = 1.8V/1024VSENSE_AVG_ DATA2Average GPADC reading across the captured samples for VSENSE input 1 LSB = 1.8V/1024VSENSE_AVG_ DATA2Average GPADC reading across the captured samples for VSENSE input 1 LSB = 1.8V/1024RESERVED20x0000RESERVED20x0000RESERVED20x0000RESERVED20x0000RESERVED40x0000000RESERVED40x0000000		2	ANAMUX input
DATAVSENSE input 1 LSB = 1.8V/1024VSENSE_MAX_ DATA2Maximum GPADC reading across the captured samples for VSENSE input 1 LSB = 1.8V/1024VSENSE_AVG_ DATA2Average GPADC reading across the captured samples for VSENSE input 1 LSB = 1.8V/1024RESERVED20x0000RESERVED20x0000RESERVED20x0000RESERVED20x0000RESERVED40x0000000RESERVED40x0000000RESERVED40x0000000		2	ANAMUX input
DATAVSENSE input 1 LSB = 1.8V/1024VSENSE_AVG_ DATA2Average GPADC reading across the captured samples for VSENSE input 1 LSB = 1.8V/1024RESERVED20x0000RESERVED20x0000RESERVED20x0000RESERVED20x0000RESERVED20x0000RESERVED40x0000000RESERVED40x0000000RESERVED40x0000000		2	VSENSE input
DATA VSENSE input 1 LSB = 1.8V/1024 RESERVED 2 0x0000 RESERVED 4 0x0000000 RESERVED 4 0x0000000 RESERVED 4 0x0000000		2	VSENSE input
RESERVED 2 0x0000 RESERVED 2 0x0000 RESERVED 2 0x0000 RESERVED 4 0x0000000 RESERVED 4 0x0000000 RESERVED 4 0x0000000 RESERVED 4 0x00000000		2	VSENSE input
RESERVED 2 0x0000 RESERVED 2 0x0000 RESERVED 4 0x0000000 RESERVED 4 0x0000000 RESERVED 4 0x0000000 RESERVED 4 0x0000000	RESERVED	2	0x0000
RESERVED 2 0x0000 RESERVED 4 0x0000000 RESERVED 4 0x0000000 RESERVED 4 0x0000000 RESERVED 4 0x0000000	RESERVED	2	0x0000
RESERVED 4 0x0000000 RESERVED 4 0x0000000 RESERVED 4 0x0000000	RESERVED	2	0x0000
RESERVED 4 0x0000000 RESERVED 4 0x00000000	RESERVED	2	0x0000
RESERVED 4 0x0000000	RESERVED	4	0x0000000
	RESERVED	4	0x0000000
RESERVED 4 0x0000000	RESERVED	4	0x0000000
	RESERVED	4	0x0000000

Table 5.103 – continued from previous page

Table 5.103 – continued from previous page

RESERVED	4	0x0000000
RESERVED	4	0x0000000
RESERVED	4	0x0000000

5.13.14 Sub block 0x100E – RESERVED

5.13.15 Sub block 0x100D - RESERVED

5.13.16 Sub block 0x100E - RESERVED

5.13.17 Sub block 0x100F - AWR_FRAME_END_AE_SB

This sub block indicates end of the frames. Table 5.104 describes the content of this sub block.

Table 5.104: AWR_FRAME_END_AE_SB response contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x100F
SBLKLEN	2	Value = 4

5.13.18 Sub block 0x1010 - AWR_ANALOGFAULT_AE_SB

This sub block indicates fault in analog supplies or LDO short circuit condition. Once a fault is detected the functionality cannot be resumed from then on and the sensor needs to be re-started.

Table 5.105: AV	VR_ANALOGFAULT_	_AE_SB response contents
-----------------	-----------------	--------------------------

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1010
SBLKLEN	2	Value = 16
FAULT_TYPE	1	Value Definition
		0 NO FAULT
		1 ANALOG_SUPPLY_FAULT
		Others RESERVED
RESERVED	1	0x00
RESERVED	2	0x0000

FAULT_SIG	4	Bit	Definition
		b0	1.8V BB ANA supply fault detected (Not applica- ble for xWR294x/xWR254x))
		b1	13V/1.0V RF supply fault detected (Not applicable for xWR294x/xWR254x))
		b2	Synth VCO LDO short circuit detected
		b3	PA LDO short circuit detected (Not applicable for xWR294x/xWR254x)
		b31:4	RESERVED
RESERVED	4	0x00000	0000

Table 5.105 – continued from previous page

5.13.19 Sub block 0x1011 - AWR_CAL_MON_TIMING_FAIL_REPORT_AE_SB

This sub block indicates any timing failure related to calibration or monitoring. Table 5.106 describes the content of this sub block.

Table 5.106: AWR_CAL_MON_TIMING_FAIL_REPORT_AE_SB response contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1011
SBLKLEN	2	Value = 8

TIMING FAIL-	2	Bit	Defi	nition
URE_CODE		b0	RES	SERVED
		b1	0	No Failure
			1	Total monitoring and calibration time do not fit in one CALIB_MON_TIME_UNIT in AWR_RUN_TIME_CALIBRATION_ CONF_AND_TRIGGER when ONE_ TIME_CALIB is enabled
		b2	0	No Failure
			1	Total monitoring and calibration time do not fit in one CALIB_MON_TIME_UNIT in AWR_RUN_TIME_CALIBRATION_ CONF_AND_TRIGGER when PERI- ODIC_CALIB is enabled
		b3	0	No Failure
			1	Runtime timing violation: Monitoring func- tions or calibrations could not be com- pleted in one CALIB_MON_TIME_UNIT
		b15:4	RES	SERVED
RESERVED	2	0x0000		

Table 5.100 – continued from brevious bade	6 – continued from previou	s page
--	----------------------------	--------

NOTE:	In QM devices (non safety), Periodic Digital and Analog Monitoring
	are not supported.

5.13.20 Sub block 0x1012 – AWR_RUN_TIME_CALIB_SUMMARY_REPORT_AE_ SB

This sub block indicates the calibration status (one time or run time) if the calibration reports are enabled in the AWR_RUN_TIME_CALIBRATION_CONF_AND_TRIGGER_SB.

NOTE:	The calibration report is sent if the calibrations are triggered due to
	temperature change or whenever the internal calibratons are trig-
	gered i.e. every 1 s

Table 5.107: AWR_RUN_TIME_CALIB_SYMMARY_REPORT_AE_SB response contents

Field Name	Number	Descrip	tion
Tield Name	of bytes	Descrip	
SBLKID	2	Value =	0x1012
SBLKLEN	2	Value =	24
CALIBRATION_ ERROR_FLAG	4	1 - calik	d indicates the status of each calibration. pration is passed, 0 - calibration is failed or not /performed at least once. Definition
		b0	SYNTH VCO3 tuning (Available only on selected xWR6243 device variants, RESERVED for other devices)
		b1	APLL tuning
		b2	SYNTH VCO1 tuning
		b3	SYNTH VCO2 tuning
		b4	LODIST calibration
		b5	RESERVED
		b6	RESERVED
		b7	RESERVED
		b8	PD calibration
		b9	TX power calibration
		b10	RX gain calibration
		b11	TX phaseshifter calibration (only for xWR294x/xWR254x)
		b12	RESERVED
		b31:13	RESERVED

			inded nom previous page
CALIBRATION_ UPDATE_STA- TUS	4	calibratio by a valu 0 – Anal	t corresponding to a calibration indicates if each on resulted in a reconfiguration of RF is indicated ue of 1 in the respective bit in this field. log/RF is not updated log/RF is updated after a respective calibration Definition SYNTH VCO3 tuning (Available only on selected xWR6243 device variants, RESERVED for other
			devices)
		b1	APLL tuning
		b2	SYNTH VCO1 tuning
		b3	SYNTH VCO2 tuning
		b4	LODIST calibration
		b5	RESERVED
		b6	RESERVED
		b7	RESERVED
		b8	PD calibration
		b9	TX power calibration
		b10	RX gain calibration
		b11	TX phaseshifter calibration (only for xWR294x/xWR254x)
		b12	RESERVED
		b31:13	RESERVED
TEMPERATURE	2	Measured temperature, based on average of temperature sensors near all enabled TX and RX channels at the time of calibration. Note that this temperature will be updated only when a run- time calibration is executed due to a change in temperature by more than 10 deg C. 1 LSB = 1° C	
RESERVED	2	RESER	VED
TIME_STAMP	4	This field indicates time stamp at the time of performing calibration updates. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)	
RESERVED	4	0x00000	0000

Table 5.107 – continued from previous page

NOTE:	None of the Periodic Monitoring are supported in QM devices
	(IWR6843 QM, xWR1443, IWR1642 and IWR1843), The Async
	Event sub-blocks defined below from ID 0x1015 to 0x1031 are not
	valid in QM devices.

5.13.21 Sub block 0x1013 – AWR_MONITOR_RF_DIG_LATENTFAULT_REPORT_ AE_SB

This async event contains the status of digital monitoring for latent faults.

Table 5.108: AWR_MONITOR_RF_DIG_LATENTFAULT_REPORT_AE_SB response contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1013
SBLKLEN	2	Value = 8

	Table 5.106 – continued from previous page					
DIG_MON_LA-	4		S, 0 – FAIL			
TENT_FAULT_ STATUS		Bit	Definition			
0		b0	RESERVED			
		b1	CR4 and VIM lockstep test			
		b2	RESERVED			
		b3	VIM test			
		b4	RESERVED			
		b5	RESERVED			
		b6	CRC test			
		b7	RAMPGEN memory ECC test			
		b8	DFE parity test			
		b9	DFE memory ECC test			
		b10	RAMPGEN lockstep test			
		b11	FRC lockstep test			
		b12	RESERVED			
		b13	RESERVED			
		b14	RESERVED			
		b15	RESERVED			
		b16	ESM test			
		b17	DFE STC			
		b18	RESERVED			
		b19	ATCM, BTCM ECC test			
		b20	ATCM, BTCM parity test			
		b21	DCC test			
		b22	RESERVED			
		b23	RESERVED			
		b24	FFT test (RESERVED in xWR254x)			
		b25	RTI test			
		b26	RESERVED			
		b31:27	RESERVED			

Table 5.108 – continued from previous page

5.13.22 Sub block 0x1014 – RESERVED

5.13.23 Sub block 0x1015 – AWR_MONITOR_REPORT_HEADER_AE_SB

The report header includes common information across all enabled monitors like current FTTI number and current temperature.

Table 5.109: AWR_MONITORING_REPORT_HEADER_AE_SB response contents

contents				
Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x1015		
SBLKLEN	2	Value = 12		
FTTI_COUNT	4	FTTI free running counter value, incremented every CALIB_MON_TIME_UNIT		
AVG_TEMPERA- TURE	2	Average temperature at which was monitoring performed		
RESERVED	2	0x0000		

5.13.24 Sub block 0x1016 – AWR_MONITOR_RF_DIG_PERIODIC_REPORT_AE_ SB

This async event is sent periodically to indicate the status of periodic digital monitoring tests.

Table 5.110:	AWR_	_MONITOR_	$_{\rm RF}$	_DIG_	_PERIODIC_	_REPORT_	_AE_	\mathbf{SB}
				CO	ntents			

contents				
Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x1016		
SBLKLEN	2	Value = 12		
RF_DIG_MON_ PERIODIC_STA- TUS	4	1 - PASS, 0 - FAILBitMonitoring typeb0PERIODIC_CONFG_REGISTER_READb1RESERVEDb2DFE_STCb3FRAME_TIMING_MONITORINGb31:4RESERVED		
TIMESTAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)		

NOTE1: FRAME_TIMING_MONITORING cannot be used when RSS dynamic frequency switching feature is enabled.

Note1:

5.13.25 Sub block 0x1017 – AWR_MONITOR_TEMPERATURE_REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured temperature near various RF analog and digital modules. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

	contents				
Field Name	Number of bytes	Descrip	tion		
SBLKID	2	Value =	0x1017		
SBLKLEN	2	Value =	36		
STATUS_FLAGS	2		Status flags indicating pass fail results corresponding to various threshold checks under this monitor.		
		Bit	STATUS_FLAG for monitor		
		b0	STATUS_ANA_TEMP_MIN		
		b1	STATUS_ANA_TEMP_MAX		
		b2	STATUS_DIG_TEMP_MIN xWR294x/xWR254x devices)	(Reserved	for
		b3	STATUS_DIG_TEMP_MAX xWR294x/xWR254x devices)	(Reserved	for
		b4	STATUS_TEMP_DIFF_THRES	SH	
		b15:5 0 – FAIL 1 – PASS	RESERVED or check wasn't done S		
ERROR_CODE	2		s any error reported during mon 0 indicates no error	litoring	

			linued from previous page
TEMP_VALUES	20	The measured onchip temperature is reported here. Byte numbers corresponding to different temperature sensors reported in this field are here: AWR2243/xWR6243 devices:	
		Bytes	Temperature sensor
		1:0	TEMP_RX0
		3:2	TEMP_RX1
		5:4	TEMP_RX2
		7:6	TEMP_RX3
		9:8	TEMP_TX0
		11:10	TEMP_TX1
		13:12	TEMP_TX2
		15:14	TEMP_PM
		17:16	TEMP_DIG1
		19:18	TEMP_DIG2 (Applicable only in xWR1642/xWR6843/xWR1843)
		xWR29	4x/xWR254x devices:
		Bytes	Temperature sensor
		1:0	TEMP_RX0
		3:2	TEMP_RX1
		5:4	TEMP_RX2
		7:6	TEMP_RX3
		9:8	TEMP_TX0
		11:10	TEMP_TX1
		13:12	TEMP_TX2
		15:14	TEMP_PM
		17:16	TEMP_TX3
		19:18	RESERVED
		1 LSB =	^{1°} C, signed number
RESERVED	4	0x0000	
TIME_STAMP	4	set was 1 LSB =	d indicates when the last monitoring in the enabled performed. 1 millisecond (time stamp rolls over upon exceed- ted bit width)

Table 5.111 – continued from previous page

5.13.26 Sub block 0x1018 - AWR_MONITOR_RX_GAIN_PHASE_REPORT_AE_SB

This sub block is a monitoring report which the AWR device sends to the host, containing the measured RX Gain and Phase values, Loopback Power and Noise Power. Noise Power can be

used by the Host to detect the presence of interference. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x1018	
SBLKLEN	2	Value = 72	
STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.	
		Bit STATUS_FLAG for monitor	
		b0 STATUS_RX_GAIN_ABS	
		b1 STATUS_RX_GAIN_MISMATCH	
		b2 STATUS_RX_GAIN_FLATNESS	
		b3 STATUS_RX_PHASE_MISMATCH	
		b15:4 RESERVED 0 – FAIL or check wasn't done 1 – PASS	
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error	
PROFILE_INDX	1	Profile Index for which this monitoring report applies.	
LOOPBACK_ POWER	3	The measured average loop-back power across RX chan- nels at each enabled RF frequency (i.e., lowest, center and highest with 60MHz dither in the profile's RF band) at LNA input is reported here.	
		Byte numbers corresponding to different RF, in this field are here:	
		RF1 RF2 RF3	
		(Byte 0) (Byte 1) (Byte 2) b4:b0 b4:b0 b4:b0 b7-b5 : RESERVED in each bytes 1 LSB = -2 dBm Valid Range = -62dBm to 0dBm Only the entries of enabled RF Frequencies are valid.	
		NOTE: The Loopback power can optionally be used to improve the RX gain estimation accuracy. But time domain filtering across many successive monitoring reports is recommended to mitigate their corruption by external interference.	

Table 5.112: AWR_MONITOR_RX_GAIN_PHASE_REPORT_AE_SB contents

		112 - continued from previous page
RX_GAIN_ VALUE	24	The measured RX gain for each enabled channel, at each enabled RF frequency (i.e., lowest, center and highest in the profile's RF band) is reported here.
		Byte numbers corresponding to different RX and RF, in this field are here: RF1 RF2 RF3
		RX0 1:0 9:8 17:16
		RX2 5:4 13:12 21:20
		RX3 7:6 15:14 23:22 1 LSB = 0.1 dB
		Only the entries of enabled RF Frequencies and enabled RX channels are valid.
RX_PHASE_ VALUE	24	The measured RX phase for each enabled channel, at each enabled RF frequency is reported here.
		Byte numbers corresponding to different RX and RF, in this field are here:
		RF1 RF2 RF3
		RX0 1:0 9:8 17:16
		RX1 3:2 11:10 19:18
		RX2 5:4 13:12 21:20
		RX3 7:6 15:14 23:22
		1 LSB = $360^{\circ}/2^{16}$ Only the entries of enabled RF Frequencies and enabled RX channels are valid.
		NOTE: These phases include an unknown bias common to all RX channels.

Table 5.112 – continued from previous page

		12 - continued from previous page
RX_NOISE_	4	The measured RX noise for each enabled channel, at
POWER1		each enabled RF frequency is reported here.
		Bit fields corresponding to different RX in RF1 and
		RF2 (partial in this word) are defined in this field:
		RF1 RF2 RF3
		RX0 b4:b0 b24:b20 -
		RX1 b9:b5 b29:b25 -
		RX2 b14:b10
		BX3 b19:b15
		b31-b30 : RESERVED
		1 LSB = -2 dBm
		Valid Range: -62dbm to 0dBm
		Only the entries of enabled RF Frequencies and enabled
		RX channels are valid.
		NOTE: This field can enable the host in detecting if
		the corresponding gain/phase measurement was poten-
		tially corrupted by interference or not.
		For example, if the reported noise power exceeds signif-
		icantly from typical values (e.g. based on median of the
		reported values in the past few 100 mili-seconds), it can in-
		dicate that the gain/phase measurement is potentially cor-
		rupted by interference. Such gain/phase measurement re-
		ports may be discarded and the results from the next mon-
		itoring interval or from other RF frequencies may be used
		instead.

Table 5.112 – continued from previous page

	1			-			
RX_NOISE_ POWER2	4	The measured RX noise for each enabled channel, at each enabled RF frequency is reported here.					
					different defined in RF3	RX in RF2 this field:	(par-
		RX0		10 2	b14:b10		
			-	-			
		RX1	-	-	b19:b15		
		RX2	-	b4:b0	b24:b20		
		RX3 b31-b30 : 1 LSB = -2 Valid Rang	2dBm ge: -62db	om to 0dB			
		Only the e RX channe			RF Freque	ncies and en	abled
			ponding	gain/pha	se measur	ost in detecti ement was p	-
		icantly from reported v dicate that rupted by ports may	m typica alues in t the gair interferer be disca	l values (the past fe n/phase m nce. Such rded and	e.g. based ew 100 mili- easuremen gain/phase the results	ver exceeds s on median of seconds), it can t is potentially e measureme from the next noies may be	of the an in- y cor- nt re- mon-
TIME_STAMP	4	set was pe	erformed millisecc	ond (time :		ring in the ena	

Table 5.112 – continued from previous page

5.13.27 Sub block 0x1019 – AWR_MONITOR_RX_NOISE_FIGURE_REPORT_AE_ SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured RX noise figure values corresponding to the full IF band of a profile. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

$\textbf{Table 5.113: AWR_MONITOR_RX_NOISE_FIGURE_REPORT_AE_SB}$

Field Name	Number	Description			
	of bytes				
SBLKID	2	Value = 0x1019			
SBLKLEN	2	Value = 52			
STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.			
		Bit STATUS_FLAG for monitor			
		b0 STATUS_RX_NOISE_FIGURE			
		b15:1 RESERVED 0 – FAIL or check wasn't done 1 – PASS			
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error			
PROFILE_INDX	1	Profile Index for which this monitoring report applies.			
RESERVED	3	0x00000			
RX_NOISE_FIG- URE_VALUE	24	The measured RX input referred for each enabled channel, at each enabled RF frequency is reported here. Byte numbers corresponding to different RX and RF, in this field are here: RF1 RF2 RF3 RX0 1:0 9:8 17:16 RX1 3:2 11:10 19:18 RX2 5:4 13:12 21:20 RX3 7:6 15:14 23:22 1 LSB = 0.1 dB, signed number Only the entries of enabled RF Frequencies and enabled RX channels are valid.			
RESERVED	4	0x0000000			
RESERVED	4	0x0000000			
RESERVED	4	0x0000000			
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)			

NOTE:	The noise monitor reports the real baseband receivers' noise fig-
	ure with LNA disabled (to suppress external interference's influ-
	ence). In complex receiver modes (i.e., complex 1x, complex 2x
	and pseudo real), the system noise figure is 3dB lower (better) than
	the reported number.

5.13.28 Sub block 0x101A – AWR_MONITOR_RX_IFSTAGE_REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured RX IF filter attenuation values at the given IF frequencies. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x101A	
SBLKLEN	2	Value = 48	
STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.	
		Bit STATUS_FLAG for monitor	
		b0 STATUS_RX_HPF_ERROR	
		b1 STATUS_RX_LPF_ERROR	
		b2 STATUS_RX_IFA_GAIN_ERROR	
		b15:3 RESERVED	
		0 – FAIL or check wasn't done 1 – PASS	
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error	
PROFILE_INDX	1	Profile Index for which this monitoring report applies.	
RESERVED	1	0x00	

Table 5.114: AWR_MONITOR_RX_IFSTAGE_REPORT_AE_SB contents

Table 5.114 – Continued from previous page			
2	The RX IFA LPF cutoff band edge droop at analog LPFs intended band edge wrt in band for RX 0, I and Q channels are reported here.		
	Byte numbers corresponding to measured band edge droop on different RX channels, in this field are here: I channel Q channel		
	RX0011 LSB = 0.2dB, signed numberApplicable only for the enabled channels.		
	Note: In xWR294x/xWR254x devices, these values should be used for debug purposes only.		
8	The deviations of RX IFA HPF cutoff frequency from the ideally expected values for all the enabled RX channels are reported here.		
	HPF_CUTOFF_FREQ_ERROR = 100^{*} (Measured Cutoff Frequency / Expected Cutoff Frequency) – 100, for RX IF filter in the HPF region.		
	Byte numbers corresponding to measured cutoff fre- quency error on different RX channels, in this field are here:		
	I channel Q channel		
	RX0 0 4		
	RX1 1 5		
	RX2 2 6		
	RX3 3 7		
	1 LSB = 1%, signed number Applicable only for the enabled channels.		
	2		

Table 5.114 – continued from previous page

		i continuou nom provious page		
LPF_CUTOFF_ STOPBAND_ ATTEN_VALUE	8	The RX IFA LPF stop band attenuation at 2x analog LPF's band edge wrt analog LPF's band edge for all the enabled RX channels are reported here.		
		Byte numbers corresponding to measured stop band attenuation on different RX I and Q channels, in this field are here:		
		I channel Q channel		
		RX0 0 4		
		RX1 1 5		
		RX2 2 6		
		RX3 3 7		
		1 LSB = 0.2dB, signed number Applicable only for the enabled channels.		
		Note: In xWR294x/xWR254x devices, these values should be used for debug purposes only.		
RX_IFA_GAIN_ ERROR_VALUE	8	The deviations of RX IFA Gain from the ideally expected values for all the enabled RX channels are reported here.		
		Byte numbers corresponding to measured cutoff fre- quency error on different RX channels and HPF/LPF, in this field are here: I channel Q channel		
		RX0 0 4		
		RX1 1 5		
		RX2 2 6		
		RX3 3 7		
		1 LSB = 0.1 dB, signed number Applicable only for the enabled channels.		
IFA_GAIN_EXP	1	Expected IFA gain 1 LSB = 1 dB		
RESERVED	1	0x00		

Table 5.114 – continued from previous page

LPF_CUTOFF_ BANDEDGE_ DROOP_VALUE_ RX	6	The RX IFA LPF cutoff band edge droop at analog LPFs intended band edge wrt in band for RX 1 to 3, I and Q channels are reported here.		
		Byte numbers corresponding to measured stop band edg droop on different RX channels, in this field are here: I channel Q channel	e	
		RX1 0 1		
		RX2 2 3		
		RX3451 LSB = 0.2dB, signed numberApplicable only for the enabled channels.Note:In xWR294x/xWR254x devices, these valueshould be used for debug purposes only.	s	
TIME_STAMP	4	This field indicates when the last monitoring in the enable set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)		

Table 5.114 – continued from previous page

5.13.29 Sub block 0x101B – AWR_MONITOR_TX0_POWER_REPORT_AE_SB

NOTE1:	The TX[0:3] power monitoring accuracy degrades at high TX
	backoffs and is unreliable for backoffs higher than 20dB on
	AWR2243/xWR294x/xWR254x and 26dB on xWR6x43.
NOTE2:	The 0dB back-off corresponds to typically 13dBm power level in
	AWR2243/xWR294x/xWR254x/xWR6x43 device.

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured TX power values during an explicit monitoring chirp. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

	Table 5.115:	AWR	MONITOR	TX0	POWER	REPORT	AE	SB contents
--	--------------	-----	---------	-----	-------	--------	----	-------------

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x101B
SBLKLEN	2	Value = 24

Continued on next page

Copyright © 2021, Texas Instruments Incorporated

STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.		
		Bit STATUS_FLAG for monitor		
		b0 STATUS_ABS_ERR		
		b1 STATUS_FLATNESS_ERR		
		b15:2 RESERVED 0 – FAIL or check wasn't done		
		1 – PASS		
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error		
PROFILE_INDX	1	Profile Index for which this monitoring report applies		
RESERVED	3	0x00000		
TX_POWER_ VALUE	6	The measured TX power for each enabled channel, at each enabled RF frequency is reported here.		
		Byte numbers corresponding to different TX and RF, in this field are here:		
		RF1 RF2 RF3		
		TX0 1:0 3:2 5:4		
		(other bytes are reserved) 1 LSB = 0.1 dBm, signed number		
		Only the entries of enabled RF Frequencies and enabled		
		RX channels are valid.		
RESERVED	2	0x0000		
TIME_STAMP	4	 This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width) 		

Table 5.115 – continued from previous page

5.13.30 Sub block 0x101C - AWR_MONITOR_TX1_POWER_REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured TX power values during an explicit monitoring chirp. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.116: AWR_MONITOR_TX1_POWER_REPORT_AE_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x101C	
SBLKLEN	2	Value = 24	
STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.	
		Bit STATUS_FLAG for monitor	
		b0 STATUS_ABS_ERR	
		b1 STATUS_FLATNESS_ERR	
		b15:2 RESERVED 0 – FAIL or check wasn't done 1 – PASS	
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error	
PROFILE_INDX	1	Profile Index for which this monitoring report applies	
RESERVED	3	0x00000	
TX_POWER_ VALUE	6	The measured TX power for each enabled channel, at each enabled RF frequency is reported here. Byte numbers corresponding to different TX and RF, in this field are here: RF1 RF2 RF3 TX1 1:0 3:2 5:4 (other bytes are reserved) 1 LSB = 0.1 dBm, signed number Only the entries of enabled RF Frequencies and enabled RX channels are valid.	
RESERVED	2	0x0000	
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)	

5.13.31 Sub block 0x101D – AWR_MONITOR_TX2_POWER_REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured TX power values during an explicit monitoring chirp. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.117: AWR_MONITOR_TX2_POWER_REPORT_AE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x101D
SBLKLEN	2	Value = 24
STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.
		Bit STATUS_FLAG for monitor
		b0 STATUS_ABS_ERR
		b1 STATUS_FLATNESS_ERR
		b15:2 RESERVED 0 – FAIL or check wasn't done 1 – PASS
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error
PROFILE_INDX	1	Profile Index for which this monitoring report applies
RESERVED	3	0x00000
TX_POWER_ VALUE	6	The measured TX power for each enabled channel, at each enabled RF frequency is reported here. Byte numbers corresponding to different TX and RF, in this field are here: RF1 RF2 RF3 TX2 1:0 3:2 5:4 (other bytes are reserved) 1 LSB = 0.1 dBm, signed number Only the entries of enabled RF Frequencies and enabled RX channels are valid.
RESERVED	2	0x0000
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)

5.13.32 Sub block 0x101E – AWR_MONITOR_TX0_BALLBREAK_REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured TX reflection coefficient's magnitude values, meant for detecting TX ball break. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.118: AWR_MONITOR_TX0_BALLBREAK_REPORT_AE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x101E
SBLKLEN	2	Value = 20
STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.
		Bit STATUS_FLAG for monitor
		b0 STATUS_TX0_BALLBREAK
		b15:1 RESERVED
		0 – FAIL or check wasn't done 1 – PASS
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error
TX_REFL_CO- EFF_VALUE	2	The TX reflection coefficient's magnitude for this channel is reported here. 1 LSB = 0.1 dB, signed number
RESERVED	2	0x0000
RESERVED	4	0x0000000
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)

5.13.33 Sub block 0x101F – AWR_MONITOR_TX1_BALLBREAK_REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured TX reflection coefficient's magnitude values, meant for detecting TX ball break. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.119:	AWR	_MONITOR_	$_{TX1}$	BALLBREAK	REPORT_	AE_SB contents
--------------	-----	-----------	----------	-----------	---------	----------------

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x101F
SBLKLEN	2	Value = 20

STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.
		Bit STATUS_FLAG for monitor
		b0 STATUS_TX0_BALLBREAK
		b15:1 RESERVED
		0 – FAIL or check wasn't done 1 – PASS
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error
TX_REFL_CO- EFF_VALUE	2	The TX reflection coefficient's magnitude for this channel is reported here. 1 LSB = 0.1 dB, signed number
RESERVED	2	0x0000
RESERVED	4	0x0000000
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)

Table 5.119 – continued from previous page

5.14 Sub blocks related to AWR_RF_ASYNC_EVENT_MSG2

5.14.1 Sub block 0x1020 – AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured TX reflection coefficient's magnitude values, meant for detecting TX ball break. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.120:	AWR	_MONITOR_	$_{\rm TX2}$	BALLBREAK	REPORT_	AE	SB contents
--------------	-----	-----------	--------------	-----------	---------	----	-------------

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1020
SBLKLEN	2	Value = 20

STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.	
		Bit STATUS_FLAG for monitor	
		b0 STATUS_TX0_BALLBREAK	
		b15:1 RESERVED	
		0 – FAIL or check wasn't done 1 – PASS	
		I - FASS	
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error	
TX_REFL_CO- EFF_VALUE	2	The TX reflection coefficient's magnitude for this channel is reported here. 1 LSB = 0.1 dB, signed number	
RESERVED	2	0x0000	
RESERVED	4	0x0000000	
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)	

Table 5.120 – continued from previous page

5.14.2 Sub block 0x1021 – AWR_MONITOR_TX_GAIN_PHASE_MISMATCH_ REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured TX gain and phase mismatch values during an explicit monitoring chirp. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.121: AWR_MONITOR_TX_GAIN_PHASE_REPORT_AE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1021
SBLKLEN	2	Value = 60

	1	21 – continued nom previous page
STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.
		Bit STATUS_FLAG for monitor
		b0 STATUS_TX_GAIN_MISMATCH
		b1 STATUS_TX_PHASE_MISMATCH
		b15:2 RESERVED 0 – FAIL or check wasn't done 1 – PASS
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error
PROFILE_INDX	1	Profile Index for which this monitoring report applies
RF1_TX_NOISE_ POWER	3	The measured wide band noise power at RF1 frequency for each enabled TX channel is reported here. Bit fields Description
		b7:0 TX0 wide band noise power at RF1 frequency
		b15:8 TX1 wide band noise power at RF1 frequency
		b23:16 TX2 wide band noise power at RF1 frequency
		1 LSB = -1 dBm Valid Range: 0 to -63 dBm
TX_GAIN_ VALUE	18	The measured TX PA loopback tone power at the RX ADC input, for each enabled TX channel, at each enabled RF frequency is reported here.
		Byte numbers corresponding to different TX and RF, in this field are here:
		RF1 RF2 RF3
		TX0 1:0 7:6 13:12
		TX1 3:2 9:8 15:14
		TX2 5:4 11:10 17:16
		1 LSB = 0.1dBm, signed number Only the entries of enabled RF Frequencies and enabled TX channels are valid.

Table 5.121 – continued from previous page

TX_PHASE_	18	The measured TX phase for each enabled channel, at
VALUE		each enabled RF frequency is reported here.
		Byte numbers corresponding to different TX and RF, in this field are here: RF1 RF2 RF3
		TX0 1:0 7:6 13:12
		TX1 3:2 9:8 15:14
		TX2 5:4 11:10 17:16
		1 LSB = $360^{\circ}/2^{16}$ Only the entries of enabled RF Frequencies and enabled TX channels are valid. NOTE: In the gains/phases reported here, only inter-TX
		mismatches carry information, and the raw values may include unknown biases (which cannot be relied on).
RF2_TX_NOISE_ POWER	3	The measured wide band noise power at RF2 frequencyfor each enabled TX channel is reported here.Bit fieldsDescription
		b7:0 TX0 wide band noise power at RF2 frequency
		b15:8 TX1 wide band noise power at RF2 frequency
		b23:16 TX2 wide band noise power at RF2 frequency
		1 LSB = -1 dBm Valid Range: 0 to -63 dBm
RF3_TX_NOISE_ POWER	3	The measured wide band noise power at RF3 frequency for each enabled TX channel is reported here.
		Bit fields Description
		b7:0 TX0 wide band noise power at RF3 frequency
		b15:8 TX1 wide band noise power at RF3 frequency
		b23:16 TX2 wide band noise power at RF3 frequency
		1 LSB = -1 dBm
		Valid Range: 0 to -63 dBm
RESERVED	2	0x0000
TIMESTAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed-
		ing allotted bit width)

Table 5.121 – continued from previous page

5.14.3 Sub block 0x1022 – AWR_MONITOR_TX0_PHASE_SHIFTER_REPORT_AE_ SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured TX0 phase values, amplitude values and noise power. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.122: AWR_MONITOR_TX0_PHASE_SHIFTER_REPORT_AE_SB

contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1022
SBLKLEN	2	Value = 44
STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.
		Bit STATUS_FLAG for monitor
		b0 STATUS_TX0_PHASE_SHIFTER_PHASE
		b1 STATUS_TX0_PHASE_SHIFTER_AMPLITUDE
		b15:2 RESERVED 0 – FAIL or check wasn't done 1 – PASS
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error
PROFILE_INDX	1	Profile Index for which this monitoring report applies
RESERVED	3	RESERVED
PH_SHIFTER_ MON_VAL1	2	The measured phase of TX0 Loop-back tone at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON1. 1 LSB = $360^{\circ}/2^{16}$
PH_SHIFTER_ MON_VAL2	2	The measured phase of TX0 Loop-back tone at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON2. 1 LSB = $360^{\circ}/2^{16}$
PH_SHIFTER_ MON_VAL3	2	The measured phase of TX0 Loop-back tone at the RX ADC for phase shifter monitoring setting PH_SHIFTER_ MON3. 1 LSB = $360^{\circ}/2^{16}$
PH_SHIFTER_ MON_VAL4	2	The measured phase of TX0 Loop-back tone at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON4. 1 LSB = $360^{\circ}/2^{16}$

TX_PS_AMPLI- TUDE_VAL1 2 The measured amplitude of TX0 Loopback tone power at the RX ADC for phase shifter monitoring setting PH_ SHIFTER_MON1. 1 LSB = 0.1 dB, signed number TX_PS_AMPLI- TUDE_VAL2 2 The measured amplitude of TX0 Loopback tone power at the RX ADC for phase shifter monitoring setting PH_ SHIFTER_MON2. 1 LSB = 0.1 dB, signed number TX_PS_AMPLI- TUDE_VAL3 2 The measured amplitude of TX0 Loopback tone power at the RX ADC for phase shifter monitoring setting PH_ SHIFTER_MON3. 1 LSB = 0.1 dB, signed number TX_PS_AMPLI- TUDE_VAL4 2 The measured amplitude of TX0 Loopback tone power at the RX ADC for phase shifter monitoring setting PH_ SHIFTER_MON3. 1 LSB = 0.1 dB, signed number TX_PS_NOISE_ VAL1 2 The measured amplitude of TX0 Loopback tone power at the RX ADC for phase shifter monitoring setting PH_ SHIFTER_MON4. 1 LSB = 0.1 dB, signed number TX_PS_NOISE_ VAL1 1 The maximum measured wideband power across the en- abled RXs of TX0 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON2. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBm TX_PS_NOISE_ VAL3 1 The maximum measured wideband power across the en- abled RXs of TX0 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON3. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBm TX_PS_NOISE_ VAL3 1 The maximum measured wideband power across the en- abled RXs of TX0 Loopback at the RX ADC for phase shift			22 – continued from previous page
TUDE_VAL2at the RX ADC for phase shifter monitoring setting PH_ SHIFTER_MON2. 1 LSB = 0.1 dB, signed numberTX_PS_AMPLI- TUDE_VAL32The measured amplitude of TX0 Loopback tone power at the RX ADC for phase shifter monitoring setting PH_ SHIFTER_MON3. 1 LSB = 0.1 dB, signed numberTX_PS_AMPLI- TUDE_VAL42The measured amplitude of TX0 Loopback tone power at the RX ADC for phase shifter monitoring setting PH_ SHIFTER_MON4. 1 LSB = 0.1 dB, signed numberTX_PS_NOISE_ VAL11The maximum measured wideband power across the en- abled RXs of TX0 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON1. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBmTX_PS_NOISE_ VAL21The maximum measured wideband power across the en- abled RXs of TX0 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON2. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBmTX_PS_NOISE_ VAL31The maximum measured wideband power across the en- abled RXs of TX0 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON3. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBmTX_PS_NOISE_ VAL31The maximum measured wideband power across the en- abled RXs of TX0 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON3. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBmTX_PS_NOISE_ VAL41The maximum measured wideband power across the en- abled RXs of TX0 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON3. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBmTX_PS_NOISE_ VAL41The maximum measured wideband power across the en- abled RXs of TX0 Loopback at the RX ADC for pha		2	at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON1.
TUDE_VAL3at the RX ADC for phase shifter monitoring setting PH_ SHIFTER_MON3. 1 LSB = 0.1 dB, signed numberTX_PS_AMPLI- TUDE_VAL42The measured amplitude of TX0 Loopback tone power at the RX ADC for phase shifter monitoring setting PH_ SHIFTER_MON4. 1 LSB = 0.1 dB, signed numberTX_PS_NOISE_ VAL11The maximum measured wideband power across the en- abled RXs of TX0 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON1. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBmTX_PS_NOISE_ VAL21The maximum measured wideband power across the en- abled RXs of TX0 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON2. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBmTX_PS_NOISE_ VAL31The maximum measured wideband power across the en- abled RXs of TX0 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON2. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBmTX_PS_NOISE_ VAL31The maximum measured wideband power across the en- abled RXs of TX0 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON3. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBmTX_PS_NOISE_ VAL41The maximum measured wideband power across the en- abled RXs of TX0 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON4. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBmTX_PS_NOISE_ VAL41The maximum measured wideband power across the en- abled RXs of TX0 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON4. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBmTIME_STAMP4This field indicates when the last monitoring in the enabled set was per		2	at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON2.
TUDE_VAL4at the RX ADC for phase shifter monitoring setting PH_ SHIFTER_MON4. 1 LSB = 0.1 dB, signed numberTX_PS_NOISE_ VAL11The maximum measured wideband power across the en- abled RXs of TX0 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON1. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBmTX_PS_NOISE_ VAL21The maximum measured wideband power across the en- abled RXs of TX0 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON2. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBmTX_PS_NOISE_ VAL21The maximum measured wideband power across the en- abled RXs of TX0 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON2. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBmTX_PS_NOISE_ VAL31The maximum measured wideband power across the en- abled RXs of TX0 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON3. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBmTX_PS_NOISE_ VAL41The maximum measured wideband power across the en- abled RXs of TX0 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON4. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBmTIME_STAMP4This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)		2	at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON3.
VAL1 abled RXs of TX0 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON1. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBm TX_PS_NOISE_ 1 VAL2 1 The maximum measured wideband power across the enabled RXs of TX0 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON2. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBm TX_PS_NOISE_ 1 TX_PS_NOISE_ 1 TX_PS_NOISE_ 1 TX_PS_NOISE_ 1 TX_PS_NOISE_ 1 TK maximum measured wideband power across the enabled RXs of TX0 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON3. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBm TX_PS_NOISE_ 1 TX_PS_NOISE_ 1 TX_PS_NOISE_ 1 TX_B = -1 dBm, Valid Range: 0 to -63 dBm TX_PS_NOISE_ 1 The maximum measured wideband power across the enabled RXs of TX0 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON4. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBm TIME_STAMP 4 TIME field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)		2	at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON4.
VAL2abled RXs of TX0 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON2. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBmTX_PS_NOISE_ VAL31The maximum measured wideband power across the en- abled RXs of TX0 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON3. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBmTX_PS_NOISE_ VAL41The maximum measured wideband power across the en- abled RXs of TX0 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON3. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBmTX_PS_NOISE_ VAL41The maximum measured wideband power across the en- abled RXs of TX0 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON4. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBmTIME_STAMP4This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)		1	abled RXs of TX0 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON1. 1 LSB = -1 dBm,
VAL3abled RXs of TX0 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON3. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBmTX_PS_NOISE_ VAL41The maximum measured wideband power across the en- abled RXs of TX0 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON4. 		1	abled RXs of TX0 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON2. 1 LSB = -1 dBm,
VAL4 abled RXs of TX0 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON4. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBm TIME_STAMP 4 This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width) 1		1	abled RXs of TX0 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON3. 1 LSB = -1 dBm,
set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)		1	abled RXs of TX0 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON4. 1 LSB = -1 dBm,
RESERVED 8 RESERVED	TIME_STAMP	4	set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed-
	RESERVED	8	RESERVED

Table 5.122 – continued from previous page

5.14.4 Sub block 0x1023 – AWR_MONITOR_TX1_PHASE_SHIFTER_REPORT_AE_ SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured TX1 phase values, amplitude values and noise power. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.123: AWR_MONITOR_TX1_PHASE_SHIFTER_REPORT_AE_SB

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1023
SBLKLEN	2	Value = 44
STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.
		Bit STATUS_FLAG for monitor
		b0 STATUS_TX1_PHASE_SHIFTER_PHASE
		b1 STATUS_TX1_PHASE_SHIFTER_AMPLITUDE
		b15:2 RESERVED 0 – FAIL or check wasn't done 1 – PASS
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error
PROFILE_INDX	1	Profile Index for which this monitoring report applies
RESERVED	3	RESERVED
PH_SHIFTER_ MON_VAL1	2	The measured phase of TX1 Loop-back tone at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON1. 1 LSB = $360^{\circ}/2^{16}$
PH_SHIFTER_ MON_VAL2	2	The measured phase of TX1 Loop-back tone at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON2. 1 LSB = $360^{\circ}/2^{16}$
PH_SHIFTER_ MON_VAL3	2	The measured phase of TX1 Loop-back tone at the RX ADC for phase shifter monitoring setting PH_SHIFTER_ MON3. 1 LSB = $360^{\circ}/2^{16}$
PH_SHIFTER_ MON_VAL4	2	The measured phase of TX1 Loop-back tone at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON4. 1 LSB = $360^{\circ}/2^{16}$

 $\operatorname{contents}$

	Table 5.14	23 – continued from previous page
TX_PS_AMPLI- TUDE_VAL1	2	The measured amplitude of TX1 Loopback tone power at the RX ADC for phase shifter monitoring setting PH_ SHIFTER_MON1. 1 LSB = 0.1 dB, signed number
TX_PS_AMPLI- TUDE_VAL2	2	The measured amplitude of TX1 Loopback tone power at the RX ADC for phase shifter monitoring setting PH_ SHIFTER_MON2. 1 LSB = 0.1 dB, signed number
TX_PS_AMPLI- TUDE_VAL3	2	The measured amplitude of TX1 Loopback tone power at the RX ADC for phase shifter monitoring setting PH_ SHIFTER_MON3. 1 LSB = 0.1 dB, signed number
TX_PS_AMPLI- TUDE_VAL4	2	The measured amplitude of TX1 Loopback tone power at the RX ADC for phase shifter monitoring setting PH_ SHIFTER_MON4. 1 LSB = 0.1 dB, signed number
TX_PS_NOISE_ VAL1	1	The maximum measured wideband power across the en- abled RXs of TX1 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON1. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBm
TX_PS_NOISE_ VAL2	1	The maximum measured wideband power across the en- abled RXs of TX1 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON2. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBm
TX_PS_NOISE_ VAL3	1	The maximum measured wideband power across the en- abled RXs of TX1 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON3. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBm
TX_PS_NOISE_ VAL4	1	The maximum measured wideband power across the en- abled RXs of TX1 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON4. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBm
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)
		RESERVED

Table 5.123 – continued from previous page

5.14.5 Sub block 0x1024 – AWR_MONITOR_TX2_PHASE_SHIFTER_REPORT_AE_ SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured TX2 phase values, amplitude values and noise power. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.124: AWR_MONITOR_TX2_PHASE_SHIFTER_REPORT_AE_SB

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1024
SBLKLEN	2	Value = 44
STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.
		Bit STATUS_FLAG for monitor
		b0 STATUS_TX2_PHASE_SHIFTER_PHASE
		b1 STATUS_TX2_PHASE_SHIFTER_AMPLITUDE
		b15:2 RESERVED 0 – FAIL or check wasn't done 1 – PASS
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error
PROFILE_INDX	1	Profile Index for which this monitoring report applies
RESERVED	3	RESERVED
PH_SHIFTER_ MON_VAL1	2	The measured phase of TX2 Loop-back tone at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON1. 1 LSB = $360^{\circ}/2^{16}$
PH_SHIFTER_ MON_VAL2	2	The measured phase of TX2 Loop-back tone at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON2. 1 LSB = $360^{\circ}/2^{16}$
PH_SHIFTER_ MON_VAL3	2	The measured phase of TX2 Loop-back tone at the RX ADC for phase shifter monitoring setting PH_SHIFTER_ MON3. 1 LSB = $360^{\circ}/2^{16}$
PH_SHIFTER_ MON_VAL4	2	The measured phase of TX2 Loop-back tone at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON4. 1 LSB = $360^{\circ}/2^{16}$

 $\operatorname{contents}$

TX_PS_AMPLI- TUDE_VAL12The measured amplitude of TX2 Loopback tone power at the RX ADC for phase shifter monitoring setting PH_ SHIFTER_MON1. 1 LSB = 0.1 dB, signed numberTX_PS_AMPLI- TUDE_VAL22The measured amplitude of TX2 Loopback tone power at the RX ADC for phase shifter monitoring setting PH_ SHIFTER_MON2. 1 LSB = 0.1 dB, signed numberTX_PS_AMPLI- TUDE_VAL32The measured amplitude of TX2 Loopback tone power at the RX ADC for phase shifter monitoring setting PH_ SHIFTER_MON3. 1 LSB = 0.1 dB, signed numberTX_PS_AMPLI- TUDE_VAL32The measured amplitude of TX2 Loopback tone power at the RX ADC for phase shifter monitoring setting PH_ SHIFTER_MON3. 1 LSB = 0.1 dB, signed numberTX_PS_AMPLI- TUDE_VAL42The measured amplitude of TX2 Loopback tone power at the RX ADC for phase shifter monitoring setting PH_ SHIFTER_MON4. 1 LSB = 0.1 dB, signed numberTX_PS_NOISE_ VAL11The maximum measured wideband power across the en- abled RXs of TX2 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON2. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBmTX_PS_NOISE_ VAL31The maximum measured wideband power across the en- abled RXs of TX2 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON3. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBmTX_PS_NOISE_ VAL31The maximum measured wideband power across the en- abled RXs of TX2 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON3. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBmTX_PS_NOISE_ VAL31The maximum measured wideband power across the en- abled RXs of TX2 Loopback at the RX ADC			24 – continued from previous page
TUDE_VAL2at the RX ADC for phase shifter monitoring setting PH_ SHIFTER_MON2. 1 LSB = 0.1 dB, signed numberTX_PS_AMPLI- TUDE_VAL32The measured amplitude of TX2 Loopback tone power at the RX ADC for phase shifter monitoring setting PH_ SHIFTER_MON3. 1 LSB = 0.1 dB, signed numberTX_PS_AMPLI- TUDE_VAL42The measured amplitude of TX2 Loopback tone power at the RX ADC for phase shifter monitoring setting PH_ SHIFTER_MON4. 1 LSB = 0.1 dB, signed numberTX_PS_NOISE_ VAL11The maximum measured wideband power across the en- abled RXs of TX2 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON1. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBmTX_PS_NOISE_ VAL21The maximum measured wideband power across the en- abled RXs of TX2 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON2. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBmTX_PS_NOISE_ VAL31The maximum measured wideband power across the en- abled RXs of TX2 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON3. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBmTX_PS_NOISE_ VAL31The maximum measured wideband power across the en- abled RXs of TX2 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON3. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBmTX_PS_NOISE_ VAL41The maximum measured wideband power across the en- abled RXs of TX2 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON3. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBmTX_PS_NOISE_ VAL41The maximum measured wideband power across the en- abled RXs of TX2 Loopback at the RX ADC for pha		2	at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON1.
TUDE_VAL3at the RX ADC for phase shifter monitoring setting PH_ SHIFTER_MON3. 1 LSB = 0.1 dB, signed numberTX_PS_AMPLI- TUDE_VAL42The measured amplitude of TX2 Loopback tone power at the RX ADC for phase shifter monitoring setting PH_ SHIFTER_MON4. 1 LSB = 0.1 dB, signed numberTX_PS_NOISE_ VAL11The maximum measured wideband power across the en- abled RXs of TX2 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON1. 1 LSB = 0.1 dBm, Valid Range: 0 to -63 dBmTX_PS_NOISE_ VAL21The maximum measured wideband power across the en- abled RXs of TX2 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON2. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBmTX_PS_NOISE_ VAL31The maximum measured wideband power across the en- abled RXs of TX2 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON3. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBmTX_PS_NOISE_ VAL31The maximum measured wideband power across the en- abled RXs of TX2 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON3. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBmTX_PS_NOISE_ VAL41The maximum measured wideband power across the en- abled RXs of TX2 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON4. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBmTIME_STAMP4This field indicates when the last monitoring in the enabled set was performed. 1 LSB = -1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)		2	at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON2.
TUDE_VAL4at the RX ADC for phase shifter monitoring setting PH_ SHIFTER_MON4. 1 LSB = 0.1 dB, signed numberTX_PS_NOISE_ VAL11The maximum measured wideband power across the en- abled RXs of TX2 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON1. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBmTX_PS_NOISE_ VAL21The maximum measured wideband power across the en- abled RXs of TX2 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON2. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBmTX_PS_NOISE_ VAL21The maximum measured wideband power across the en- abled RXs of TX2 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON2. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBmTX_PS_NOISE_ VAL31The maximum measured wideband power across the en- abled RXs of TX2 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON3. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBmTX_PS_NOISE_ VAL41The maximum measured wideband power across the en- abled RXs of TX2 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON4. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBmTIME_STAMP4This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)		2	at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON3.
VAL1abled RXs of TX2 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON1. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBmTX_PS_NOISE_ VAL21The maximum measured wideband power across the en- abled RXs of TX2 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON2. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBmTX_PS_NOISE_ VAL31The maximum measured wideband power across the en- abled RXs of TX2 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON2. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBmTX_PS_NOISE_ VAL31The maximum measured wideband power across the en- abled RXs of TX2 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON3. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBmTX_PS_NOISE_ VAL41The maximum measured wideband power across the en- abled RXs of TX2 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON4. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBmTIME_STAMP TIME_STAMP4This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)		2	at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON4.
VAL2abled RXs of TX2 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON2. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBmTX_PS_NOISE_ VAL31The maximum measured wideband power across the en- abled RXs of TX2 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON3. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBmTX_PS_NOISE_ VAL41The maximum measured wideband power across the en- abled RXs of TX2 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON3. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBmTX_PS_NOISE_ VAL41The maximum measured wideband power across the en- abled RXs of TX2 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON4. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBmTIME_STAMP4This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)		1	abled RXs of TX2 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON1. 1 LSB = -1 dBm,
VAL3abled RXs of TX2 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON3. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBmTX_PS_NOISE_ VAL41The maximum measured wideband power across the en- abled RXs of TX2 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON4. 		1	abled RXs of TX2 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON2. 1 LSB = -1 dBm,
VAL4abled RXs of TX2 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON4. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBmTIME_STAMP4This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)		1	abled RXs of TX2 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON3. 1 LSB = -1 dBm,
set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)		1	abled RXs of TX2 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON4. 1 LSB = -1 dBm,
RESERVED 8 RESERVED	TIME_STAMP	4	set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed-
	RESERVED	8	RESERVED

Table 5.124 – continued from previous page

5.14.6 Sub block 0x1025 – AWR_MONITOR_SYNTHESIZER_FREQUENCY_ REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing information related to measured frequency error during the chirp. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

$\textbf{Table 5.125: AWR_MONITOR_SYNTH_FREQUENCY_REPORT_AE_SB}$

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1025
SBLKLEN	2	Value = 32
STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.
		Bit STATUS_FLAG for monitor
		b0 STATUS_SYNTH_FREQ_ERR
		b15:1 RESERVED 0 – FAIL or check wasn't done 1 – PASS
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error
PROFILE_INDX	1	Profile Index for which this monitoring report applies
RESERVED	3	0x00000
MAX_FRE- QUENCY_ER- ROR_VALUE	4	This field indicates the maximum instantaneous frequency error measured during the chirps for which frequency mon- itoring has been enabled in the previous monitoring period. Bits Parameter
		b31:0 Maximum frequency error value, signed number. 1 LSB = 1 kHz.
NOTE: When multiple profiles are enabled using PROFILE_BIT_ MASK_LIVE_ MODE, value reported is max across all enabled profiles		

contents

FREQUENCY_ FAILURE_ COUNT	4	This field indicates the number of times during chirping in the previous monitoring period in which the measured frequency error violated the allowed threshold. Frequency error threshold violation is counted every 10 ns. Bits Parameter b31:19 RESERVED b18:0 Failure count, unsigned number
RESERVED	4	0x0000000
RESERVED	4	0x0000000
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)

Table 5.125 – continued from previous page

5.14.7 Sub block 0x1026 – AWR_MONITOR_EXTERNAL_ANALOG_SIGNALS_ REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the external signal voltage values measured using the GPADC. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.126: AWR_MONITOR_EXTERNAL_ANALOG_SIGNALS_REPORT_ AE SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1026
SBLKLEN	2	Value = 28

STATUS_FLAGS	2	Status flags indicating pass fail results corresponding to various threshold checks under this monitor.
		Bit Definition b0 STATUS_ANALOGTEST1 b1 STATUS_ANALOGTEST2 b2 STATUS_ANALOGTEST3 b3 STATUS_ANALOGTEST4 b4 STATUS_ANAMUX b5 STATUS_VSENSE b15:6 RESERVED 0 - FAIL or check wasn't done
ERROR CODE	2	1 – PASS Indicates any error reported during monitoring
	-	Value of 0 indicates no error
EXTERNAL_ ANALOG_SIG- NAL_VALUES	12	MEASURED_VALUE Bytes SIGNAL 1:0 ANALOGTEST1 3:2 ANALOGTEST2 5:4 ANALOGTEST3 7:6 ANALOGTEST4 9:8 ANAMUX 11:10 VSENSE
		1 LSB = 1.8V/1024
RESERVED	4	0x0000000
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)

Table 5.126 – continued from previous page

5.14.8 Sub block 0x1027 – AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_ REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing information about Internal TX0 internal analog signals including Tx Phase shifter DAC monitor report. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.127: AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_ REPORT_AE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1027
SBLKLEN	2	Value = 16
STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.
		Bit STATUS_FLAG for monitor
		b0 STATUS_SUPPLY_TX0
		b1 STATUS_DCBIAS_TX0
		b2 STATUS_PS_DAC_TX0 (Not applicable for xWR294x/xWR254x)
		b15:3 RESERVED 0 – FAIL or check wasn't done 1 – PASS
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error
PROFILE_INDX	1	Profile Index for which this monitoring report applies
RESERVED	1	0x00
PS_DAC_ IDELTA_MIN	1	Phase shifter DAC I arm delta min value across different DAC settings (Not applicable for xWR294x/xWR254x) Unit: 1 LSB = 1.8V/1024
PS_DAC_ QDELTA_MIN	1	Phase shifter DAC Q arm delta min value across different DAC settings (Not applicable for xWR294x/xWR254x) Unit: 1 LSB = 1.8V/1024
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)

5.14.9 Sub block 0x1028 – AWR_MONITOR_TX1_INTERNAL_ANALOG_SIGNALS_ REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing information about Internal TX1 internal analog signals. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.128: AWR_MONITOR_TX1_INTERNAL_ANALOG_SIGNALS_ REPORT_AE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1028
SBLKLEN	2	Value = 16
STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.
		Bit STATUS_FLAG for monitor
		b0 STATUS_SUPPLY_TX1
		b1 STATUS_DCBIAS_TX1
		b2 STATUS_PS_DAC_TX1 (Not applicable for xWR294x/xWR254x)
		b15:3 RESERVED 0 – FAIL or check wasn't done 1 – PASS
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error
PROFILE_INDX	1	Profile Index for which this monitoring report applies
RESERVED	1	0x00
PS_DAC_ IDELTA_MIN	1	Phase shifter DAC I arm delta min value across different DAC settings (Not applicable for xWR294x/xWR254x) Unit: 1 LSB = 1.8V/1024
PS_DAC_ QDELTA_MIN	1	Phase shifter DAC Q arm delta min value across different DAC settings (Not applicable for xWR294x/xWR254x) Unit: 1 LSB = 1.8V/1024
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)

5.14.10 Sub block 0x1029 – AWR_MONITOR_TX2_INTERNAL_ANALOG_ SIGNALS_REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing information about Internal TX2 internal analog signals. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.129: AWR_MONITOR_TX2_INTERNAL_ANALOG_SIGNALS_ REPORT_AE_SB contents

Field Name	Number	Description
	of bytes	
SBLKID	2	Value = 0x1029
SBLKLEN	2	Value = 16
STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.
		Bit STATUS_FLAG for monitor
		b0 STATUS_SUPPLY_TX2
		b1 STATUS_DCBIAS_TX2
		b2 STATUS_PS_DAC_TX2 (Not applicable for xWR294x/xWR254x)
		b15:3 RESERVED 0 – FAIL or check wasn't done 1 – PASS
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error
PROFILE_INDX	1	Profile Index for which this monitoring report applies
RESERVED	1	0x00
PS_DAC_ IDELTA_MIN (Not applicable for xWR294x/xWR254	1 x)	Phase shifter DAC I arm delta min value across different DAC settings Unit: 1 LSB = 1.8V/1024
PS_DAC_ QDELTA_MIN (Not applicable for xWR294x/xWR254	1 x)	Phase shifter DAC Q arm delta min value across different DAC settings Unit: 1 LSB = 1.8V/1024
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)

5.14.11 Sub block 0x102A – AWR_MONITOR_RX_INTERNAL_ANALOG_ SIGNALS_REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing information about Internal RX internal analog signals. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.130: AWR_MONITOR_RX_INTERNAL_ANALOG_SIGNALS_ REPORT_AE_SB contents

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x102A		
SBLKLEN	2	Value = 16		
STATUS_FLAGS	2	Status flags indicating pass fail results corresponding to various threshold checks under this monitor.		
		Bit STATUS_FLAG for monitor		
		b0 STATUS_SUPPLY_RX0		
		b1 STATUS_SUPPLY_RX1		
		b2 STATUS_SUPPLY_RX2		
		b3 STATUS_SUPPLY_RX3		
		b4 STATUS_DCBIAS_RX0		
		b5 STATUS_DCBIAS_RX1		
		b6 STATUS_DCBIAS_RX2		
		b7 STATUS_DCBIAS_RX3		
		b15:8 RESERVED 0 – FAIL or check wasn't done 1 – PASS		
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error		
PROFILE_INDX	1	Profile Index for which this monitoring report applies		
RESERVED	3	0x000000		
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)		

5.14.12 Sub block 0x102B – AWR_MONITOR_PMCLKLO_INTERNAL_ANALOG_ SIGNALS_REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing information about Internal PM, CLK and LO subsystems' internal analog signals and in cascade devices the 20GHz SYNC IN/OUT power. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.131: AWR_MONITOR_PM_CLK_LO_INTERNAL_ANALOG_ SIGNALS_REPORT_AE_SB contents

Field Name	Number	Description	
	of bytes		
SBLKID	2	Value = 0x102B	
SBLKLEN	2	Value = 16	
STATUS_FLAGS	2	Status flags indicating pass fail results corresponding to various threshold checks under this monitor.	
		Bit STATUS_FLAG for monitor	
		b0 STATUS_SUPPLY_PMCLKLO	
		b1 STATUS_DCBIAS_PMCLKLO	
		b2 STATUS_LVDS_PMCLKLO (Use this status bit only if LVDS is used, else ig- nore this)	
		b3 STATUS_SYNC_20G (Use this field only in cas- cade configuration)	
		b15:4 RESERVED 0 – FAIL or check wasn't done 1 – PASS	
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error	
PROFILE_INDX	1	Profile Index for which this monitoring report applies	
SYNC_20G_ POWER	1	(Not applicable for single-chip devices) Monitored 20GHz SYNC_IN or SYNC_OUT signal power, signed number Unit: 1 LSB = 0.5 dBm Valid Range: -63 to 63 dBm SYNC_20G_POWER_dBm = SYNC_20G_POWER * 0.5dBm NOTES: SYNC_IN power (dBm): The conversion factor for SYNC_IN power (dBm): The conversion factor for SYNC_IN power at BGA pin, Power_sync_in_bga_dbm = (0.85*SYNC_20G_POWER_dBm) - 10, Refer monitor app note for more info.	
		SYNC_OUT power (dBm): The conversion factor for SYNC_OUT power at BGA pin, Power_sync_out_bga_ dbm = (SYNC_20G_POWER_dBm) + 1, Refer monitor app note for more info.	
RESERVED	2	0x000000	

TIME_STAMP	4	4 This field indicates when the last monitoring in the enabled		
		set was performed.		
		1 LSB = 1 millisecond (time stamp rolls over upon exceed		
		ing allotted bit width)		

Table 5.131 – continued from previous page

5.14.13 Sub block 0x102C – AWR_MONITOR_GPADC_INTERNAL_ANALOG_ SIGNALS_REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing information about the measured value of the GPADC input DC signals whose measurements were enabled. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.132: AWR_MONITOR_GPADC_INTERNAL_ANALOG_SIGNALS_ REPORT_AE_SB contents

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x102C		
SBLKLEN	2	Value = 20		
STATUS_FLAGS	2	Status flags indicating pass fail results corresponding to various threshold checks under this monitor.		
		Bit STATUS_FLAG for monitor		
		b0 STATUS_GPADC_REF1		
		b1 STATUS_GPADC_REF2		
		b2 STATUS_GPADC_REF3 (xWR294x/xWR254) only)		
		b15:3 RESERVED		
		0 – FAIL or check wasn't done 1 – PASS		
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error		
GPADC_REF1_ VALUE	2	The measured GPADC outputs corresponding to internal DC signal (GPADC_REF1, expected level 0.45V) is reported here. 1 LSB = 1.8V/1024		

GPADC_REF2_ VALUE	2	The measured GPADC outputs corresponding to inter- nal DC signal (GPADC_REF2, expected level is 0.6V for xWR294x/xWR254x and 1.2V for other devices) is re- ported here. 1 LSB = 1.8V/1024
GPADC_REF3_ VALUE	2	(xWR294x/xWR254x only) The measured GPADC out- puts corresponding to internal DC signal (GPADC_REF3, expected level 0.6V) is reported here. 1 LSB = 1.8V/1024
RESERVED	2	0x0000
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)

Table 5.132 – continued from previous page

5.14.14 Sub block 0x102D – AWR_MONITOR_PLL_CONTROL_VOLTAGE_ REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured PLL control voltage values during explicit monitoring chirps. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.133: AWR_MONITOR_PLL_CONTROL_VOLTAGE_REPORT_AE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x102D
SBLKLEN	2	Value = 32

		33 – COM	tinued from previous page	
STATUS_FLAGS	2		flags indicating pass fail result various threshold checks under	
		Bit	STATUS_FLAG for monitor	
		b0	STATUS_APLL_VCTRL	
		b1	STATUS_SYNTH_VCO1_VCTRL	_MAX_FREQ
		b2	STATUS_SYNTH_VCO1_VCTRL	_MIN_FREQ
		b3	RESERVED	
		b4	STATUS_SYNTH_VCO2_VCTRL	_MAX_FREQ
		b5	STATUS_SYNTH_VCO2_VCTRL	_MIN_FREQ
		b6	RESERVED	
		b7	STATUS_SYNTH_VCO3_VC- TRL_MAX_FREQ (Rese AWR2243/xWR294x/xWR254x/x	
		b8	STATUS_SYNTH_VCO3_VC- TRL_MIN_FREQ (Rese AWR2243/xWR294x/xWR254x/x	
		b15:9 0 – FAIL 1 – PAS	RESERVED - or check wasn't done S	
ERROR_CODE	2		s any error reported during monito f 0 indicates no error	ring
PLL_CONTROL_ VOLTAGE_VAL- UES	16		easured values of PLL control vol sizer VCO slopes are reported here	-
		-	umbers corresponding to differe ues reported in this field are here:	nt control volt-
		Bytes	SIGNAL	1 LSB
		1:0	APLL_VCTRL	1 mV
		3:2	SYNTH_VCO1_VCTRL_MAX_ FREQ	1 mV
		5:4	SYNTH_VCO1_VCTRL_MIN_ FREQ	1 mV
		7:6	SYNTH_VCO1_SLOPE	1 MHz/V
		9:8	SYNTH_VCO2_VCTRL_MAX_ FREQ	1 mV
		11:10	SYNTH_VCO2_VCTRL_MIN_ FREQ	1 mV
		13:12	SYNTH_VCO2_SLOPE	1 MHz/V
		15:14	RESERVED	RESERVED
				ad an navt naga

Table 5.133 – continued from previous page

			linded from previous page	
		Only the fields corresponding to the enabled monitors are valid. The failure thresholds are based on the following: Valid VCTRL values are [140 to 1400] mV. Valid VCO1_SLOPE values are [880 to 1320] MHz/V. Valid VCO2_SLOPE values are [3520 to 6000] MHz/V. NOTE: The VCOx_SLOPE should be ignored when synth fault is injected.		
PLL3_CON- TROL_VOLT- AGE_VALUES	4	The measured values of PLL control voltage levels are reported here. Byte numbers corresponding to different control volt- age values reported in this field are here:		
		Bytes SIGNAL 1 LSB		
		1:0	SYNTH_VCO3_VCTRL_ MAX_FREQ (Reserved AWR2243/xWR294x/xWR254	1 mV in 4x/xWR6243)
		3:2	SYNTH_VCO3_VCTRL_ MIN_FREQ (Reserved AWR2243/xWR294x/xWR254	1 mV in 4x/xWR6243)
		Only the fields corresponding to the enabled monitors are valid.		nabled monitors are
			The VCO3 control voltage moni nly and not supported in produ	• ·
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)		

Table 5.133 – continued from previous page

5.14.15 Sub block 0x102E – AWR_MONITOR_DUAL_CLOCK_COMP_REPORT_ AE_SB

This API is a monitoring report API which the AWR device sends to the host, containing information about the relative frequency measurements. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.134: AWR_MONITOR_DUAL_CLOCK_COMP_REPORT_AE_SB contents

Field Name	Number	Description			
	of bytes				
SBLKID	2	Value = 0x102E			
SBLKLEN	2	Value =	32		
STATUS_FLAGS	2		Status flags indicating pass fail results corresponding to various threshold checks under this monitor.		
		Bit	Bit STATUS_FLAG for monitor		
		b0	STATUS_CLK_	PAIR0	
		b1	STATUS_CLK_	PAIR1	
		b2	STATUS_CLK_	PAIR2	
		b3	STATUS_CLK_	PAIR3	
		b4	STATUS_CLK_	PAIR4	
		b5	RESERVED		
		b6	STATUS_CLK_	PAIR6	
		b15:7	RESERVED		
		0 – FAIL 1 – PAS	or check wasn't S	done	
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error			
FREQ_MEAS_ VALUES	16	The measured clock frequencies from the enabled clock pair measurements are reported here.			
		Byte numbers corresponding to different frequency measurement values reported in this field are here:			
		Bytes	CLOCK PAIR	MEASURED CLOCK FREQUENCY	
		1:0	0	APLL_200M	
		3:2	1	BSS_200M	
		5:4	2	BSS_100M	
		7:6	3	GPADC_10M	
		9:8	4	RCOSC_10M	
		11:10	RESERVED	RESERVED	
		13:12	6	FRC_200M (xWR254x only)	
		15:14 RESERVED RESERVED 1 LSB = 0.1 MHz, unsigned number			
RESERVED	4	0x00000	0000		

	Tuble 5.104 – continued from previous page			
TIME_STAMP	4	This field indicates when the last monitoring in the enabled		
		set was performed.		
		1 LSB = 1 millisecond (time stamp rolls over upon exceed-		
		ing allotted bit width)		

Table 5.134 – continued from previous page

5.14.16 Sub block 0x1031 – AWR_MONITOR_RX_MIXER_IN_POWER_REPORT_ AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured RX mixer input voltage swing values. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.135: AWR_MONITOR_RX_MIXER_IN_POWER_REPORT_AE_SB contents

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x1031		
SBLKLEN	2	Value = 24		
STATUS_FLAGS	2	Bit STATUS_FLAG for monitor		
		b0 STATUS_MIXER_IN_POWER_RX0		
		b1 STATUS_MIXER_IN_POWER_RX1		
		b2 STATUS_MIXER_IN_POWER_RX2		
		b3 STATUS_MIXER_IN_POWER_RX3		
		b15:4 RESERVED		
		0 – FAIL or check wasn't done		
		1 – PASS		
ERROR_CODE	2	Internal sanity check violations are reported here.		
		Value = 0: No error		
PROFILE_INDX	1	Profile Index for which this monitoring report applies		
RESERVED	3	0x000000		

RX_MIXER_ IN_VOLTAGE_ VALUE	4	The measured RX mixer input voltage swing values are reported here. The byte location of the value for each receivers is tabulated here:		
		Receiver	Byte Location	
		RX0	0	
		RX1	1	
		RX2	2	
		RX3	3	
		1 LSB = 1800 n	nV/256, unsigned number	
		Only the entries	s of enabled RX channels are valid.	
RESERVED	4	0x00000000		
TIME_STAMP	4		toring began is indicated here. econd (time stamp rolls over upon exceed- vidth)	

Table 5.135 – continued from previous page

5.14.17 Sub block 0x1033 – AWR_MONITOR_SYNTHESIZER_FREQUENCY_ NONLIVE_REPORT_AE_SB

This is a new feature addition in AWR2243/xWR294x/xWR254x/xWR6243 device. This API is a Non live Monitoring Report SB, which device sends to the host, containing information related to measured frequency error during the monitoring chirp for two profiles configurations. The device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.136:	AWR_{-}	_MONITOR_	_SYNTHESIZER_	_FREQUENCY_	_NONLIVE_
			REPORT_AE_S	B contents	

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x1033		
SBLKLEN	2	Value = 52		
STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.		
		Bit STATUS_FLAG for monitor		
		b0 VCO1_SYNTH_FREQ_ERR_STATUS		
		b1 VCO2_SYNTH_FREQ_ERR_STATUS		
		b15:2 RESERVED 0 – FAIL or check wasn't done 1 – PASS		

		· · · · ·		
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error		
PROFILE_INDX_ 0	1	VCO1 Profile index for which this monitoring report applies		
RESERVED	3	0x000000		
MAX_FRE- QUENCY_ER- ROR_VALUE_0	4	This field indicates the maximum instantaneous frequency error measured during the monitoring chirp for which frequency monitoring has been enabled in the previous monitoring period for VCO1 profile. Bits Parameter		
		b31:0 Maximum frequency error value, signed number. 1 LSB = 1 kHz.		
FREQUENCY_ FAILURE_ COUNT_0	4	This field indicates the number of times during chirping in the previous monitoring period in which the measured frequency error violated the allowed threshold for VCO1 profile. Frequency error threshold violation is counted every 10 ns. Bits Parameter b31:19 RESERVED		
		b18:0 Failure count, unsigned number		
MAX_FREQ_ FAILURE_TIME_ 0	4	This field indicates the time at which error occurred for VCO1 profile w.r.t. knee of the ramp. 1LSB = 10ns		
RESERVED	4	0x0000000		
PROFILE_INDX_ 1	1	VCO2 Profile index for which this monitoring report applies		
RESERVED	3	0x00000		
MAX_FRE- QUENCY_ER- ROR_VALUE_1	4	This field indicates the maximum instantaneous frequency error measured during the monitoring chirp for which frequency monitoring has been enabled in the previous monitoring period for VCO2 profile. Bits Parameter		
		b31:0 Maximum frequency error value, signed number. 1 LSB = 1 kHz.		

Table 5.136 – continued from previous page

FREQUENCY_ FAILURE_ COUNT_1	4	This field indicates the number of times during chirping in the previous monitoring period in which the measured frequency error violated the allowed threshold for VCO2 profile. Frequency error threshold violation is counted every 10 ns. Bits Parameter b31:19 RESERVED b18:0 Failure count, unsigned number
MAX_FREQ_ FAILURE_TIME_ 1	4	This field indicates the time at which error occurred for VCO2 profile w.r.t. knee of the ramp. 1LSB = 10ns
RESERVED	4	0x0000000
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)

Table 5.136 – continued from previous page

5.14.18 Sub block 0x1034 – AWR_MONITOR_TX3_POWER_REPORT_AE_SB

NOTE1:	The TX[0:3] power monitoring accuracy degrades at high TX
	backoffs and is unreliable for backoffs higher than 20dB on
	AWR2243/xWR294x/xWR254x and 26dB on xWR6x43.
NOTE2:	The 0dB back-off corresponds to typically 13dBm power level in
	AWR2243/xWR294x/xWR254x/xWR6x43 device.

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured TX power values during an explicit monitoring chirp. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.137: AWR_MONITOR_TX3_POWER_REPORT_AE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1034
SBLKLEN	2	Value = 24

STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.		
		Bit STATUS_FLAG for monitor		
		b0 STATUS_ABS_ERR		
		b1 STATUS_FLATNESS_ERR		
		b15:2 RESERVED		
		0 – FAIL or check wasn't done 1 – PASS		
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error		
PROFILE_INDX	1	Profile Index for which this monitoring report applies		
RESERVED	3	0x000000		
TX_POWER_ VALUE	6	The measured TX power for each enabled channel, at each enabled RF frequency is reported here.		
		Byte numbers corresponding to different TX and RF, in this field are here:		
		RF1 RF2 RF3		
		TX3 1:0 3:2 5:4		
		(other bytes are reserved) 1 LSB = 0.1 dBm, signed number		
		Only the entries of enabled RF Frequencies and enabled		
		RX channels are valid.		
RESERVED	2	0x0000		
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)		

Table 5.137 – continued from previous page

5.14.19 Sub block 0x1035 – AWR_MONITOR_TX3_BALLBREAK_REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured TX reflection coefficient's magnitude values, meant for detecting TX ball break. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.138: AWR_MONITOR_TX3_BALLBREAK_REPORT_AE_SB contents

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x1035		
SBLKLEN	2	Value = 20		
STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.		
		Bit STATUS_FLAG for monitor		
		b0 STATUS_TX3_BALLBREAK		
		b15:1 RESERVED		
		0 – FAIL or check wasn't done		
		1 – PASS		
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error		
TX_REFL_CO-	2	The TX reflection coefficient's magnitude for this channel		
EFF_VALUE		is reported here. 1 LSB = 0.1 dB, signed number		
RESERVED	2	0x0000		
RESERVED	4	0x0000000		
TIME_STAMP	4	This field indicates when the last monitoring in the enables set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon excerting allotted bit width)		

5.14.20 Sub block 0x1036 – AWR_MONITOR_TX3_INTERNAL_ANALOG_ SIGNALS_REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing information about Internal TX3 internal analog signals including Tx Phase shifter DAC monitor report. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.139: AWR_MONITOR_TX3_INTERNAL_ANALOG_SIGNALS_ REPORT_AE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1036
SBLKLEN	2	Value = 16

STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.		
		Bit STATUS_FLAG for monitor		
		b0 STATUS_SUPPLY_TX3		
		b1 STATUS_DCBIAS_TX3		
		b2 STATUS_PS_DAC_TX3 (Not applicable for xWR294x/xWR254x)		
		b15:3 RESERVED 0 – FAIL or check wasn't done 1 – PASS		
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error		
PROFILE_INDX	1	Profile Index for which this monitoring report applies		
RESERVED	1	0x00		
PS_DAC_ IDELTA_MIN	1	Phase shifter DAC I arm delta min value across different DAC settings (Not applicable for xWR294x/xWR254x) Unit: 1 LSB = 1.8V/1024		
PS_DAC_ QDELTA_MIN	1	Phase shifter DAC Q arm delta min value across different DAC settings (Not applicable for xWR294x/xWR254x) Unit: 1 LSB = 1.8V/1024		
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)		

Table 5.139 – continued from previous page

5.14.21 Sub block 0x1037 – AWR_MONITOR_TX3_PHASE_SHIFTER_REPORT_ AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured TX3 phase values, amplitude values and noise power. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.140	AWR	_MONITOR_	$_{\rm TX3}$	_PHASE_	_SHIFTER_	_REPORT_	AE_{SB}
-------------	-----	-----------	--------------	---------	-----------	----------	-----------

contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1037
SBLKLEN	2	Value = 44

Continued on next page

Copyright © 2021, Texas Instruments Incorporated

Table 5.14	40 – continued	from	previous page

STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.		
		Bit STATUS_FLAG for monitor		
		b0 STATUS_TX3_PHASE_SHIFTER_PHASE		
		b1 STATUS_TX3_PHASE_SHIFTER_AMPLITUDE		
		b15:2 RESERVED 0 – FAIL or check wasn't done 1 – PASS		
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error		
PROFILE_INDX	1	Profile Index for which this monitoring report applies		
RESERVED	3	RESERVED		
PH_SHIFTER_ MON_VAL1	2	The measured phase of TX3 Loop-back tone at the RX ADC for phase shifter monitoring setting PH_SHIFTER_ MON1. 1 LSB = $360^{\circ}/2^{16}$		
PH_SHIFTER_ MON_VAL2	2	The measured phase of TX3 Loop-back tone at the RX ADC for phase shifter monitoring setting PH_SHIFTER_ MON2. 1 LSB = $360^{\circ}/2^{16}$		
PH_SHIFTER_ MON_VAL3	2	The measured phase of TX3 Loop-back tone at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON3. 1 LSB = $360^{\circ}/2^{16}$		
PH_SHIFTER_ MON_VAL4	2	The measured phase of TX3 Loop-back tone at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON4. 1 LSB = $360^{\circ}/2^{16}$		
TX_PS_AMPLI- TUDE_VAL1	2	The measured amplitude of TX3 Loopback tone power at the RX ADC for phase shifter monitoring setting PH_ SHIFTER_MON1. 1 LSB = 0.1 dB, signed number		
TX_PS_AMPLI- TUDE_VAL2	2	The measured amplitude of TX3 Loopback tone power at the RX ADC for phase shifter monitoring setting PH_ SHIFTER_MON2. 1 LSB = 0.1 dB, signed number		
TX_PS_AMPLI- TUDE_VAL3	2	The measured amplitude of TX3 Loopback tone power at the RX ADC for phase shifter monitoring setting PH_ SHIFTER_MON3. 1 LSB = 0.1 dB, signed number		

		to - continued from previous page
TX_PS_AMPLI- TUDE_VAL4	2	The measured amplitude of TX3 Loopback tone power at the RX ADC for phase shifter monitoring setting PH_ SHIFTER_MON4. 1 LSB = 0.1 dB, signed number
TX_PS_NOISE_ VAL1	1	The maximum measured wideband power across the en- abled RXs of TX3 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON1. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBm
TX_PS_NOISE_ VAL2	1	The maximum measured wideband power across the en- abled RXs of TX3 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON2. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBm
TX_PS_NOISE_ VAL3	1	The maximum measured wideband power across the en- abled RXs of TX3 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON3. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBm
TX_PS_NOISE_ VAL4	1	The maximum measured wideband power across the en- abled RXs of TX3 Loopback at the RX ADC for phase shifter monitoring setting PH_SHIFTER_MON4. 1 LSB = -1 dBm, Valid Range: 0 to -63 dBm
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)
RESERVED	8	RESERVED

Table 5.140 – continued from previous page

5.14.22 Sub block 0x1038 – AWR_MONITOR_ADV_TX_GAIN_PHASE_ MISMATCH_REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured TX gain and phase mismatch values during an explicit monitoring chirp. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.141: AWR_MONITOR_ADV_TX_GAIN_PHASE_REPORT_AE_SB contents

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x1038		
SBLKLEN	2	Value = 80		
STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.		
		Bit STATUS_FLAG for monitor		
		b0 STATUS_TX_GAIN_MISMATCH		
		b1 STATUS_TX_PHASE_MISMATCH		
		b15:2 RESERVED 0 – FAIL or check wasn't done 1 – PASS		
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error		
PROFILE_INDX	1	Profile Index for which this monitoring report applies		
RESERVED	3	0x00000		
TX_GAIN_ VALUE	24	The measured TX PA loopback tone power at the RX ADC input, for each enabled TX channel, at each enabled RF frequency is reported here. Byte numbers corresponding to different TX and RF, in this field are here:		
		RF1 RF2 RF3		
		TX0 1:0 9:8 17:16		
		TX1 3:2 11:10 19:18		
		TX2 5:4 13:12 21:20		
		TX3 7:6 15:14 23:22		
		1 LSB = 0.1dBm, signed number Only the entries of enabled RF Frequencies and enabled TX channels are valid.		

TX_PHASE_ VALUE	24	The measured TX phase for each enabled channel, at each enabled RF frequency is reported here.			
		Byte numbers corresponding to different TX and RF, in this field are here:			
		T)(0	RF1	RF2	RF3
		TX0	1:0	9:8	17:16
		TX1	3:2	11:10	19:18
		TX2	5:4	13:12	21:20
		TX3	7:6	15:14	23:22
		1 LSB = $360^{\circ}/2^{16}$ Only the entries of enabled RF Frequencies and enabled TX channels are valid. NOTE: In the gains/phases reported here, only inter-TX mismatches carry information, and the raw values may include unknown biases (which cannot be relied on).			
RF_TX_NOISE_ POWER	12	The measured wide band noise power for each enabled channel, at each enabled RF frequency is reported here.			
			RF1	RF2	RF3
		TX0	0:0	4:4	8:8
		TX1	1:1	5:5	9:9
		TX2	2:2	6:6	10:10
		TX3 1 LSB = - Valid Ran	-	7:7 -63 dBm	11:11
RESERVED	4	0x000000	000		
TIMESTAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)			

Table 5.141 – continued from previous page

5.14.23 Sub block 0x1039 – AWR_MONITOR_TX_PHSHIFTER_DAC_REPORT_ AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured TX phase shifter DAC monitoring results during an explicit monitoring chirp. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.142: AWR_MONITOR_TX_PHSHIFTER_DAC_REPORT_AE_SB contents

Field Name	Number	Description		
	of bytes			
SBLKID	2	Value = 0x1039		
SBLKLEN	2	Value = 32		
STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.		
		Bit STATUS_FLAG for monitor		
		b0 STATUS_PS_DAC_TX0		
		b1 STATUS_PS_DAC_TX1		
		b2 STATUS_PS_DAC_TX2		
		b3 STATUS_PS_DAC_TX3		
		b15:4 RESERVED 0 – FAIL or check wasn't done 1 – PASS		
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error		
PROFILE_INDX	1	Profile Index for which this monitoring report applies		
RESERVED	1	0x00		
TX0_PS_DAC_ IDELTA_MIN	1	TX0 Phase shifter DAC I arm delta min value across differ- ent DAC settings Unit: 1 LSB = 1.8V/1024		
TX1_PS_DAC_ IDELTA_MIN	1	TX1 Phase shifter DAC I arm delta min value across differ- ent DAC settings Unit: 1 LSB = 1.8V/1024		
TX2_PS_DAC_ IDELTA_MIN	1	TX2 Phase shifter DAC I arm delta min value across differ- ent DAC settings Unit: 1 LSB = 1.8V/1024		
TX3_PS_DAC_ IDELTA_MIN	1	TX3 Phase shifter DAC I arm delta min value across differ- ent DAC settings Unit: 1 LSB = 1.8V/1024		
TX0_PS_DAC_ QDELTA_MIN	1	TX0 Phase shifter DAC Q arm delta min value across dif- ferent DAC settings Unit: 1 LSB = 1.8V/1024		
TX1_PS_DAC_ QDELTA_MIN	1	TX1 Phase shifter DAC Q arm delta min value across dif- ferent DAC settings Unit: 1 LSB = 1.8V/1024		

		· · · · ·
TX2_PS_DAC_ QDELTA_MIN	1	TX2 Phase shifter DAC Q arm delta min value across dif- ferent DAC settings Unit: 1 LSB = 1.8V/1024
TX3_PS_DAC_ QDELTA_MIN	1	TX3 Phase shifter DAC Q arm delta min value across dif- ferent DAC settings Unit: 1 LSB = 1.8V/1024
RESERVED	2	RESERVED
RESERVED	4	RESERVED
RESERVED	4	RESERVED
TIMESTAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceed- ing allotted bit width)

Table 5.142 – continued from previous page

5.15 Sub blocks related to AWR_DEV_RFPOWERUP_MSG

NOTE:	All device config APIs having sub block ID $>=$ 0x4000 are appli-
	cable only for MSS in AWR2243 RF front end devices, for other
	xWR1443, xWR1642 and xWR1843 devices, these APIs are for
	reference only.

5.15.1 Sub block 0x4000 – AWR_DEV_RFPOWERUP_SB

This sub block is a command to power up the BSS 5.143 describes the content of this sub block.

Table 5.143:	AWR	_DEV_	POWERUP_	SB contents
--------------	-----	-------	----------	-------------

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4000
SBLKLEN	2	Value = 4

5.16 Sub blocks related to AWR_DEV_CONF_SET_MSG

5.16.1 Sub block 0x4040 - AWR_DEV_MCUCLOCK_CONF_SET_SB

This sub block contains the configurations to setup the desired frequency of the MCU Clock that is output from the device.

NOTE: The Maximum supported MCU clock out is 80MHz.

Table 5.144 describes the contents of this sub block.

Field Name	Number	Description		
	of bytes			
SBLKID	2	Value = 0x4040		
SBLKLEN	2	Value = 8		
MCUCLOCK_ CTRL	1	This field controls the enable-disable of the MCU clock. Value Description		
		0x0 Disable MCU clock		
		0x1 Enable MCU clock		
MCUCLOCK_ SRC	1	This field specifies the source of the MCU clock. Applicable only in case of MCU clock enable. Else ignored. Value Description		
		0x0 XTAL (as connected to the device)		
		0x2 400MHz PLL divided clock (xWR294x)		
		600MHz PLL divided clock (Other devices)		
SRCCLOCK_DIV	1	This field specifies the division factor to be applied to source clock. Applicable only in case of MCU clock enable. Else ignored.		
		Allowed values in xWR294x/xWR254x:		
		Value Description		
		0x0 Divide by 1		
		0x1 Divide by 2		
		0xF Divide by 16		
		Allowed values in other devices:		
		Value Description		
		0x0 Divide by 1		
		0x1 Divide by 2		
		0xFF Divide by 256		
		Note: The Maximum supported MCU clock out is 80MHz.		
RESERVED	1	0x00		

Table 5.144: AWR_DEV_MCUCLOCK_CONF_SET_SB contents

5.16.2 Sub block 0x4041 – AWR_DEV_RX_DATA_FORMAT_CONF_SET_SB

This sub block contains the configuration of the data format of the samples received over the receive chain to be transferred out to an external host over the configured data path (LVDS or CSI2).

Table 5.145 describes the content of this sub block.

Table 5.145: AWR_DEV_RX_DATA_FORMAT_CONF_SB contents

Field Name	Number of bytes	Description			
SBLKID	2	Value = 0x4041			
SBLKLEN	2	Value =	16		
RX_CHAN_EN	2	Bits Def	RX_CH 0 1	HAN0_EN Disable RX Channel 0 Enable RX Channel 0	
		b1	RX_CF 0 1	IAN0_EN Disable RX Channel 1 Enable RX Channel 1	
		b2	-	HAN0_EN Disable RX Channel 2 Enable RX Channel 2	
		b3	RX_CH 0	HAN0_EN Disable RX Channel 3 Enable RX Channel 3	
		b15:4	RESEF	RVED	
NUM_ADC_BITS	2	Bits	Definiti	on	
		b1:0	00	12 bits	
			01	14 bits	
			10	16 bits	
			Other	Reserved	
		b15:2	RESER	RVED	
ADC_OUT_FMT	2	Bits	Definiti	on	
		b1:0	00	Real	
			01	Complex	
			Other	Reserved	
		b15:2	RESER	RVED	

IQ_SWAP_SEL	1	Bits Definition	
		b1:0	To swap the IQ samples (if complex format)
			00 Sample interleave mode – I first
			01 Sample interleave mode – Q first
			Other Reserved
		b7:2	RESERVED
CHAN_INTER-	1	Bits	Definition
LEAVE		b1:0 Channel interleaving of the samples stored in ADC buffer to be transferred out on the data p 00 Interleaved mode of storage	
			01 Non-interleaved mode of storage
			Other Reserved
		b7:2	RESERVED
RESERVED	4	0x0000	00000

Table 5.145 – continued from previous page

5.16.3 Sub block 0x4042 - AWR_DEV_RX_DATA_PATH_CONF_SET_SB

This sub block contains the configurations of the data path to transfer the captured ADC samples received over the receive chain to be transferred out to an external host. Table 5.146 describes the content of this sub block.

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x4042	
SBLKLEN	2	Value = 12	
DATA_INTF_SEL	1	This field specifies the data path selected to transfer the Radar info.ValueDescription0x0CSI2 interface select0x1LVDS interface select	

DATA TRANS	1	Bits	Descript	ion
FMT_PKT0		b5:0	-	content selection
		55.0	Value	Definition
			000001	ADC
			000110	CP_ADC (See note at the bottom of this table)
			001001	ADC_CP
			110110	CP_ADC_CQ (See note at the bottom of this table)
			111001	CQ_CP_ADC (See note at the bottom of this table)
		b7:6	Packet 0 CSI2)	virtual channel number (valid only for
			Value	Definition
			00	Virtual channel number 0 (Default)
			01	Virtual channel number 1
			10	Virtual channel number 2
			11	Virtual channel number 3
DATA_TRANS_	1	Bits	Descript	ion
FMT_PKT1		b5:0	Packet 1 Value	content selection Definition
			000000	Suppress packet 1 transmission
			001110	CP_CQ (See note at the bottom of this table)
			001011	CQ_CP (See note at the bottom of this table)
		b7:6	Packet ber	1 virtual channel num- (valid only for CSI2)
			Value	Definition
			00	Virtual channel number 0 (Default)
			01	Virtual channel number 1
			10	Virtual channel number 2
			11	Virtual channel number 3

Table 5.146 – continued from previous page

CQ_CONFIG	1	This specifies the data size of CQ samples on the lanes		
		Bits Description b1:0 Value Definition		
		00 12 bit		
		01 14 bit		
		10 16 bit		
		11 RESERVED		
		b7:2 RESERVED		
		NOTE: The CQ size can be configured only if CQ and ADC data is sent in separate packets. When ADC and CQ is sent in the same packet, then CQ size will be same as ADC data size.		
CQ0_TRANS_ SIZE	1	Number of samples (in 16 bit halfwords) of CQ0 data to be transferred. Valid range [32 halfwords to 128 halfwords] Value 0 = Disabled. NOTE: Ensure that the number of halfwords specified are a multiple of the number of lanes selected.		
CQ1_TRANS_ SIZE	1	Number of samples (in 16 bit halfwords) of CQ1 data to be transferred. Valid range [32 halfwords to 128 halfwords] Value 0 = Disabled. NOTE: Ensure that the number of halfwords specified are		
		a multiple of the number of lanes selected.		
CQ2_TRANS_ SIZE	1	Number of samples (in 16 bit halfwords) of CQ2 data to be transferred. Valid range [32 halfwords to 128 halfwords] Value 0 = Disabled. NOTE: Ensure that the number of halfwords specified are		
		a multiple of the number of lanes selected.		
RESERVED	1	0x00		

Table 5.146 – continued from previous page

NOTE1:	CP is C follows	hirp Parameter information which is defined for each RX as				
	Bit	Description				
	b11:0	Chirp number				
		In legacy frame configuration, chirp number				
		for starts from 1 and increments for each				
		chirp within the frame and resets to 0 for the next frame.				
		In advanced frame configuration chirp num-				
		ber starts from 1 and increments for each				
		chirp within the burst and resets to 0 for the				
		next burst.				
	b15:12	RESERVED				
	b17:16	Channel number				
		The receive channel number which is en-				
		coded as				
		00 RX0				
		01 RX1				
		10 RX2				
		11 RX3				
	b21:18	Profile number				
		The profile number to which the chirp belongs				
	b31:22	RESERVED				
NOTE2:	CQ is C	hirp Quality information which is defined in Section 10				

5.16.4 Sub block 0x4043 - AWR_DEV_RX_DATA_PATH_LANEEN_SET_SB

This sub block contains the configurations to enables the lanes of the LVDS path to transfer Radar information to an external host.

Table 5.147 describes the content of this sub block.

Table 5.147: AWR_DEV_RX_DATA_PATH_LANEEN_SET_SB contended	nts
---	-----

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4043
SBLKLEN	2	Value = 8

LANE_EN	2	Bits	Description
		b0	LANE0_EN
			0 Disable lane 0
			1 Enable lane 0
		b1	LANE1_EN
			0 Disable lane 1
			1 Enable lane 1
		b2	LANE2_EN
			0 Disable lane 2
			1 Enable lane 2
		b3	LANE3_EN
			0 Disable lane 3
			1 Enable lane 3
		b15:4	RESERVED
RESERVED	2	0x0000	

Table 5.147 – continued from previous page

5.16.5 Sub block 0x4044 - AWR_DEV_RX_DATA_PATH_CLK_SET_SB

This sub block contains the clock configurations for data transfer on the LVDS/CSI2 lanes. Table 5.148 describes the content of this sub block.

Field Name	Number of bytes	Description	
SBLKID	2	/alue = 0x4044	
SBLKLEN	2	/alue = 8	
LANE_CLK_CFG (Selection valid only for LVDS. For CSI2, DDR is used always)	1	Bits Description BIT_CLK_SEL 0 SDR clock 1 DDR clock (Only valid value 07:1 RESERVED	e for CSI2)

 Table 5.148:
 AWR_DEV_RX_DATA_PATH_CLK_SET_SB contents

DATA_RATE	1	Data rate selection Value Description		
		0x01	600 Mbps (DDR only)	
		0x02	450 Mbps (SDR, DDR)	
		0x03	400 Mbps (DDR only)	
		0x04	300 Mbps (SDR, DDR)	
		0x05	225 Mbps (DDR only)	
		0x06	150 Mbps (DDR only)	
		Others	RESERVED	
RESERVED	2	0x0000		

Table 5.148 – continued from previous page

5.16.6 Sub block 0x4045 - AWR_DEV_LVDS_CFG_SET_SB

This sub block contains the configurations of the LVDS lanes. Table 5.149 describes the content of this sub block.

Table 5.149:	AWR_	_DEV_	_LVDS_	_CFG_	_SET_	SB contents
--------------	------	-------	--------	-------	-------	-------------

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4045
SBLKLEN	2	Value = 8
LANE_FMT_MAP	2	LANE0 Format Map. The mapping of the data on the lanes is depicted in the figure below 0x0000 Format map 0 0x0001 Format map 1

LANE_PARAM_	2	Bit	Descripti	
CFG		b0	MSB FIRST	
			0	Disable (LSB First)
			1	Enable (MSB First)
		b1	Packet E	nd Pulse Enable
			0	Disable
			1	Enable
		b2	CRC Ena	
			0	Disable
			1	Enable
		b7:3	RESERV	/ED
		b8	Configur	es LSB/MSB first for CRC
			0	CRC value swapped wrt to MSB_ FIRST setting
			1	CRC value follows MSB_FIRST set- ting
		b9	Frame cl	ock state during idle
			0	Frame clock is held low
			1	Frame clock is held high
		b10	Frame cl - b2)	lock period for CRC(when CRC enabled
			0	32-bit CRC is trasmitted as sin- gle sample with frame clock set to 16high, 16low configuration
			1	32-bit CRC is trasmitted as single sample with frame clock set to 8high, 8low configuration
		b11	Bit clock	state during idle
			0	Bit clock toggles during idle when there are no transmission
			1	Bit clock doesn't toggle during idle when there are no transmission, the value of bit clock is held low
		b12	CRC inve	ersion control(when CRC enabled - b2)
			0	The calcualted value of 32-bit ether- net polynomial CRC is inverted and sent out
			1	The calcualted value of 32-bit ether- net polynomial CRC is sent without inversion
		b15:13	RESERV	/ED

Table 5.149 – continued from previous page

Table 5.149 – continued from previous page

The mapping of the 8 sample ($8^{16} = 128$ bit) information onto the serial interface lanes is determined by the LANE_FMT_MAP parameter. The choice of format map translating to the transfer of data on the lanes is depicted in the image below (the x axis represents time – hence the samples are as available on the lanes in time and the receiver will receive the samples in the reverse order as depicted below).

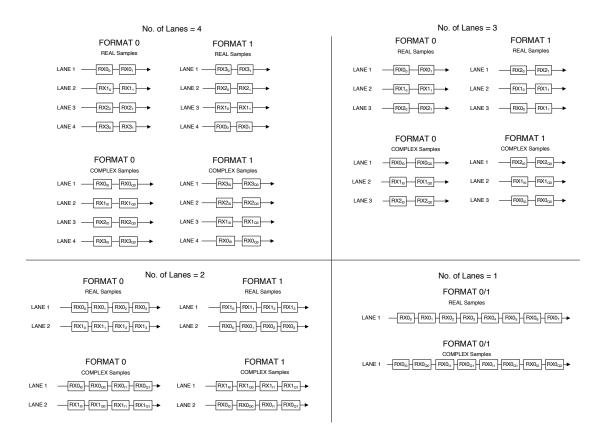


Figure 5.7: Lane formats and the order of receiving the data from the lanes

5.16.7 Sub block 0x4046 – AWR_DEV_RX_CONTSTREAMING_MODE_CONF_ SET_SB

This sub block contains the configurations of the data path to transfer the captured ADC samples continuously without any break to an external host. Table 5.150 describes the content of this sub block.

Copyright © 2021, Texas Instruments Incorporated

$\textbf{Table 5.150: AWR_DEV_RX_CONTSTREAMING_MODE_CFG_SET_SB}$

contents				
Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x4046		
SBLKLEN	2	Value = 8		
CONT_STREAM- ING_MODE	2	Continuous streaming mode enableValueDescription0x0Continuous streaming mode data transfer disable0x1Continuous streaming mode data transfer enable		
RESERVED	2	0x0000		

5.16.8 Sub block 0x4047 - AWR_DEV_CSI2_CFG_SET_SB

This sub block contains the various configurations of the parameters of the CSI2 module. Table 5.151 describes the content of this sub block.

Table 5.151:	AWR_	_DEV_	_CSI2_	_CFG_	_SET_	$_SB$	contents
--------------	------	-------	--------	-------	-------	--------	----------

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4047
SBLKLEN	2	Value = 12

LANE POS	4	Bits	Definition
POL_SEL		b2:0	DATA_LANE0_POS Valid values (Should be a unique position lane 0 cannot be disabled): 001b – Position 1 (default), 010b – Position 2, 011b – Position 3, 100b – Po- sition 4, 101b – Position 5
		b3	DATA_LANE0_POL 0b - PLUSMINUS pin order, 1b - MINUSPLUS pin order
		b6:4	DATA_LANE1_POS Valid values (Should be a unique position if lane 1 is enabled, ignored if lane 1 is not enabled): 000b – Unused, 001b – Position 1, 010b – Position 2 (default), 011b – Position 3, 100b – Position 4, 101b – Position 5
		b7	DATA_LANE1_POL 0b - PLUSMINUS pin order, 1b - MINUSPLUS pin order
		b10:8	DATA_LANE2_POS Valid values (Should be a unique position if lane 2 is enabled, ignored if lane 2 is not enabled): 000b – Unused, 001b – Position 1, 010b – Po- sition 2, 011b – Position 3, 100b – Position 4 (de- fault), 101b – Position 5
		b11	DATA_LANE2_POL 0b - PLUSMINUS pin order, 1b - MINUSPLUS pin order
		b14:12	DATA_LANE3_POS Valid values (Should be a unique position if lane 3 is enabled, ignored if lane 3 is not enabled): 000b – Unused, 001b – Position 1, 010b – Position 2, 011b – Position 3, 100b – Position 4, 101b – Po- sition 5 (default)
		b15	DATA_LANE3_POL 0b - PLUSMINUS pin order, 1b - MINUSPLUS pin order
		b18:16	CLOCK_POS Valid values (Should be a unique position): 0000b – Unused, 001b – Unused, 010b – Position 2, 011b – Position 3 (default), 100b – Position 4
		b19	CLOCK_POL 0b - PLUSMINUS pin order, 1b - MINUSPLUS pin order
		b31:20	RESERVED

Table 5.151 – continued from previous page

DIS_LINE_	1	0 – Line Start/End Enabled
START_END		1 – Line Start/End Disabled
RESERVED	3	0x0000000

Table 5.151 – continued from previous page

5.16.9 Sub block 0x4048 – AWR_DEV_PMICCLOCK_CONF_SET_SB

This sub block contains the configurations to setup the desired frequency of the PMIC Clock that is output from the device. The configurations also allow setting up the dither values for the clock.

NOTE:	The Maximum supported PMIC clock out is 20MHz.
-------	--

Table 5.152 describes the contents of this sub block.

Field Name Number **Description** of bytes SBLKID 2 Value = 0x40482 SBLKLEN Value = 16PMICCLOCK_ 1 This field controls the enable-disable of the PMIC clock. CTRL Value Description 0x0 **Disable PMIC clock** 0x1 Enable PMIC clock PMICCLOCK 1 This field specifies the source of the PMIC clock. SRC Applicable only in case of PMIC clock enable. Else ignored. Value Description 0x0 XTAL (as connected to the device) 0x2 400 MHz PLL divided clock (xWR294x) 600 MHz PLL divided clock (other devices)

 Table 5.152:
 AWR_DEV_PMICCLOCK_CONF_SET_SB contents

|--|

	1		1	
SRCCLOCK_DIV	1	This field specifies the division factor to be applied to source clock. Applicable only in case of PMIC clock enable. Else ignored.		
		Allowed	values in xWR294x/xWR254x:	
		Value	Description	
		0x0	Divide by 1	
		0x1	Divide by 2	
		0xF	Divide by 16	
		Allowed Value	values in other devices:	
			Description	
		0x0	Divide by 1	
		0x1	Divide by 2	
		0xFF	Divide by 256	
		Note: Th	e Maximum supported PMIC clock out is 20MHz.	
MODE_SELECT	1	clock gei	d specifies the mode of operation for the PMIC neration. le only in case of PMIC clock enable. Else	
		Value	Description	
		0x0	•	
		UXU	Continuous mode (free running mode where the frequency change/jump is triggered based on configured number of PMIC clock ticks)	
		0x1	Chirp-to-Chirp staircase mode (frequency change/jump is triggered at every chirp bound-ary)	

Table 5.15	52 – continued	from	previous page	

FREQ_SLOPE	4	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
MIN_NDIV_VAL	1	Applicable only in case of PMIC clock enable. Else ig- nored. Minimum allowed divider value (depends upon the highest desired clock frequency) Note: The Maximum supported PMIC clock out is 20MHz. The values can be set to get a few MHz of PMIC CLK out- put from the circuit, based on PMICCLOCK_SRC and SR- CCLOCK_DIV. A few example configurations are given be- low this table.	
MAX_NDIV_VAL	1	Applicable only in case of PMIC clock enable. Else ig- nored. Maximum allowed divider value (depends upon the lowest desired clock frequency) Note: The Maximum supported PMIC clock out is 20MHz. The values can be set to get a few MHz of PMIC CLK out- put from the circuit, based on PMICCLOCK_SRC and SR- CCLOCK_DIV. A few example configurations are given be- low this table.	
CLK_DITHER_ EN	1	Applicable only in case of PMIC clock enable and frequency slope is non-zero. Else ignored.This field controls the enable-disable of the clock dithering.Adds a pseudo random real number (0 or 1) to the accumulated divide value. Hence it brings a random dithering of 1 LSB.ValueDescription0x0Clock dithering disabled0x1Clock dithering enabled	
RESERVED	1	0x00	

Note: The examples and their configurations below assume the use of an xWR294x/xWR254x device.

Example 1. PMIC clock with no slope in continuous mode Objective: To configure the PMIC clock at frequency of 2 MHz with no slope. Configurations:

- 1. PMICCLK_SRC = 0x2 (400 MHz PLL divided clock)
- 2. SRCCLOCK_DIV = 9, Reference clock = 400 MHz /(9 + 1) = 40 MHz
- 3. MIN_NDIV_VAL = MAX_NDIV_VAL = 20 (Computed as 40 MHz/2.0 MHz)
- 4. FREQ_SLOPE = 0

With the above configuration, the PMIC clock frequency would be PMIC clock = (40 MHz / 20) = 2 MHz

Example 2. Dithered PMIC clock with slope in chirp-to-chirp staircase mode Objective: To configure a dithered PMIC clock at frequencies ranging from 2 MHz to 2.5 MHz over 32 chirps.

Configurations:

- 1. PMICCLK_SRC = 0x2 (400 MHz PLL divided clock)
- 2. SRCCLOCK_DIV = 1, Reference clock = 400 MHz /(1 + 1) = 200 MHz
- 3. MODE_SELECT = 1
- 4. FREQ_SLOPE = 169125 (Computed as (MAX_NDIV_VAL MIN_NDIV_VAL) \times $2^{18}/31)$
- 5. MIN_NDIV_VAL = 80 (Computed as 200 MHz/2.5 MHz)
- 6. MAX_NDIV_VAL = 100 (Computed as 200 MHz/2.0 MHz)
- 7. CLK_DITHER_EN = 1

With the above configuration, the PMIC clock frequency would be vary between (200 MHz / 80) and (200 MHz / 100) in steps of ($200 \text{ MHz} / | (80 + (N \times \text{FREQ_SLOPE}/2^{18} + X))|$ where

- N =Chirp number
- X = random fractional value in the range (0, 1) that adds the dither

The PMIC clock frequency is determined by the clock divider value which starts with a value of 100, providing a PMIC clock of 2 MHz for the 1^{st} chirp, decrementing the divider by FREQ_SLOPE/ 2^{18} = 0.64516 every chirp and finally reaching a value of 20 for the 32^{nd} chirp providing a PMIC clock of 2.5 MHz.

Chirp Number	PMIC Clock Frequency (MHz)	Calculation
1	2.50000	$200/(80 + 0 \times 169125/2^{18})$
2	2.48000	$200/(80+1\times 169125/2^{18})$
3	2.46032	$200/(80 + 2 \times 169125/2^{18})$
4	2.44094	$200/(80+3\times 169125/2^{18})$
5	2.42188	$200/(80 + 4 \times 169125/2^{18})$
6	2.40310	$200/(80+5\times 169125/2^{18})$
7	2.38462	$200/(80+6\times 169125/2^{18})$
8	2.36641	$200/(80+7\times 169125/2^{18})$
9	2.34848	$200/(80+8\times 169125/2^{18})$
10	2.33083	$200/(80+9\times 169125/2^{18})$
11	2.31343	$200/(80 + 10 \times 169125/2^{18})$
12	2.29630	$200/(80+11\times 169125/2^{18})$
13	2.27941	$200/(80+12\times 169125/2^{18})$
14	2.26277	$200/(80+13\times 169125/2^{18})$
15	2.24638	$200/(80+14\times 169125/2^{18})$
16	2.23022	$200/(80+15\times 169125/2^{18})$
17	2.21429	$200/(80+16\times 169125/2^{18})$
18	2.19858	$200/(80+17\times 169125/2^{18})$
19	2.18310	$200/(80 + 18 \times 169125/2^{18})$
20	2.16783	$200/(80+19\times 169125/2^{18})$
21	2.15278	$200/(80 + 20 \times 169125/2^{18})$
22	2.13793	$200/(80 + 21 \times 169125/2^{18})$
23	2.12329	$200/(80 + 22 \times 169125/2^{18})$
24	2.10884	$200/(80 + 23 \times 169125/2^{18})$
25	2.09459	$200/(80 + 24 \times 169125/2^{18})$
26	2.08054	$200/(80 + 25 \times 169125/2^{18})$
27	2.06667	$200/(80+26\times 169125/2^{18})$
28	2.05298	$200/(80+27\times 169125/2^{18})$
29	2.03947	$200/(80+28\times 169125/2^{18})$
30	2.02614	$200/(80+29\times 169125/2^{18})$
31	2.01299	$200/(80 + 30 \times 169125/2^{18})$
32	2.00000	$200/(80+31\times 169125/2^{18})$

Table 5.153: PMIC clock frequency across chirps in chirp-to-chirp staircase mode in
an example when PMIC clock varies from 2 MHz to 2.5 MHz in 32
chirps

Copyright © 2021, Texas Instruments Incorporated

Example 3. Dithered PMIC clock with slope in continuous mode

Objective: To configure a dithered PMIC clock at frequencies ranging from 2 MHz to 2.5 MHz over 100 $\mu s.$

Configurations:

- 1. PMICCLK_SRC = 0x2 (400 MHz PLL divided clock)
- 2. SRCCLOCK_DIV = 1, Reference clock = 400 MHz /(1 + 1) = 200 MHz
- 3. MODE_SELECT = 0
- 4. FREQ_SLOPE = 23302 (Computed as (MAX_NDIV_VAL MIN_NDIV_VAL) $\cdot 2^{18}/(100 \ \mu s \cdot (2.5 \ \text{MHz} + 2 \ \text{MHz})/2))$
- 5. MIN_NDIV_VAL = 80 (Computed as 200 MHz/2.5 MHz)
- 6. MAX_NDIV_VAL = 100 (Computed as 200 MHz/2.0 MHz)
- 7. CLK_DITHER_EN = 1

With the above configuration, the PMIC clock frequency would be PMIC clock would vary between = (200 MHz / 80) to (200 MHz / 100) in steps of (200 MHz/ $\lfloor (80 + (N \times 23302/2^{18} + X)) \rfloor$ where

- N = Iteration count that ticks every PMIC clock. The average value of PMIC clock here is \sim 2.25 MHz. Hence the iteration count ticks every (1/2.25 MHz) \sim 0.444 μ s.
- X = random fractional value in the range (0, 1) that adds the dither

The PMIC clock frequency is determined by the clock divider which starts with a value of 100, on the 1st PMIC clock period, providing a PMIC clock of 2 MHz, decrementing the divider value by $23303/2^{18} = 0.08889$ every PMIC clock period of 1/2.25 MHz $\sim 0.444 \ \mu$ s, finally reaching a value of 80 on 225th PMIC clock period, providing a PMIC clock of 2.5 MHz. Hence, the frequency varies from [2 MHz, 2.5 MHz] over 225 PMIC clock periods or $225 \times 0.444 \ \mu$ s or $\sim 100 \ \mu$ s.

5.16.10 Sub block 0x4049 - AWR_MSS_PERIODICTESTS_CONF_SB

This sub block is used to trigger the periodic tests in MSS. Table 5.154 describes the content of this sub block.

Table 5.154:	AWR_	$_MSS_$	_PERIODICTESTS_	_CONF_	_SB contents
--------------	------	----------	-----------------	--------	--------------

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4049
SBLKLEN	2	Value = 16

		· · · ·
PERIODICITY	4	Periodicity at which tests need to be run 1 LSB = 1 ms Minimum value is 40 ms Maximum value is 150ms NOTE: MSS Windowed WDT period is set to this periodic- ity and WDT can not support period more than 150ms.
TEST_EN	4	 1 – Enable, 0 – Disable Bit Monitoring type b0 PERIODIC_CONFG_REGISTER_READ_EN b1 ESM_MONITORING_EN b31:2 RESERVED
REPORTING_ MODE	1	Controls when the AWR device sends the report corresponding to the periodic tests to the host. A report generically refers to both success/failure status flags.ValueDefinition0Report is sent every monitoring period1Report is sent only on a failure
RESERVED	3	0x00000

Table 5.154 – continued from previous page

NOTE:	The MSS periodic monitor test run and latent tests are not recom-
	mended to run in parallel as latent tests are destructive tests which
	would cause periodic tests to fail.

5.16.11 Sub block 0x404A - AWR_MSS_LATENTFAULT_TEST_CONF_SB

This sub block is used to trigger the periodic latent fault tests in MSS, this API should not be issued when functional frames are running, these are destructive tests. Table 5.155 describes the content of this sub block.

Table 5.155:	AWR	MSS	LATENTFAULT	TEST	CONF	SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x404A
SBLKLEN	2	Value = 16

			linued from previous page
TEST_EN_1	4	Bits	Definition
		b0	RESERVED
		b1	DMA self-test
		b2	RESERVED
		b3	RTI self-test
		b4	RESERVED
		b5	EDMA self-test
		b6	CRC self-test
		b7	VIM self-test
		b8	RESERVED
		b9	Mailbox self-test
		b10	RESERVED
		b11	RESERVED
		b12	Generating NERROR
		b13	MibSPI single bit error test
		b14	MibSPI double bit error test
		b15	DMA Parity error
		b16	TCMA RAM single bit errors (Not supported, refer latest release note)
		b17	TCMB RAM single bit errors (Not supported, refer latest release note)
		b18	TCMA RAM double bit errors (Not supported, re- fer latest release note)
		b19	TCMB RAM double bit errors (Not supported, re- fer latest release note)
		b20	TCMA RAM parity errors (Not supported, refer latest release note)
		b21	TCMB RAM parity errors (Not supported, refer latest release note)
		b22	RESERVED
		b23	RESERVED
		b24	DMA MPU Region tests
		b25	MSS Mailbox single bit errors
		b26	MSS Mailbox double bit errors
		b27	BSS Mailbox single bit errors
		b28	BSS Mailbox double bit errors
		b29	EDMA MPU test
		b30	EDMA parity test
		b31	CSI2 parity test

Table 5.155 – continued from previous page

TEST_EN_2	4	Bits	Definition
		b0	RESERVED
		b1	RESERVED
		b2	RESERVED
		b3	VIM RAM parity test
		b4	SCI boot time test
		b31:5	RESERVED
REPORTING_	1	Value	Definition
MODE		0	Report is sent after test completion
		1	Report is send only upon a failure
TEST_MODE	1	Value	Definition
		0	Production mode. Latent faults are tested and any failures are reported
		1	Characterization mode. Faults are injected and failures are reported which allows testing of the failure reporting
RESERVED	2	0x0000	

Table 5.155 – continued from previous page

NOTE1:	The MSS latent self tests are destructive tests, which would cause corruption in ongoing SPI/mailbox transactions and may generate N-Error signals while performing ESM G2 error checks. The MIB-SPI ECC tests (b13,b14) can be destructive tests if there is an on-going MIBSPI communication. It is recommended not to run these self tests in functional mode of operation.
NOTE2:	It is recommended to wait for the latent fault test report asyn- chronous event after issuing this API. The MSS latent self tests can- not be issued back to back without waiting for the test report event.

5.16.12 Sub block 0x404B - AWR_DEV_TESTPATTERN_GEN_SET_SB

This sub block contains the configurations to setup the test pattern to be generated and transferred over the selected high speed interface (LVDS). This command has to be issued after the data path configurations commands are issued. This can be used to perform a sanity test of the high speed interface connectivity and correct reception.

Table 5.156 describes the contents of this sub block.

Table 5.156: AWR_DEV_TESTPATTERN_GEN_SET_SB contents

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x404B		
SBLKLEN	2	Value = 48		
TESTPATTERN_ GEN_CTRL	1	This field controls the enthe test pattern.ValueDescription0x0Disable test patt0x1Enable test patt	•	
TESTPATTERN_ GEN_TIMING	1	samples for the test patte	s (200 MHz) between successive ern gen. of Test pattern enable. Else ig-	
TESTPATTERN_ PKT_SIZE	2	Number of ADC samples to capture for each RX Valid range: 64 to MAX_NUM_SAMPLES, Where MAX_NUM_SAMPLES is such that all the enabled RX channels' data fits into 16 kB memory, with each sam- ple consuming 2 bytes for real ADC output case and 4 bytes for complex 1x and complex 2x ADC output cases. For example in AWR2243/xWR6243/AWR1243/xWR1443 when the ADC buffer size is 16 kB		
		Number of ADC fo RX chains	rmat MAX_NUM_ SAMPLES	
		4 Comp		
		4 Rea		
		2 Comp	blex 2048	
		2 Rea	al 4096	
NUM_TESTPAT- TERN_PKTS	4	Number of test pattern pa For infinite packets set it		
TESTPATTERN_ RX0_ICFG	4	ignored. Bits Description b15:0 Start offset valu for the test patte	e of test pattern enable. Else ue to be used for the first sample ern data	
		b31:16 Value to be adde the test pattern	ed for each successive sample for data	

		0 00110	nued from previous page
TESTPATTERN_ RX0_QCFG	4	1	d specifies the values for Rx0, Q channel. ble only in case of test pattern enable. Else
		Bits	Description
		b15:0	Start offset value to be used for the first sample for the test pattern data
		b31:16	Value to be added for each successive sample for the test pattern data
TESTPATTERN_ RX1_ICFG	4	1	d specifies the values for Rx1, I channel. ole only in case of test pattern enable. Else
		Bits	Description
		b15:0	Start offset value to be used for the first sample for the test pattern data
		b31:16	Value to be added for each successive sample for the test pattern data
TESTPATTERN_ RX1_QCFG	4		d specifies the values for Rx1, Q channel. ole only in case of test pattern enable. Else
		Bits	Description
		b15:0	Start offset value to be used for the first sample for the test pattern data
		b31:16	Value to be added for each successive sample for the test pattern data
TESTPATTERN_ RX2_ICFG	4		d specifies the values for Rx2, I channel. ble only in case of test pattern enable. Else
		Bits	Description
		b15:0	Start offset value to be used for the first sample for the test pattern data
		b31:16	Value to be added for each successive sample for the test pattern data
TESTPATTERN_ RX2_QCFG	4		d specifies the values for Rx2, Q channel. ble only in case of test pattern enable. Else
		Bits	Description
		b15:0	Start offset value to be used for the first sample for the test pattern data
		b31:16	Value to be added for each successive sample for the test pattern data

Table 5.156 – continued from previous page

TESTPATTERN_ RX3_ICFG	4	Applicab ignored.	d specifies the values for Rx3, I channel. le only in case of test pattern enable. Else
		Bits b15:0	Description
		015.0	Start offset value to be used for the first sample for the test pattern data
		b31:16	Value to be added for each successive sample for the test pattern data
TESTPATTERN_ RX3_QCFG	4	This field specifies the values for Rx3, Q channel. Applicable only in case of test pattern enable. Else ignored.	
		Bits	Description
		b15:0	Start offset value to be used for the first sample for the test pattern data
		b31:16	Value to be added for each successive sample for the test pattern data
RESERVED	4	0x00000	000

Table 5.156 – continued from previous page

NOTE:

This test pattern can be used only in LVDS testing and bring-up

5.16.13 Sub block 0x404C – AWR_DEV_CONFIGURATION_SET_SB

This API is used to configure the CRC type for the async events from MSS. The default is 16 bit CRC if this API is not issued. The first async event after MSS powerup will have a 16 bit CRC.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x404C
SBLKLEN	2	Value = 16
ASYNC_EVENT_	1	Value Description
CRC_CFG		0 16 bit CRC for MSS async events
		1 32 bit CRC for MSS async events
		2 64 bit CRC for MSS async events
MISC_DEV_CFG	1	Bit Field Description
		b0 Enable MSS Logger Default value : 0 (Logger Disabled)
		b31-1 RESERVED

 Table 5.157:
 AWR_DEV_CONFIGURATION_SET_SB contents

Table 5.157 – continued	from previous page
	nom providuo pugo

RESERVED1	2	0x0000
RESERVED2	4	0x0000000
RESERVED3	4	0x0000000

5.16.14 Sub block 0x404D – AWR_DEV_RF_DEBUG_SIG_SET_SB

This sub-block contains the information to enable the pin-mux to bring out debug signals for the chirp cycle.

CLK_OUT signal will be output on OSC_CLKOUT pin and ADC_SIG_OUT will be output on GPIO_0 pin.

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x404D	
SBLKLEN	2	Value = 20	
CLK_OUT	2	Value Description	
		0 NO_CLK_OUT, Disable clock out signal	
		1 REF_CLK_OUT, Reference clock out enable	
		2 APLL_CLK_OUT, APLL clock out enable	
		3 2P5G_SYNTH_CLK_OUT, 2.5GHz Synth clock out enable	
		4 5G_SYNTH_CLK_OUT, 5GHz Synth clock out enable	
ADC_SIG_OUT	2	Bit Description	
		b0 ADC_VALID, ADC valid signal enabled in GPIO_ 0	
		b31:1 RESERVED	
		0: Disable 1: Enable	
RESERVED	4	0x0000000	
RESERVED	4	0x0000000	
RESERVED	4	0x0000000	

Table 5.158: AWR_DEV_RF_DEBUG_SIG_SET_SB contents

5.16.15 Sub block 0x404E - AWR_DEV_DEV_HSI_DELAY_DUMMY_CFG_SET_SB

This API can be used to increase the time between the availability of chirp data and the transfer of chirp data over HSI (CSI/LVDS) interface. It can also be used to add configurable amount of dummy data per chirp at the end of actual chirp data.

NOTE1:	The user should configure the delay (and the dummy count) such that the chirp data transmission is completed before the start of next chirp's data transmission. Excessive delay or dummy count may lead to fault which will be reported by MSS
NOTE2:	The change in Delay value configuration will reflect immediately. But any change in Dummy value configuration will reflect only after frame configuration.
NOTE3:	There is some delay T0 (even without enabling this API) between the chirp data availability to data transmission. The delay added by this API is in addition to this T0. T0 depends on ADC Sampling rate, CSI Data rate and whether the CSI Line-Start-Line-End is en- abled or not. The programmer needs to account for this delay while selecting the configuration values for this API.

Table 5.159: AWR_DEV_DEV_HSI_DELAY_DUMMY_CFG_SET_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x404E	
SBLKLEN	2	Value = 20	
ENBALE_MODE	1	This field decides if the Delay or Dummy option is enabled or disabled Mode Definition	
		0 No Delay or Dummy Data (Disabled)	
		1 HSI Data will have an additional configurable de- lay after ADC VALID and Configurable Dummy data after chirp data	
		2 Similar to configuration 0x1 but the device varies the delay in each chirp	
		3 - RESERVED 0xFF	
RESERVED	3	0x0000	

DELAY_VAL	2	Delay Count value	
		Mode DELAY_VAL Definition	
		0 NA	
		1 1 LSB = 20 ns delay Delay Added = (DELAY_VAL*20ns) + 1.2us	
		2 Delay Added = Vary from chirp to chirp within MIN_DELAY to MAX_DELAY. MIN_DELAY = 1.1us MAX_DELAY = 1.2us + (DELAY_VAL * 20ns)	
RESERVED	2	0x0000	
DUMMY_VAL	2	Dummy Count value Number of dummy bytes added per chirp For 12-bit ADC data, 12 * Dummy Value For 14-bit ADC data, 14 * Dummy Value For 16-bit ADC data, 16 * Dummy Value Valid Range: 0 to 2048	
RESERVED	2	0x0000	
RESERVED	4	0x0000000	

Table 5.159 – continued from previous page

5.17 Sub blocks related to AWR_DEV_CONF_GET_MSG

5.17.1 Sub block 0x4060 - AWR_DEV_MCUCLOCK_GET_SB

This API is used to read the MCU clock configuration. Response packet structure will be same as AWR_DEV_MCUCLOCK_SET_SB

Table 5.160:	AWR	DEV	MCUCLOCK	GET	SB	contents
10010 011001	111110					COLLODITOD

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4060
SBLKLEN	2	Value = 4

5.17.2 Sub block 0x4061 - AWR_DEV_RX_DATA_FORMAT_CONF_GET_SB

This API is used to read the RX data format configuration. Response packet structure will be same as AWR_DEV_RX_DATA_FORMAT_CONF_SET_SB

 $\textbf{Table 5.161: AWR_DEV_RX_DATA_FORMAT_CONF_GET_SB \ contents}$

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4061
SBLKLEN	2	Value = 4

5.17.3 Sub block 0x4062 - AWR_DEV_RX_DATA_PATH_CONF_GET_SB

This API is used to read the RX data path configuration. Response packet structure will be same as AWR_DEV_RX_DATA_PATH_CONF_SET_SB

Table 5.162: AWR_DEV_RX_DATA_PATH_CONF_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4062
SBLKLEN	2	Value = 4

5.17.4 Sub block 0x4063 – AWR_DEV_RX_DATA_PATH_LANEEN_GET_SB

This API is used to read the RX data path lane enable configuration. Response packet structure will be same as AWR_DEV_RX_DATA_PATH_LANEEN_SET_SB

 Table 5.163:
 AWR_DEV_RX_DATA_PATH_LANEEN_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4063
SBLKLEN	2	Value = 4

5.17.5 Sub block 0x4064 – AWR_DEV_RX_DATA_PATH_CLK_GET_SB

This API is used to read the RX data path clock configuration. Response packet structure will be same as AWR_DEV_RX_DATA_PATH_CLK_SET_SB

Table 5.164: AWR_DEV_RX_DATA_PATH_CLK_GET_SB contents

Field Name	Number	Description
	of bytes	

SBLKID	2	Value = 0x4064
SBLKLEN	2	Value = 4

5.17.6 Sub block 0x4065 - AWR_DEV_LVDS_CFG_GET_SB

This API is used to read the LVDS configuration. Response packet structure will be same as AWR_DEV_LVDS_CFG_SET_SB

 Table 5.165:
 AWR_DEV_LVDS_CFG_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4065
SBLKLEN	2	Value = 4

5.17.7 Sub block 0x4066 – AWR_DEV_RX_CONTSTREAMING_MODE_CONF_ GET_SB

This API is used to read the continuous streaming mode configuration. Response packet structure will be same as AWR_DEV_RX_CONTSTREAMING_MODE_CONF_SET_SB

Table 5.166: AWR_DEV_RX_CONTSTREAMING_CONF_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4066
SBLKLEN	2	Value = 4

5.17.8 Sub block 0x4067 - AWR_DEV_CSI2_CFG_GET_SB

This API is used to read the CSI2 configuration. Response packet structure will be same as AWR_DEV_CSI2_CFG_SET_SB

Table 5.167:	AWR_	_DEV_	$_{\rm CSI2}$	_CFG_	_GET_	SB contents
--------------	------	-------	---------------	-------	-------	-------------

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4067
SBLKLEN	2	Value = 4

5.17.9 Sub block 0x4068 - AWR_DEV_PMICCLOCK_CONF_GET_SB

This API is used to read the PMIC clock configuration. Response packet structure will be same as AWR_DEV_PMICCLOCK_CONF_SET_SB

 Table 5.168:
 AWR_DEV_PMICCLOCK_CONF_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4068
SBLKLEN	2	Value = 4

5.17.10 Sub block 0x4069 – AWR_MSS_LATENTFAULT_TEST_CONF_GET_SB

This API is used to read the MSS latent fault test configuration. Response packet structure will be same as AWR_MSS_LATENTFAULT_TEST_CONF_SET_SB

Table 5.169: AWR_MSS_LATENTFAULT_CONF_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4069
SBLKLEN	2	Value = 4

5.17.11 Sub block 0x406A - AWR_MSS_PERIODICTESTS_CONF_GET_SB

This API is used to read the MSS periodic tests configuration. Response packet structure will be same as AWR_MSS_PERIODICTESTS_CONF_SET_SB

Table 5.170: AWR_MSS_PERIODICTESTS_CONF_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x406A
SBLKLEN	2	Value = 4

5.17.12 Sub block 0x406B – AWR_DEV_TESTPATTERN_GEN_GET_SB

This API is used to read the test pattern generation configuration. Response packet structure will be same as AWR DEV TESTPATTERN GEN SET SB

 Table 5.171:
 AWR_DEV_TESTPATTERN_GEN_GET_SB contents

Field Name	Number	Description
	of bytes	

SBLKID	2	Value = 0x406B
SBLKLEN	2	Value = 4

5.18 Sub blocks related to AWR_DEV_FILE_DOWNLOAD_MSG

5.18.1 Sub block 0x4080 - AWR_DEV_FILE_DOWNLOAD_SB

This sub block is used to send the file in chunks/parts for download into RAM. Table 5.172 describes the content of this sub block.

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x4080	
SBLKLEN	2	Value = Variable	
FILE_TYPE	4	Value Description	
		0x0 META_IMAGE TO SRAM	
		0x1 RESERVED	
		0x2 RESERVED	
		0x3 RESERVED	
		0x4 META_IMAGE1 TO SFLASH	
		0x5 META_IMAGE2 TO SFLASH	
		0x6 META_IMAGE3 TO SFLASH	
		0x7 META_IMAGE4 TO SFLASH	
FILE_LENGTH	4	Length of File	
FILE_CONTENT	Variable	Content of File, may split into multiple chunks.	

Table 5.172:	AWR	DEV	FILE	DOWNLOAD	SB contents
	111110			_DOWINDOWD_	

5.19 Sub blocks related to AWR_DEV_FRAME_CONFIG_APPLY_ MSG

5.19.1 Sub block 0x40C0 - AWR_DEV_FRAME_CONFIG_APPLY_SB

This sub block is used to indicate to MSS to apply all the device configurations in the hardware. This API should be used when lagacy frame config is used. Table 5.173 describes the content of this sub block.

NOTE: In the first chunk of file, FILE_TYPE and FILE_LENGTH is available and then first chunk onward these two fields will not be part of SB content

Table 5.173: AWR_DEV_FRAME_CONFIG_APPLY_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x40C0
SBLKLEN	2	Value = 12
NUM_CHIRPS	4	Number of chirps per frame
HALF_WORDS_ PER_CHIRP	2	Number of half words in ADC buffer per chirp Example 1: In real mode, if number of ADC samples per chirp is 256 then this value will be 256 Example 2: In complex1x or complex2x modes, if number of ADC samples per chirp is 256 then this value will be 512
RESERVED	2	0x0000

5.19.2 Sub block 0x40C1 – AWR_DEV_ADV_FRAME_CONFIG_APPLY_SB

This sub block is used to indicate to MSS to apply all the advanced frame configuration settings in the hardware. This API should be used when advance frame config is used. Table 5.174 describes the content of this sub block.

Table 5.174: AWR_DEV_ADV_FRAME_CONFIG_APPLY_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x40C1
SBLKLEN	2	Value = 40
NUM_SUB- FRAMES	1	Number of sub frames enabled in this frame Valid range: 1 to 4
RESERVED	3	0x00
SF1_TOT_NUM_ CHIRPS	4	Number of chirps in sub frame 1

Table 5.1	74 – continued	from	previous	page

Table 5.174 – continued from previous page			
SF1_NUM_ADC_ SAMPLES_PER_ DATA_PKT	2	Number of half words (16 bits) of ADC samples per data packet in sub-frame 1 Example 1: In real mode, if number of ADC samples per chirp in subframe1 is 256 then this value will be 256 Example 2: In complex1x or complex2x modes, if number of ADC samples per chirp in subframe1 is 256 then this value will be 512 In AWR2243/xWR6243/AWR1243/xWR1443: Program this as the same as number of ADC samples in each chirp of this sub frame (required to be the same) Exception: Can do #chirps based ping-pong as in xWR1642 (see below), if CP/CQ are not needed. Useful for chirp stitching use case. In xWR1642/xWR1843 (For reference Only): The ADC samples corresponding to one or more chirps can be grouped and sent to the DSP as a single packet. Program this as the number of half words of ADC samples per packet. Ensure that in one sub frame, there is integer number of such packets. Maximum size of a data packet: (16384 - 1) half words.	
SF1_PROC_ NUM_CHIRPS_ PER_DATA_PKT	1	Number of chirps per data packet to process at a time in sub-frame 1. In AWR2243/xWR6243/AWR1243/xWR1443: Program this as 1. Exception: Can be > 1 as in 1642 if CP/CQ is not needed. Useful for chirp stitching use case. In xWR1642/xWR1843 (For reference Only): The ADC samples corresponding to one or more chirps can be grouped and sent to the DSP as a single packet. Program this as the corresponding number of chirps per packet. Maximum value = 8. Note on maximum size: 8 chirps for CP and BPM.	
RESERVED	1	0x00	
SF2_TOT_NUM_ CHIRPS	4	Number of chirps in sub-frame 2	
SF2_NUM_ADC_ SAMPLES_PER_ DATA_PKT	2	Number of ADC Samples per data packet in sub-frame 2 Same conditions apply as in sub-frame 1.	
SF2_PROC_ NUM_CHIRPS_ PER_DATA_PKT	1	Number of chirps per data packet to process at a time in sub-frame 2 Same conditions apply as in sub-frame 1.	
RESERVED	1	0x00	

SF3_TOT_NUM_ CHIRPS	4	Number of chirps in sub-frame3
SF3_NUM_ADC_ SAMPLES_PER_ DATA_PKT	2	Number of ADC samples per data packet in sub-frame 3 Same conditions apply as in sub-frame 1.
SF3_PROC_ NUM_CHIRPS_ PER_DATA_PKT	1	Number of chirps per data packet to process at a time in sub-frame 3 Same conditions apply as in sub-frame 1.
RESERVED	1	0x00
SF4_TOT_NUM_ CHIRPS	4	Number of chirps in sub-frame4
SF4_NUM_ADC_ SAMPLES_PER_ DATA_PKT	2	Number of ADC samples per data packet in sub-frame 4 Same conditions apply as in sub-frame 1.
SF4_PROC_ NUM_CHIRPS_ PER_DATA_PKT	1	Number of chirps per data packet to process at a time in sub-frame 4 Same conditions apply as in sub-frame 1.
RESERVED	1	0x00

5.20 Sub blocks related to AWR_DEV_STATUS_GET_MSG

5.20.1 Sub block 0x40E0 – AWR_MSSVERSION_GET_SB

This sub block reads MSS FW version. The information returned by the device will be in the format as given in AWR_MSSVERSION_SB.

Table 5.175 describes the contents of the request sub block

Table 5.175: AWF	_MSSVERSION_	_GET_	_SB contents
-------------------------	--------------	-------	--------------

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x40E0
SBLKLEN	2	Value = 4

Response to AWR_MSSVERSION_GET_SB

AWR_MSSVERSION_SB sub block is sent by the radar device in response to AWR_MSSVERSION_ GET_SB. Note that SBLKID for both AWR_MSSVERSION_GET_SB and AWR_MSSVERSION_ SB are same.

Table 5.176 describes the contents of the response sub block.

Table 5.176. AWR_MSSVERSION_SD contents			
Field Name	Number of bytes	Description	
SBLKID	2	Value = $0x40E0$	
SBLKLEN	2	Value = 20	
HW_VARIANT	1	HW variant number	
HW_VERSION_ MAJOR	1	HW version major number	
HW_VERSION_ MINOR	1	HW version minor number	
MSS_FW_VER- SION_MAJOR	1	MSS FW version major number	
MSS_FW_VER- SION_MINOR	1	MSS FW version minor number	
MSS_FW_VER- SION_BUILD	1	MSS FW version build number	
MSS_FW_VER- SION_DEBUG	1	MSS FW version debug number	
MSS_FW_VER- SION_YEAR	1	Year of MSS FW version release	
MSS_FW_VER- SION_MONTH	1	Month of MSS FW version release	
MSS_FW_VER- SION_DAY	1	Day of MSS FW version release	
MSS_FW_VER- SION_PATCH_ MAJOR	1	MSS FW version patch major number	
MSS_FW_VER- SION_PATCH_ MINOR	1	MSS FW version patch minor number	
MSS_FW_VER- SION_PATCH_ YEAR	1	Year of MSS FW patch release	
MSS_FW_VER- SION_PATCH_ MONTH	1	Month of MSS FW patch release	
MSS_FW_VER- SION_PATCH_ DAY	1	Day of MSS FW patch release	

Table 5.176: AWR_MSSVERSION_SB contents

Table 5.176 – continued from previous page			
MSS_FW_	1	Bit	Definition
PATCH_BUILD_ DEBUG_VER- SION		b3:0	DEBUG version number
		b7:4	BUILD version number

5.20.2 Sub block 0x40E1 - AWR_MSSCPUFAULT_STATUS_GET_SB

This sub block provides the MSS CPU fault information. Table 5.177 describes the content of this sub block.

Table 5.177: AWR	_MSSVERSION_	_SB contents
-------------------------	--------------	--------------

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x40E1	
SBLKLEN	2	Value = 4	

Response to AWR_MSSCPUFAULT_STATUS_GET_SB

AWR_MSSCPUFAULT_STATUS_SB is sent in response to AWR_MSSCPUFAULT_STATUS_GET_SB.

Table 5.178 describes the content of AWR_MSSCPUFAULT_STATUS_SB

Table 5.178:	AWR.	MSSCPUFAULT	STATUS	SB	contents
TUDIO 011101	110110	_mosor ormonr_			COLLOULUD

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x40	E1
SBLKLEN	2	Value = 36	
FAULT_TYPE	1	Value	Definition
		0	MSS Processor Undefined Instruction Abort
		1	MSS Processor Instruction pre-fetch Abort
		2	MSS Processor Data Access Abort
		3	MSS Processor Firmware Fatal Error
		4	MSS Processor Chirp Errors
		5	MSS Processor Register read-back errors
		0x6-0xFF	Reserved
RESERVED	1	0x00	

		78 – continued from previous page		
LINE_NUM	2	Valid only in case of FAULT type is 0x3, provides the firmware line number at which fatal error occurred.		
FAULT_LR	4	The instruction PC address at which Fault occurred in case of FAULT type is $0x0 - 0x3$ The register address incase of failure for Fault type $0x5$		
FAULT_PREV_ LR	4	The return address of the function from which fault function has been called (Call stack LR) in case of FAULT type is 0x0-0x3 The register read-back value in case of FAULT type 0x5		
FAULT_SPSR	4	The CPSR register value at which fault occurred in case of FAULT type is 0x0-0x3 The regsiter write value in case of FAULT type is 0x5		
FAULT_SP	4	The SP register value at which fault occurred		
FAULT_CAUSE_ ADDRESS	4	The address access at which Fault occurred (valid only for fault type 0x0 to 0x2)		
FAULT_ERROR_ STATUS	2	The status of Error (Error Cause type - valid only for fault type 0x0 to 0x2) 0x000 BACKGROUND_ERR 0x001 ALIGNMENT_ERR 0x002 DEBUG_EVENT 0x00D PERMISSION_ERR 0x008 SYNCH_EXTER_ERR 0x406 ASYNCH_EXTER_ERR 0x409 SYNCH_ECC_ERR 0x408 ASYNCH_ECC_ERR		
FAULT_ERROR_ SOURCE	1	The Source of the Error (Error Source type - valid only forfault type 0x0 to 0x2)0x0ERR_SOURCE_AXI_MASTER0x1ERR_SOURCE_ATCM0x2ERR_SOURCE_BTCM		
FAULT_AXI_ER- ROR_TYPE	1	The AXI Error type (Error Source type - valid only for faulttype 0x0 to 0x2)0x0AXI_DECOD_ERR0x1AXI_SLAVE_ERR		
FAULT_AC- CESS_TYPE	1	The Error Access type (Error Access type - valid only for fault type 0x0 to 0x2) 0x0 READ_ERR 0x1 WRITE_ERR		

Table 3.170 – continued from previous page				
FAULT_RECOV- ERY_TYPE	1	The Error Recovery type (Error Recovery type - Valid only for fault type 0x0 to 0x2)		
		0x0 UNRECOVERY		
		0x1 RECOVERY		
RESERVED	2	0x0000		

5.20.3 Sub block 0x40E2 – AWR_MSSESMFAULT_STATUS_GET_SB

This sub block provides the information regarding additional Master sub system faults. Table 5.179 describes the content of this sub block.

Table 5.179: AWR_MSSESMFAULT_STATUS_GET_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x40E2	
SBLKLEN	2	Value = 4	

The Response to above request is given in the AWR_MSSESMFAULT_STATUS_SB. Table 5.180 describes the contents of AWR_MSSESMFAULT_STATUS_SB.

Table 5.180:	AWR_	MSSESMFAULT_	STATUS_	$_{\rm SB}$	contents
--------------	------	--------------	---------	-------------	----------

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x40E2	
SBLKLEN	2	Value = 20	

ESM_GROUP1_	4	Bits	Error Information
ERRORS		2.0	0 – No Error , 1 – ESM Error
		b0	NERROR in sync
		b1	RESERVED
		b2	DMA MPU Region tests
		b3	DMA Parity error
		b4	RESERVED
		b5	RESERVED
		b6	DSS CSI parity Error
		b7	TPCC parity error
		b8	CBUF ECC single bit error
		b9	CBUF ECC double bit error
		b10	RESERVED
		b11	RESERVED
		b12	RESERVED
		b13	Error response from the Peripheral when a DMA transfer is done
		b14	RESERVED
		b15	VIM RAM double bit errors
		b16	RESERVED
		b17	MibSPI double bit error test
		b18	DSS TPTC0 read MPU error
		b19	RESERVED
		b20	VIM RAM single bit errors
		b21	RESERVED
		b22	FRC Lock Step Error
		b23	RESERVED
		b24	RESERVED
		b25	MibSPI single bit error test
		b26	TCMB0 RAM single bit errors
		b27	STC error
		b28	TCMB1 RAM single bit errors
		b29	DSS TPTC0 write MPU error
		b30	DCC compare error
		b31	CR4F self-test error.(test of error path by error forcing)

ESM_GROUP2_	4	Bits	Definition
ERRORS		b0	TCMA RAM single bit errors
		b1	RESERVED
		b2	RESERVED
		b3	DSS TPTC1 read MPU error
		b4	DSS TPTC1 write MPU error
		b5	RESERVED
		b6	Access error interrupt from FFT ACC
		b7	VIM Self-Test Error
		b8	RESERVED
		b9	RESERVED
		b10	RESERVED
		b11	RESERVED
		b12	RESERVED
		b13	RESERVED
		b14	RESERVED
		b15	RESERVED
		b16	RESERVED
		b17	RESERVED
		b18	RESERVED
		b19	RESERVED
		b20	RESERVED
		b21	RESERVED
		b22	RESERVED
		b23	RESERVED
		b24	RESERVED
		b25	BSS to MSS ESM G2 Trigger
		b26	BSS Mailbox single bit errors
		b27	BSS Mailbox double bit errors
		b28	MSS Mailbox single bit errors
		b29	MSS Mailbox double bit errors
		b30	RESERVED
		b31	RESERVED
RESERVED	4	0x00000	
RESERVED	4	0x0000	0000

5.21 Sub blocks related to AWR_DEV_ASYNC_EVENT_MSG

5.21.1 Sub block 0x5000 - AWR_AE_DEV_MSSPOWERUPDONE_SB

This sub block indicates that Master SS power up is now complete. It also indicates the status of boot up tests done by Master SS. This async event is sent when host IRQ is enabled. Table 5.181 describes the contents of this sub block

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x5000
SBLKLEN	2	Value = 24
MSS_ POWERUP_ TIME	4	Master SS power up time 1 LSB = 5 ns
MSS_ POWERUP_ STATUS	8	Refer to Table 7.3 for bit map details

Table 5.181: AWR_AE_DEV_MSSPOWERUPDONE_SB contents

BOOTTEST_	8	0 – PAS	S, 1 – FAIL	
STATUS		Bit	Definition	
		b0	MibSPI self-test	
		b1	DMA self-test	
		b2	RESERVED	
		b3	RTI self-test	
		b4	ESM self-test	
		b5	EDMA self-test	
		b6	CRC self-test	
		b7	VIM self-test	
		b8	MPU self-test	
		b9	Mailbox self-test	
		b10	RESERVED	
		b11	RESERVED	
		b12	RESERVED	
		b13	MibSPI single bit error test	
		b14	MibSPI double bit error test	
		b15	DMA Parity error test	
		b16	TCMA Single bit error test	
		b17	TCMB Single bit error test	
		b18	RESERVED	
		b19	RESERVED	
		b20	RESERVED	
		b21	RESERVED	
		b22	VIM lockstep test	
		b23	CCM R4 lockstep test	
		b24	DMA MPU region test	
		b25	MSS Mailbox single bit error test	
		b26	MSS Mailbox double bit error test	
		b27	BSS Mailbox single bit error test	
		b28	BSS Mailbox double bit error test	
		b29	EDMA MPU test	
		b30	EDMA parity test	
		b31	RESERVED	
		b32	RESERVED	
		b33	RESERVED	
		b34	PCR test	
		b35	VIM RAM parity test	
		b36	SCI boot time test	
	_	b63:37	RESERVED	

Copyright © 2021, Texas Instruments Incorporated

383

NOTE:	The functional APIs shall be sent to radar device only after receiv-
	ing AWR_AE_DEV_MSSPOWERUPDONE_SB Async-event after
	power cycle. In case of boot over SPI then functional APIs
	shall be sent to radar device only after receiving AWR_AE_MSS_
	BOOTERRORSTATUS_SB Async-event.

5.21.2 Sub block 0x5001 – AWR_AE_DEV_RFPOWERUPDONE_SB

This sub block indicates that BIST SS power up is now complete. Table 5.182 describes the contents of this sub block

Table 5.182: AWR_AE_DEV_RFPOWERUPDONE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x5001
SBLKLEN	2	Value = 20

BSS	4	1 – PAS	S, 0 – FAIL
POWERUP_		Bit	Status Information
BIST_STATUS_ FLAGS		b0	ROM CRC check (RESERVED in xWR294x/xWR254x)
		b1	CR4 and VIM lockstep test
		b2	RESERVED
		b3	VIM test
		b4	STC test of diagnostic
		b5	CR4 STC
		b6	CRC test
		b7	RAMPGEN memory ECC test
		b8	DFE parity test
		b9	DFE memory ECC
		b10	RAMPGEN lockstep test
		b11	FRC lockstep test
		b12	DFE memory PBIST
		b13	RAMPGEN memory PBIST
		b14	PBIST test
		b15	WDT test
		b16	ESM test
		b17	DFE STC
		b18	RESERVED
		b19	ATCM, BTCM ECC test
		b20	ATCM, BTCM parity test
		b21	DCC test
		b22	RESERVED
		b23	RESERVED
		b24	FFT test (RESERVED in xWR254x)
		b25	RTI test
		b26	PCR test (RESERVED in xWR294x/xWR254x)
		b27	Bus Safety test (RESERVED in xWR254x)
		b28	ECC aggregator test
		b29	MPU test
		b31:30	RESERVED
POWERUP_ TIME	4	RF BIST 1 LSB =	SS Power up time 5 ns
RESERVED			

Table 5.182 – continued	I from previous page
-------------------------	----------------------

RESERVED	4	0x0000000

5.21.3 Sub block 0x5002 – AWR_AE_MSS_CPUFAULT_SB

This sub block indicates CPU fault status of Master SS. Table 5.183 describes the content of this sub block.

Table 5.183:	AWR_{-}	AE	MSS	_CPUFAULT_	_STATUS_	_SB contents
--------------	-----------	----	-----	------------	----------	--------------

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x5002	
SBLKLEN	2	Value = 36	
FAULT_TYPE	1	0 MSS Processor Undefined Instruction Abort	
		1 MSS Processor Instruction pre-fetch Abort	
		2 MSS Processor Data Access Abort	
		3 MSS Processor Firmware Fatal Error	
		4 MSS Processor Chirp Errors	
		5 MSS Processor Register read-back errors	
		0x6- Reserved 0xFF	
RESERVED	1	0x00	
LINE_NUM	2	Valid only in case of FAULT type is 0x3, provides the firmware line number at which fatal error occurred.	
FAULT_LR	4	The instruction PC address at which Fault occurred in case of FAULT type is 0x0 - 0x3	
		The register address incase of failure for Fault type 0x5	
FAULT_PREV_ LR	4	The return address of the function from which fault function has been called (Call stack LR) in case of FAULT type is 0x0-0x3 The register read-back value in case of FAULT type 0x5	
FAULT_SPSR	4	The CPSR register value at which fault occurred in case of FAULT type is 0x0-0x3 The regsiter write value in case of FAULT type is 0x5	
FAULT_SP	4	The SP register value at which fault occurred	
FAULT_CAUSE_ ADDRESS	4	The address access at which Fault occurred (valid only for fault type 0x0 to 0x2)	

·				
FAULT_ERROR_ STATUS	2	The status of Error (Error Cause type - valid only for fault type 0x0 to 0x2)		
		0x000 BACKGROUND_ERR		
		0x001 ALIGNMENT_ERR		
		0x002 DEBUG_EVENT		
		0x00D PERMISSION_ERR		
		0x008 SYNCH_EXTER_ERR		
		0x406 ASYNCH_EXTER_ERR		
		0x409 SYNCH_ECC_ERR		
		0x408 ASYNCH_ECC_ERR		
FAULT_ERROR_ SOURCE	1	The Source of the Error (Error Source type - valid only for fault type 0x0 to 0x2) 0x0 ERR SOURCE AXI MASTER		
		0x1 ERR SOURCE ATCM		
		0x2 ERR_SOURCE_BTCM		
FAULT_AXI_ER- ROR_TYPE	1	The AXI Error type (Error Source type - valid only for fault type 0x0 to 0x2) 0x0 AXI_DECOD_ERR		
		0x1 AXI_SLAVE_ERR		
FAULT_AC- CESS_TYPE	1	The Error Access type (Error Access type - valid only for fault type 0x0 to 0x2) 0x0 READ_ERR		
		0x1 WRITE_ERR		
FAULT_RECOV- ERY_TYPE	1	The Error Recovery type (Error Recovery type - Valid onlyfor fault type 0x0 to 0x2)0x0UNRECOVERY0x1RECOVERY		
RESERVED	2	0x0000		
RESERVED	2	0x0000		

5.21.4 Sub block 0x5003 – AWR_AE_MSS_ESMFAULT_STATUS_SB

This sub block indicates any other faults inside the MSS. Table 5.184 describes the content of this sub block.

$\textbf{Table 5.184: AWR}_AE_MSS_ESMFAULT_STATUS_SB \ contents$

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x5003
SBLKLEN	2	Value = 20

ESM_GROUP1_	4	Bits	Error Information
ERRORS	.	2.0	0 – No Error , 1 – ESM Error
		b0	NERROR in sync
		b1	RESERVED
		b2	DMA MPU Region tests
		b3	DMA Parity error
		b4	RESERVED
		b5	RESERVED
		b6	DSS CSI parity Error
		b7	TPCC parity error
		b8	CBUF ECC single bit error
		b9	CBUF ECC double bit error
		b10	RESERVED
		b11	RESERVED
		b12	RESERVED
		b13	Error response from the Peripheral when a DMA transfer is done
		b14	RESERVED
		b15	VIM RAM double bit errors
		b16	RESERVED
		b17	MibSPI double bit error test
		b18	DSS TPTC0 read MPU error
		b19	RESERVED
		b20	VIM RAM single bit errors
		b21	RESERVED
		b22	FRC Lock Step Error
		b23	RESERVED
		b24	RESERVED
		b25	MibSPI single bit error test
		b26	TCMB0 RAM single bit errors
		b27	STC error
		b28	TCMB1 RAM single bit errors
		b29	DSS TPTC0 write MPU error
		b30	DCC compare error
		b31	CR4F self-test error.(test of error path by error forcing)

ESM_GROUP2_	4	Bits	Definition	
ERRORS		b0	TCMA RAM single bit errors	
		b1	RESERVED	
		b2	RESERVED	
		b3	DSS TPTC1 read MPU error	
		b4	DSS TPTC1 write MPU error	
		b5	RESERVED	
		b6	Access error interrupt from FFT ACC	
		b7	VIM Self-Test Error	
		b8	RESERVED	
		b9	RESERVED	
		b10	RESERVED	
		b11	RESERVED	
		b12	RESERVED	
		b13	RESERVED	
		b14	RESERVED	
		b15	RESERVED	
		b16	RESERVED	
		b17	RESERVED	
		b18	RESERVED	
		b19	RESERVED	
		b20	RESERVED	
		b21	RESERVED	
		b22	RESERVED	
		b23	RESERVED	
		b24	RESERVED	
		b25	BSS to MSS ESM G2 Trigger	
		b26	BSS Mailbox single bit errors	
		b27	BSS Mailbox double bit errors	
		b28	MSS Mailbox single bit errors	
		b29	MSS Mailbox double bit errors	
		b30	RESERVED	
		b31	RESERVED	
RESERVED	4	0x00000		
RESERVED	4	0x0000000		

NOTE: The FRC lockstep fatal error is connected to MSS ESM Group 1 lines, This fatal error must be handled in Host in AWR2243/xWR6243 device.

5.21.5 Sub block 0x5004 – RESERVED

5.21.6 Sub block 0x5005 - AWR_AE_MSS_BOOTERRORSTATUS_SB

This sub block indicates error status of MSS when booted over SPI. This async event is sent after the bootup over SPI is complete.

Table 5.185 describes the content of this sub block.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x5005
SBLKLEN	2	Value = 24
MSS_ POWERUP_ TIME	4	Master SS power up time 1 LSB = 5 ns
MSS_ POWERUP_ STATUS	8	Refer to Table 7.3 for bit map details

Table 5.185: AWR_AE_MSS_BOOTERRORSTATUS_SB contents

BOOTTEST_	8	0 – PAS	S, 1 – FAIL	
STATUS		Bit	Definition	
		b0	MibSPI self-test	
		b1	DMA self-test	
		b2	RESERVED	
		b3	RTI self-test	
		b4	ESM self-test	
		b5	EDMA self-test	
		b6	CRC self-test	
		b7	VIM self-test	
		b8	MPU self-test	
		b9	Mailbox self-test	
		b10	RESERVED	
		b11	RESERVED	
		b12	RESERVED	
		b13	MibSPI single bit error test	
		b14	MibSPI double bit error test	
		b15	DMA Parity error test	
		b16	TCMA Single bit error test	
		b17	TCMB Single bit error test	
		b18	RESERVED	
		b19	RESERVED	
		b20	RESERVED	
		b21	RESERVED	
		b22	VIM lockstep test	
		b23	CCM R4 lockstep test	
		b24	DMA MPU region test	
		b25	MSS Mailbox single bit error test	
		b26	MSS Mailbox double bit error test	
		b27	BSS Mailbox single bit error test	
		b28	BSS Mailbox double bit error test	
		b29	EDMA MPU test	
		b30	EDMA parity test	
		b31	RESERVED	
		b32	RESERVED	
		b33	RESERVED	
		b34	PCR test	
		b35	VIM RAM parity test	
		b36	SCI boot time test	
		b63:37	RESERVED	_

Copyright © 2021, Texas Instruments Incorporated

392

	Table 5.185 – continued from previous page						
NOTE:	The functional APIs shall be sent to radar device only after receiv-						
	ing AWR_AE_MSS_BOOTERRORSTATUS_SB Async-event after						
	boot over SPI (Flash is not connected).						

5.21.7 Sub block 0x5006 - AWR_AE_MSS_LATENTFAULT_TESTREPORT_SB

This sub block indicates the test status report of the latent fault tests. Table 5.186 describes the content of this sub block.

Table 5.186: AWR_AE_MSS_LATENTFAULT_TESTREPORT_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x5006
SBLKLEN	2	Value = 16

TEST_STATUS_	4	1	S, 0 - FAIL
FLAG1		Bits	Definition
		b0	RESERVED
		b1	DMA self-test
		b2	RESERVED
		b3	RTI self-test
		b4	RESERVED
		b5	EDMA self-test
		b6	CRC self-test
		b7	VIM self-test
		b8	RESERVED
		b9	Mailbox self-test
		b10	RESERVED
		b11	RESERVED
		b12	Generating NERROR
		b13	MibSPI single bit error test
		b14	MibSPI double bit error test
		b15	DMA Parity error
		b16	TCMA RAM single bit errors (Not supported, refer latest release note)
		b17	TCMB RAM single bit errors (Not supported, refer latest release note)
		b18	TCMA RAM double bit errors (Not supported, re- fer latest release note)
		b19	TCMB RAM double bit errors (Not supported, re- fer latest release note)
		b20	TCMA RAM parity errors (Not supported, refer latest release note)
		b21	TCMB RAM parity errors (Not supported, refer latest release note)
		b22	RESERVED
		b23	RESERVED
		b24	DMA MPU Region tests
		b25	MSS Mailbox single bit errors
		b26	MSS Mailbox double bit errors
		b27	BSS Mailbox single bit errors
		b28	BSS Mailbox double bit errors
		b29	EDMA MPU test
		b30	EDMA parity test
		b31	CSI2 parity test

Continued on next page

Copyright © 2021, Texas Instruments Incorporated

TEST_STATUS_	4	Bits	Definition			
FLAG2		b0	RESERVED			
		b1	RESERVED			
		b2	RESERVED			
		b3	VIM RAM parity test			
		b4	SCI boot time test			
		b31:5	RESERVED			
RESERVED	4	0x0000000				

5.21.8 Sub block 0x5007 - AWR_AE_MSS_PERIODICTEST_STATUS_SB

This sub block indicates test status of the periodic tests. Table 5.187 describes the content of this sub block.

Table 5.187:	AWR_	AE	MSS	PERIODICTEST_	_STATUS_	SB contents
--------------	------	----	-----	---------------	----------	-------------

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x5007		
SBLKLEN	2	Value = 12		
TEST_STATUS_ FLAG	4	1 - PASS, 0 - FAILBitsDefinitionb0Periodic read back of static registersb1ESM self-testb31:2RESERVED		
RESERVED	4	0x0000000		

5.21.9 Sub block 0x5008 - AWR_AE_MSS_RFERROR_STATUS_SB

This sub block indicates the RF error status. Table 5.188 describes the content of this sub block.

Table 5.188:	AWR	AE	MSS	RFERROR	STATUS	SB contents
--------------	-----	----	-----	---------	--------	-------------

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x5008

SBLKLEN	2	Value =	12
ERROR_STA-	4	Value	Definition
TUS_FLAG		0	No fault
		1	BSS FW assert
		2	BSS FW abort
		3	BSS ESM GROUP1 ERROR
		4	BSS ESM GROUP2 ERROR
		6-5	RESERVED
		7	BSS monitoring failure in Mode 1(Quiet mode)
		Others	RESERVED
RESERVED	4	0x00000	0000

- 5.21.10 Sub block 0x5009 RESERVED
- 5.21.11 Sub block 0x500A RESERVED
- 5.21.12 Sub block 0x500B RESERVED

6 API Programming Sequence

6.1 Single device mode

This section briefly describes in which order to issue the various API SBs defined in this document for a single device.

- 1. Power up the device
- 2. Wait for AWR_AE_MSSPOWERUPDONE_SB
- Wait for AWR_AE_MSS_BOOTERRORSTATUS_SB if flash is not connected (Boot over SPI)
- 4. AWR_DEV_CONFIGURATION_SET_SB
- 5. AWR_DEV_RFPOWERUP_SB
- 6. Wait for AWR_AE_RFPOWERUPDONE_SB
- 7. AWR_RF_STATIC_CONF_SET_MSG
 - a. AWR_RF_DEVICE_CFG_SB
 - b. AWR_CHAN_CONF_SET_SB
 - c. AWR_ADCOUT_CONF_SET_SB
 - d. AWR_RF_LDO_BYPASS_SB with RFLDOBYPASS_EN set to 1 if RF supply is 1.0 V
 - e. AWR_LOWPOWERMODE_CONF_SET_SB
 - f. AWR_DYNAMICPOWERSAVE_CONF_SET_SB
 - g. AWR_CAL_MON_FREQUENCY_TX_POWER_LIMITS_SB
 - h. AWR_RF_RADAR_MISC_CTL_SB if per chirp phase shifter and Advance chirp configuration needs to be enabled.
 - i. AWR_APLL_SYNTH_BW_CONTROL_SB
- 8. Data path configurations
 - a. AWR_DEV_RX_DATA_FORMAT_CONF_SET_SB
 - b. AWR_DEV_RX_DATA_PATH_CONF_SET_SB
 - c. AWR_DEV_RX_DATA_PATH_LANE_EN_SB
 - d. AWR_DEV_RX_DATA_PATH_CLK_SET_SB

- e. AWR_HIGHSPEEDINTFCLK_CONF_SET_SB
- f. AWR_DEV_LVDS_CFG_SET_SB / AWR_DEV_CSI2_CFG_SET_SB
- 9. AWR_RF_INIT_MSG
 - a. AWR_PHASE_SHIFTER_CAL_DATA_RESTORE_SB (To restore factory calibration data for TX0), keep CAL_APPLY = 0
 - b. AWR_PHASE_SHIFTER_CAL_DATA_RESTORE_SB (To restore factory calibration data for TX1), keep CAL_APPLY = 0
 - c. AWR_PHASE_SHIFTER_CAL_DATA_RESTORE_SB (To restore factory calibration data for TX2), keep CAL_APPLY = 0
 - d. AWR_PHASE_SHIFTER_CAL_DATA_RESTORE_SB (To restore factory calibration data for TX3), keep CAL_APPLY = 1
 - e. AWR_CAL_DATA_RESTORE_SB (To restore factory calibration data to avoid on field RF interference during calibration)
 - f. Wait for AWR_AE_RF_INITCALIBSTATUS_SB
 - g. AWR_RF_INIT_CALIBRATION_CONF_SB (Enable only required calibration to run)
 - h. AWR_RFINIT_SB: This triggers very basic calibrations and RF initializations
 - i. Wait for AWR_AE_RF_INITCALIBSTATUS_SB
- 10. AWR_RF_DYNAMIC_CONF_SET_MSG
 - a. AWR_PROG_FILT_COEFF_RAM_SET_SB
 - b. AWR_PROG_FILT_CONF_SET_SB
 - c. AWR_PROFILE_CONF_SET_SB
 - d. Chirp configuration API
 - a. AWR_CHIRP_CONF_SET_SB or
 - b. AWR_ADVANCE_CHIRP_CONF_SB and
 - c. AWR_ADVANCE_CHIRP_GENERIC_LUT_LOAD_SB
 - e. AWR_LOOPBACK_BURST_CONF_SET_SB (if using loopback burst in advance frame config API)
 - f. AWR_FRAME_CONF_SET_SB or AWR_ADVANCED_FRAME_CONF_SB with SW or HW triggered mode and AWR_DEV_FRAME_CONFIG_APPLY_MSG.
 - g. AWR_CALIB_MON_TIME_UNIT_CONF_SB with CALIB_MON_TIME_UNIT value set to a value such that the total frame idle time across multiple CALIB_MON_TIME_ UNITs is sufficient for all calibrations and monitoring. See Section 12 for details on calibration and monitoring durations. If any error AWR_CAL_MON_TIMING_FAIL_ REPORT_AE_SB AE will be generated when frame is triggered. The calibrations and monitors will not run properly if this error is generated.

- h. Set NUM_OF_CASCADED_DEV to 1, DEVICE_ID to 0 and Set MONITORING_ MODE = 0 (MONITORING_MODE 1 is recommended only in cascade mode) in AWR_CALIB_MON_TIME_UNIT_CONF_SB API
- i. AWR_RUN_TIME_CALIBRATION_CONF_AND_TRIGGER_SB (set all ONE_TIME_ CALIB_ENABLE_MASK and set ENABLE_CAL_REPORT = 1)
- j. Wait for AWR_RUN_TIME_CALIBRATION_SUMMARY_REPORT_AE_SB
- k. AWR_RUN_TIME_CALIBRATION_CONF_AND_TRIGGER_SB (set all RUN_TIME_ CALIB_ENABLE_MASK and set ENABLE_CAL_REPORT = 0 to avoid receiving periodic async events)
- I. AWR_DEV_FRAME_CONFIG_APPLY_SB or AWR_DEV_ADV_FRAME_CONFIG_ APPLY_SB
- 11. MONITOR CONFIGURATIONS
 - a. AWR_MONITOR_RF_DIG_LATENTFAULT_CONF_SB : Wait for AWR_MONITOR_ RF_DIG_LATENTFAULT_REPORT_AE_SB AE. This API should not be issue when frames are running.
 - b. AWR_MSS_LATENTFAULT_TEST_CONF_SB : Wait for AWR_AE_MSS_LATENTFAULT_ TESTREPORT_SB AE.
 - c. AWR_MSS_PERIODICTESTS_CONF_SB : Enable periodic digital monitors, the monitor starts immediately after enabling this API.
 - d. AWR_MONITOR_RF_DIG_PERIODIC_CONF_SB : Enable periodic digital monitors
 - e. AWR_MONITOR_ANALOG_ENABLES_CONF_SB : Enable periodic analog monitors, The corresponding monitoring configuration APIs should be issued after issuing this API. Refer latest release note for all supported monitors.
- 12. AWR_RF_FRAME_TRIG_MSG for frame start
 - a. AWR_FRAMESTARTSTOP_CONF_SB in Start mode (1): after this, frames get transmitted, wait for AWR_AE_RF_FRAME_TRIGGER_RDY_SB AE.
- 13. AWR_RF_FRAME_TRIG_MSG for frame stop
 - a. AWR_FRAMESTARTSTOP_CONF_SB in Stop mode (0): after this, frames are stopped. Wait for AWR_FRAME_END_AE_SB AE. The AWR_RF_FRAME_TRIG_MSG may be issued multiple times for multiple sets of frames. Refer AWR_FRAMESTARTSTOP_ CONF_SB for more frame stop options.

6.2 Cascaded device mode

This section briefly describes in which order to issue the various API SBs defined in this document for master and slave devices in a cascaded configuration.

When using cascaded devices, the reference clock is provided by master to slave. So unless master is powered-up and clock is available from master to slave, the slave device cannot be

powered up.

Following instructions and sequence needs to be followed in cascade mode (Master and Slave mode configured in CASCADING_CFG field in AWR_CHAN_CONF_SET_SB API):

Application Care Abouts in cascade mode:	 Disable OSC clock out (OSCCLKOUT_DIS = 1) for salves in AWR_CHAN_CONF_SET_SB API 	
	 Write INTER_BURST_POWER_SAVE_DIS = 0 (Enable inter-burst power save) in AWR_R_ DEVICE_CFG_SB (default setting) 	
	 Write WDT_ENABLE = 0 (Disable WDT) in AWR_ RF_DEVICE_CFG_SB (default setting) 	
	 Set MONITORING_MODE = 1 (API based monitor trigger. The automated monitoring trigger is also supported in cascade mode, not used in this se- quence) 	
	 Set NUM_OF_CASCADED_DEV to 1 and DE- VICE_ID to 0 in AWR_CALIB_MON_TIME_UNIT_ CONF_SB (Not recommended to set other values for proper functionality in MONITORING_MODE 1) 	
	 Clear PERIODIC_CALIB_ENABLE_MASK and set CALIBRATION_PERIODICITY to 0 to avoid run time calibration (Automated run time calibration is not recommended in cascade mode) 	
	 When stopping the frames in master it is recom- mended to stop Slaves first and wait of frame stop AE then stop the master. 	
	 Follow API based monitor trigger notes in AWR_ MONITOR_TYPE_TRIG_CONF_SB API section 	
	 Set TRIGGER_SELECT = 1 in master device and TRIGGER_SELECT = 2 in slave device in AWR_ FRAME_CONF_SET_SB or AWR_ADVANCED_ FRAME CONF SB API. 	

Table 6.1: Sequence of APIs to be issued to master and slave devices in cascaded
mode configuration for FMCW mode measurements

SI. No	Master device sequence	Slave device sequence
1	Power up master device	
2	Wait for AWR_AE_DEV_MSSPOWERUP- DONE_SB	
3	AWR_DEV_RFPOWERUP_SB	
4	Wait for AWR_AE_DEV_RFPOWERUP- DONE_SB	
5	AWR_CHAN_CONF_SET_SB with CAS- CADING_CFG = 0x0001. The reference clock for slave device is enabled by default	
6		Power on slave device
7		Wait for AWR_AE_DEV_MSSPOWERUP- DONE_SB
8		AWR_DEV_RFPOWERUP_SB
9		Wait for AWR_AE_DEV_RFPOWERUP- DONE_SB
10		AWR_CHAN_CONF_SET_SB with CAS- CADING_CFG = 0x0002 and disable OSC CLOCK OUT.
11	Follow all AWR_RF_STATIC_CONF_ SET_MSG APIs sequence as instructed in single chip mode (point 6 in sec 6.2), please refer application Care Abouts above if any deviation from single chip	Follow all AWR_RF_STATIC_CONF_ SET_MSG APIs sequence as instructed in single chip mode (point 6 in sec 6.2), please refer application Care Abouts above if any deviation from single chip
12	Follow all Data path configurations APIs sequence as instructed in single chip mode (point 7 in sec 6.2)	Follow all Data path configurations APIs sequence as instructed in single chip mode (point 7 in sec 6.2)
13	Follow all AWR_RF_INIT_MSG APIs se- quence as instructed in single chip mode (point 8 in sec 6.2)	Follow all AWR_RF_INIT_MSG APIs se- quence as instructed in single chip mode (point 8 in sec 6.2)
14	Follow all AWR_RF_DYNAMIC_CONF_ SET_MSG APIs sequence as instructed in single chip mode (point 9 in sec 6.2), please refer application Care Abouts above if any deviation from single chip	Follow all AWR_RF_DYNAMIC_CONF_ SET_MSG APIs sequence as instructed in single chip mode (point 9 in sec 6.2), please refer application Care Abouts above if any deviation from single chip
15	Follow all MONITOR CONFIGURATIONS APIs sequence as instructed in single chip mode (point 10 in sec 6.2), please refer application Care Abouts above if any devi- ation from single chip	Follow all MONITOR CONFIGURATIONS APIs sequence as instructed in single chip mode (point 10 in sec 6.2), please refer application Care Abouts above if any devi- ation from single chip

16		AWR_FRAMESTARTSOP_CONF_SB with STARTSTOP_CMD = 0x0001
17		Wait for AWR_AE_RF_FRAME_TRIG- GER_RDY_SB
18	AWR_FRAMESTARTSOP_CONF_SB with STARTSTOP_CMD = 0x0001	
19	Wait for AWR_AE_RF_FRAME_TRIG- GER_RDY_SB	
20	Trigger AWR_MONITOR_TYPE_TRIG_ CONF_SB API for type 0, 1 and 2 mon- itors and follow instructions mentioned in this API section	Trigger AWR_MONITOR_TYPE_TRIG_ CONF_SB API for type 0, 1 and 2 mon- itors and follow instructions mentioned in this API section
21		AWR_FRAMESTARTSOP_CONF_SB with STARTSTOP_CMD = 0x0000
22		Wait for AWR_FRAME_END_AE_SB AE
23	AWR_FRAMESTARTSOP_CONF_SB with STARTSTOP_CMD = 0x0000	
24	Wait for AWR_FRAME_END_AE_SB AE	

6.3 Continuous streaming mode (in single device case)

This section briefly describes in which order to issue the various API SBs defined in this document to enable continuous streaming mode on a single device

- 1. Power up the device
- 2. Wait for AWR_AE_MSSPOWERUPDONE_SB
- 3. AWR_DEV_CONFIGURATION_SET_SB
- 4. AWR_DEV_RFPOWERUP_SB
- 5. Wait for AWR_AE_RFPOWERUPDONE_SB
- 6. AWR_RF_STATIC_CONF_SET_MSG
 - a. AWR_RF_DEVICE_CFG_SB
 - b. AWR_CHAN_CONF_SET_SB
 - c. AWR_ADCOUT_CONF_SET_SB
 - d. AWR_RF_LDO_BYPASS_SB with RFLDOBYPASS_EN set to 1 if RF supply is 1.0 V
 - e. AWR_LOWPOWERMODE_CONF_SET_SB

- f. AWR_DYNAMICPOWERSAVE_CONF_SET_SB
- g. AWR_CAL_MON_FREQUENCY_TX_POWER_LIMITS_SB
- h. AWR_RF_RADAR_MISC_CTL_SB if per chirp phase shifter and Advance chirp configuration needs to be enabled.
- i. AWR_APLL_SYNTH_BW_CONTROL_SB
- 7. Data path configurations
 - a. AWR_DEV_RX_DATA_FORMAT_CONF_SET_SB
 - b. AWR_DEV_RX_DATA_PATH_CONF_SET_SB
 - c. AWR_DEV_RX_DATA_PATH_LANE_EN_SB
 - d. AWR_DEV_RX_DATA_PATH_CLK_SET_SB
 - e. AWR_HIGHSPEEDINTFCLK_CONF_SET_SB
 - f. AWR_DEV_LVDS_CFG_SET_SB / AWR_DEV_CSI2_CFG_SET_SB
- 8. AWR_RF_INIT_MSG
 - a. AWR_PHASE_SHIFTER_CAL_DATA_RESTORE_SB (To restore factory calibration data for TX0), keep CAL_APPLY = 0
 - b. AWR_PHASE_SHIFTER_CAL_DATA_RESTORE_SB (To restore factory calibration data for TX1), keep CAL_APPLY = 0
 - c. AWR_PHASE_SHIFTER_CAL_DATA_RESTORE_SB (To restore factory calibration data for TX2), keep CAL_APPLY = 0
 - d. AWR_PHASE_SHIFTER_CAL_DATA_RESTORE_SB (To restore factory calibration data for TX3), keep CAL_APPLY = 1
 - e. AWR_CAL_DATA_RESTORE_SB (To restore factory calibration data to avoid on field RF interference during calibration)
 - f. Wait for AWR_AE_RF_INITCALIBSTATUS_SB
 - g. AWR_RF_INIT_CALIBRATION_CONF_SB (Enable only required calibration to run)
 - h. AWR_RFINIT_SB: This triggers very basic calibrations and RF initializations
 - i. Wait for AWR_AE_RF_INITCALIBSTATUS_SB
- 9. AWR_RF_DYNAMIC_CONF_SET_MSG
 - a. AWR_PROG_FILT_COEFF_RAM_SET_SB
 - b. AWR_PROG_FILT_CONF_SET_SB
- 10. AWR_CONT_STREAMING_MODE_EN_SB to start the trigger
 - a. AWR_CONT_STREAMING_MODE_CONF_SET_SB
 - b. AWR_DEV_RX_CONTSTREAMING_MODE_CONF_SET_SB

- c. AWR_CONT_STREAMING_MODE_EN_SB with CONT_STREAMING_EN = 0x0001 to start continuous streaming
- 11. AWR_CONT_STREAMING_MODE_EN_SB to stop the trigger
 - a. AWR_CONT_STREAMING_MODE_EN_SB with CONT_STREAMING_EN = 0x0000 to stop continuous streaming
- 12. Repeat steps 6-11 for a different configuration

6.4 Continuous streaming (CW) mode (in cascaded device case)

 Table 6.2: Sequence of APIs to be issued to master and slave devices in cascaded mode configuration for FMCW mode measurements

SI. No	Master device sequence	Slave device sequence
1	Power up master device	
2	Wait for AWR_AE_DEV_MSSPOWERUP- DONE_SB	
3	AWR_DEV_RFPOWERUP_SB	
4	Wait for AWR_AE_DEV_RFPOWERUP- DONE_SB	
5	AWR_CHAN_CONF_SET_SB with CAS- CADING_CFG = 0x0001. The reference clock for slave device is enabled by default	
6		Power on slave device
7		Wait for AWR_AE_DEV_MSSPOWERUP- DONE_SB
8		AWR_DEV_RFPOWERUP_SB
9		Wait for AWR_AE_DEV_RFPOWERUP- DONE_SB
10		AWR_CHAN_CONF_SET_SB with CAS- CADING_CFG = 0x0002 and disable OSC CLOCK OUT.
11	Follow all AWR_RF_STATIC_CONF_ SET_MSG APIs sequence as instructed in single chip mode (point 6 in sec 6.3), please refer application Care Abouts above if any deviation from single chip	Follow all AWR_RF_STATIC_CONF_ SET_MSG APIs sequence as instructed in single chip mode (point 6 in sec 6.3), please refer application Care Abouts above if any deviation from single chip
12	Follow all Data path configurations APIs sequence as instructed in single chip mode (point 7 in sec 6.3)	Follow all Data path configurations APIs sequence as instructed in single chip mode (point 7 in sec 6.3)

	Table 6.2 – continued from	previous page
13	Follow all AWR_RF_INIT_MSG APIs se- quence as instructed in single chip mode (point 8 in sec 6.3)	Follow all AWR_RF_INIT_MSG APIs se- quence as instructed in single chip mode (point 8 in sec 6.3)
14	Follow all AWR_RF_DYNAMIC_CONF_ SET_MSG APIs sequence as instructed in single chip mode (point 9 in sec 6.3), please refer application Care Abouts above if any deviation from single chip	Follow all AWR_RF_DYNAMIC_CONF_ SET_MSG APIs sequence as instructed in single chip mode (point 9 in sec 6.3), please refer application Care Abouts above if any deviation from single chip
15	AWR_CONT_STREAMING_MODE_ CONF_SET_SB	
16	AWR_CONT_STREAMING_MODE_ EN_SB with CONT_STREAMING_EN = 0x0001 to start continuous streaming	
17		AWR_CONT_STREAMING_MODE_ CONF_SET_SB with the same RF fre- quency configuration as in master device
18		AWR_CONT_STREAMING_MODE_ EN_SB with CONT_STREAMING_EN = 0x0001 to start continuous streaming
19		AWR_CONT_STREAMING_MODE_ EN_SB with CONT_STREAMING_EN = 0x0000 to stop continuous streaming
20	AWR_CONT_STREAMING_MODE_ EN_SB with CONT_STREAMING_EN = 0x0000 to stop continuous streaming	
21	Repeat steps 6-20 for a different CW mode configuration	

7 API Error Handling and Error Codes

This section describes the error handling of various fault messages in device and information about error codes.

7.1 API Error Handling

The xWR294x/xWR254x device sends out error info in the form of AE messages in case of any fault in the device.

The following AE messages are Fatal errors and device shall be restarted upon receiving these messages:

- 1. AWR_AE_RF_CPUFAULT_SB
- 2. AWR_AE_RF_ADV_ESMFAULT_SB for ESM_GROUP2_ERRORS only.
- 3. AWR_ANALOGFAULT_AE_SB
- 4. AWR_AE_RF_ESMFAULT_SB for PROG_FILT_FATAL_PARITY_ERROR and PROG_FILT_ FATAL_DB_ECC_ERROR in ESM_GROUP1_ERRORS only.

The ERROR_CODE returned part of monitor AE message reports are informative purpose only, these error codes are helpful to debug the cause for monitor failure. Application can log these information and share with TI in case of any runtime errors. The information about these error codes are documented below in "API Error Codes" section.

The Application shall handle the monitor failures reported in STATUS_FLAGS part of monitor AE message appropriately, device may not need restart in these error cases and these errors needs to be handled case by case. For example AWR_MONITOR_RX_GAIN_PHASE_REPORT_AE_ SB can report failure in presence of interference, this is not a fatal error in the device. Please refer Monitoring app note for more info on monitor reports and thresholds.

The information about API_RESP Error codes returned in ACK messages part of AWR_RESP_ ERROR_SB for each API commands are documented below in "API Error Codes" section, these error codes are helpful to debug the cause for API failure and errors can be corrected during development time.

7.2 API Error Codes

	1	Incorrect API MSGID
Applicable to all API sub	2	Sub block not found in the MSG
	3	Incorrect Sub block ID
	4	Incorrect Sub block length
blocks	5	Incorrect Sub block data
	6	Error in processing the command
	7	Binary file CRC mismatch error
	8	Binary file type mismatch w.r.t. magic number
AWR_	20	Frames are already started when the FRAME_START com- mand was issued
FRAMESTARTSTOP_ CONF_SB	21	Frames are already stopped when the FRAME_STOP com- mand was issued
	22	No valid frame configuration API was issued and frames are started
	23	START_STOP_CMD parameter is out of range
	129	The frame stop option-4 can not be used in Sw triggered mode
AWR CHAN CONF	24	RX_CHAN_EN parameter is out of range (Max range may vary based on device variant)
SET_SB	25	TX_CHAN_EN parameter is out of range (Max range may vary based on device variant)
	26	CASCADING_CFG parameter is out of range [0, 2]
	282	Device variant does not allow cascading but API is issued to enable cascading mode
	287	Enabling OSCLKOUT and OSCLKOUTETH at the same time is not supported.
	27	NUM_ADC_BITS parameter is out of range [0, 2]
AWR_ADCOUT_CONF_ SET_SB	28	ADC_OUT_FMT parameter is out of range [0, 3]
011_00	127	FULL_SCALE_REDUCTION_FACTOR is > 0 for 16 bit ADC, or > 2 for 14 bit ADC mode or > 4 for 12 bit ADC mode
AWR_	29	LP_ADC_MODE parameter is out of range [0, 1]
LOWPOWERMODE_ SB	156	Regular ADC mode is used on a 5 MHz part variant device
AWR_DYNAMICPOWER- SAVE_CONF_SET_SB	30	BLOCK_CFG parameter is out of range [0, 7]
	31	HSICLKRATECODE[1:0] is 0
	32	RESERVED
HIGHSPEEDINTFCLK_		Continued on next page

Table 7.1: BSS API error codes

CONF_SET_SB

33 34 35 36	$\begin{array}{l} \mbox{HSICLKRATECODE[3:2] is 3 and HSICLKRATECODE[1:0]} \\ \mbox{is 2} \\ \mbox{HSICLKRATECODE[3:2] is 3 and HSICLKRATECODE[1:0]} \\ \mbox{is 2} \\ \mbox{PF INDX is } \geq 7 \end{array}$
35	is 2
36	
	PF_FREQ_START_CONST is not within allowed range
37	PF_IDLE_TIME_CONST > 5.24 ms
38	Maximum DFE spill time (refer rampgen calculator in mmWave Studio for more details)> PF_IDLE_TIME_ CONST
39	PF_ADC_START_TIME_CONST > 4095
40	PF_RAMP_END_TIME > 524287
41	PF_RAMP_END_TIME < PF_ADC_START_TIME_CONST + ADC_SAMPLING_TIME (ADC_SAMPLING_TIME is time taken to sample NUM_ ADC_SAMPLES)
42	PF_TX_OUTPUT_POWER_BACKOFF for TX0 > 30
43	PF_TX_OUTPUT_POWER_BACKOFF for TX1 > 30
44	PF_TX_OUTPUT_POWER_BACKOFF for TX2 > 30
45	RESERVED
46	Ramp end frequency is not within allowed range
47	Absolute value of TX_START_TIME is $>$ 38.45 μ s
48	Number of ADC samples is not within [2, 8192]
49	Output sampling rate is not within [2, MaxSamplingRate] Msps. See Table 5.27 for the MaxSamplingRate.
50	HPF1 corner frequency is $>$ maximum allowed
51	HPF2 corner frequency is $>$ maximum allowed
52	PF_RX_GAIN is not within [24, 52] dB or PF_RX_GAIN is an odd number
53	RESERVED
54	RESERVED
55	RESERVED
56	RESERVED
57	RESERVED
58	RESERVED
331	PF_TX_OUTPUT_POWER_BACKOFF for TX4 > 30
59	$CHIRP_START_INDX \ge 512$
60	CHIRP_END_INDX \geq 512
	38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 331 59

Continued on next page

Copyright © 2021, Texas Instruments Incorporated

		continued from previous page
	61	$CHIRP_START_INDX > CHIRP_END_INDX$
	62	$PROFILE_INDX \geq 4$
	63	If the profile corresponding to PROFILE_INDX is not defined
	64	CHIRP_FREQ_START_VAR > 8388607
	65	$CHIRP_FREQ_SLOPE_VAR > 63$
	66	Chirp start frequency is outside the allowed range Chirp end frequency is outside the allowed range Chirp bandwidth is greater than maximum allowed as per device data sheet or Maximum chirp frequency is greater than maximum allowed as per device data sheet
	67	$CHIRP_IDLE_TIME_VAR > 4095$
	68	$CHIRP_ADC_START_TIME_VAR > 4095$
	69	RAMP_END_TIME < ADC_START_TIME + ADC_SAM- PLING_TIME
	70	$\label{eq:chiral_constraint} \begin{array}{l} \mbox{CHIRP}\mbox{TX}\mbox{EN} > \mbox{maximum simultaneous TX} allowed as \\ \mbox{per device data sheet} \end{array}$
	71	CHIRP_TX_EN indicates to enable a TX which is not en- abled in AWR_CHAN_CONF_SET_SB
	72	$CHIRP_START_INDX \geq 512$
	73	$CHIRP_END_INDX \geq 512$
	74	$CHIRP_START_INDX > CHIRP_END_INDX$
	75	Chirp used in the frame is not configured by AWR_CHIRP_ CONF_SET_SB
AWR_FRAME_CONF_ SET_SB	76	One of the profiles used in the frame is not configured by AWR_PROF_CONF_SET_SB
_	77	NUM_LOOPS is outside [1, 255]
	78	RESERVED
	79	FRAME_PERIODICITY is outside [100 μ s, 1.342 s]
	80	$FRAME_ON_TIME > FRAME_PERIODICITY$
	81	TRIGGER_SELECT is outside [1, 2]
	82	$FRAME_TRIGGER_DELAY > 100\ \mu s$
	83	API is issued when frames are ongoing
	160	The Dummy chirps at end of frame is not supported
AWR_ADVANCED_ FRAME_CONF_SET_ SB	84	NUM_SUBFRAMES is outside [1, 4]
	85	FORCE_SINGLE_PROFILE is outside [0, 1]
	86	$FORCE_SINGLE_PROFILE \geq 4$

	10010111	continued from previous page
	87	Profile defined by FORCE_SINGLE_PROFILE is not defined
	88	$SFx_CHIRP_START_INDX \ge 512$
	89	SFx_NUM_UNIQUE_CHIRPS_PER_BURST is outside the range [1, 512]
	90	Chirp used in the frame is not configured by AWR_CHIRP_ CONF_SET_SB
	91	One of the profiles used in the frame is not configured by AWR_PROF_CONF_SET_SB
	92	SFx_NUM_LOOPS_PER_BURST is outside the range [1, 255]
	93	SFx_BURST_PERIOD is outside the range [100 μ s, 1.342 s]
	94	Burst ON time is > BURST_PERIOD
	95	$SFx_CHIRP_START_INDX_OFFSET \geq 512$
	96	$\begin{array}{l} SFx_CHIRP_START_INDX \geq 512 \text{ or } SFx_CHIRP_START_\\ INDX + SFx_NUM_UNIQUE_CHIRPS_PER_BURST - 1 \text{ is}\\ \geq 512 \end{array}$
	97	SFx_NUM_BURSTS is outside the range [1, 512]
	98	SFx_NUM_OUTER_LOOPS is outside the range [1, 64]
	99	SFx_PERIOD is outside the range [100 μ s, 1.342 s]
	100	Subframe on time $>$ SFx_PERIOD or when TESTSOURCE is enabled, SubFrame Idle time is $<$ 150 $\mu \rm{s}$
	101	RESERVED
	102	TRIGGER_SELECT is outside the range [1, 2]
	103	FRAME_TRIGGER_DELAY is $>$ 100 μ s
	104	API is issued when frames are on going
AWR_RF_TEST_ SOURCE_CONFIG_ SET_SB	105	POSITION_VECx[y] < 0
	106	RESERVED
	107	$\begin{array}{l} {\sf VELOCITY_VECx[x]} > 5000 \ \ or \ \ {\sf VELOCITY_VECx[y]} > \\ {\sf 5000 \ or} \\ {\sf VELOCITY_VECx[z]} > 5000 \end{array}$
	108	SIG_LEV_VECx > 950
	109	RX_ANT_POS_XZ[Bytex] > 120
	110	RESERVED
AWR_PROG_FILT_ CONF_SET_SB	111	PROG_FILT_COEFF_START_INDEX is an odd number
	112	$PROFILE_INDX \geq 4$
I.	ļ.	1

	126	DFE mode is pseudo real
AWR_PROG_FILT_CO- EFF_RAM_SET_SB	113	API is issued for a non xWR1642/xWR1843 device
	126	DFE mode is pseudo real
AWR_RF_RADAR_MISC_ CTL_SB	114	API is issued for an unsupported device
AWR_	115	$CHIRP_START_INDX \geq 512$
PERCHIRPPHASESHIFT_	116	$CHIRP_END_INDX \geq 512$
CONF_SB	117	$CHIRP_START_INDX > CHIRP_END_INDX$
AWR_RUN_TIME_CALI- BRATION_CONF_AND_ TRIGGER_SB	118	Boot time calibrations are not done so cannot run runtime calibrations
	286	The forced temperature bin index is invalid
AWR_CAL_MON_FRE- QUENCY_LIMITS_SB	119	FREQ_LIMIT_HIGH is out side the supported range or FREQ_LIMIT_LOW > FREQ_LIMIT_HIGH
	130	The minimum RF frequency band is $< \rm 200 MHz$
AWR_CALIB_MON_ TIME_UNIT_CONF_SB	120	CALIB_MON_TIME_UNIT ≤ 0
	128	$NUM_OF_CASCADED_DEV \leq 0$
	121	CALIBRATION_PERIODICITY = 0
AWR_RUN_TIME_	122	API is issued when continuous streaming mode is on
CALIBRATION_CONF_ AND_TRIGGER_SB	123	RX gain run time calibration was requested but boot time calibration was not performed
	124	LO distribution run time calibration was requested but boot time calibration was not performed
	125	TX power run time calibration was requested but boot time calibration was not performed
	132	LOOPBACK_SEL is > 3
AWR_LOOPBACK_ BURST_CONF_SET_SB	133	$BURST_INDX \ge 16$
	134	Burst is not valid but loopback is enabled for this burst
AWR_DYN_CHIRP_ CONF_SET_SB	135	CHIRP_SEGMENT_SELECT > 31 if CHIRP_ROW_SE- LECT = 0 or CHIRP_SEGMENT_SELECT > 11 if CHIRP_ROW_SE- LECT != 0
	159	CHIRP_ROW_SELECT > 3
AWR_DYN_PER_CHIRP_ PHASESHIFTER_CONF_ SB	136	CHIRP_SEGMENT_SELECT > 31
AWR_CAL_DATA_RE- STORE_SB	137	CHUNK_ID ≥ NUM_CHUNKS

	138	CAL_DATA is invalid
	318	TX_IND is invalid in phase shifter restore API
AWR_INTERCHIRP_ BLOCKCONTROLS_SB	139	RX02_RF_TURN_OFF_TIME is not within the range [-1024, 1023]
	140	RX13_RF_TURN_OFF_TIME is not within the range [-1024, 1023]
	141	RX02_BB_TURN_OFF_TIME is not within the range [-1024, 1023]
	142	RX13_BB_TURN_OFF_TIME is not within the range [-1024, 1023]
	143	RX02_RF_PREENABLE_TIME is not within the range [-1024, 1023]
	144	RX13_RF_PREENABLE_TIME is not within the range [-1024, 1023]
	145	RX02_BB_PREENABLE_TIME is not within the range [-1024, 1023]
	146	RX13_BB_PREENABLE_TIME is not within the range [-1024, 1023]
	147	RX02_RF_TURN_ON_TIME is not within the range [-1024, 1023]
	148	RX13_RF_TURN_ON_TIME is not within the range [-1024, 1023]
	149	RX02_BB_TURN_ON_TIME is not within the range [-1024, 1023]
	150	RX13_BB_TURN_ON_TIME is not within the range [-1024, 1023]
	151	RX_LO_TURN_OFF_TIME is not within the range [-1024, 1023]
	152	TX_LO_TURN_OFF_TIME is not within the range [-1024, 1023]
	153	RX_LO_TURN_ON_TIME is not within the range [-1024, 1023]
	154	TX_LO_TURN_ON_TIME is not within the range [-1024, 1023]
AWR_SUBFRAME_ START_CONF_SB	155	Sub-frame start command is issued but the frame is not con- figured for sub frame trigger mode
AWR_ADVANCE_CHIRP_ CONF_SB	300	Invalid CHIRP_PARAM_INDEX
	301	Invalid GLOBAL_RESET_MODE

Table 7.1 – continued	from previous page
-----------------------	--------------------

		continued from previous page
	303	Invalid update period DELTA_PARAM_UPDATE_PERIOD or LUT_PARAM_UPDATE_PERIOD
	304	Invalid fixed delta parameter SFn_CHIRP_PARAM_DELTA
	305	Invalid reset period DELTA_RESET_PERIOD or LUT_RE- SET_PERIOD
	306	Invalid LUT address LUT_PATTERN_ADDRESS_OFFSET
	307	Invalid number of patterns in LUT NUM_OF_PATTERNS
	308	Invalid LUT index offset value BURST_LUT_INDEX_OFF- SET or SF_LUT_INDEX_OFFSET
	309	Invalid LUT_CHIRP_PARAM_SIZE and LUT_CHIRP_ PARAM_SCALE
	310	Invalid legacy APIs are issued when advance chirp config API is enabled or vice versa
	311	All chirp parameters are not defined in advance chirp API
	312	Invalid TX phase shifter dither value MAX_TX_PHASE_ SHIFTER_INTERNAL_DITHER
	313	Insufficient number of NUM_OF_PATTERNS programmed compared to actual programmed chirps (array out of bound error)
	315	Invalid num of chirps programmed in frame config API
AWR_ADVANCE_CHIRP_ GENERIC_LUT_LOAD_ SB	314	Invalid num of bytes NUM_OF_BYTES
	250	Device type is not ASILB
	251	Fault injection API or Digital latent fault API is issued when frames are ongoing
Common to all monitoring	252	Invalid reporting mode
configuration APIs	253	Configured profile ID is not within [0, 3]
	254	Monitoring profile ID is not configured yet
	260	Invalid RF bit mask
	281	Analog monitoring is not supported
	290	Monitoring chirp error
AWR_MONITOR_RF_ DIG_LATENTFAULT_ CONF_SB	251	API is issued when frames are on-going
AWR_MONITORING_ EXTERNAL_ANALOG_ SIGNALS_CONF_SB	255	Settling time is configured is more than 12 μ s

		continued noin previous page
AWR_MONITOR_RX_ INTERNAL_ANALOG_ SIGNALS_CONF_SB	256	None of the RXs are enabled
AWR_MONITOR_TX0_ INTERNAL_ANALOG_ SIGNALS_CONF_SB	257	TX0 is not enabled
AWR_MONITOR_TX1_ INTERNAL_ANALOG_ SIGNALS_CONF_SB	258	TX1 is not enabled
AWR_MONITOR_TX2_ INTERNAL_ANALOG_ SIGNALS_CONF_SB	259	TX2 is not enabled
-	261	RESERVED
-	262	RESERVED
AWR_MONITOR_TXn_ BALLBREAK_CONF_SB	263	Monitored TX channel is not enabled
AWR_MONITOR_RX_ GAIN_PHASE_CONF_SB	264	Monitored RX channel is not enabled
AWR_MONITOR_RX_ NOISE_FIGURE_CONF_ SB		
AWR_MONITOR_RX_ GAIN_PHASE_CONF_SB	265	TX selected for RX gain phase monitor is TX2 (Only TX0 or TX1 is allowed)
	291	PD power level is less than -40dBm (Used for RX Gain Mon- itor)
	295	PGA Gain used for monitoring is incorrect
	266	SAT_MON_SEL is not in [0, 3]
AWR_MONITOR_RX_ SATURATION_ DETECTOR_CONF_SB	267	SAT_MON_PRIMARY_TIME_SLICE_DURATION is less than 0.64 μs or greater than ADC sampling time
	268	SAT_MON_NUM_SLICES is 0 or greater than 127
	283	RX saturation monitor is not supported
AWR_MONITOR_SIG_	269	SIG_IMG_MON_NUM_SLICES is 0 or greater than 127
IMG_MONITOR_CONF_ SB	270	NUM_SAMPLES_PER_PRIMARY_TIME_SLICE is odd, or less than 4 in Complex1x mode or less than 8 in non- Complex1x modes or greater than NUM_ADC_SAMPLES
	280	Signal and image band monitor is not supported
AWR_ANALOG_FAULT_ INJECTION_CONF_SB	279	LDO fault inject is requested but LDOs are bypassed
AWR_MONITOR_TXn_ POWER_CONF_SB	294	PD Reading incorrect (RF OFF reading higher than RF ON reading)

Table 7.1 – c	continued from	previous p	age

AWR_MONITOR_TXn_ BALLLBREAK_CONF_SB AWR_MONITOR_RX_ INTERNAL_ANALOG_ SIGNALS_CONF_SB		
AWR_MONITOR_RX_ GAIN_PHASE_CONF_SB AWR_MONITOR_TX_	292	ADC power level higher than +7 dBm or lower than -9.5 dBm
GAIN_PHASE_CONF_SB AWR_MONITOR_TXn_ PHASE_SHIFTER_ CONF_SB		
AWR_MONITOR_RX_ NOISE_FIGURE_CONF_ SB	293	Low RX noise figure (Noise Figure is less than 0 dB)
AWR_MONITOR_PM- CLKLO_INTERNAL_ ANALOG_SIGNALS_ CONF_SB	296	The 20G monitor is not supported in single chip configuration
AWR_MONITOR_	274	MONITOR_START_TIME is outside the specified range.
SYNTHESIZER_	297	MONITOR_CONFIG_MODE is invalid.
FREQUENCY_CONF_SB	298	The both Live and Non-live synth frequency monitors are cannot be enabled together.
AWR_MONITOR_TX_ GAIN_PHASE_CONF_SB AWR_MONITOR_TXn_ PHASE_SHIFTER_ CONF_SB	317	Invalid RX mask or the RX mask is not enabled in channel configuration API
AWR_MONITOR_TXn_ PHASE_SHIFTER_ CONF_SB	316	Invalid phase mask or at least one of the phase should be enabled for monitoring
AWR_MONITOR_TYPE_ TRIG_CONF_SB	284	RL_API_NRESP_ANA_MON_MODE_NOT_API_BASED (Monitoring trigger API is not supported in autonomous mode of operation)
	285	RL_API_NRESP_ANA_MON_TRIG_TYPE_INVALID (Moni- toring trigger bit masks are all zeros in AWR_MONITOR_ TYPE_TRIG_CONF_SB)
AWR_MONITOR_TXn_ BALLLBREAK_CONF_SB	319	Invalid MON_START_FREQ_CONST programmed in con- figuration API

AWR_MONITOR_PLL_ CONTROL_VOLTAGE_ CONF_SB	320	VCO3 monitor not supported
AWR_POWER_SAVE_ MODE_CONF_SET_SB	325	Invalid LOWPOWER_STATE_TRANSITION_CMD in config- uration API
AWR_ADV_TX_GAIN_ TEMPLUT_SET_SB	332	Invalid TX index in configuration
AWR_RF_DEVICE_CFG_ SB	335	Invalid Inter-burst power save configuration
AWR_MONITOR_ OVERRIDES_AND_ DITHER_CONF_SB	336	Invalid monitor index in configuration
	337	OVRD_TX_BACKOFF field is set to an invalid value
	338	Mon Time dither (min or max) has been set to an invalid value
AWR_MONITOR_VMON_ CONF_SB	340	VDDA VCO VMON self test failed.
	341	VDDA BB VMON self test failed.
	342	VDD RF1 VMON self test failed.
	343	VDD RF2 VMON self test failed.

Table 7.2: MSS API error codes (Applicable only in AWR1243/AWR2243)

	1	Incorrect API MSGID
	2	Sub block not found in the MSG
	3	Incorrect Sub block ID
Applicable to all API sub	4	Incorrect Sub block length
blocks	5	Incorrect Sub block data
	6	Error in processing the command
	7	Binary file CRC mismatch error
	8	Binary file type mismatch w.r.t. magic number
AWR_DEV_RX_DATA_ FORMAT_CONF_SET_SB	1001	RX_CHAN_EN > 0xF
	1002	NUM_ADC_BITS > 2
	1003	$ADC_OUT_FMT > 1$
	1004	IQ_SWAP_SEL > 1
	1005	CHAN_INTERLEAVE > 1
AWR_DEV_RX_DATA_ PATH_CONF_SET_SB	1006	DATA_INTF_SEL > 1
	1007	DATA_TRANS_FMT_PKT0 [5:0] not a valid value. Valid set $\{0x1,0x6,0x9,0x36\}$

		1 1 3
	1008	DATA_TRANS_FMT_PKT1 [5:0] not a valid value. Valid set {0x0, 0xD, 0xB}
	1050	CQ_CONFIG is out of range
AWR_DEV_RX_DATA_ PATH_LANEEN_SET_SB	1009	LANE_EN > 0xF
	1010	Reserved
AWR_DEV_RX_DATA_ PATH_CLK_SET_SB	1011	LANE_CLK_CFG > 1
	1012	LANE_CLK_CFG != 1 for CSI2
	1013	DATA_RATE - Invalid combination of data rate and DDR or SDR operation
AWR_DEV_LVDS_CFG_ SET_SB	1014	LANE_FMT_MAP > 1
	1015	$LANE_PARAM_CFG > 7$
AWR_DEV_RX_CON- TSTREAMING_MODE_ CONF_SET_SB	1016	CONT_STREAMING_MODE > 1
	1017	CONT_STREAMING_MODE already in requested mode
AWR_DEV_CSI2_CFG_ SET_SB	1018	LANE_POS_POL_SEL [DATA_LANE0_POS] >5
	1019	LANE_POS_POL_SEL [DATA_LANE1_POS] >5
	1020	LANE_POS_POL_SEL [DATA_LANE2_POS] >5
	1021	LANE_POS_POL_SEL [DATA_LANE3_POS] >5
	1022	LANE_POS_POL_SEL [CLOCK_POS] is outside the range [2,4]
AWR_DEV_FRAME_ CONFIG_APPLY_SB	1023	HALF_WORDS_PER_CHIRP is outside the range [64, 8192]
AWR_DEV_ADV_ FRAME_CONFIG_AP- PLY_SB	1024	NUM_SUBFRAMES is outside the range [1,4]
	1025	SF1_TOT_NUM_CHIRPS is outside the range [1, 0xFFFF]
	1026	SF1_NUM_ADC_SAMPLES_PER_DATA_PKT is outside the range [64, 8192]
	1027	SF1_PROC_NUM_CHIRPS_PER_DATA_PKT != 1
	1028	SF2_TOT_NUM_CHIRPS is outside the range [1, 0xFFF], if NUM_SUBFRAMES \geq 2
	1029	$eq:sf2_NUM_ADC_SAMPLES_PER_DATA_PKT is outside the range [64, 8192], if NUM_SUBFRAMES \geq 2$
	1030	SF2_PROC_NUM_CHIRPS_PER_DATA_PKT != 1, if NUM_SUBFRAMES \geq 2

	1031	SF3_TOT_NUM_CHIRPS is outside the range [1, 0xFFFF], if NUM_SUBFRAMES $\geq\!\!3$
	1032	SF3_NUM_ADC_SAMPLES_PER_DATA_PKT is outside the range [64, 8192], if NUM_SUBFRAMES \geq 3
	1033	SF3_PROC_NUM_CHIRPS_PER_DATA_PKT != 1, if NUM_ SUBFRAMES \geq 3
	1034	SF4_TOT_NUM_CHIRPS is outside the range [1, 0xFFFF], if NUM_SUBFRAMES == 4
	1035	SF4_NUM_ADC_SAMPLES_PER_DATA_PKT is outside the range [64, 8192], if NUM_SUBFRAMES == 4
	1036	SF4_PROC_NUM_CHIRPS_PER_DATA_PKT != 1, if NUM_ SUBFRAMES == 4
	1052	Invoking AWR_DEV_ADV_FRAME_CONFIG_APPLY_SB message without configuring data path
AWR_DEV_MCUCLOCK_ CONF_SET_SB	1040	MCUCLOCK_CTRL is out of range
	1041	MCUCLOCK_SRC is out of range
AWR_DEV_PMICCLOCK_ CONF_SET_SB	1042	PMICCLOCK_CTRL is out of range
	1043	PMICCLOCK_SRC is out of range
	1044	MODE_SELECT is out of range
	1045	FREQ_SLOPE is out of range
	1046	CLK_DITHER_EN is out of range
AWR_DEV_TESTPAT- TERN_GEN_SET_SB	1047	TESTPATTERN_GEN_CTRL is out of range
	1048	DATA_INTF_SEL (Data interface selected in AWR_DEV_ RX_DATA_PATH_CONF_SET_SB) is SPI
AWR_MSS_LATENT- FAULT_TEST_CONF_SB	1051	RL_API_NRESP_LFAULTTEST_UNSUPPORTED_OOR (Unsupported Latent Fault test selected in AWR_MSS_ LATENTFAULT_TEST_CONF_SB)

7.3 Boot on SPI Error codes

Table 7.3: Bit field describing the		1
Error description	Error code	Error code bit position
CERT_AUTH_FAILURE	0x000000000000000001	BIT0
CERT_PARSER_FAILURE	0x000000000000002	BIT1
RPRC_IMG1_AUTH_FAILURE	0x000000000000004	BIT2
RPRC_IMG2_AUTH_FAILURE	0x00000000000008	BIT3
RPRC_IMG3_AUTH_FAILURE	0x00000000000010	BIT4
RPRC_HDR_NOT_FOUND	0x00000000000020	BIT5
METAHEADER_NOT_FOUND	0x00000000000040	BIT6
SW_ANTIROLLBACK_CHK_FAILURE	0x00000000000080	BIT7
EFUSE_INTEGRITY_FAILURE	0x00000000000100	BIT8
CERT_FIELD_VALIDITY_FAILURE	0x00000000000200	BIT9
CERT_FIELD_INVALID_AUTH_KEY_INDEX	0x00000000000400	BIT10
CERT_FIELD_INVALID_HASH_TYPE	0x00000000000800	BIT11
CERT_FIELD_INVALID_SUBSYSTEM	0x00000000001000	BIT12
CERT_FIELD_INVALID_DECRYPT_KEY_ INDEX	0x00000000002000	BIT13
CERT_FIELD_CEK_EFUSE_MISMATCH	0x00000000004000	BIT14
CERT_FIELD_CEK1_EFUSE_MISMATCH	0x00000000008000	BIT15
CERT_FIELD_CEK2_EFUSE_MISMATCH	0x00000000010000	BIT16
CERT_FIELD_INVALID_SUBSYSTEM_ BANK_ALLOCATION	0x00000000020000	BIT17
CERT_FIELD_INVALID_TOTAL_BANKS_ ALLOCATION	0x00000000040000	BIT18
RPRC_PARSER_FILE_LENGTH_MIS- MATCH	0x00000000080000	BIT19
RPRC_PARSER_MSS_FILE_OFFSET_MIS- MATCH	0x00000000100000	BIT20
RPRC_PARSER_BSS_FILE_OFFSET_MIS- MATCH	0x00000000200000	BIT21
RPRC_PARSER_DSS_FILE_OFFSET_MIS- MATCH	0x00000000400000	BIT22
CERT_FIELD_INVALID_DECRYPT_KEY	0x00000000800000	BIT23
CERT_FIELD_INVALID_AUTH_KEY	0x00000001000000	BIT24
HS_DEVICE_CERT_NOT_PRESENT	0x00000002000000	BIT25
ERROR_IN_2K_IMAGE	0x00000004000000	BIT26

 Table 7.3: Bit field describing the error status during boot on SPI

SHARED_MEM_ALLOC_FAILED	0x00000008000000	BIT27
MSSIMAGE_NOT_FOUND	0x0000001000000	BIT28
METAHEADER_NUMFILES_ERROR	0x0000002000000	BIT29
METAHEADER_CRC_FAILURE	0x000000040000000	BIT30
RPRC_IMG4_AUTH_FAILURE	0x0000008000000	BIT31
RPRC_PARSER_CONFIG_FILE_OFFSET_ MISMATCH	0x0000010000000	BIT32
BOOT_EXTS_EXTRACTION_FAILURE	0x000000200000000	BIT33
DEVICE_UID_BAD_SIZE	0x000000400000000	BIT34
KEY_DERIVE_FUNC_BAD_SIZE	0x0000080000000	BIT35
HMAC_BAD_SIZE	0x000001000000000	BIT36
AES_INIT_VECTOR_BAD_SIZE	0x000002000000000	BIT37
SECDEV_TI_KEY_ERASE_FAILED	0x000004000000000	BIT38
SOP5_SFLASH_NOT_FOUND	0x00000800000000	BIT39
XTAL_CLK_DETECTION_FAILED	0x00100000000000	BIT48
CONTINUE_BOOTUP_ON_XTAL	0x002000000000000	BIT49
DSP_POWERUP_TIMEOUT_ERR	0x004000000000000	BIT50
MSS_LBIST_FAILED	0x008000000000000	BIT51
DSP_LBIST_PBIST_FAILED	0x010000000000000	BIT52
PBIST_SINGLE_PORT_MEM_FAILED	0x020000000000000	BIT53
PBIST_TWO_PORT_MEM_FAILED	0x040000000000000	BIT54
MEMORY_INIT_FAILED	0x0800000000000000	BIT55
MSSROM_PBIST_CRC_COMPUTATION_ FAILED	0x1000000000000000	BIT56
VMON_ERROR_DETECTED	0x2000000000000000	BIT57
ESM_NERROR_DETECTED	0x800000000000000	BIT63

8 Radar Monitoring APIs

sec:RadarMonApis

AWR monitoring can be configured through a set of API sub blocks defined in this section. Note that these APIs cover the RF/Analog related monitoring mechanisms. There are separate monitoring mechanisms for the digital logic (including the processor, memory, etc.) which are internal to the device and not explicitly enabled through these APIs.

The monitoring APIs are structured as follows. There are common configuration APIs that control the overall periodicity of monitoring, as well as, enable/disable control for each monitoring mechanism. Then, for each monitoring mechanism there is an individual API to allow the customer to set an appropriate threshold for declaring failure from that monitoring. Also, for each monitoring mechanism, there is an individual API to report soft (raw) values from that monitoring.

Refer Monitor application note for more info on exact use case and threshold configuration recommendations.

NOTE1:	Each monitor can perform monitoring on only one profile at a time. Though it is possible that different monitors can monitor different profiles simultaneously.
NOTE2:	None of the Safety Monitoring supported in QM devices except Rx saturation and signal image monitor defined in page 481, The mon- itoring configurations defined below from sub-block ID 0x01C0 to 0x01DF are not valid in QM devices.
NOTE3:	All Monitoring configurations and enable control APIs shall be is- sues before triggering the frames. The run time programming or configuration update for monitors are not supported while frames are running.
NOTE4:	None of the Monitoring features are supported for VCO3.

8.1 Common Configurations and Reports

This section covers the APIs corresponding to the common configurations and reports.

8.1.1 Sub block 0x01C0 – AWR_MONITOR_RF_DIG_LATENTFAULT_CONF_SB

This API SB contains the consolidated configuration of all digital monitoring. This is issued by the host to the AWR device.

The enabled monitoring functions are executed when the API is issued, this API should be issued only when frames are not running, these are destructive tests. The scheduling of these monitoring should be handled in the external application. Report of these monitoring will be available in the async event AWR_MONITOR_RF_DIG_LATENTFAULT_REPORT_AE_SB.

Table 8.1: AWR_MONITOR_RF_DIG_LATENTFAULT_CONF_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01C0
SBLKLEN	2	Value = 16

DIG_MONITOR-	4	1	ble, 0 – Disabled
ING_ENABLES		Bit	Definition
		b0	RESERVED
		b1	CR4 and VIM lockstep test
		b2	RESERVED
		b3	VIM test
		b4	RESERVED
		b5	RESERVED
		b6	CRC test
		b7	RAMPGEN memory ECC
		b8	DFE parity test
		b9	DFE memory ECC
		b10	RAMPGEN lockstep test
		b11	FRC lockstep test of diagnostic
		b12	RESERVED
		b13	RESERVED
		b14	RESERVED
		b15	RESERVED
		b16	ESM test
		b17	DFE STC
		b18	RESERVED
		b19	ATCM, BTCM ECC test
		b20	ATCM, BTCM parity test
		b21	DCC test
		b22	RESERVED
		b23	RESERVED
		b24	FFT test (RESERVED in xWR254x)
		b25	RTI test
		b26	RESERVED
		b31:27	RESERVED
TEST_MODE	1	Value	Definition
		0	Production mode. Latent faults are tested and any failures are reported
		1	Characterization mode. Faults are injected and failures are reported which allows testing of the failure reporting path
RESERVED	3	0x0000	00
L	1	1	

Table 8.1 – continued from previous page			
RESERVED	4	0x0000000	
NOTE:	The Characterization TEST_MODE is supported only for debug, in		
	produc	ction or run time this test mode is not supported. The device	
	reset is	s required after entering this mode.	

8.1.2 Sub block 0x01C1 – AWR_MONITOR_RF_DIG_PERIODIC_CONF_SB

This API SB contains the consolidated configuration of all periodic digital monitoring within radar sub-system. This is issued by the host to the AWR device.

The enabled monitoring functions are executed periodically and reports are sent based on reporting mode. Report of these monitoring will be available in the async event AWR_MONITOR_ RF_DIG_PERIODIC_REPORT_AE_SB.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01C1
SBLKLEN	2	Value = 16
REPORTING_	1	Value Definition
MODE		0 Report is sent every monitoring period
		1 Report is sent only on a failure
		2 RESERVED
RESERVED	3	0x00000
PERIODIC_DIG_	4	1 – Enable, 0 – Disable
MON_EN		Bit Monitoring type
		b0 PERIODIC_CONFG_REGISTER_READ_EN
		b1 RESERVED
		b2 DFE_STC_EN
		b3 FRAME_TIMING_MONITORING_EN
		b31:4 RESERVED
RESERVED	4	0x0000000

Table 8.2: AWR_MONITOR_RF_DIG_PERIODIC_CONF_SB contents

8.1.3 Sub block 0x01C2 - AWR_MONITOR_ANALOG_ENABLES_CONF_SB

This API SB contains the consolidated configuration of all analog monitoring. This is issued by the host to the AWR device.

The enabled monitoring functions are executed with a periodicity of CALIB_MON_TIME_UNITS number of logical frames. The host should ensure that all the enabled monitors can be completed in the available inter-frame times, based on the monitoring durations (to be provided separately).

Table 8.3: AWR_MONITOR_ANALOG_ENABLES_CONF_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01C2
SBLKLEN	2	Value = 12

			eentimeee hege
ANA_MON- ITORING	4		y bit in this field is set to 1, the associated monitors are bled. The configurations and reports of each monitors are
ENABLES			ribed in respective sub sections.
		Bit	Definition
		b0	TEMPERATURE_MONITOR
		b1	RX_GAIN_PHASE_MONITOR
		b2	RX_NOISE_FIGURE_MONITOR (Reserved in xWR294x/xWR254x)
		b3	RX_IFSTAGE_MONITOR
		b4	TX0_POWER_MONITOR
		b5	TX1_POWER_MONITOR
		b6	TX2_POWER_MONITOR
		b7	TX0_BALLBREAK_MONITOR
		b8	TX1_BALLBREAK_MONITOR
		b9	TX2_BALLBREAK_MONITOR
		b10	TX_GAIN_PHASE_MISMATCH_MONITOR
		b11	TX0_PHASE_SHIFTER_MONITOR
		b12	TX1_PHASE_SHIFTER_MONITOR
		b13	TX2_PHASE_SHIFTER_MONITOR
		b14	SYNTH_FREQ_MONITOR_LIVE
		b15	EXTERNAL_ANALOG_SIGNALS_MONITOR (Re- served in xWR294x/xWR254x)
		b16	INTERNAL_TX0_SIGNALS_MONITOR
		b17	INTERNAL_TX1_SIGNALS_MONITOR
		b18	INTERNAL_TX2_SIGNALS_MONITOR
		b19	INTERNAL_RX_SIGNALS_MONITOR
		b20	INTERNAL_PMCLKLO_SIGNALS_MONITOR
		b21	INTERNAL_GPADC_SIGNALS_MONITOR
		b22	PLL_CONTROL_VOLTAGE_MONITOR
		b23	DCC_CLOCK_FREQ_MONITOR
		b24	RX_SATURATION_DETECTOR_MONITOR
		b25	RX_SIG_IMG_BAND_MONITOR (Reserved in xWR294x/xWR254x)
		b26	RX_MIXER_INPUT_POWER_MONITOR (Reserved in xWR294x/xWR254x)
		b27	RESERVED
		b28	SYNTH_FREQ_MONITOR_NON_LIVE
		b29	TX3_POWER_MONITOR (xWR294x/xWR254x only)
		b30	TX3_BALLBREAK_MONITOR (xWR294x/xWR254x only)
		b31	
			(xWR294x/xWR254x only)

Copyright © 2021, Texas Instruments Incorporate Continued on next page

426

LDO_VMON_ SC_MONI- TORING_EN	2	If any bit in this field is set to 1, the associated monitors are enabled. There are no reports for these monitors. If there is any fault, the async event AWR_ANALOGFAULT_AE_SB will be sent. Bit Description
		b0 APLL LDO short circuit monitoring enable 0 – disable, 1 – enable
		b1 SYNTH VCO LDO short circuit monitoring enable 0 – disable, 1 – enable
		b2 PA LDO short circuit monitoring enable (not appli- cable for xWR294x/xWR254x) 0 – disable, 1 – enable
		 b3 VMON circuit monitoring enable (not applicable for xWR294x/xWR254x) 0 – disable, 1 – enable
		b15:4 RESERVED
		Note1: The VMON circuit monitoring is not supported in AWR2243/xWR6243 device. Note2: In xWR294x/xWR254x devices, there is a separate VMON monitoring configuration and enable API - AWR_MON- ITOR_VMON_CONF_SB. Note3: In xWR294x/xWR254x devices, APLL LDO Short Cir- cuit and VMON faults are not reported by the RSS firmware. Fault signals are mapped to the MSS ESM and should be re- sponded to by the MSS application. Please refer to the TRM for more information.
ANA_MON- ITORING_ ENABLES_ CONT	2	If any bit in this field is set to 1, the associate monitors are enabled. The configurations and reports of each monitors are described in respective sub sections. Bit Definition
		b0 TX3_PHASE_SHIFTER_MONITOR (only appli- cable to xWR294x/xWR254x)
		b1 TX_PHSHIFTER_DAC_MONITOR (only applica- ble to xWR294x/xWR254x)
		b15:2 RESERVED

NOTE:	In xWR294x/xWR254x, the enabled monitors are executed in the
	below order.
	1. TEMPERATURE_MONITOR.
	2. RX_GAIN_PHASE_MONITOR.
	3. RX_IFSTAGE_MONITOR.
	4. SYNTH_FREQ_MONITOR_NON_LIVE.
	5. INTERNAL_RX_SIGNALS_MONITOR.
	6. INTERNAL_PMCLKLO_SIGNALS_MONITOR.
	7. INTERNAL_GPADC_SIGNALS_MONITOR.
	8. PLL_CONTROL_VOLTAGE_MONITOR.
	9. DCC_CLOCK_FREQ_MONITOR.
	10. RX_SATURATION_DETECTOR_MONITOR.
	11. TX_PHSHIFTER_DAC_MONITOR.
	12. TX0_POWER_MONITOR.
	13. TX1_POWER_MONITOR.
	14. TX2_POWER_MONITOR.
	15. TX3_POWER_MONITOR.
	16. TX0_BALLBREAK_MONITOR.
	17. TX1_BALLBREAK_MONITOR.
	18. TX2_BALLBREAK_MONITOR.
	19. TX3_BALLBREAK_MONITOR.
	20. INTERNAL_TX0_SIGNALS_MONITOR.
	21. INTERNAL_TX1_SIGNALS_MONITOR.
	22. INTERNAL_TX2_SIGNALS_MONITOR.
	23. INTERNAL_TX3_SIGNALS_MONITOR.
	24. TX_GAIN_PHASE_MISMATCH_MONITOR.
	25. TX0_PHASE_SHIFTER_MONITOR.
	26. TX1_PHASE_SHIFTER_MONITOR.
	27. TX2_PHASE_SHIFTER_MONITOR.
	28. TX3_PHASE_SHIFTER_MONITOR.

8.2 Temperature Monitor

This section contains API SBs that configure the on chip temperature monitors and report the soft results from the monitor. The corresponding monitors are collectively named TEMPERATURE_MONITOR. These monitors observe the temperature near various RF analog and digital modules using temperature sensors and GPADC and compare them against configurable thresholds. The report is sent as an async event AWR_MONITOR_TEMPERATURE_REPORT_AE_SB.

8.2.1 Sub block 0x01C3 – AWR_MONITOR_TEMPERATURE_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to temperature monitoring. Report of this monitoring will be available in the async event AWR_MONITOR_TEMPERATURE_REPORT_AE_SB.

NOTE:	For AWR2243/xWR6243 devices, the digital temperature sen-
	sor monitor threshold checks (Min, Max and Delta) can be
	disabled by programming DIG_TEMP_THRESH_MIN and DIG_
	TEMP_THRESH_MAX to value Zero.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01C3
SBLKLEN	2	Value = 24
REPORTING_ MODE	1	Value Definition 0 Report is sent every monitoring period without threshold check
		1 Report is send only upon a failure (after checking for thresholds)
		2 Report is sent every monitoring period with threshold check
RESERVED	1	0x00
ANA_TEMP_ THRESH_MIN	2	The temperatures read from near the sensors near the RF analog modules are compared against a minimum threshold. The comparison result is part of the monitoring report message (Error bit is set if any measurement is outside this (minimum, maximum) range). 1 LSB = 1° C, signed number Valid range: -99° C to 199° C
ANA_TEMP_ THRESH_MAX	2	The temperatures read from near the sensors near the RF analog modules are compared against a maximum threshold. The comparison result is part of the monitoring report message (Error bit is set if any measurement is outside this (minimum, maximum) range). 1 LSB = 1° C, signed number Valid range: -99° C to 199° C

Table 8.4: AWR_MONITOR_TEMPERATURE_CONF_SB contents

1		
DIG_TEMP_ THRESH_MIN	2	xWR294x/xWR254x devices: This field is RESERVED.
		AWR2243/xWR6243 devices: The temperatures read from near the sensor near the digital module are compared against a minimum threshold. The comparison result is part of the monitoring report message (Error bit is set if any measurement is outside this (minimum, maximum) range). 1 LSB = 1°C, signed number Valid range: -99°C to 199°C Value 0: Disable monitor threshold check (together with DIG_TEMP_THRESH_MAX=0)
DIG_TEMP_ THRESH_MAX	2	xWR294 x/ xWR254 x devices: This field is RESERVED.
		AWR2243/xWR6243 devices: The temperatures read from near the sensor near the digi- tal module are compared against a maximum threshold. The comparison result is part of the monitoring report message (Error bit is set if any measurement is outside this (minimum, maximum) range). 1 LSB = 1°C, signed number Valid range: -99°C to 199°C Value 0: Disable monitor threshold check (together with DIG_TEMP_THRESH_MIN=0)
TEMP_DIFF_ THRESH	2	The maximum difference across temperatures read from all the enabled sensors is compared against this threshold. The comparison result is part of the monitoring report message (Error bit is set if the measured difference exceeds this field). 1 LSB = 1°C, unsigned number Valid range: 0°C to 100°C
		Note: For AWR2243/xWR6243 devices, digital tempera- ture sensors can be excluded from this check by setting DIG_TEMP_THRESH_MIN and DIG_TEMP_THRESH_ MAX to value 0.
RESERVED	4	0x0000000
RESERVED	4	0x0000000

8.3 RX Gain and Phase Monitor

This section contains API SBs that configure the monitors of receiver gain and phase. The corresponding monitors are collectively named RX_GAIN_PHASE_MONITOR. The report is sent as an async event AWR_MONITOR_RX_GAIN_PHASE_REPORT_AE_SB.

NOTE:	It is recommended for the user to configure this monitor in verbose mode (Mode 0), so that Host can compute actual RX gain through temperature compensation and detect presence of interference us- ing Noise Power.
	In quiet mode, the user may consider programming broad thresh- olds for Absolute Gain Error, taking into account the temperature variation of reported RX_GAIN_VALUE.

8.3.1 Sub block 0x01C4 – AWR_MONITOR_RX_GAIN_PHASE_CONF_SB

This is a monitoring configuration API which the host sends to the AWR device, containing information related to RX gain and phase monitoring.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01C4
SBLKLEN	2	Value = 72
PROFILE_INDX	1	This field indicates the profile Index for which this monitor- ing configuration applies.

Table 8.5: AWR_MONITOR_RX_GAIN_PHASE_CONF_SB contents

	1				
RF_FREQ_BIT- MASK	1	This field indicates the RF frequencies inside the profile's RF band at which to measure the required parameters. When each bit in this field is set, the measurement at the corresponding RF frequency is enabled w.r.t. the profile's RF band.			
		Bit number	RF freq	uency	RF name
		b0		RF frequency in pro- eep bandwidth	RF1
		b1		RF frequency in pro- eep bandwidth	RF2
		b2	-	RF frequency in pro- eep bandwidth	RF3
		Bit number	Value	Definition	
		b3		Bit for dither limits sele	ection.
			0 Default dither limits with 63 M range selected for RF1, F RF3. RF1 dither limits:[0, 63] MHz RF2 dither limits:[-32,31] MH RF3 dither limits:[-63,0] MHz		RF1, RF2, 3] MHz 31] MHz
			1	Configurable dither specified in RF1_Rf DITHER_LIMITS au FREQ_DITHER_LIMI	F2_FREQ_ nd RF3_
		The RF name column is mentioned here to set the vention for the purpose of reporting and describing monitoring packets.			
		itoring insta its for unifor	e values of RF1, RF2 and RF3 are varied for each m ing instance by adding a random dither value. The I for uniform frequency dither can be controlled as m hed by bit b3 in the table above.		ue. The lim-
REPORTING_	1	Value De	efinition		
MODE			eport is se reshold che	nt every monitoring pe eck	eriod without
		1 Report is send only upon a failure (after c ing for thresholds). It is recommended not t quiet mode, as Host has to compute actua gain and need to monitor Noise power to c presence of interference.			ed not to use te actual RX
			eport is se reshold che	ent every monitoring eck	period with

TX_SEL	1	Value Definition		
		0 TX0 is used for generating loopback signal for RX gain measurement		
		1 TX1 is used for generating loopback signal for RX gain measurement		
RX_GAIN_ ABS_ERROR_ THRESH	2	The magnitude of difference between the programmed and measured RX gain for each enabled channel at each en- abled RF frequency, is compared against this threshold. The comparison result is part of the monitoring report mes- sage (Error bit is set if any measurement is above this threshold). Before the comparison, the measured gains for each RF and RX are adjusted by subtracting the offset given in the RX_GAIN_MISMATCH_OFFSET_VALUE field 1 LSB = 0.1 dB Valid range: 0 to 65535 (0 to 6553dB)		
RX_GAIN_ MISMATCH_ THRESH	2	The magnitude of difference between measured RX gains across the enabled channels at each enabled RF fre- quency is compared against this threshold. The comparison result is part of the monitoring report mes- sage (Error bit is set if the measurement is above this threshold). Before the comparison, the measured gains for each RF and RX are adjusted by subtracting the offset given in the RX_GAIN_MISMATCH_OFFSET_VALUE field. 1 LSB = 0.1 dB Valid range: 0 to 65535 (0 to 6553dB)		
RX_GAIN_FLAT- NESS_ERROR_ THRESH	2	The magnitude of measured RX gain flatness error, for each enabled channel, is compared against this threshold. The flatness error for a channel is defined as the peak to peak variation across RF frequencies. The comparison re- sult is part of the monitoring report message (Error bit is set if any measurement is above this threshold). Before the comparison, the measured gains for each RF and RX are adjusted by subtracting the offset given in the RX_GAIN_MISMATCH_OFFSET_VALUE field. 1 LSB = 0.1 dB Valid range: 0 to 65535 (0 to 6553dB) This flatness check is applicable only if multiple RF Fre- quencies are enabled, i.e., RF_FREQ_BITMASK has bit numbers 0,1,2 set.		

RX_PHASE_ MISMATCH_ THRESH	2	The magnitude of measured RX phase mismatch across the enabled channels at each enabled RF frequency is compared against this threshold. The comparison result is part of the monitoring report mes- sage (Error bit is set if any measurement is above this threshold). Before the comparison, the measured phases for each RF and RX are adjusted by subtracting the offset given in the RX_PHASE_MISMATCH_OFFSET_VALUE field. 1 LSB = $360^{\circ}/2^{16}$. Valid range: corresponding to 0° to 359.9° .					
RX_GAIN_MIS- MATCH_OFF- SET_VALUE	24	for each isons are Byte nur field are RX0 RX1 RX2 RX3 1 LSB = Only the	RX and e given h mbers co here: RF1 1:0 3:2 5:4 7:6 0.1 dB, s e entries	RF before ere. rrespondin RF2 9:8 11:10 13:12 15:14 signed nur	19:18 21:20 23:22 mber d RF Frequencies and enabled		
RX_PHASE_ MISMATCH_ OFFSET_VALUE	24	for each isons are RX0 RX1 RX2 RX3 1 LSB = Only the	RX and e given h RF1 1:0 3:2 5:4 7:6 $360^{\circ}/2^{1}$ e entries	RF before ere. RF2 9:8 11:10 13:12 15:14 . ⁶ , unsigno	17:16 19:18 21:20 23:22 ed number d RF Frequencies and enabled		

RF1_RF2_ FREQ_DITHER_ LIMITS	4	MinimumandmaximumoffsetfrequencyditherlimitsforRF1andRF2, whenditherlimitselec-tionbitb3ofRF_FREQ_BITMASKissetto1ByteDescription0RF1 offsetfrequency dither min limit11RF1 offsetfrequency dither max limit1RF1 offsetfrequencydither max limit2RF2 offsetfrequency dither max limit3RF2 offsetfrequencydither max limit1LSB = 1MHz, signed numberValidRange: -128 to127NOTE:maxlimitsshouldbegreaterthanminlimit
RF3_FREQ_ DITHER_LIMITS	2	Minimum and maximum offset frequency dither limits for RF3, when dither limit selection bit b3 of RF_FREQ_BITMASK is set to 1 Byte Description 0 RF3 offset frequency dither min limit 1 RF3 offset frequency dither max limit 1 LSB = 1MHz, signed number Valid Range: -128 to 127 NOTE: max limits should be greater than min lim- its
RESERVED	2	0x0000

8.4 RX Noise Monitor

This section contains API SBs that configure the monitor of receiver noise, and report the soft results from the monitor. The corresponding monitor is named RX_NOISE_FIGURE_MONITOR. The report is sent as an async event AWR_MONITOR_RX_NOISE_FIGURE_REPORT_AE_SB.

8.4.1 Sub block 0x01C5 – AWR_MONITOR_RX_NOISE_FIGURE_CONF_SB

This is a monitoring configuration API which the host sends to the AWR device, containing information related to RX noise monitoring of a profile.

NOTE:	The RX Noise figure monitor API is not supported in production, it
	can be used only for debug. Please refer latest DFP release note
	for more info.

Table 8.6: AWR_MONITOR_RX_NOISE_FIGURE_CONF_SB contents

Field Name	Number of bytes	Description			
SBLKID	2	Value = 0x01C5			
SBLKLEN	2	Value = 16			
PROFILE_INDX	1	This field indicates the profile Index for which this monitor- ing configuration applies.			
RF_FREQ_BIT- MASK	1	This field indicates the exact RF frequencies inside the profile's RF band at which to measure the required parameters. When each bit in this field is set, the measurement at the corresponding RF frequency is enabled w.r.t. the profile's RF band.Bit numberRF frequencyRF nameb0Lowest RF frequency in pro-RF1			
		file's sweep bandwidth b1 Center RF frequency in pro- RF2 file's sweep bandwidth			
		b2 Highest RF frequency in pro- RF3 file's sweep bandwidth The RF name column is mentioned here to set the con- vention for the purpose of reporting and describing many monitoring packets.			
RESERVED	2	0x0000			
REPORTING_ MODE	1	Value Definition 0 Report is sent every monitoring period without threshold check			
		1 Report is send only upon a failure (after checking for thresholds)			
		2 Report is sent every monitoring period with threshold check			
RESERVED	1	0x00			
RX_NOISE_FIG- URE_THRESH- OLD	2	The measured RX input referred noise figure at the en- abled RF frequencies, for all channels, is compared against this threshold. The comparison result is part of the monitoring report message (Error bit is set if any mea- surement is above this threshold). 1 LSB = 0.1 dB Valid range: 0 to 65535 (0 to 6553dB)			
RESERVED	4	0x0000000			

NOTE:	The Rx gain and phase monitoring shall be enabled when enabling Rx noise figure Monitoring. This monitors only baseband noise						
	figure.						

8.5 RX IF Stage Monitor

This section contains API SBs that configure the monitors of receiver IF filter attenuation, and report the soft results from the monitor. The corresponding monitor is named RX_IFSTAGE_ MONITOR. The report is sent as an async event AWR_MONITOR_RX_IFSTAGE_REPORT_ AE_SB.

8.5.1 Sub block 0x01C6 – AWR_MONITOR_RX_IFSTAGE_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to RX IF filter attenuation monitoring. The report is sent as as an async event AWR_MONITOR_RX_IFSTAGE_REPORT_AE_SB.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01C6
SBLKLEN	2	Value = 20
PROFILE_INDX	1	This field indicates the Profile Index for which this monitor- ing configuration applies.
REPORTING_	1	Value Definition
MODE		0 Report is sent every monitoring period without threshold check
		1 Report is send only upon a failure (after checking for thresholds)
		2 Report is sent every monitoring period with threshold check
RESERVED	2	0x0000
RESERVED	2	0x0000
HPF_CUTOFF_ FREQ_ERROR_ THRESH	2	The absolute values of RX IF HPF cutoff percentage fre- quency errors are compared against the corresponding thresholds given in this field. The comparison results are part of the monitoring report message (Error bit is set if the absolute value of the errors exceeds respective thresh- olds). 1 LSB = 1%, unsigned number Valid range: 1% to 128%

 Table 8.7:
 AWR_MONITOR_RX_IFSTAGE_CONF_SB contents

		r – continued from previous page
LPF_CUT- OFF_BAND- EDGE_DROOP_ THRESH	1	The LPF band edge droop of RX channels are compared against the corresponding thresholds given in this field (max-limit check). The comparison results are part of the monitoring report message (Error bit is set if the band edge droops exceeds respective threshold). 1 LSB = 0.2dB, unsigned number Valid range: 0 to 50dB Note1: This feature is supported only on AWR2243, xWR294x and xWR254x devices. In xWR294x/xWR254x, this should be used for debug purposes only. Note2: In xWR254x devices LPF monitor is executed only when LPF_CUTOFF_BANDEDGE_DROOP_THRESH and LPF_CUTOFF_STOPBAND_ATTEN_THRESH both are set to non-zero threshold values. Refer Table 12.7 for monitoring timings for LPF monitor enabled / disabled case.
LPF_CUTOFF_ STOPBAND_ ATTEN_THRESH	1	The LPF stop band attenuation at 2x analog LPF's band edge with respect to the analog LPF's band edge of RX channels are compared against the corresponding thresh- olds given in this field (min-limit check). The comparison results are part of the monitoring report message (Error bit is set if the stop band attenuation less than respective threshold). 1 LSB = 0.2dB, unsigned number Valid range: 0 to 50dB Note1: This feature is supported only on AWR2243, xWR294x devices and xWR254x. In xWR294x/xWR254x, this should be used for debug purposes only. Note2: In xWR254x devices LPF monitor is executed only when LPF_CUTOFF_BANDEDGE_DROOP_THRESH and LPF_CUTOFF_STOPBAND_ATTEN_THRESH both are set to non-zero threshold values. Refer Table 12.7 for monitoring timings for LPF monitor enabled / disabled case.
IFA_GAIN_ER- ROR_THRESH	2	The absolute deviation of RX IFA Gain from the expected gain for each enabled RX channel is compared against the thresholds given in this field. The comparison result is part of the monitoring report message (Error bit is set if the absolute value of the errors exceeds respective thresholds). 1 LSB = 0.1 dB, unsigned number Valid range: 0 to 65535 (0 to 6553dB)
RESERVED	4	0x0000000

8.6 TX Power Monitor

This section contains API SBs that configure the monitors of transmitter output power, and report the soft results from the monitor. The corresponding monitors are collectively named TXn_ POWER_MONITOR where n is the TX channel number.

8.6.1 Sub block 0x01C7 – AWR_MONITOR_TX0_POWER_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to TX0 power monitoring. Absolute TX power and flatness across RF frequencies are monitored here. The report is sent as an async event AWR_MONITOR_TX0_POWER_ REPORT_AE_SB.

Field Name	Number of bytes	Description			
SBLKID	2	Value = 0x01	C7		
SBLKLEN	2	Value = 20			
PROFILE_INDX	1	This field ind ing configura	icates the Profile Index for which tion applies.	this monitor-	
RF_FREQ_BIT- MASK	1	This field indicates the exact RF frequencies inside the pro- file's RF band at which to measure the required parame- ters. When each bit in this field is set, the measurement at the corresponding RF frequency is enabled w.r.t. the pro- file's RF band.			
		Bit number	RF frequency	RF name	
		b0	Lowest RF frequency in pro- file's sweep bandwidth	RF1	
		b1	Center RF frequency in pro- file's sweep bandwidth	RF2	
		b2	Highest RF frequency in pro- file's sweep bandwidth	RF3	
		The RF Name column is mentioned here to set the con			
		vention for the monitoring particular termination of the monitoring particular termination of the monitor of th	e purpose of reporting and destackets.	cribing many	
RESERVED	2	0x0000			

Table 8.8: AWR_MONITOR_TX0_POWER_CONF_SB contents

REPORTING_ 1 Value Definition MODE 0 Report is sent every monitoring period without threshold check 1 Report is sent only upon a failure (after checking for thresholds) 2 2 Report is sent every monitoring period with threshold check RESERVED 1 0x00 TX_POWER_ ABSOLUTE_ER-ROR_THRESH 2 ROR_THRESH 2 The magnitude of difference between the programmed and measured TX power for each enabled channel at each enabled RF frequency, is compared against this threshold. The comparison result is part of the monitoring report message (Error bit is set if any measurement is above this threshold). TX_POWER_ 2 The magnitude of measured TX power flatness error, for each enabled channel, is compared against this threshold. The flatness error for a channel is defined as the peak to peak variation across RF frequencies. The comparison result is part of the monitoring report message (Error bit is set if any measurement is above this threshold). TLSB = 0.1 dB Valid range: to to 65535 (0 to 6553dB) TX_POWER_ 2 0x0000 TX_POWER_ 3 AWR2243/xWR294x/xWR254x devices: RESERVED 2 0x0000 TX_POWER_ 3 AWR2243/xWR294x/xWR254x devices: This field is reserved. Set it to 0x000000. xWR6243 devices:			
0 Report is self every induiting period without threshold check 1 Report is send only upon a failure (after checking for thresholds) 2 Report is sent every monitoring period with threshold check RESERVED 1 0x00 TX_POWER_ABSOLUTE_ER-ROR_THRESH 2 The magnitude of difference between the programmed and measured TX power for each enabled channel at each enabled RF frequency, is compared against this threshold. The comparison result is part of the monitoring report message (Error bit is set if any measurement is above this threshold). 1 LSB = 0.1 dB Valid range: 0 to 65535 (0 to 6553dB) TX_POWER_FLATNESS_ER-ROR_THRESH 2 The magnitude of measured TX power flatness error, for each enabled channel, is compared against this threshold. The flatness error for a channel is defined as the peak to peak variation across RF frequencies. The comparison result is part of the monitoring report message (Error bit is set if any measurement is above this threshold). 1 LSB = 0.1 dB Valid range: 0 to 65535 (0 to 6553dB) TX_POWER_OFFSET_VALUE 3 AWR2243/xWR294x/xWR254x devices: This field is reserved. Set it to 0x00000. xWR6243 devices: TA_POWER_OFFSET_VALUE 3 AWR2243/xWR294x/xWR254x devices: The offset values to be added with the measured TX power for each RF before the relevant threshold comparison. Byte numbers corresponding to different RF are RF Byte RF1 0 RF2 1 RF2 1 RF3 2 1 LSB = 0.1dB signed Valid range:	REPORTING_	1	Value Definition
for thresholds)2Report is sent every monitoring period with threshold checkRESERVED10x00TX_POWER_ ABSOLUTE_ER- ROR_THRESH2The magnitude of difference between the programmed and measured TX power for each enabled channel at each enabled RF frequency, is compared against this threshold. The comparison result is part of the monitoring report message (Error bit is set if any measurement is above this threshold). 1 LSB = 0.1 dB Valid range: 0 to 65535 (0 to 6553dB)TX_POWER_ FLATNESS_ER- ROR_THRESH2The magnitude of measured TX power flatness error, for each enabled channel, is compared against this threshold. The flatness error or a channel is defined as the peak to peak variation across RF frequencies. The comparison result is part of the monitoring report message (Error bit is set if any measurement is above this threshold). 1 LSB = 0.1 dB Valid range: 0 to 65535 (0 to 6553dB) This flatness error for a channel is defined as the peak to peak variation across RF frequencies. The comparison result is part of the monitoring report message (Error bit is set if any measurement is above this threshold). 1 LSB = 0.1 dB Valid range: 0 to 65535 (0 to 6553dB) This flatness check is applicable only if multiple RF Frequencies are enabled.RESERVED20x0000TX_POWER_ OFFSET_VALUE3AWR2243/xWR294x/xWR254x devices: The offset values to be added with the measured TX power for each RF before the relevant threshold comparison. Byte mmbers corresponding to different RF are RF Byte RF1 0 RF2 1 LSB = 0.1dB signed Valid range: -128 to +127 (-12.8 to 12.7dB)	MODE		
RESERVED10x00TX_POWER_ ABSOLUTE_ER- ROR_THRESH2The magnitude of difference between the programmed and measured TX power for each enabled channel at each en- abled RF frequency, is compared against this threshold. The comparison result is part of the monitoring report mes- sage (Error bit is set if any measurement is above this threshold). 1 LSB = 0.1 dB Valid range: 0 to 65535 (0 to 6553dB)TX_POWER_ FLATNESS_ER- ROR_THRESH2The magnitude of measured TX power flatness error, for each enabled channel, is compared against this threshold. The flatness error for a channel is defined as the peak to peak variation across RF frequencies. The comparison re- sult is part of the monitoring report message (Error bit is set if any measurement is above this threshold). 1 LSB = 0.1 dB Valid range: 0 to 65535 (0 to 6553dB) This flatness check is applicable only if multiple RF Fre- quencies are enabled.RESERVED20x0000TX_POWER_ OFFSET_VALUE3 AWR2243/xWR294x/xWR254x devices: The offset values to be added with the measured TX power for each RF before the relevant threshold compar- ison. Byte numbers corresponding to different RF are RF Byte RF1 0 RF2 1 LSB = 0.1dB signed Valid range: -128 to +127 (-12.8 to 12.7dB)			
TX_POWER_ ABSOLUTE_ER- ROR_THRESH2The magnitude of difference between the programmed and measured TX power for each enabled channel at each en- abled RF frequency, is compared against this threshold. The comparison result is part of the monitoring report mes- sage (Error bit is set if any measurement is above this threshold). 1 LSB = 0.1 dB Valid range: 0 to 65535 (0 to 6553dB)TX_POWER_ FLATNESS_ER- ROR_THRESH2The magnitude of measured TX power flatness error, for each enabled channel, is compared against this threshold. The flatness error for a channel is defined as the peak to peak variation across RF frequencies. The comparison re- sult is part of the monitoring report message (Error bit is set if any measurement is above this threshold). 1 LSB = 0.1 dB Valid range: 0 to 65535 (0 to 6553dB)RESERVED20x0000TX_POWER_ OFFSET_VALUE3 AWR2243/xWR294x/xWR254x devices: This flatness check is applicable only if multiple RF Fre- quencies are enabled.RESERVED20x0000TX_POWER_ OFFSET_VALUE3 AWR2243/xWR294x/xWR254x devices: The offset values to be added with the measured TX power for each RF before the relevant threshold compar- ison. Byte numbers corresponding to different RF are RF Byte RF1RF10RF21RF321 LSB = 0.1dB signed Valid range: -128 to +127 (-12.8 to 12.7dB)			
ABSOLUTE_ER- ROR_THRESHmeasured TX power for each enabled channel at each enabled RF frequency, is compared against this threshold. The comparison result is part of the monitoring report message (Error bit is set if any measurement is above this threshold). 1 LSB = 0.1 dB Valid range: 0 to 65535 (0 to 6553dB)TX_POWER_ FLATNESS_ER- ROR_THRESH2The magnitude of measured TX power flatness error, for each enabled channel, is compared against this threshold. The flatness error for a channel is defined as the peak to peak variation across RF frequencies. The comparison re- sult is part of the monitoring report message (Error bit is set if any measurement is above this threshold). 1 LSB = 0.1 dB Valid range: 0 to 65535 (0 to 6553dB) This flatness check is applicable only if multiple RF Fre- quencies are enabled.RESERVED20x0000TX_POWER_ OFFSET_VALUE3AWR2243/xWR294x/xWR254x devices: This field is reserved. Set it to 0x00000. xWR6243 devices: The offset values to be added with the measured TX power for each RF before the relevant threshold compar- ison. Byte numbers corresponding to different RF are RF1 0 RF2 1 RF3 2 1 LSB = 0.1dB signed Valid range: -128 to +127 (-12.8 to 12.7dB)	RESERVED	1	0x00
FLATNESS_ER- ROR_THRESHeach enabled channel, is compared against this threshold. The flatness error for a channel is defined as the peak to peak variation across RF frequencies. The comparison re- sult is part of the monitoring report message (Error bit is set if any measurement is above this threshold). 1 LSB = 0.1 dB Valid range: 0 to 65535 (0 to 6553dB) This flatness check is applicable only if multiple RF Fre- quencies are enabled.RESERVED20x0000TX_POWER_ OFFSET_VALUE3 AWR2243/xWR294x/xWR254x devices: This field is reserved. Set it to 0x000000. xWR6243 devices: The offset values to be added with the measured TX power for each RF before the relevant threshold compar- ison. Byte numbers corresponding to different RF are RF RF1 0 RF2 1 RF3 2 1 LSB = 0.1dB signed Valid range: -128 to +127 (-12.8 to 12.7dB)	ABSOLUTE_ER-	2	measured TX power for each enabled channel at each en- abled RF frequency, is compared against this threshold. The comparison result is part of the monitoring report mes- sage (Error bit is set if any measurement is above this threshold). 1 LSB = 0.1 dB
TX_POWER_ OFFSET_VALUE 3 AWR2243/xWR294x/xWR254x devices: This field is reserved. Set it to 0x000000. xWR6243 devices: The offset values to be added with the measured TX power for each RF before the relevant threshold compar- ison. Byte numbers corresponding to different RF are RF Byte RF1 0 RF2 1 RF3 2 1 LSB = 0.1dB signed Valid range: -128 to +127 (-12.8 to 12.7dB)	FLATNESS_ER-	2	each enabled channel, is compared against this threshold. The flatness error for a channel is defined as the peak to peak variation across RF frequencies. The comparison re- sult is part of the monitoring report message (Error bit is set if any measurement is above this threshold). 1 LSB = 0.1 dB Valid range: 0 to 65535 (0 to 6553dB) This flatness check is applicable only if multiple RF Fre-
OFFSET_VALUE This field is reserved. Set it to 0x000000. xWR6243 devices: The offset values to be added with the measured TX power for each RF before the relevant threshold comparison. Byte numbers corresponding to different RF are RF Byte RF1 0 RF2 1 RF3 2 1 LSB = 0.1dB signed Valid range: -128 to +127 (-12.8 to 12.7dB)	RESERVED	2	0x0000
RESERVED 1 0x00		3	This field is reserved. Set it to 0x000000. xWR6243 devices: The offset values to be added with the measured TX power for each RF before the relevant threshold compar- ison. Byte numbers corresponding to different RF are RF Byte RF1 0 RF2 1 RF3 2 1 LSB = 0.1dB signed
	RESERVED	1	0x00

8.6.2 Sub block 0x01C8 - AWR_MONITOR_TX1_POWER_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to TX1 power monitoring. Absolute TX power and flatness across RF frequencies are monitored here. The report is sent as an async event AWR_MONITOR_TX1_POWER_ REPORT_AE_SB.

Field Name	Number of bytes	Descrip	tion
SBLKID	2	Value =	0x01C8
SBLKLEN	2	Value =	20
PROFILE_INDX	1		d indicates the Profile Index for which this monitor- iguration applies.
RF_FREQ_BIT- MASK	1	file's RF ters. Wh the corre file's RF Bit numb b0 b1 b2 The RF vention	ber RF frequency RF name Lowest RF frequency in pro- file's sweep bandwidth Center RF frequency in pro- file's sweep bandwidth Highest RF frequency in pro- file's sweep bandwidth Name column is mentioned here to set the con- for the purpose of reporting and describing many
			ng packets.
RESERVED	2	0x0000	
REPORTING_	1	Value	Definition
MODE		0	Report is sent every monitoring period without threshold check
		1	Report is send only upon a failure (after checking for thresholds)
		2	Report is sent every monitoring period with threshold check
RESERVED	1	0x00	

Table 8.9: AWR_MONITOR_TX1_POWER_CONF_SB contents

		e e e e e e e e e e e e e e e e e e e
TX_POWER_ ABSOLUTE_ER- ROR_THRESH	2	The magnitude of difference between the programmed and measured TX power for each enabled channel at each en- abled RF frequency, is compared against this threshold. The comparison result is part of the monitoring report mes- sage (Error bit is set if any measurement is above this threshold). 1 LSB = 0.1 dB Valid range: 0 to 65535 (0 to 6553dB)
TX_POWER_ FLATNESS_ER- ROR_THRESH	2	The magnitude of measured TX power flatness error, for each enabled channel, is compared against this threshold. The flatness error for a channel is defined as the peak to peak variation across RF frequencies. The comparison re- sult is part of the monitoring report message (Error bit is set if any measurement is above this threshold). 1 LSB = 0.1 dB Valid range:0 to 65535 (0 to 6553dB) This flatness check is applicable only if multiple RF Fre- quencies are enabled.
RESERVED	2	0x0000
TX_POWER_ OFFSET_VALUE	3	AWR2243/xWR294x/xWR254x devices:This field is reserved. Set to 0x0.xWR6243 devices:The offset values to be added with the measured TXpower for each RF before the relevant threshold compar-ison. Byte numbers corresponding to different RF areRFByteRF10RF21RF321 LSB = 0.1dB signedValid range: -128 to +127 (-12.8 to 12.7dB)
RESERVED	1	0x00

8.6.3 Sub block 0x01C9 – AWR_MONITOR_TX2_POWER_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to TX2 power monitoring. Absolute TX power and flatness across RF frequencies are monitored here. The report is sent as an async event AWR_MONITOR_TX2_POWER_ REPORT_AE_SB.

Table 8.10: AWR_MONITOR_TX2_POWER_CONF_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01C9
SBLKLEN	2	Value = 20
PROFILE_INDX	1	This field indicates the Profile Index for which this monitor- ing configuration applies.
RF_FREQ_BIT- MASK	1	This field indicates the exact RF frequencies inside the pro- file's RF band at which to measure the required parame- ters. When each bit in this field is set, the measurement at the corresponding RF frequency is enabled w.r.t. the pro- file's RF band.
		Bit number RF frequency RF name
		b0 Lowest RF frequency in pro- RF1 file's sweep bandwidth
		b1 Center RF frequency in pro- RF2 file's sweep bandwidth
		b2 Highest RF frequency in pro- RF3 file's sweep bandwidth The RF Name column is mentioned here to set the con- vention for the purpose of reporting and describing many monitoring packets.
RESERVED	2	0x0000
REPORTING_	1	Value Definition
MODE		0 Report is sent every monitoring period without threshold check
		1 Report is send only upon a failure (after checking for thresholds)
		2 Report is sent every monitoring period with threshold check
RESERVED	1	0x00
TX_POWER_ ABSOLUTE_ER- ROR_THRESH	2	The magnitude of difference between the programmed and measured TX power for each enabled channel at each en- abled RF frequency, is compared against this threshold. The comparison result is part of the monitoring report mes- sage (Error bit is set if any measurement is above this threshold). 1 LSB = 0.1 dB Valid range: 0 to 65535 (0 to 6553dB)

TX_POWER_ FLATNESS_ER- ROR_THRESH	2	The magnitude of measured TX power flatness error, for each enabled channel, is compared against this threshold. The flatness error for a channel is defined as the peak to peak variation across RF frequencies. The comparison re- sult is part of the monitoring report message (Error bit is set if any measurement is above this threshold). 1 LSB = 0.1 dB Valid range: 0 to 65535 (0 to 6553dB) This flatness check is applicable only if multiple RF Fre-
	2	quencies are enabled.
RESERVED	2	0x0000
TX_POWER_ OFFSET_VALUE	3	AWR2243/xWR294x/xWR254x devices:This field is reserved. Set to 0x0.xWR6243 devices:The offset values to be added with the measured TXpower for each RF before the relevant threshold compar-ison. Byte numbers corresponding to different RF areRFByteRF10RF21RF321 LSB = 0.1dB signedValid range: -128 to +127 (-12.8 to 12.7dB)
RESERVED	1	0x00

8.7 TX Ball Break Monitor

This section contains API SBs that configure the monitors of transmitter balls and impedance matching. The corresponding monitors are collectively named TXn_BALLBREAK_MONITOR where n is the TX channel number.

TX ball break detection is performed through measurement of TX reflection coefficient's magnitude. The breakage of a TX ball is detected by observing high reflection magnitude.

8.7.1 Sub block 0x01CA – AWR_MONITOR_TX0_BALLBREAK_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to TX ball break detection.

This API SB controls the thresholds for the reflection coefficient magnitude check and the parameters for the reflection coefficient error distance check (variation from values at the time of factory calibration). The report is sent as an async event AWR_MONITOR_TX0_BALLBREAK_ REPORT_AE_SB.

$\textbf{Table 8.11: } \texttt{AWR}_\texttt{MONITOR}_\texttt{TX0}_\texttt{BALLBREAK}_\texttt{CONF}_\texttt{SB} \texttt{ contents}$

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01CA
SBLKLEN	2	Value = 16
REPORTING_	1	Value Definition
MODE		0 Report is sent every monitoring period without threshold check
		1 Report is send only upon a failure (after checking for thresholds)
		2 Report is sent every monitoring period with threshold check
RESERVED	1	0x00
TX_REFL_CO- EFF_THRESH	2	The TX reflection coefficient's magnitude for each enabled channel is compared against the threshold given here. The comparison result is part of the monitoring report message (Error bit is set if the measurement is higher than this threshold, with the units of both quantities being the same). 1 LSB = 0.1 dB, signed number Valid range: -32767 to +32767 (-3276dB to +3276dB)
MON_START_ FREQ_CONST	4	AWR2243 devices: This field is reserved. Set to 0x0. xWR6x43/xWR294x/xWR254x devices: Start frequency of the monitoring chirp. For 77GHz Devices (76GHz to 80.8Ghz): 1 LSB = $3.6e9/2^{26}$ Hz \approx 53.644 Hz Valid range: 0x5471C71C to 0x59C71C71 For 60GHz Devices (57GHz to 63.8Ghz): 1 LSB = $2.7e9/2^{26}$ Hz \approx 40.233 Hz Valid range: Only even numbers from 0x5471C71C to 0x5E84BDA1
TX_POWER_ BACKOFF	1	AWR2243/xWR294x/xWR254x devices: This field is reserved. Set to 0x0. xWR6243 devices: TX Power Backoff settings used for ballbreak monitor 1 LSB = 1dB Valid values: 0, 3, 6, 9dB
RESERVED	3	0x00000

8.7.2 Sub block 0x01CB – AWR_MONITOR_TX1_BALLBREAK_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to TX ball break detection.

This API SB controls the thresholds for the reflection coefficient magnitude check and the parameters for the reflection coefficient error distance check (variation from values at the time of factory calibration). The report is sent as an async event AWR_MONITOR_TX1_BALLBREAK_ REPORT_AE_SB.

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x01CB	
SBLKLEN	2	Value = 16	
REPORTING_	1	Value Definition	
MODE		0 Report is sent every monitoring period without threshold check	
		1 Report is send only upon a failure (after checking for thresholds)	
		2 Report is sent every monitoring period with threshold check	
RESERVED	1	0x00	
TX_REFL_CO- EFF_THRESH	2	The TX reflection coefficient's magnitude for each enabled channel is compared against the threshold given here. The comparison result is part of the monitoring report message (Error bit is set if the measurement is higher than this threshold, with the units of both quantities being the same). 1 LSB = 0.1 dB, signed number Valid range: -32767 to +32767 (-3276dB to +3276dB)	
MON_START_ FREQ_CONST	4	AWR2243 devices: This field is reserved. Set to 0x0. xWR6x43/xWR294x/xWR254x devices: Start frequency of the monitoring chirp. For 77GHz Devices (76GHz to 80.8Ghz): 1 LSB = $3.6e9/2^{26}$ Hz \approx 53.644 Hz Valid range: 0x5471C71C to 0x59C71C71 For 60GHz Devices (57GHz to 63.8Ghz): 1 LSB = $2.7e9/2^{26}$ Hz \approx 40.233 Hz Valid range: Only even numbers from 0x5471C71C to 0x5E84BDA1	

 Table 8.12:
 AWR_MONITOR_TX1_BALLBREAK_CONF_SB contents

TX_POWER_	1	AWR2243/xWR294x/xWR254x devices:
BACKOFF		This field is reserved. Set to 0x0.
		xWR6243 devices:
		TX Power Backoff settings used for ballbreak monitor
		1 LSB = 1dB
		Valid values: 0, 3, 6, 9dB
RESERVED	3	0x000000

8.7.3 Sub block 0x01CC – AWR_MONITOR_TX2_BALLBREAK_CONF_SB

This API is a monitoring monfiguration API which the host sends to the AWR device, containing information related to TX ball break detection.

This API SB controls the thresholds for the reflection coefficient magnitude check and the parameters for the reflection coefficient error distance check (variation from values at the time of factory calibration). The report is sent as an async event AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB.

Table 8.13: AWR MONITOR TX2 BALLBREAK CONF SB contents	Table 8.13:	AWR	MONITOR	TX2	BALLBREAK	CONF	SB contents
--	-------------	-----	---------	-----	-----------	------	-------------

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01CC
SBLKLEN	2	Value = 16
REPORTING_	1	Value Definition
MODE		0 Report is sent every monitoring period without threshold check
		1 Report is send only upon a failure (after checking for thresholds)
		2 Report is sent every monitoring period with threshold check
RESERVED	1	0x00
TX_REFL_CO- EFF_THRESH	2	The TX reflection coefficient's magnitude for each enabled channel is compared against the threshold given here. The comparison result is part of the monitoring report message (Error bit is set if the measurement is higher or equal to this threshold, with the units of both quantities being the same). 1 LSB = 0.1 dB, signed number Valid range: -32767 to +32767 (-3276dB to +3276dB)

MON_START_ FREQ_CONST	4	AWR2243 devices: This field is reserved. Set to 0x0. xWR6x43/xWR294x/xWR254x devices: Start frequency of the monitoring chirp. For 77GHz Devices (76GHz to 80.8Ghz): 1 LSB = $3.6e9/2^{26}$ Hz ≈ 53.644 Hz Valid range: 0x5471C71C to 0x59C71C71 For 60GHz Devices (57GHz to 63.8Ghz): 1 LSB = $2.7e9/2^{26}$ Hz ≈ 40.233 Hz Valid range: Only even numbers from 0x5471C71C to 0x5E84BDA1
TX_POWER_ BACKOFF	1	AWR2243/xWR294x/xWR254x devices: This field is reserved. Set to 0x0. xWR6243 devices: TX Power Backoff settings used for ballbreak monitor 1 LSB = 1dB Valid values: 0, 3, 6, 9dB
RESERVED	3	0x000000

8.8 TX Gain and Phase Mismatch Monitoring

This section contains API SBs that configure the monitors of transmitter gain and phase mismatches, and report the soft results from the monitor. The corresponding monitors are collectively named TX_GAIN_PHASE_MISMATCH_MONITOR.

This monitor needs the operation of at least one RX channel. It also needs to use the RX in complex mode. Therefore, if all channels are disabled as per AWR_CHAN_CONF_SET_SB, this monitor automatically enables one RX channel. Further, this monitor automatically uses both I and Q channels of the receiver, irrespective of the ADC settings given by AWR_ADCOUT_CONF_SET_SB.

8.8.1 Sub block 0x01CD – AWR_MONITOR_TX_GAIN_PHASE_MISMATCH_ CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to TX gain and phase mismatch monitoring. The report is sent as an async event AWR_MONITOR_TX_GAIN_PHASE_REPORT_AE_SB.

NOTE:	This API is not supported in xWR294x/xWR254x devices. Please
	use AWR_MONITOR_ADV_TX_GAIN_PHASE_MISMATCH_
	CONF_SB at 504 to perform TX gain phase monitoring on
	xWR294x/xWR254x devices.

Table 8.14: AWR_MONITOR_TX_GAIN_PHASE_MISMATCH_CONF_SB contents

Field Name	Number	Description	contents	
riela Name	of bytes	Description		
SBLKID	2	Value = 0x01C	D	
SBLKLEN	2	Value = 56		
PROFILE_INDX	1	This field indic ing configuration	ates the Profile Index for which on applies.	this monitor-
RF_FREQ_BIT- MASK	1	file's RF band ters. When ea the correspond file's RF band.	ates the exact RF frequencies in at which to measure the requi ch bit in this field is set, the mea ding RF frequency is enabled w RF frequency	red parame- surement at
		b0	Lowest RF frequency in pro- file's sweep bandwidth	RF1
		b1	Center RF frequency in pro- file's sweep bandwidth	RF2
			Highest RF frequency in pro- file's sweep bandwidth e column is mentioned here to e purpose of reporting and deso ckets.	
TX_EN	1	compared for responding bit measurement.	licates the TX channels that gain and phase balance. Set t to 1 enables that channel fo TX Channel TX0 TX1 TX2	ting the cor-
RX_EN	1	abled for TX t	cates the RX channels that sh to RX loopback measurement. bit to 1 enables that channel fo RX Channel RX0 RX1 RX2	Setting the
		b3	RX3	

		· · · ·
REPORTING_	1	Value Definition
MODE		0 Report is sent every monitoring period without threshold check
		1 Report is send only upon a failure (after checking for thresholds)
		2 Report is sent every monitoring period with threshold check
MON_CHIRP_ SLOPE	1	Frequency slope for each monitoring chirp is encoded in 1 bytes (8 bit signed number) For 77GHz Devices (76GHz to 81Ghz): 1 LSB = $3.6e9 \times 900/2^{26}$ Hz ≈ 48.279 kHz/ μ s Valid range: -128 to +127 (Max 6.13 MHz/ μ s) For 60GHz Devices (57GHz to 64Ghz): 1 LSB = $2.7e9 \times 900/2^{26}$ Hz ≈ 36.21 kHz/ μ s Valid range: -128 to +127 (Max 4.63 MHz/ μ s) NOTE: Monitoring Chirp Slope can be programmed based on the emission specifications. The device transmits on air during the execution of these monitors. The host can con- trol the monitoring emission power spectral density (dB- m/Hz) by programming this slope parameter. Each moni- toring chirp is about 45us in duration. Therefore the over- all RF sweep bandwidth for the monitoring chirp is given by Monitoring Chirp Slope * 45 us. Normally, low values of Monitoring Chirp Slope are recommended, as with non- zero slope in FMCW radar, any actual target reflections can potentially be interpreted as noise power and/or cor- rupt the loopback signal based gain/phase measurement. The user has to ensure that the RF bandwidth se- lected for monitoring chirp based on slope and start fre- quency is within FREQ_LIMIT set in AWR_CAL_MON_ FREQUENCY_TX_POWER_LIMITS_SB API.
TX_GAIN_ MISMATCH_ THRESH	2	The magnitude of difference between measured TX pow- ers across the enabled channels at each enabled RF fre- quency is compared against this threshold. The comparison result is part of the monitoring report mes- sage (Error bit is set if the measurement is above this threshold). Before the comparison, the measured gains for each RF and RX are adjusted by subtracting the offset given in the TX_GAIN_MISMATCH_OFFSET_VALUE field. 1 LSB = 0.1 dB, unsigned number Valid range: 0 to 65535 (0 to 6553.5dB)

MISMATCH_ THRESH the enabled channels at each enabled RF frequent compared against this threshold. The comparison result is part of the monitoring report sage (Error bit is set if any measurement is above threshold). Before the comparison, the measured gains for each and RX are adjusted by subtracting the offset given in TX_PHASE_MISMATCH_OFFSET_VALUE field. 1 LSB = $360^{\circ}/2^{16}$, unsigned number Valid range: corresponding to 0° to 359.9° . TX_GAIN_MIS- MATCH_OFF- SET_VALUE 18 The offsets to be subtracted from the measured TX ga each TX and RF before the relevant threshold compar- are given here. Byte numbers corresponding to different RX and RF, if field are here: RF1 RF2 RF3 TX_O 1:0 7:6 13:12 TX1 3:2 9:8 15:14 TX_Channels are considered. TX channels are corresponding to different RX and RF, if field are here: RF1 RF2 RF3 TX_PHASE_ MISMATCH_ OFFSET_VALUE 18 The offsets to be subtracted from the measured TX pa for each TX and RF before the relevant threshold cor isons are given here. Byte numbers corresponding to different RX and RF, if field are here: RF1 RF2 RF3 TX0 1:0 7:6 13:12 TX1 3:2 9:8 15:14 TX2 5:4 11:10 17:16 ILSB = $360^{\circ}/2^{16}$. Only the entries of enabled RF Frequencies and ena- tield are here: RF1 RF2 RF3 13:12 TX0 1:0 7:6 13:12 TX1 <th colspan="3">Table 6.14 – continueu nom previous page</th>	Table 6.14 – continueu nom previous page		
MATCH_OFF- SET_VALUE each TX and RF before the relevant threshold compart are given here. Byte numbers corresponding to different RX and RF, if field are here: Byte numbers corresponding to different RX and RF, if field are here: TX0 1:0 7:6 13:12 TX1 3:2 9:8 15:14 TX2 5:4 11:10 17:16 1 LSB = 0.1 dB, signed number Only the entries of enabled RF Frequencies and ena TX channels are considered. TX_PHASE_ MISMATCH_ OFFSET_VALUE 18 The offsets to be subtracted from the measured TX p for each TX and RF before the relevant threshold corr isons are given here. Byte numbers corresponding to different RX and RF, if field are here: RF1 RF1 RF2 RF3 TX0 1:0 7:6 13:12 TX1 3:2 9:8 15:14 TX2 5:4 11:10 17:16 I LSB = 360°/2 ¹⁶ . Only the entries of enabled RF Frequencies and enabled	MISMATCH_	2	The comparison result is part of the monitoring report mes- sage (Error bit is set if any measurement is above this threshold). Before the comparison, the measured gains for each RF and RX are adjusted by subtracting the offset given in the TX_PHASE_MISMATCH_OFFSET_VALUE field. 1 LSB = $360^{\circ}/2^{16}$, unsigned number
MISMATCH_ OFFSET_VALUEfor each TX and RF before the relevant threshold corresponding to different RX and RF, in field are here: RF1 RF2 RF3 TX0 1:0 7:6 13:12 TX1 3:2 9:8 15:14 TX2 5:4 11:10 17:16 1 LSB = $360^{\circ}/2^{16}$. Only the entries of enabled RF Frequencies and enabled	MATCH_OFF-	18	Byte numbers corresponding to different RX and RF, in this field are here: RF1 RF2 RF3 TX0 1:0 7:6 13:12 TX1 3:2 9:8 15:14 TX2 5:4 11:10 17:16 1 LSB = 0.1 dB, signed number Only the entries of enabled RF Frequencies and enabled
TX channels are considered.	MISMATCH_	18	Byte numbers corresponding to different RX and RF, in this field are here:RF1RF2RF3TX01:07:613:12TX13:29:815:14TX25:411:1017:16
RESERVED 2 0x0000	RESERVED	2	0x0000
RESERVED 4 0x0000000	RESERVED	4	0x0000000

NOTE:	Even when the TXs are matched, TX3 loopback path has gain and phase offsets wrt TX1 (and TX2), which get reported as mis- matches in this API. These deterministic offsets can be compen- sated either through the OFFSET_VALUE fields (quiet mode) or through post processing by the host (verbose mode). Nominally, when the TXs are matched, TX3 - TX1 gain (i.e. loopback ampli-
	tude) is reported as -8dB. Nominally, when the TXs are matched, the reported TX3 - TX1 phase difference varies linearly with RF and it is reported as -5degree (76GHz) and 15degree (81GHz).

8.9 TX Phase Shifter Monitor

This section contains API SBs that configure the monitors of transmitter phase shifter and report the soft results from the monitor for various TX channels using TX loop-back. The corresponding monitors are collectively named TX0_PHASE_SHIFTER_MONITOR, TX1_PHASE_SHIFTER_MONITOR and TX2_PHASE_SHIFTER_MONITOR for the respective TX channels.

The phase shifter monitor will report the measured phase values in order to enable calibration of phase shifter codes at HOST. It will report tone power amplitude to provide check for amplitude stability across phase shifter codes. It will also report noise power in order to detect the chirps affected by interference.

The maximum four phases can be monitored at a time in one FTTI interval for each TX, there is an option to increment the phase by PH_SHIFTER_INC_VAL to cover all 360° phase over the time.

NOTE:	The absolute gain/phase values reported by PHASE_SHIFTER_ MON can exhibit smooth drifts across monitoring intervals due to slow temperature drifts. The absolute phase/gain can also exhibit abrupt jumps across temperature calibration boundaries. One way to mitigate the effects of such jumps across monitoring intervals
	is to rely on relative gain/phase values within the same monitoring report (e.g. assign one of the 4 phase settings in the monitoring configuration as a reference phase setting).

8.9.1 Sub block 0x01CE – AWR_MONITOR_TX0_PHASE_SHIFTER_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to TX0 TX loop back based phase shifter monitoring. The report is sent as an async event AWR_MONITOR_TX0_PHASE_SHIFTER_REPORT_AE_SB.

Table 8.15: AWR_MONITOR_TX0_PHASE_SHIFTER_CONF_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x01CE	
SBLKLEN	2	Value = 32	
PROFILE_INDX	1	This field indicates the Profile Index for which this monitor- ing configuration applies.	
REPORTING_	1	Value Definition	
MODE		0 Report is sent every monitoring period without threshold check	
		1 Report is send only upon a failure (after checking for thresholds)	
		2 Report is sent every monitoring period with threshold check	
RESERVED	2	RESERVED	
PH_SHIFTER_	1	Bit Definition	
MON_CFG		b0 Phase shifter phase1 monitor enable bit	
		b1 Phase shifter phase2 monitor enable bit	
		b2 Phase shifter phase3 monitor enable bit	
		b3 Phase shifter phase4 monitor enable bit	
		b7:4 RESERVED	
		Enable at least two phase settings to measure phase error and to apply threshold in reporting mode 1 and 2.	
RX_EN	1	This field indicates the RX channels that should be enabled for TX to RX loopback measurement. Setting the corresponding bit to 1 enables that channel for mea- surement and the average measured value is reported out. Bit number RX Channel	
		b0 RX0	
		b1 RX1	
		b2 RX2	
		b3 RX3	

	Table 8.1	5 – continued from previous page
MON_CHIRP_ SLOPE	1	Frequency slope for each monitoring chirp is encoded in 1 bytes (8 bit signed number) For 77GHz Devices (76GHz to 81Ghz): 1 LSB = $3.6e9 \times 900/2^{26}$ Hz ≈ 48.279 kHz/ μ s Valid range: -128 to +127 (Max 6.13 MHz/ μ s) For 60GHz Devices (57GHz to 64Ghz): 1 LSB = $2.7e9 \times 900/2^{26}$ Hz ≈ 36.21 kHz/ μ s Valid range: -128 to +127 (Max 4.63 MHz/ μ s) NOTE: Monitoring Chirp Slope can be programmed based on the emission specifications. The device transmits on air during the execution of these monitors. The host can con- trol the monitoring emission power spectral density (dB- m/Hz) by programming this slope parameter. Each moni- toring chirp is about 45us in duration. Therefore the over- all RF sweep bandwidth for the monitoring chirp is given by Monitoring Chirp Slope* 45 us. Normally, low values of Monitoring Chirp Slope are recommended, as with non- zero slope in FMCW radar, any actual target reflections can potentially be interpreted as noise power and/or cor- rupt the loopback signal based gain/phase measurement. The user has to ensure that the RF bandwidth se- lected for monitoring chirp based on slope and start fre- quency is within FREQ_LIMIT set in AWR_CAL_MON_ FREQUENCY_TX_POWER_LIMITS_SB API.
RESERVED	1	RESERVED
PH_SHIFTER_ INC_VAL1	1	Phase shifter monitoring increment value for phase1, the monitoring phase will be incremented by this value in every FTTI interval. In API based trigger MONITORING_MODE, it is important to trigger PS monitor every FTTI to make sure this logic works seamlessly. Bits Phase shift definition b1:0 RESERVED (set it to 0b00) b7:2 Phase shift increment value 1 1 LSB = 5.625°

Table 8.15 – continued from previous page			
PH_SHIFTER_ INC_VAL2	1	Phase shifter monitoring increment value for phase2, the monitoring phase will be incremented by this value in every FTTI interval. In API based trigger MONITORING_ MODE, it is important to trigger PS monitor every FTTI to make sure this logic works seamlessly. Bits Phase shift definition b1:0 RESERVED (set it to 0b00) b7:2 Phase shift increment value 2 1 LSB = 5.625°	
PH_SHIFTER_ INC_VAL3	1	Phase shifter monitoring increment value for phase3, the monitoring phase will be incremented by this value in every FTTI interval. In API based trigger MONITORING_ MODE, it is important to trigger PS monitor every FTTI to make sure this logic works seamlessly. Bits Phase shift definition b1:0 RESERVED (set it to 0b00) b7:2 Phase shift increment value 3 1 LSB = 5.625°	
PH_SHIFTER_ INC_VAL4	1	Phase shifter monitoring increment value for phase4, the monitoring phase will be incremented by this value in every FTTI interval. In API based trigger MONITORING_MODE, it is important to trigger PS monitor every FTTI to make sure this logic works seamlessly. Bits Phase shift definition b1:0 RESERVED (set it to 0b00) b7:2 Phase shift increment value 4 1 LSB = 5.625°	
PH_SHIFTER_ MON1	1	TX 0 Phase shifter phase1 monitor valueBitsPhase shift definitionb1:0RESERVED (set it to 0b00)b7:2Phase shift monitor value 11 LSB = 5.625°	
PH_SHIFTER_ MON2	1	TX 0 Phase shifter phase2 monitor valueBitsPhase shift definitionb1:0RESERVED (set it to 0b00)b7:2Phase shift monitor value 21 LSB = 5.625°	

Table 6.15 – Continued from previous page		
1	TX 0 Phase shifter phase3 monitor value Bits Phase shift definition	
	b1:0 RESERVED (set it to 0b00)	
	b7:2 Phase shift monitor value 3	
	$1 \text{ LSB} = 5.625^{\circ}$	
1	TX 0 Phase shifter phase4 monitor value	
	Bits Phase shift definition	
	b1:0 RESERVED (set it to 0b00)	
	b7:2 Phase shift monitor value 4	
	$1 \text{ LSB} = 5.625^{\circ}$	
2	The threshold for deviation of the TX output phase differ-	
	ence between the measured phase values and configured	
	phases for each enabled phase settings. The max error is	
	compared against the threshold given here. The measured	
	phase is part of the monitoring report message (Error bit is set if the max deviation is higher than this threshold, with	
	the units of both quantities being the same).	
	$1 \text{ LSB} = 360^{\circ}/2^{16}.$	
	Valid range: corresponding to 0° to 359.9° .	
2	The threshold for deviation of the TX output amplitude dif-	
	ference between all enabled phase settings. The max er-	
	ror is compared against the threshold given here. The	
	measured output amplitude is part of the monitoring report	
	message (Error bit is set if the max deviation is higher than this threshold, with the units of both quantities being the	
	same).	
	1 LSB = 0.1 dB	
	Valid range: 0 to 65535 (0 to 6553dB)	
8	0x0000	
	1 2 2	

8.9.2 Sub block 0x01CF – AWR_MONITOR_TX1_PHASE_SHIFTER_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to TX1 TX loop back based phase shifter monitoring. The report is sent as an async event AWR_MONITOR_TX1_PHASE_SHIFTER_REPORT_AE_SB.

$\textbf{Table 8.16: AWR_MONITOR_TX1_PHASE_SHIFTER_CONF_SB contents}$

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x01CF	
SBLKLEN	2	Value = 32	
PROFILE_INDX	1	This field indicates the Profile Index for which this monitor- ing configuration applies.	
REPORTING_	1	Value Definition	
MODE		0 Report is sent every monitoring period without threshold check	
		1 Report is send only upon a failure (after checking for thresholds)	
		2 Report is sent every monitoring period with threshold check	
RESERVED	2	RESERVED	
PH_SHIFTER_	1	Bit Definition	
MON_CFG		b0 Phase shifter phase1 monitor enable bit	
		b1 Phase shifter phase2 monitor enable bit	
		b2 Phase shifter phase3 monitor enable bit	
		b3 Phase shifter phase4 monitor enable bit	
		b7:4 RESERVED	
		Enable at least two phase settings to measure phase error and to apply threshold in reporting mode 1 and 2.	
RX_EN	1	This field indicates the RX channels that should be enabled for TX to RX loopback measurement. Setting the corresponding bit to 1 enables that channel for mea- surement and the average measured value is reported out. Bit number RX Channel	
		b0 RX0	
		b1 RX1	
		b2 RX2	
		b3 RX3	

Table 8.16 – continued from previous page				
MON_CHIRP_ SLOPE	1	Frequency slope for each monitoring chirp is encoded in 1 bytes (8 bit signed number) For 77GHz Devices (76GHz to 81Ghz): 1 LSB = $3.6e9 \times 900/2^{26}$ Hz ≈ 48.279 kHz/µs Valid range: -128 to +127 (Max 6.13 MHz/µs) For 60GHz Devices (57GHz to 64Ghz): 1 LSB = $2.7e9 \times 900/2^{26}$ Hz ≈ 36.21 kHz/µs Valid range: -128 to +127 (Max 4.63 MHz/µs) NOTE: Monitoring Chirp Slope can be programmed based on the emission specifications. The device transmits on air during the execution of these monitors. The host can con- trol the monitoring emission power spectral density (dB- m/Hz) by programming this slope parameter. Each moni- toring chirp is about 45us in duration. Therefore the over- all RF sweep bandwidth for the monitoring chirp is given by Monitoring Chirp Slope are recommended, as with non- zero slope in FMCW radar, any actual target reflections can potentially be interpreted as noise power and/or cor- rupt the loopback signal based gain/phase measurement. The user has to ensure that the RF bandwidth se- lected for monitoring chirp based on slope and start fre- quency is within FREQ_LIMIT set in AWR_CAL_MON_ FREQUENCY TX POWER LIMITS SB API.		
RESERVED	1	RESERVED		
PH_SHIFTER_ INC_VAL1	1	Phase shifter monitoring increment value for phase1, the monitoring phase will be incremented by this value in every FTTI interval.BitsPhase shift definitionb1:0RESERVED (set it to 0b00)b7:2Phase shift increment value 11LSB = 5.625°		
PH_SHIFTER_ INC_VAL2	1	Phase shifter monitoring increment value for phase2, the monitoring phase will be incremented by this value in every FTTI interval.BitsPhase shift definitionb1:0RESERVED (set it to 0b00)b7:2Phase shift increment value 21LSB = 5.625°		

		o – continued from previous page
PH_SHIFTER_ INC_VAL3	1	Phase shifter monitoring increment value for phase3, the monitoring phase will be incremented by this value in every FTTI interval.
		Bits Phase shift definition
		b1:0 RESERVED (set it to 0b00)
		b7:2 Phase shift increment value 3 1 LSB = 5.625°
PH_SHIFTER_ INC_VAL4	1	Phase shifter monitoring increment value for phase4, the monitoring phase will be incremented by this value in every FTTI interval.
		Bits Phase shift definition
		b1:0 RESERVED (set it to 0b00)
		b7:2 Phase shift increment value 4 1 LSB = 5.625°
PH_SHIFTER_	1	TX 1 Phase shifter phase1 monitor value
MON1		Bits Phase shift definition
		b1:0 RESERVED (set it to 0b00)
		b7:2 Phase shift monitor value 1 1 LSB = 5.625°
PH_SHIFTER_	1	TX 1 Phase shifter phase2 monitor value
MON2		Bits Phase shift definition
		b1:0 RESERVED (set it to 0b00)
		b7:2 Phase shift monitor value 2 1 LSB = 5.625°
PH_SHIFTER_	1	TX 1 Phase shifter phase3 monitor value
MON3		Bits Phase shift definition
		b1:0 RESERVED (set it to 0b00)
		b7:2 Phase shift monitor value 3 1 LSB = 5.625°
PH_SHIFTER_	1	TX 1 Phase shifter phase4 monitor value
MON4		Bits Phase shift definition
		b1:0 RESERVED (set it to 0b00)
		b7:2 Phase shift monitor value 4 1 LSB = 5.625°

TX_PHASE_ER- ROR_THRESH	2	The threshold for deviation of the TX output phase difference between the measured phase values and configured phases for each enabled phase settings. The max error is compared against the threshold given here. The measured phase is part of the monitoring report message (Error bit is set if the max deviation is higher than this threshold, with the units of both quantities being the same). 1 LSB = $360^{\circ}/2^{16}$. Valid range: corresponding to 0° to 359.9° .
TX_AMPLI- TUDE_ERROR_ THRESH	2	The threshold for deviation of the TX output amplitude dif- ference between all enabled phase settings. The max er- ror is compared against the threshold given here. The measured output amplitude is part of the monitoring report message (Error bit is set if the max deviation is higher than this threshold, with the units of both quantities being the same). 1 LSB = 0.1 dB Valid range: 0 to 65535 (0 to 6553dB)
RESERVED	8	0x0000

8.9.3 Sub block 0x01D0 – AWR_MONITOR_TX2_PHASE_SHIFTER_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to TX2 TX loop back based phase shifter monitoring. The report is sent as an async event AWR_MONITOR_TX2_PHASE_SHIFTER_REPORT_AE_SB.

	Table 8.17: AWR	MONITOR	TX2	PHASE	SHIFTER	CONF	SB content
--	-----------------	---------	-----	-------	---------	------	------------

Field Name	Number of bytes	Descrip	tion	
SBLKID	2	Value =	Value = 0x01D0	
SBLKLEN	2	Value =	32	
PROFILE_INDX	1		d indicates the Profile Index for which this monitor- iguration applies.	
REPORTING_	1	Value	Definition	
MODE		0	Report is sent every monitoring period without threshold check	
		1	Report is send only upon a failure (after checking for thresholds)	
		2	Report is sent every monitoring period with threshold check	

RESERVED	2	RESER	/ED
PH_SHIFTER_	1	Bit	Definition
MON_CFG		b0	Phase shifter phase1 monitor enable bit
		b1	Phase shifter phase2 monitor enable bit
		b2	Phase shifter phase3 monitor enable bit
		b3	Phase shifter phase4 monitor enable bit
		b7:4	RESERVED
			at least two phase settings to measure phase error pply threshold in reporting mode 1 and 2.
RX_EN	1	enabled the corre	Id indicates the RX channels that should be for TX to RX loopback measurement. Setting esponding bit to 1 enables that channel for mea- thand the average measured value is reported out. over RX Channel
		b0	RX0
		b1	RX1
		b2	RX2
		b3	RX3

Table 8.17 – continued from previous page				
MON_CHIRP_ SLOPE	1	Frequency slope for each monitoring chirp is encoded in 1 bytes (8 bit signed number) For 77GHz Devices (76GHz to 81Ghz): 1 LSB = $3.6e9 \times 900/2^{26}$ Hz ≈ 48.279 kHz/ μ s Valid range: -128 to +127 (Max 6.13 MHz/ μ s) For 60GHz Devices (57GHz to 64Ghz): 1 LSB = $2.7e9 \times 900/2^{26}$ Hz ≈ 36.21 kHz/ μ s Valid range: -128 to +127 (Max 4.63 MHz/ μ s) NOTE: Monitoring Chirp Slope can be programmed based on the emission specifications. The device transmits on air during the execution of these monitors. The host can con- trol the monitoring emission power spectral density (dB- m/Hz) by programming this slope parameter. Each moni- toring chirp is about 45us in duration. Therefore the over- all RF sweep bandwidth for the monitoring chirp is given by Monitoring Chirp Slope are recommended, as with non- zero slope in FMCW radar, any actual target reflections can potentially be interpreted as noise power and/or cor- rupt the loopback signal based gain/phase measurement. The user has to ensure that the RF bandwidth se- lected for monitoring chirp based on slope and start fre- quency is within FREQ_LIMITS_SB API.		
RESERVED PH_SHIFTER_ INC_VAL1	1	RESERVEDPhase shifter monitoring increment value for phase1, the monitoring phase will be incremented by this value in every FTTI interval.BitsPhase shift definitionb1:0RESERVED (set it to 0b00)b7:2Phase shift increment value 11 LSB = 5.625°		
PH_SHIFTER_ INC_VAL2	1	 Phase shifter monitoring increment value for phase2, the monitoring phase will be incremented by this value in every FTTI interval. Bits Phase shift definition b1:0 RESERVED (set it to 0b00) b7:2 Phase shift increment value 2 1 LSB = 5.625° 		
L	1			

		7 – continued from previous page
PH_SHIFTER_ INC_VAL3	1	Phase shifter monitoring increment value for phase3, the monitoring phase will be incremented by this value in every FTTI interval.
		Bits Phase shift definition
		b1:0 RESERVED (set it to 0b00)
		b7:2 Phase shift increment value 3 1 LSB = 5.625°
PH_SHIFTER_ INC_VAL4	1	Phase shifter monitoring increment value for phase4, the monitoring phase will be incremented by this value in every FTTI interval.
		Bits Phase shift definition
		b1:0 RESERVED (set it to 0b00)
		b7:2 Phase shift increment value 4 1 LSB = 5.625°
PH_SHIFTER_	1	TX 2 Phase shifter phase1 monitor value
MON1		Bits Phase shift definition
		b1:0 RESERVED (set it to 0b00)
		b7:2 Phase shift monitor value 1 1 LSB = 5.625°
PH_SHIFTER_	1	TX 2 Phase shifter phase2 monitor value
MON2		Bits Phase shift definition
		b1:0 RESERVED (set it to 0b00)
		b7:2 Phase shift monitor value 2 1 LSB = 5.625°
PH_SHIFTER_	1	TX 2 Phase shifter phase3 monitor value
MON3		Bits Phase shift definition
		b1:0 RESERVED (set it to 0b00)
		b7:2 Phase shift monitor value 3 1 LSB = 5.625°
PH_SHIFTER_	1	TX 2 Phase shifter phase4 monitor value
MON4		Bits Phase shift definition
		b1:0 RESERVED (set it to 0b00)
		b7:2 Phase shift monitor value 4 1 LSB = 5.625°

	1	
TX_PHASE_ER- ROR_THRESH	2	The threshold for deviation of the TX output phase difference between the measured phase values and configured phases for each enabled phase settings. The max error is compared against the threshold given here. The measured phase is part of the monitoring report message (Error bit is set if the max deviation is higher than this threshold, with the units of both quantities being the same). 1 LSB = $360^{\circ}/2^{16}$. Valid range: corresponding to 0° to 359.9° .
TX_AMPLI- TUDE_ERROR_ THRESH	2	The threshold for deviation of the TX output amplitude dif- ference between all enabled phase settings. The max er- ror is compared against the threshold given here. The measured output amplitude is part of the monitoring report message (Error bit is set if the max deviation is higher than this threshold, with the units of both quantities being the same). 1 LSB = 0.1 dB Valid range: 0 to 65535 (0 to 6553dB)
RESERVED	8	0x0000

8.10 Synthesizer Frequency Monitoring

This section contains API SBs that configure the monitors of synthesizer chirp frequency, and report the soft results from the monitor. The corresponding monitor is named SYNTH_FREQ_MONITOR.

8.10.1 Sub block 0x01D1 – AWR_MONITOR_SYNTHESIZER_FREQUENCY_ CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to synthesizer frequency monitoring during non functional chirps (non-live). In xWR294x/xWR254x, the live monitor can be used for monitoring functional chirps. In all other devices, monitoring of live functional chirps can be used only for debug purposes. The report is sent as an async event AWR_MONITOR_SYNTH_FREQUENCY_REPORT_AE_SB for live monitor and AWR_MONITOR_SYNTHESIZER_FREQUENCY_NONLIVE_REPORT_AE_SB for nonlive monitor.

NOTE:	The synth non-live mode monitor internally generates a test chirp
	based on the profile associated with it. In order to limit its execution
	time, if the profile's ramp time exceeds 60us, the test chirp's ramp
	time is limited to 60us and the chirp slope is scaled to cover the
	profile's intended RF bandwidth.

Table 8.18: AWR_MONITOR_SYNTHESIZER_FREQUENCY_CONF_SB contents

Field Name	Number	Description		
	of bytes			
SBLKID	2	Value = 0x01D1		
SBLKLEN	2	Value = 16		
PROFILE_INDX	1	This field indicates the Profile Index for which this monitor- ing configuration applies. NOTE: Either PROFILE_INDX or PROFILE_BIT_MASK_ LIVE_MODE, only one shall be enabled at a time.		
REPORTING_	1	Value Definition		
MODE		0 Report is sent every monitoring period without threshold check		
		1 Report is send only upon a failure (after checking for thresholds)		
		2 Report is sent every monitoring period with threshold check		
FREQ_ERROR_ THRESH	2	During the chirp, the error of the measured instantaneous chirp frequency w.r.t. the desired value is continuously compared against this threshold. The comparison result is part of the monitoring report message (Error bit is set if the measurement is above this threshold, ever during the previous monitoring period). 1 LSB = 10 kHz Valid range: 0 to 65535 (0 to 655MHz)		
MONITOR_ START_TIME	1	This field determines when the monitoring starts in each chirp relative to the start of the ramp. 1 LSB = 0.2 μ s, signed number Valid range: -25 to 25 μ s Recommended value: 6 μ s or above		

		o – continueu nom previous page		
MONITOR_CON- FIG_MODE	1	This field configures whether this monitor should be done for functional active chirps (mode 0) or non live monitor chirps. In case of non live monitor, the configuration needs to be sent twice for two VCOs (use mode 1 and 2). Value Definition		
		0 LIVE_CONFIG (Debug Mode), The profile config- uration for live mode is picked from this API, sup- ported only in master/single-chip mode.		
		1 VCO1_CONFIG, The profile configuration for Non-live mode is picked from this API for VCO1 monitor profile, supported in all modes (master, slave and single-chip).		
		 VCO2_CONFIG, The profile configuration for Non-live mode is picked from this API for VCO2 monitor profile, supported in all modes (master, slave and single-chip). Note: This feature is supported only on AWR2243/xWR6243 device. 		
VCO_MON_EN	1	This bit mask can be used to enable/disable the monitoring of non-live VCO profiles, this helps to control monitoring of only single VCO if needed. This setting should be same in both VCO settings.bitsDefinitionb0Enable VCO1 non-live monitorb1Enable VCO2 non-live monitorb31:2RESERVED		
PROFILE_BIT_ MASK_LIVE_ MODE	1	This bit mask can be used to enable/disable monitoring for multiple profiles in live mode. NOTE: Either PROFILE_INDX or PROFILE_BIT_MASK_ LIVE_MODE, only one shall be enabled at a time.		
RESERVED	4	0x0000000		

NOTE1:	 (Live mode) It is recommended to re-issue this configuration API each time before enabling this monitor and frame trigger. The right sequence is as below: 1. Issue Synth frequency monitor configuration API. 2. Enable Synth frequency monitor. 3. Frame start. 4. Frame stop. 5. Frame start. (Optional in case of multiple frames) 6. Frame stop. (Optional in case of multiple frames) 7. Disable Synth frequency monitor (in case disabled for some reason) 8. Issue Synth frequency monitor configuration API. 9. Enable Synth frequency monitor. 10. Frame start.
NOTE2:	In non live mode, this API can be issued twice with MONITOR_ CONFIG_MODE value set to 1 and 2 respectively for two dif- ferent VCOs configured in two different profiles. The consoli- dated report for two VCOs in non-live mode is sent in a separate AE AWR_MONITOR_SYNTHESIZER_FREQUENCY_NONLIVE_ REPORT_AE_SB
NOTE3:	In non live mode, the reporting mode and VCO_MON_EN for two VCO configurations should be same.

8.11 External Analog Signals Monitor

This section contains API SBs that configure the monitors of external analog signals which are input to the device through pins ANALOGTEST1-4, ANAMUX and VSENSE (also called ADC1-6) and report the soft results from the monitor. The corresponding monitors are collectively named EXTERNAL_ANALOG_SIGNALS_MONITOR. These monitors observe various analog signals input on the pins ADC1-6 using a GPADC and compare them against internally fixed thresholds.

8.11.1 Sub block 0x01D2 – AWR_MONITORING_EXTERNAL_ANALOG_SIGNALS_ CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to external DC signals monitoring. The report is sent as an async event AWR_MONITOR_EXTERNAL_ANALOG_SIGNALSREPORT_AE_SB.

NOTE: This monitor is not supported in xWR294x/xWR254x devices.

Table 8.19 describes the content of this sub block.

Table 8.19: AWR_MONITOR_EXTERNAL_ANALOG_SIGNALS_CONF_SB contents

Field Name	Number	Description	
	of bytes		
SBLKID	2	Value = 0x01D2	
SBLKLEN	2	Value = 36	
REPORTING_	1	Value Definition	
MODE		0 Report is sent every monitoring period without threshold check	
		1 Report is send only upon a failure (after checking for thresholds)	
		2 Report is sent every monitoring period with threshold check	
RESERVED	1	0x00	
SIGNAL_INPUT_ ENABLES	1	This field indicates the sets of externally fed DC signal which are to be monitored using GPADC. When each to in this field is set, the corresponding signal is monitored. The monitored signals are compared against programme limits. The comparison result is part of the monitorin report message.	
		Bit Location SIGNAL	
		b0 ANALOGTEST1	
		b1 ANALOGTEST2	
		b2 ANALOGTEST3	
		b3 ANALOGTEST4	
		b4 ANAMUX	
		b5 VSENSE	
		Others RESERVED	

		s – continuca nom previous page
SIGNAL_ BUFFER_EN- ABLES	1	This field indicates the sets of externally fed DC signals which are to be buffered before being fed to the GPADC. When each bit in this field is set, the corresponding signal is buffered before the GPADC. The monitored signals are compared against programmed limits. The comparison result is part of the monitoring report message.
		Bit SIGNAL
		b0 ANALOGTEST1
		b1 ANALOGTEST2
		b2 ANALOGTEST3
		b3 ANALOGTEST4
		b4 ANAMUX
		Others RESERVED
SIGNAL_SET- TLING_TIME	6	After connecting an external signal to the GPADC, the amount of time to wait for it to settle before taking GPADC samples is programmed in this field. For each signal, after that settling time, GPADC measurements take place for 6.4 μ s (averaging 4 samples of the GPADC output). The byte locations of the settling times for each signal are tabulated here:
		Byte SIGNAL Loca- tion
		0 ANALOGTEST1
		1 ANALOGTEST2
		2 ANALOGTEST3
		3 ANALOGTEST4
		4 ANAMUX
		5 VSENSE
		1 LSB = 0.8 μ s Valid range: 0 to 12 μ s Valid programming condition: all the signals that are enabled should take a total of < 100 μ s, including the programmed settling times and a fixed 6.4 μ s of measure- ment time per enabled signal.

SIGNAL_ THRESH	12	pared against f The compariso message (Erro this (minimum, Byte Location 0 1 2 3 4 5 6 7 8 9 10 11 1 LSB = 1.8V/2 Valid range: 0 t		
RESERVED	2	0x0000		
RESERVED	4	0x0000000		
RESERVED	4	0x0000000		

8.12 Internal Analog Signals Monitor

This section contains API SBs that configure the monitors of internal analog signals in the RF analog modules and report the soft results from the monitor. The corresponding monitors are collectively named INTERNAL_ANALOG_SIGNALS_MONITOR. These monitors observe various analog nodes in the RF and analog modules using a GPADC and compare them against internally fixed thresholds.

The configuration API SBs are organized to address various analog circuits as follows:

- 1. TX0 Internal Analog Signals Monitoring
 - a. This monitor is called INTERNAL_TX0_SIGNALS_MONITOR.
 - b. Signal sets that are monitored: (SUPPLY_TX, PWRDET_TX)
- 2. TX1 Internal Analog Signals Monitoring

- a. This monitor is called INTERNAL_TX1_SIGNALS_MONITOR
- b. Signal sets that are monitored: (SUPPLY_TX, PWRDET_TX)
- 3. TX2 Internal Analog Signals Monitoring
 - a. This monitor is called INTERNAL_TX2_SIGNALS_MONITOR
 - b. Signal sets that are monitored: (SUPPLY_TX, PWRDET_TX)
- 4. RX Internal Analog Signals Monitoring
 - a. This monitor is called INTERNAL_RX_SIGNALS_MONITOR
 - b. Signal sets that are monitored: (SUPPLY_RX, PWRDET_RX, DCBIAS_RX)
- 5. PM CLK LO Internal Analog Signals Monitoring
 - a. This monitor is called INTERNAL_PMCLKLO_SIGNALS_MONITOR
 - b. Signal sets that are monitored: (SUPPLY_PMCLKLO, PWRDET_PMCLKLO, DCBIAS_ PMCLKLO)
- 6. GPADC Internal Analog Signals Monitoring
 - a. This monitor is called INTERNAL_GPADC_SIGNALS_MONITOR
 - b. Signal sets that are monitored: (GPADC_REF1, GPADC_REF2)

The results are reported in the corresponding REPORT API SBs in this section.

8.12.1 Sub block 0x01D3 – AWR_MONITOR_TX0_INTERNAL_ANALOG_ SIGNALS_CONF_SB

Table 8.20: AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_CONF_ SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01D3
SBLKLEN	2	Value = 12
PROFILE_INDEX	1	The RF analog settings corresponding to this profile are used for monitoring the enabled signals, using test chirps (static frequency, at the center of the profile's RF frequency band).

REPORTING_	1	Value	Definition
MODE		0	RESERVED
		1	Report is send only upon a failure (after checking for thresholds)
		2	Report is sent every monitoring period with threshold check
TX_PS_DAC_ MON_THRESH	2	when T xWR294 Unit: 1 L Value 0:	<pre>K phase shifter DAC monitor delta threshold X_PS_DAC_MON is Enabled (Not applicable for 4x/xWR254x) _SB = 1.8V/1024 : TX_PS_DAC_MON is disabled ange: 1 to 1023</pre>
RESERVED	4	0x00000	0000

8.12.2 Sub block 0x01D4 – AWR_MONITOR_TX1_INTERNAL_ANALOG_ SIGNALS_CONF_SB

Table 8.21:	AWR_	_MONITOR_	_TX1_	_INTERNAL_	_ANALOG_	_SIGNALS_	_CONF_
				SB conter	nts		

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x01D4		
SBLKLEN	2	Value = 12		
PROFILE_INDEX	1	The RF analog settings corresponding to this profile are used for monitoring the enabled signals, using test chirps (static frequency, at the center of the profile's RF frequency band).		
REPORTING_ MODE	1	Value Definition 0 RESERVED		
		1 Report is send only upon a failure (after checkin for thresholds)	ъg	
		2 Report is sent every monitoring period wit threshold check	ith	

	14510 01	
TX_PS_DAC_ MON_THRESH	2	The TX phase shifter DAC monitor delta threshold when TX_PS_DAC_MON is Enabled (Not applicable for xWR294x/xWR254x) Unit: 1 LSB = 1.8V/1024 Value 0: TX_PS_DAC_MON is disabled Valid Range: 1 to 1023
RESERVED	4	0×0000000

8.12.3 Sub block 0x01D5 – AWR_MONITOR_TX2_INTERNAL_ANALOG_ SIGNALS_CONF_SB

Table 8.22: AWR_MONITOR_TX2_INTERNAL_ANALOG_SIGNALS_CONF_ SB contents

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x01D5		
SBLKLEN	2	Value = 12		
PROFILE_INDEX	1	The RF analog settings corresponding to this profile are used for monitoring the enabled signals, using test chirps (static frequency, at the center of the profile's RF frequency band).		
REPORTING_	1	Value Definition		
MODE		0 RESERVED		
		1 Report is send only upon a failure (after checking for thresholds)		
		2 Report is sent every monitoring period with threshold check		
TX_PS_DAC_ MON_THRESH	2	The TX phase shifter DAC monitor delta threshold when TX_PS_DAC_MON is Enabled (Not applicable for xWR294x/xWR254x) Unit: 1 LSB = 1.8V/1024 Value 0: TX_PS_DAC_MON is disabled Valid Range: 1 to 1023		
RESERVED	4	0x0000000		

8.12.4 Sub block 0x01D6 – AWR_MONITOR_RX_INTERNAL_ANALOG_SIGNALS_ CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to RX Internal Analog Signals monitoring. The report is sent as an async event AWR_MONITOR_RX_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB.

Table 8.23: AWR_MONITOR_RX_INTERNAL_ANALOG_SIGNALS_CONF_ SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01D6
SBLKLEN	2	Value = 12
PROFILE_INDEX	1	The RF analog settings corresponding to this profile are used for monitoring the enabled signals, using test chirps (static frequency, at the center of the profile's RF frequency band).
REPORTING_	1	Value Definition
MODE		0 RESERVED
		1 Report is send only upon a failure (after checking for thresholds)
		2 Report is sent every monitoring period with threshold check
RESERVED	2	0x0000
RESERVED	4	0x0000000

8.12.5 Sub block 0x01D7 – AWR_MONITOR_PMCLKLO_INTERNAL_ANALOG_ SIGNALS_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to Power Management, Clock generation and LO distribution circuits' Internal Analog Signals monitoring.

The 20GHz SYNC IN/OUT monitor supported only in cascade master and slave modes. If 20G SYNC monitor is enabled in slaves, It is recommended to enable this monitor in master as well, slave devices dependent on master 20GHz SYNC settings to operate properly.

The report is sent as an async event AWR_MONITOR_PMCLKLO_INTERNAL_ANALOG_SIGNALS_ REPORT_AE_SB.

Table 8.24: AWR_MONITOR_PMCLKLO_INTERNAL_ANALOG_SIGNALS_ CONF_SB contents

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x01D7		
SBLKLEN	2	Value = 12		
PROFILE_INDEX	1	The RF analog settings corresponding to this profile are used for monitoring the enabled signals, using test chirps (static frequency, at the center of the profile's RF frequency band). NOTE: The 20GHz SYNC monitor is always done at any- where between ramp end frequency of last chirp in first sub-frame of a frame and 77GHz RF frequency. This mea- surement is done in synchronization with all cascade de- vices, the master device LO is ON when measurement is done on slave devices.		
REPORTING_	1	Value Definition		
MODE		0 RESERVED		
		1 Report is send only upon a failure (after checking for thresholds)		
		2 Report is sent every monitoring period with threshold check		
SYNC_20G_ SIG_SEL	1	This field is relevant only in cascade configuration and not applicable in single chip case Value Definition 0x00 20GHz SYNC monitoring disabled 0x01 FMCW_SYNC_IN monitoring enabled 0x02 FMCW_SYNC_OUT monitoring enabled 0x03 FMCW_CLK_OUT monitoring enabled NOTE: The 20GHz SYNC monitor is always done at any- where between ramp end frequency of last chirp in first sub-frame of a frame and 77GHz RF frequency. This measurement is done in synchronization with all cascade devices, the master device LO is ON when measurement is done on slave devices. If 20G SYNC monitor is enabled in slaves, It is recommended to enable this monitor in master as well, slave devices dependent on master 20GHz		
0.410.000		SYNC settings to operate properly.		
SYNC_20G_ MIN_THRESH	1	The minimum threshold value of monitoring, signed num- ber Unit: 1 LSB = 1 dBm Valid Range: -63 to +63 dBm		

Table 0.24 – Continued from previous page			
SYNC_20G_ MAX_THRESH	1	The maximum threshold value of monitoring, signed num- ber Unit: 1 LSB = 1 dBm Valid Range: -63 to +63 dBm	
RESERVED	3	0x00000	

8.12.6 Sub block 0x01D8 – AWR_MONITOR_GPADC_INTERNAL_ANALOG_ SIGNALS_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to GPADC Internal Analog Signals monitoring. During this monitor, only the relevant circuits are ensured to be ON. The monitored signals are compared against internally chosen valid limits. The comparison result is part of the consolidated monitoring report message (Error bit for any signal set is set to 1 if any measurement in that signal set is beyond valid limits). The report is sent as an async event AWR_MONITOR_GPADC_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB.

Table 8.25: AWR_MONITOR_GPADC_INTERNAL_ANALOG_SIGNALS_ CONF_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x01D8	
SBLKLEN	2	Value = 12	
REPORTING_	1	Value Definition	
MODE		0 RESERVED	
		1 Report is send only upon a failure (after checking for thresholds)	
		2 Report is sent every monitoring period with threshold check	
RESERVED	3	0x00000	
RESERVED	4	0x0000000	

8.13 PLL Control Voltage Monitor

This section contains API SBs that configure the monitors of APLL and Synthesizer VCO control voltages and report the soft results from the monitor. The corresponding monitors are collectively named PLL_CONTROL_VOLTAGE_MONITOR. These monitors observe the VCO control voltages under various conditions using the GPADC and compare them against internally fixed

thresholds. The transmitters are kept in OFF state during these measurements to avoid external emission.

8.13.1 Sub block 0x01D9 – AWR_MONITOR_PLL_CONTROL_VOLTAGE_ SIGNALS_CONF_SB

This is a monitoring configuration API which the host sends to the AWR device, containing information related to APLL and Synthesizer's control voltage signals monitoring. The report is sent as an async event AWR_MONITOR_PLL_CONTROL_VOLTAGE_REPORT_AE_SB.

Table 8.26: AWR_MONITOR_PLL_CONTROL_VOLTAGE_CONF_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x01D9	
SBLKLEN	2	Value = 12	
REPORTING_	1	Value Definition	
MODE		0 Reserved	
		1 Report is send only upon a failure (after checking for thresholds)	
		2 Report is sent every monitoring period with threshold check	
RESERVED	1	0x00	

SIGNAL_EN- ABLES	2	This field indicates the sets of signals which are to be mon- itored. When each bit in this field is set, the corresponding signal set is monitored using test chirps. Rest of the RF analog may not be ON during these test chirps. The APLL VCO control voltage can be monitored. The Synthesizer VCO control voltage for both VCO1 and VCO2 can be monitored, while operating at their respective minimum and maximum frequencies, and their respective VCO slope (Hz/V) can be monitored if both frequencies are en- abled for that VCO. The monitored signals are compared against internally chosen valid limits. The comparison results are part of the monitoring report message.
		Bit Location SIGNAL
		b0 APLL_VCTRL
		b1 SYNTH_VCO1_VCTRL
		b2 SYNTH_VCO2_VCTRL
		b3 SYNTH_VCO3_VCTRL (Reserved in AWR2243/xWR294x/xWR254x/xWR6243. Set it to 0b0)
		b15:4 RESERVED The synthesizer VCO extreme frequencies are: Synthesizer VCO Frequency Limits (Min, Max) For AWR2243 (76GHz to 81Ghz): VCO1 (76GHz, 78GHz) VCO2 (77GHz, 81GHz) For xWR294x/xWR254x (76GHz to 81Ghz): VCO1 (76GHz, 77GHz) VCO2 (76GHz, 80.5GHz) or (76.5GHz, 81GHz) For 60GHz Devices (57GHz to 64Ghz): VCO1 (57GHz, 60.75GHz) VCO2 (61GHz, 64GHz)
		Synthesizer measurements are done with TX switched off to avoid emissions.
		NOTE: The VCO3 control voltage monitor is for debug purposes only and not supported in production.
RESERVED	4	0x0000000

8.14 Dual Clock Comparator Based Clock Frequency Monitor

This section contains API SBs that configure the Dual Clock Comparator based monitors of clocks in the BSS digital modules and report the soft results from the monitor. The corresponding monitors are collectively named DCC_CLOCK_FREQ_MONITOR. These monitors observe the relative frequency of various clock pairs and compare the measured relative frequency errors against internally fixed thresholds.

The various clock pairs that are monitored are defined here:

CLOCK PAIR	REFERENCE CLOCK	MEASURED CLOCK	ERROR THRESH- OLD (Tentative)
0	XTAL	APLL_200M	±1.0%
1	APLL_200M	BSS_200M	±1.0%
2	APLL_200M	BSS_100M	±1.0%
3	APLL_200M	GPADC_10M	±2.5%
4	APLL_200M	RCOSC_10M	±30.0%
5	RESERVED	RESERVED	-
6	APLL_200M	FRC_200M (xWR254x only)	±1.0%

The ideal frequencies of clocks involved in this monitor are given here:

CLOCK NAME	CLOCK FRE- QUENCY (MHz)	COMMENTS
XTAL	40 (xWR294x), 50 (xWR254x)	Crystal clock
APLL_200M	200	200MHz clock from APLL
BSS_200M	200	BSS processor clock
BSS_100M	100	BSS internal clock
GPADC_10M	10	GPADC clock used in monitoring and calibrations
RCOSC_10M	10	RC Oscillator clock
FRC_200M	200	FRC clock (xWR254x only)

Table 8.27: DCC Clock monitor pairs

8.14.1 Sub block 0x01DA – AWR_MONITOR_DUAL_CLOCK_COMP_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to the DCC based clock frequency monitoring. The report is sent as an async event AWR_MONITOR_DCC_DUAL_CLOCK_COMP_REPORT_AE_SB.

Field Name	Number of bytes	Descri	otion		
SBLKID	2	Value = 0x01DA			
SBLKLEN	2	Value =	12		
REPORTING_	1	Value	Definitior	1	
MODE		0	RESERV	ED check	
		1	Report is for thresh	send only upon a failure (after checking nolds)	
		2	Report i threshold	s sent every monitoring period with I check	
RESERVED	1	0x00			
DCC_PAIR_EN- ABLES	2	This field indicates which pairs of clocks to monitor. When a bit in the field is set to 1, the firmware monitors the corresponding clock pair by deploying the hardware's Dual Clock Comparator in the corresponding DCC mode.			
		Bit	CLOCK PAIR		
		b0	0	APLL_200M	
		b1	1	BSS_200M	
		b2	2	BSS_100M	
		b3	3	GPADC_10M	
		b4	4	RCOSC_10M	
		b5	5	RESERVED	
		b6	6	FRC_200M (xWR254x only)	
		b15:7	RESERV	'ED	
		messag thresho	The comparison results are part of the monitoring report message. The definition of the clock pairs and their error thresholds for failure reporting are given in the table below the message definition.		
RESERVED	4	0x0000	0000		

Table 8.28: AWR_MONITOR_DUAL_CLOCK_COMP_CONF_SB contents

8.15 RX Saturation Detection Monitor

This section contains API SBs that configure the monitoring of RX analog saturation detectors, and report the results from the monitor. The corresponding monitors are collectively named RX_SATURATION_DETECTOR_MONITOR and RX_SIG_IMG_BAND_MONITOR. The report is available in CQ RAM.

8.15.1 Sub block 0x01DB – AWR_MONITOR_RX_SATURATION_DETECTOR_ CONF_SB

This API is a monitoring configuration API which the host sends to the mmWave device, containing information related to RX saturation detector monitoring. The report is available as CQ2 (part of CQ) in CQ RAM every chirp. The application should transfer the report from CQ RAM every chirp.

Field Neme Number Description		Description
Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01DB
SBLKLEN	2	Value = 24
PROFILE_INDX	1	This field indicates the profile index for which this monitor- ing configuration applies.
SAT_MON_SE- LECT	1	01 – Enable only the ADC saturation monitor 11 – Enable both the ADC and IFA1 saturation monitors
RESERVED	1	0x00
RESERVED	1	0x00
SAT_MON_PRI- MARY_TIME_ SLICE_DURA- TION	2	It specifies the duration of each (primary) time slice. 1 LSB = 0.16 μ s. Valid range: 4 to floor(ADC sampling time us/0.16 μ s) NOTES: The minimum allowed duration of each (pri- mary) time slice is 4 LSBs = 0.64 μ s. Also, the maximum number of (primary) time slices that will be monitored in a chirp is 64 so the recommendation is to set this value to correspond to (ADC sampling time / 64). If the slice is smaller, such that the ADC sampling time is longer than 64 primary slices, some regions of the valid duration of a chirp may go un-monitored.

 Table 8.29: AWR_MONITOR_RX_SATURATION_DETECTOR_CONF_SB

 contents

SAT_MON_ NUM_SLICES (N)	2	Number of (primary + secondary) time slices to monitor. Valid range: 1 to 127	
		NOTE1: Together with SAT_MON_PRIMARY_TIME_ SLICE_DURATION, this determines the full duration of the ADC valid time that gets covered by the monitor. Primary slices = $(N+1) / 2$ Secondary slices = Primary slices - 1	
		NOTE2 :The total monitoring duration is recommended to be programmed slightly smaller than ADC sampling time to avoid last primary slice miss in the CQ data. If this recommendation is not followed and if ADC sampling time is less than total requested monitoring duration then no error is generated but the total number of slices reported back in CQ buffer would be a different value M, which is less than user requested value of N. In such cases, there will be $(M+1)/2$ primary slices and $(M-1)/2$ secondary slices. However, if ADC sampling time is such that Secondary $(M-1)/2$ can be measured and not Primary (M+1)/2, then primary slice $(M+1)/2$ will not be present in the CQ buffer. In such scenario, CQ buffer will have the total number of slices reported back as M-1 instead of M.	
SAT_MON_RX_ CHANNEL_ MASK	1	Masks RX channels used for monitoring. In every slice, saturation counts for all unmasked channels are added to- gether, and the total is capped to 127. The 8 bits are mapped (MSB->LSB) to: [RX3Q, RX2Q, RX1Q, RX0Q, RX3I, RX2I, RX1I, RX0I] 00000000 – All channels unmasked 11111111 – All channels masked	
RESERVED	1	0	
RESERVED	1	0	
RESERVED	1	0	
RESERVED	4	0x0000000	
RESERVED	4	0x0000000	

8.15.2 Sub block 0x01DC – AWR_MONITOR_SIG_IMG_MONITOR_CONF_SB

This API is a monitoring configuration API which the host sends to the mmWave device, containing information related to signal and image band energy. The report is available as CQ1 (part of CQ) in CQ RAM. The application should transfer the report every chirp.

NOTE: This monitor is not supported in xWR294x/xWR254x devices.

Table 8.30: AWR_MONITOR_RX_SIG_IMG_MONITOR_CONF_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01DC
SBLKLEN	2	Value = 16
PROFILE_INDX	1	This field indicates the profile index for which this monitor- ing configuration applies.
SIG_IMG_MON_ NUM_SLICES	1	Number of (primary + secondary) slices to monitor Valid range: 1 to 127
NUM_SAM- PLES_PER_ PRIMARY_TIME_ SLICE	2	This field specifies the number of samples constituting each time slice. The minimum allowed value for this parameter is 4. Valid range: 4 to NUM_ADC_SAMPLES (see NOTE2 below)
		NOTE1: The maximum number of (primary) time slices that will be monitored in a chirp is 64, so our recommendation is that this value should at least equal (NUM_ADC_SAMPLES / 64). If the slice is smaller, such that the number of ADC samples per chirp is larger than 64 primary slices, some regions of the valid duration of a chirp may go un-monitored.
		NOTE2: In Complex1x mode, the minimum number of samples per slice is 4 and for other modes it is 8. Also note that number of samples should be an even number.
		NOTE3 :The total monitoring duration is recommended to program slightly smaller than ADC sampling time
RESERVED	4	0x0000000
RESERVED	4	0x0000000

8.16 RX mixer input power monitor

8.16.1 Sub block 0x01DD – AWR_MONITOR_RX_MIXER_IN_POWER_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to RX mixer input power monitoring. The report is sent as an async event AWR_MONITOR_RX_MIXER_IN_POWER_REPORT_AE_SB.

NOTE:	AWR2243/6x43 devices: The RX input power monitor API is debug
	only API.
	xWR294x/xWR254x devices: This monitor is not supported.
	Please refer latest DFP release note for more info.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01DD
SBLKLEN	2	Value = 16
PROFILE_INDEX	1	The RF analog settings corresponding to this profile are used for monitoring RX mixer input power using test chirps (static frequency, at the center of the profile's RF frequency band).

 Table 8.31:
 AWR_MONITOR_MIXER_IN_POWER_CONF_SB contents

REPORTING_	1	Value Definition	
MODE		0 Report is sent every monitoring period without threshold check	
		1 Report is send only upon a failure (after checking for thresholds)	
		2 Report is sent every monitoring period with threshold check	
TX_EN	1	This field indicates if and which TX channels should be enabled while measuring RX mixer input power. Setting a bit to 1 enables the corresponding TX channel. Enabling a TX channel may help find reflection power while disabling may help find interference power.	
		Bit number TX Channel	
		b0 TX0	
		b1 TX1	
		b2 TX2	
RESERVED	1	0x00	
THRESHOLDS	2	The measured RX mixer input voltage swings during this monitoring is compared against the minimum and maxi- mum thresholds configured in this field. The comparison result is part of the monitoring report message (Status bit is cleared if any measurement is outside this (minimum, maximum) range).	
		Byte number Threshold	
		0 Minimum Threshold	
		1 Maximum Threshold	
		Only the RX channels enabled in the static configuration APIs are monitored.	
		1 LSB = 1800 mV/256, unsigned number Valid range: 0 to 255, maximum threshold \geq minimum threshold	
RESERVED	2	0x0000000	
RESERVED	4	0x0000000	

8.17 Sub block 0x01DE – RESERVED

8.18 Analog Fault injection

8.18.1 Sub block 0x01DF - AWR_ANALOG_FAULT_INJECTION_CONF_SB

This API is a fault injection API which the host sends to the AWR device. It can be used to inject faults in the analog circuits to test the corresponding monitors. After the faults are injected, the regular enabled monitors will indicate the faults in their associated reports.

NOTE1:	This API should be issued when no frames are on-going.
NOTE2:	Disable all runtime calibrations while Fault is injected.
NOTE3:	 The fault injection should be tested by injecting one fault at a time and corresponding analog monitor should be observed, other monitors might show failure depending on type of fault, it can be discarded. Once the monitoring failure has been verified, remove the fault and then proceed with other fault injection tests. After all the required fault injection tests have been executed and all the injected faults have been removed, the user may begin functional frames.
NOTE4:	Some of the fault injection options are de-featured, please refer latest DFP release note for more details.

Table 8.32: AWR_ANALOG_FAULT_INJECTION_CONF_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01DF
SBLKLEN	2	Value = 24
RESERVED	1	0x00

RX_GAIN_DROP	1	Primary Fault: RX Gain This field indicates which RX RF sections should have fault injected. If the fault is enabled, the RX RF gain drops significantly. The fault can be used to cause significant gain change, inter-RX gain imbalance and an uncontrolled amount of inter-RX phase imbalance. This fault can be seen in RX_GAIN_PHASE_MONITOR.		
		Bit number	RX Channel	
		b0	RX0	
		b1	RX1	
		b2	RX2	
		b3	RX3	
		Others	RESERVED	
		For each bit, fault	1 = inject fault, 0 = remove injected	
RX_PHASE_INV	1	Primary Fault: RX Phase This field indicates which RX channels should have fault injected. If the fault is enabled, the RX phase gets inverted. The fault can be used to cause a controlled amount (180 deg) of inter-RX phase imbalance. This fault can be seen in RX_GAIN_PHASE_MONITOR.		
		Bit number	RX Channel	
		b0	RX0	
		b1	RX1	
		b2	RX2	
		b3	RX3	
		Others	RESERVED	
		For each bit, fault	1 = inject fault, 0 = remove injected	

RX_HIGH_ NOISE	1	Primary Fault: RX Noise This field indicates which RX channels should have fault injected. If the fault is enabled, the RX IFA square wave loopback paths are engaged to inject high noise at RX IFA input. The fault can be used to cause significant RX noise floor elevation. This fault can be seen in RX_GAIN_ PHASE_MONITOR and RX_NOISE_FIGURE_MONITOR.	
		Bit number	RX Channel
		b0	BX0
		b0 b1	RX1
		b2	RX2
		b2	RX3
		Others	RESERVED
		For each bit, fault	1 = inject fault, 0 = remove injected
RX_IF_STAGES_ FAULT	1	Primary Fault: Cutoff frequencies of RX IFA HPF & LPF, IFA Gain. This field indicates which RX channels should have fault injected. If the fault is enabled, the RX IFA HPF cutoff frequency becomes very high (about 15MHz). The fault can be used to cause the measured inband IFA gain, HPF and LPF attenuations to vary from ideal expectations. This fault can be seen in RX_IFSTAGE_MONITOR.	
		Bit number	RX Channel
		b0	RX0
		b1	RX1
		b2	RX2
		b3	RX3
		Others	RESERVED
		For each bit, fault	1 = inject fault, 0 = remove injected
		-	the execution of RX_IFSTAGE_MONITOR, NOISE faults are temporarily removed.

			em pressere page
RX_LO_AMP_ FAULT	1	Primary Fault: F	RX Mixer LO input swing reduction
		This field indicates which RX channels should have fault injected. If the fault is enabled, the RX mixer LO input swing is significantly reduced. The fault is primarily expected to be detected by RX_INTERNAL_ANALOG_SIGNALS_MONITOR (under PWRDET_RX category).	
		Bit number	RX Channel
		b0	RX0
		b1	RX1
		b2	RX2
		b3	RX3
		Others	RESERVED
		fault	1 = inject fault, 0 = remove injected ault injection is de-featured, please refer ote.
TX_LO_AMP_ FAULT	1	This field indica injected. If the f power amplifier is primarily exp	TX PA input signal generator turning off. ates which TX channels should have fault ault is enabled, the amplifier generating TX 's LO input signal is turned off. The fault bected to be detected by TX <n>_INTER- _SIGNALS_MONITOR (under DCBIAS</n>
		Bit number	Channel
		b0	TX0 and TX1
		b1	TX2 (applicable only if available in the device)
		Others	RESERVED
		For each bit, fault	1 = inject fault, 0 = remove injected
		NOTE: This fatest release n	ult injection is de-featured, please refer ote.

TX_GAIN_DROP	1	Primary Fault: TX Gain (power) This field indicates which TX RF sections should have fault injected. If the fault is enabled, the TX RF gain drops significantly. The fault can be used to cause significant TX output power change, inter-TX gain imbalance and an uncontrolled amount of inter-TX phase imbalance. This fault can be seen in TXn_POWER_MONITOR.	
		Bit number	Channel
		b0	ТХО
		b1	TX1
		b2	TX2
		b3	TX3 (xWR294x/xWR254x only)
		Others	RESERVED
		For each bit, fault	1 = inject fault, 0 = remove injected

	10010 010		ioni previous page
TX_PHASE_INV	1	Primary Fault: TX Phase This field indicates if TX channels should have fault injected, along with some further programmability. If the fault is enabled, the TX BPM polarity (phase) is forced to a constant value as programmed. The fault can be used to cause a controlled amount (180 degree) of inter-TX phase imbalance as well as BPM functionality failure. This fault can be seen in TX_GAIN_PHASE_MISMATCH_ MONITOR and TXn_PHASE_SHIFTER_MONITOR.	
		Bit number	TX Channel
		b0	TX_FAULT (Common for all TX chan- nels)
		b1	RESERVED
		b2	RESERVED
		b3	TX0_BPM_VALUE
		b4	TX1_BPM_VALUE
		b5	TX2_BPM_VALUE
		b6	TX3_BPM_VALUE (xWR294x/xWR254x only)
		Others	RESERVED
		Value = 0: force	BPM_VALUE: if TX_FAULT is enabled. TX < n > BPM polarity to 0 TX < n > BPM polarity to 1.
		NOTE: The TX FAULT value is	n_BPM_VALUE takes effect only when TX_ set to 1.

This field indicates which Synthesizer faults should be injected. SYNTH_VCO_OPENLOOP: If the fault is enabled, the synthesizer is forced in open loop mode which causes the VCO control voltage to increase to its maximum value. In order to avoid out of band emissions in this faulty state, this fault is injected just before the PLL_CONTROL_VOLTAGE_MONITOR is executed and released just after its completion. This fault can be seen in PLL_CONTROL_VOLTAGE_MONITOR. NOTE: Follow the below sequence for SYNTH_VCO_OPENLOOP fault injection and testing 1. Configure PLL_control voltage monitor using AWR_MONITOR. PLL_CONTROL_VOLTAGE_SIGNALS_CONF_SB. Enable VCO1, VCO2 monitoring by setting SYNTH_VCO_OPENLOOP to 1 in AWR_ANALOG_FAULT_INJECTION_CONF_SB fault injection API 3. frigger 1 frame (Setting FTTI = 1 frame) 3. frager 1 frame (Setting FTTI = 1 frame) 4. Read the VCO1, VCO2 PLL control voltage corresponding to Min Freq in field SYNTH_VCO_VCTL_MIN_FREG of AWR_MONITOR, PLL_CONTROL_VOLTAGE_REPORT_AE_SB monitoring report. Ignore the STATUS_FLAGS field 5. Remove the fault injection API 6. Trigger 1 frame (Setting FTTI = 1 frame) 7. Read the VCO1 PLL control voltage corresponding to Min Freq in field SYNTH_VCO_OPENLON_VCOT_CRE_MIN_FREG, SYNTH_VCO_VCOT_VCTRL_MIN_FREG of AWR_MONITOR_PLL_CONTROL_VOLTAGE_REPORT_AE_SB monitoring report. Ignore the STATUS_FLAGS field 5. Remove the fault injection API 6. Trigger 1 frame (Setting FTTI = 1 frame) 7. Read the VCO1 PLL control voltage corresponding to Min Freq in field SYNTH_VCO_VCO_VCTRL_MIN_FREG, SYNTH_VCO_VCO_VCTRL_MIN_FREG, SYNTH_VCO_VCO_VCTRL_MIN_FREG, SYNTH_VCO_VCO_VCTRL_MIN_FREG, SYNTH_VCO_VCO_VCTRL_MIN_FREG, SYNTH_VCO_VCO_VCTRL_MIN_FREG, SYNTH_VCO_VCO_VCTR			nunded nom previous page
the synthesizer is forced in open loop mode which causes the VCO control voltage to increase to its maximum value. In order to avoid out of band emissions in this faulty state, this fault is injected just before the PLL_CONTROL_ VOLTAGE_MONITOR. NOTE: Follow the below sequence for SYNTH_VCO_ OPENLOOP fault injection and testing NOTE: Follow the below sequence for SYNTH_VCO_ OPENLOOP fault injection and testing 1. Configure PLL control voltage monitor using AWR_ MONITOR_PLL_CONTROL_VOLTAGE_SIGNALS_ CONF_SB_Enable VCO1, VCO2 monitoring by setting SYNTH_VCO1_VCTRL = 1, SYNTH_VCO2_VCTRL = 1, REPORTING_MODE =2 2. Inject the fault by setting SYNTH_VCO1_OPENLOOP to 1 in AWR_ANALOG_FAULT_INJECTION_CONF_SB fault injection API 3. Trigger 1 frame (Setting FTTI = 1 frame) 4. Read the VCO1, VCO2 PLL control voltage corre- sponding to Min Freq in field SYNTH_VCO1_VCTRL_MIN_FREG of AWR_MONITOR_PLL_CONTROL_VOLTAGE_REPORT_ AE_SB monitoring report. Ignore the STATUS_FLAGS field 5. Remove the fault injection by setting SYNTH_VCO_ OPENLOOP to 0 in AWR_ANALOG_FAULT_INJECTION_ CONF_SB fault injection API 6. Trigger 1 frame (Setting FTTI = 1 frame) 7. Read the VCO1 PLL control voltage corresponding to Min Freq in field SYNTH_VCO1_VCTRL_MIN_FREQ, SYNTH_VCO2_VCTRL_MIN_FREQ of AWR_MONITOR_ PLL_CONTROL_VOLTAGE_REPORT_AE_SB monitoring report. Ignore the STATUS_FLAGS field 8. Compute the delta for VCO1, VCO2 voltages observed in step 4 and step 7 9. Fault injection is working correctly if observed delta is higher than 600mV SYNTH_FREQ_MON_OFFSET: If the fault is enabled, the synthesizer frequency monitor's ideal frequency ramp waveform is forced to be offset fr	SYNTH_FAULT	This	field indicates which Synthesizer faults should be
OPENLOOP fault injection and testing 1. Configure PLL control voltage monitor using AWP_MONITOR PLL_CONTROL_VOLTAGE_SIGNALS_CONF_SB_Enable VCO1, VCO2 monitoring by setting SYNTH_VCO1_VCTRL = 1, SYNTH_VCO2_VCTRL = 1, REPORTING_MODE =2 2. Inject the fault by setting SYNTH_VCO_OPENLOOP to 1 in AWR_ANALOG_FAULT_INJECTION_CONF_SB fault injection API 3. Trigger 1 frame (Setting FTTI = 1 frame) 4. Read the VCO1, VCO2 PLL control voltage corresponding to Min Freq in field SYNTH_VCO1_VCTRL_MIN_FREQ. SYNTH_VCO2_VCTRL_MIN_FREQ. SYNTH_VCO2_VCTRL_MIN_FREQ of AWR_MONITOR_PLL_CONTROL_VOLTAGE_REPORT_AE_SB monitoring report. Ignore the STATUS_FLAGS field 5. Remove the fault injection by setting SYNTH_VCO_OPENLOOP to 0 in AWR_ANALOG_FAULT_INJECTION_CONF_SB fault injection API 6. Trigger 1 frame (Setting FTTI = 1 frame) 7. Read the VCO1 PLL control voltage corresponding to Min Freq in field SYNTH_VCO1_VCTRL_MIN_FREQ, SYNTH_VCO2_VCTRL_MIN_FREQ of AWR_MONITOR_PTI = 1 frame) 7. Read the VCO1 PLL control voltage corresponding to Min Freq in field SYNTH_VCO1_VCTRL_MIN_FREQ, SYNTH_VCO2_VCTRL_MIN_FREQ of AWR_MONITOR_PLL_CONTROL_VOLTAGE_REPORT_AE_SB monitoring report. Ignore the STATUS_FLAGS field 8. Compute the delta for VCO1, VCO2 voltages observed in step 4 and step 7 9. Fault injection is working correctly if observed delta is higher than 600mV SYNTH_FREQ_MON_OFFSET: If the fault is enabled, the synthesizer frequency monitor's ideal frequency ramp waveform by a constant, causing monitoring to detect failures. This fault can be seen in SYNTH_FREQ_MONITOR. 492 Copyright \$\frace_1021, Texas instrgreveth_repreget#MON_OFFSET 0ther		the sy the V In ore state, VOLT its co	AGE_MONITOR is executed and released just after mpletion. This fault can be seen in PLL_CONTROL_
injection API 3. Trigger 1 frame (Setting FTTI = 1 frame) 4. Read the VCO1, VCO2 PLL control voltage corre- sponding to Min Freq in field SYNTH_VCO1_VCTRL_ MIN_FREQ, SYNTH_VCO2_VCTRL_MIN_FREQ of AWR_MONITOR_PLL_CONTROL_VOLTAGE_REPORT_ AE_SB monitoring report. Ignore the STATUS_FLAGS field 5. Remove the fault injection by setting SYNTH_VCO_ OPENLOOP to 0 in AWR_ANALOG_FAULT_INJECTION_ CONF_SB fault injection API 6. Trigger 1 frame (Setting FTTI = 1 frame) 7. Read the VCO1 PLL control voltage corresponding to Min Freq in field SYNTH_VCO1_VCTRL_MIN_FREQ, SYNTH_VCO2_VCTRL_MIN_FREQ of AWR_MONITOR_ PLL_CONTROL_VOLTAGE_REPORT_AE_SB monitoring report. Ignore the STATUS_FLAGS field 8. Compute the delta for VCO1, VCO2 voltages observed in step 4 and step 7 9. Fault injection is working correctly if observed delta is higher than 600mV SYNTH_FREQ_MON_OFFSET: If the fault is enabled, the synthesizer frequency monitor's ideal frequency ramp waveform is forced to be offset from the actual ramp wave- form by a constant, causing monitoring to detect failures. This fault can be seen in SYNTH_FREQ_MONITOR. Bit number Enable Fault b0 SYNTH_VCO_OPENLOOP 492 Copyright @4021, Texas Instrugywith_Instruction_OFFSET Others RESERVED For each bit, 1 = inject fault, 0 = remove injected		OPEN 1. C MON CONI SYNT REPO	NLOOP fault injection and testing onfigure PLL control voltage monitor using AWR_ ITOR_PLL_CONTROL_VOLTAGE_SIGNALS_ F_SB. Enable VCO1, VCO2 monitoring by setting TH_VCO1_VCTRL = 1, SYNTH_VCO2_VCTRL = 1, ORTING_MODE =2
field 5. Remove the fault injection by setting SYNTH_VCO_ OPENLOOP to 0 in AWR_ANALOG_FAULT_INJECTION_ CONF_SB fault injection API 6. Trigger 1 frame (Setting FTTI = 1 frame) 7. Read the VCO1 PLL control voltage corresponding to Min Freq in field SYNTH_VCO1_VCTRL_MIN_FREQ, SYNTH_VCO2_VCTRL_MIN_FREQ of AWR_MONITOR_ PLL_CONTROL_VOLTAGE_REPORT_AE_SB monitoring report. Ignore the STATUS_FLAGS field 8. Compute the delta for VCO1, VCO2 voltages observed in step 4 and step 7 9. Fault injection is working correctly if observed delta is higher than 600mV SYNTH_FREQ_MON_OFFSET: If the fault is enabled, the synthesizer frequency monitor's ideal frequency ramp waveform is forced to be offset from the actual ramp wave- form by a constant, causing monitoring to detect failures. This fault can be seen in SYNTH_FREQ_MONITOR. Bit number Enable Fault b0 SYNTH_VCO_OPENLOOP Copyright 6021, Texas Instruction_OFFSET Others RESERVED For each bit, 1 = inject fault, 0 = remove injected		1 in A inject 3. Trig 4. F spond MIN_ AWR	WR_ANALOG_FAULT_INJECTION_CONF_SB fault on API gger 1 frame (Setting FTTI = 1 frame) lead the VCO1, VCO2 PLL control voltage corre- ding to Min Freq in field SYNTH_VCO1_VCTRL_ FREQ, SYNTH_VCO2_VCTRL_MIN_FREQ of _MONITOR_PLL_CONTROL_VOLTAGE_REPORT_
to Min Freq in field SYNTH_VCO1_VCTRL_MIN_FREQ, SYNTH_VCO2_VCTRL_MIN_FREQ of AWR_MONITOR_ PLL_CONTROL_VOLTAGE_REPORT_AE_SB monitoring report. Ignore the STATUS_FLAGS field 8. Compute the delta for VCO1, VCO2 voltages observed in step 4 and step 7 9. Fault injection is working correctly if observed delta is higher than 600mV SYNTH_FREQ_MON_OFFSET: If the fault is enabled, the synthesizer frequency monitor's ideal frequency ramp waveform is forced to be offset from the actual ramp wave- form by a constant, causing monitoring to detect failures. This fault can be seen in SYNTH_FREQ_MONITOR. Bit number Enable Fault b0 SYNTH_VCO_OPENLOOP Copyright Q021, Texas Instruction of the actual, 0 = remove injected For each bit, 1 = inject fault, 0 = remove injected		field 5. R OPEN CONI FTTI	emove the fault injection by setting SYNTH_VCO_ NLOOP to 0 in AWR_ANALOG_FAULT_INJECTION_ F_SB fault injection API 6. Trigger 1 frame (Setting = 1 frame)
9. Fault injection is working correctly if observed delta is higher than 600mV SYNTH_FREQ_MON_OFFSET: If the fault is enabled, the synthesizer frequency monitor's ideal frequency ramp waveform is forced to be offset from the actual ramp waveform by a constant, causing monitoring to detect failures. This fault can be seen in SYNTH_FREQ_MONITOR. Bit number Enable Fault b0 SYNTH_VCO_OPENLOOP Copyright 0 SYNTH_PREQ_MON_OFFSET 492 Others RESERVED For each bit, 1 = inject fault, 0 = remove injected		to Mi SYNT PLL_ repor 8. Co	n Freq in field SYNTH_VCO1_VCTRL_MIN_FREQ, TH_VCO2_VCTRL_MIN_FREQ of AWR_MONITOR_ CONTROL_VOLTAGE_REPORT_AE_SB monitoring t. Ignore the STATUS_FLAGS field mpute the delta for VCO1, VCO2 voltages observed
the synthesizer frequency monitor's ideal frequency ramp waveform is forced to be offset from the actual ramp waveform by a constant, causing monitoring to detect failures. This fault can be seen in SYNTH_FREQ_MONITOR. Bit number Enable Fault b0 SYNTH_VCO_OPENLOOP Copyright b0 SYNTH_NCO_OPENLOOP 492 Copyright b0 SYNTH_NCO_OPENLOOP 492 Copyright b10 SYNTH_NCO_OPENLOOP 50 For each bit, 1 = inject fault, 0 = remove injected		9. Fa	ult injection is working correctly if observed delta is
b0 SYNTH_VCO_OPENLOOP 492 Copyright 0,2021, Texas Instruction of the sector of the secto		the sy wave form	Anthesizer frequency monitor's ideal frequency ramp form is forced to be offset from the actual ramp wave- by a constant, causing monitoring to detect failures.
Copyright © 2021, Texas Instruments Incorrect MON_OFFSET Others RESERVED For each bit, 1 = inject fault, 0 = remove injected		Bit nu	mber Enable Fault
Others RESERVED For each bit, 1 = inject fault, 0 = remove injected			
For each bit, 1 = inject fault, 0 = remove injected			

SUPPLY_LDO_ FAULT	1	This field indicates whether some LDO output voltage faults should be injected or not.
		Bit Enable Fault b0 SUPPLY_TESTPATH_LDO_FAULT (xWR294x/xWR254x)
		b7:1 SUPPLY_LDO_RX_LODIST_FAULT (others)
		SUPPLY_LDO_FAULT: If enabled in xWR294x/xWR254x device, the testpath subsystem's LDO output is disabled. In other devices, the RX LODIST LDO output voltage is modified compared to normal operation. This fault injection causes INTERNAL_PMCLKLO_SIGNALS_MONITOR to detect failure (under SUPPLY category). This fault can be seen in INTERNAL_PMCLKLO_SIGNALS_MONITOR.
		For each bit, 1 = inject fault, 0 = remove injected fault NOTE: This fault injection is ineffective under LDO bypass condition.
MISC_FAULT	1	This field indicates whether a few miscellaneous faults should be injected or not.
		Bit number Enable Fault
		b0 GPADC_CLK_FREQ_FAULT Others RESERVED
		GPADC_CLK_FREQ_FAULT: if enabled, the GPADC clock frequency is slightly increased compared to normal usage to cause BSS DCC_CLOCK_FREQ_MONITOR to detect failure. This fault can be seen in DCC_CLOCK_ FREQ_MONITOR.
		For each bit, 1 = inject fault, 0 = remove injected fault

Table 6.32 – continued nom previous page					
MISC_THRESH_ FAULT	1	This field indicates whether faults should be forced in the threshold comparisons in the software layer of some monotors. If a fault is enabled, the logic in the min-max threshold comparisons used for failure detection is inverted, causing a fault to be reported. During these faults, no hardwar fault condition is injected in the device. This fault can seen in GPADC_INTERNAL_SIGNALS_MONITOR.			
		Bit number	Enable Fault		
		b0	GPADC_INTERNAL_SIGNALS_MONI- TOR The reported values of the moni- tored GPADC internal signals are also swapped when this fault is enabled.		
		Others	RESERVED		
		For each bit, fault	1 = inject fault, 0 = remove injected		
TX_PS_DAC_ FAULT	1	Primary Fault: TX PS DAC fault injection. This field indicates which TX PS DAC should have fau injected. If the fault is enabled, the corresponding TX' ANA DAC LDO would be turned off causing the PS DAC to fail. This fault can be seen in TX PHASE SHIFTER DAC monitoring report (AWR_MONITOR_TX_PHSHIFTER DAC_REPORT_AE_SB). This fault injection is only appli cable in xWR294x/xWR254x devices.			
		Bit number	Channel		
		b0	TX0		
		b1	TX1		
		b2	TX2		
		b3	ТХЗ		
		Others	RESERVED		
		For each bit, fault	1 = inject fault, 0 = remove injected		
RESERVED	2	0x000000			
RESERVED	4	0x00000000			

8.19 Sub blocks related to AWR_RF_MONITORING_CONF_SET_2_ MSG

8.19.1 Sub block 0x0280 – AWR_MONITOR_TXN_POWER_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to TXN power monitoring. Absolute TX power and flatness across RF frequencies are monitored here. The report is sent as an async event AWR_MONITOR_TX0_POWER_REPORT_AE_SB, AWR_MONITOR_TX1_POWER_REPORT_AE_SB, AWR_MONITOR_TX2_POWER_REPORT_AE_SB, AWR_MONITOR_TX3_POWER_REPORT_AE_SB.

Field Name Number Description

Table 8.33: AWR_MONITOR_TXN_POWER_CONF_SB contents

Field Name	of bytes	Description			
SBLKID	2	Value = 0x0280			
SBLKLEN	2	Value = 20	Value = 20		
PROFILE_INDX	1	This field indicates the Profile Index for which this monitor- ing configuration applies.			
RF_FREQ_BIT- MASK	1	This field indicates the exact RF frequencies inside the file's RF band at which to measure the required parters. When each bit in this field is set, the measurement the corresponding RF frequency is enabled w.r.t. the file's RF band.			
		Bit number	RF frequency	RF name	
		b0	Lowest RF frequency in pro- file's sweep bandwidth	RF1	
		b1	Center RF frequency in pro- file's sweep bandwidth	RF2	
		b2	Highest RF frequency in pro- file's sweep bandwidth	RF3	
		The RF Name column is mentioned here to set the co vention for the purpose of reporting and describing ma monitoring packets.			

TX_SEL_MASK	1	TX channel bit mask indicating which of the TX-N monitor have to be updated with the below configurations. Setti a bit to 1 updates the corresponding TX-N monitor to configured.		
		Bit number TX index		
		b0 Configure TX0 power monitor		
		b1 Configure TX1 power monitor		
		b2 Configure TX2 power monitor		
		b3 Configure TX3 power monitor		
		b7:4 RESERVED.		
RESERVED	1	0x00		
REPORTING_	1	Value Definition		
MODE		0 Report is sent every monitoring period without threshold check		
		1 Report is send only upon a failure (after checking for thresholds)		
		2 Report is sent every monitoring period with threshold check		
RESERVED	1	0x00		
TX_POWER_ ABSOLUTE_ER-	2	The magnitude of difference between the programmed and measured TX power for each enabled channel at each en-		
ROR_THRESH		abled RF frequency, is compared against this threshold. The comparison result is part of the monitoring report mes- sage (Error bit is set if any measurement is above this threshold). 1 LSB = 0.1 dB Valid range: 0 to 65535 (0 to 6553dB)		
ROR_THRESH TX_POWER_ FLATNESS_ER- ROR_THRESH	2	abled RF frequency, is compared against this threshold. The comparison result is part of the monitoring report mes- sage (Error bit is set if any measurement is above this threshold). 1 LSB = 0.1 dB		

TX_POWER_ OFFSET_VALUE	3	AWR2243/xWR294x/xWR254x devices:This field is reserved. Set it to 0x000000.xWR6243 devices:The offset values to be added with the measured TXpower for each RF before the relevant threshold compar-ison. Byte numbers corresponding to different RF areRFByteRF10RF21RF32
		RF3 2 1 LSB = 0.1dB signed
		Valid range: -128 to +127 (-12.8 to 12.7dB)
RESERVED	1	0x00

8.19.2 Sub block 0x0281 – AWR_MONITOR_TXN_BALLBREAK_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to TX ball break detection.

This API SB controls the thresholds for the reflection coefficient magnitude check and the parameters for the reflection coefficient error distance check (variation from values at the time of factory calibration). The report is sent as an async event AWR_MONITOR_TX0_BALLBREAK_ REPORT_AE_SB, AWR_MONITOR_TX1_BALLBREAK_REPORT_AE_SB, AWR_MONITOR_TX2_ BALLBREAK_REPORT_AE_SB, AWR_MONITOR_TX3_BALLBREAK_REPORT_AE_SB.

Table 8.34:	AWR_	_MONITOR_	_TXN_	BALLBREAK	_CONF_	SB contents
-------------	------	-----------	-------	-----------	--------	-------------

Field Name	Number of bytes	Descrip	otion	
SBLKID	2	Value =	Value = 0x0281	
SBLKLEN	2	Value =	Value = 16	
REPORTING_	1	Value	Definition	
MODE		0	Report is sent every monitoring period without threshold check	
		1	Report is send only upon a failure (after checking for thresholds)	
	2	Report is sent every monitoring period with threshold check		

					<u> </u>
TX_SEL_MASK	1	TX channel bit mask indicating which of the TX-N monitor have to be updated with the below configurations. Settin a bit to 1 updates the corresponding TX-N monitor to b configured.			ow configurations. Setting
		Bit number	TX index		
		b0	Configure monitor	TX0	ball-break
		b1	Configure monitor	TX1	ball-break
		b2	Configure monitor	TX2	ball-break
		b3	Configure monitor	TX3	ball-break
		b7:4	RESERVE	D.	
TX_REFL_CO- EFF_THRESH	2	The TX reflection coefficient's magnitude for each enabled channel is compared against the threshold given here. The comparison result is part of the monitoring report message (Error bit is set if the measurement is higher than this threshold, with the units of both quantities being the same). 1 LSB = 0.1 dB, signed number Valid range: -32767 to +32767 (-3276dB to +3276dB)			
MON_START_ FREQ_CONST	4	AWR2243 de This field is re xWR6x43/xW Start frequent For 77GHz D 1 LSB = 3.6et Valid range: 0 For 60GHz D 1 LSB = 2.7et Valid range: 0x5E84BDA1	esserved. Set /R294x/xWF cy of the mo evices (76Gl $9/2^{26}$ Hz \approx 0x5471C71C evices (57Gl $9/2^{26}$ Hz \approx Only even	R254x (nitoring Hz to 8 53.644 to 0x5 Hz to 6 40.233	devices: g chirp. 0.8Ghz): Hz 59C71C71 3.8Ghz):
TX_POWER_ BACKOFF	1	AWR2243/xWR294x/xWR254x devices: This field is reserved. Set to 0x0. xWR6243 devices: TX Power Backoff settings used for ballbreak monitor 1 LSB = 1dB Valid values: 0, 3, 6, 9dB			
RESERVED	3	0x000000			

8.19.3 Sub block 0x0282 – AWR_MONITOR_TXN_INTERNAL_ANALOG_ SIGNALS_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to TX-N Internal Analog Signals monitoring including Tx Phase shifter DAC monitor. The report is sent as an async event AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB, AWR_MONITOR_TX1_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB, AWR_MONITOR_TX2_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB, AWR_MONITOR_TX3_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB.

Table 8.35:	AWR_	_MONITOR_	_TXN_	_INTERNAL_	_ANALOG_	_SIGNALS_	CONF_
				SB conten	ts		

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x0282	
SBLKLEN	2	Value = 12	
PROFILE_INDEX	1	The RF analog settings corresponding to this profile are used for monitoring the enabled signals, using test chirps (static frequency, at the center of the profile's RF frequency band).	
REPORTING_	1	Value Definition	
MODE		0 RESERVED	
		1 Report is send only upon a failure (after checking for thresholds)	
		2 Report is sent every monitoring period with threshold check	
TX_PS_DAC_ MON_THRESH	2	The TX phase shifter DAC monitor delta thresho when TX_PS_DAC_MON is Enabled (Not applicable for xWR294x/xWR254x) Unit: 1 LSB = 1.8V/1024 Value 0: TX_PS_DAC_MON is disabled Valid Range: 1 to 1023	

TX_SEL_MASK	1	TX channel bit mask indicating which of the TX-N monitors have to be updated with the below configurations. Setting a bit to 1 updates the corresponding TX-N monitor to be configured.	
		Bit number	TX index
		b0	Configure TX0 internal sig- nals monitor
		b1	Configure TX1 internal sig- nals monitor
		b2	Configure TX2 internal sig- nals monitor
		b3	Configure TX3 internal sig- nals monitor
		b7:4	RESERVED.
RESERVED	3	0x000000	

8.19.4 Sub block 0x0283 – AWR_MONITOR_TXN_PHASE_SHIFTER_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to TX-N TX loop back based phase shifter monitoring. The report is sent as an async event AWR_MONITOR_TX0_PHASE_SHIFTER_REPORT_AE_SB, AWR_MONITOR_TX1_PHASE_SHIFTER_REPORT_AE_SB, AWR_MONITOR_TX2_PHASE_SHIFTER_REPORT_AE_SB, AWR_MONITOR_TX3_PHASE_SHIFTER_REPORT_AE_SB.

Table 8.36: AWR_MONITOR_TXN_PHASE_SHIFTER_CONF_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x0283	
SBLKLEN	2	Value = 32	
PROFILE_INDX	1	This field indicates the Profile Index for which this monitor- ing configuration applies.	
REPORTING_	1	Value Definition	
MODE		0 Report is sent every monitoring period without threshold check	
		1 Report is send only upon a failure (after checking for thresholds)	
		2 Report is sent every monitoring period with threshold check	
RESERVED	2	RESERVED	

Table 8.3	6 – continued fr	om previous	page

PH_SHIFTER_	1	Bit	Definition
MON_CFG		b0	Phase shifter phase1 monitor enable bit
		b1	Phase shifter phase2 monitor enable bit
		b2	Phase shifter phase3 monitor enable bit
		b3	Phase shifter phase4 monitor enable bit
		b7:4	RESERVED
			at least two phase settings to measure phase error pply threshold in reporting mode 1 and 2.
RX_EN	1	This field indicates the RX channels that should be enabled for TX to RX loopback measurement. Setting the corresponding bit to 1 enables that channel for mea- surement and the average measured value is reported out. Bit number RX Channel	
		b0	RX0
		b1	RX1
		b2	RX2
		b3	RX3

MON_CHIRP_ SLOPE 1 Frequency slope for each monitoring chirp is encoded in bytes (8 bit signed number) For 77GHz Devices (76GHz to 81Ghz): 1 LSB = 3.6c9 × 900/2 ²⁶ Hz ≈ 48.279 KHz/µs Valid range: -128 to +127 (Max 6.13 MHz/µs) For 60GHz Devices (57GHz to 64Ghz): 1 LSB = 2.7c9 × 900/2 ²⁶ Hz ≈ 36.21 kHz/µs Valid range: -128 to +127 (Max 4.63 MHz/µs) NOTE: Monitoring Chirp Slope can be programmed base on the emission specifications. The device transmits on a during the execution of these monitors. The host can co trol the monitoring emission power spectral density (d m/Hz) by programming this slope parameter. Each mon toring chirp is about 45us in duration. Therefore the ove all RF sweep bandwidth for the monitoring chirp is give by Monitoring Chirp Slope* 45 us. Normally, low value of within FREQ_LIMIT set in AWR_CAL_MON FREQUENCY_TX_POWER_LIMITS_SB API. TX_SEL_MASK 1 TX channel bit mask indicating which of the TX-N moniton have to be updated with the below configurations. Settif a bit to 1 updates the corresponding TX-N monitor to 1 configured. Bit number Bit number TX index b0 Configure TX0 phaseshifter monitor b1 Configure TX1 phaseshifter monitor b2 Configure TX2 phaseshifter monitor	Table 8.36 – continued from previous page			
have to be updated with the below configurations. Setting a bit to 1 updates the corresponding TX-N monitor to be configured.Bit numberTX indexb0Configure TX0 phaseshifter monitorb1Configure TX1 phaseshifter monitorb2Configure TX2 phaseshifter monitor		1	bytes (8 bit sig For 77GHz Do 1 LSB = 3.6es Valid range: - For 60GHz Do 1 LSB = 2.7es Valid range: - NOTE: Monitor on the emission during the exect trol the monitor m/Hz) by progo toring chirp is all RF sweep by Monitoring of Monitoring zero slope in can potentiall rupt the loopb The user hal lected for mo quency is with	gned number) evices (76GHz to 81Ghz): $0 \times 900/2^{26}$ Hz ≈ 48.279 kHz/ μ s 128 to +127 (Max 6.13 MHz/ μ s) evices (57GHz to 64Ghz): $0 \times 900/2^{26}$ Hz ≈ 36.21 kHz/ μ s 128 to +127 (Max 4.63 MHz/ μ s) pring Chirp Slope can be programmed based on specifications. The device transmits on air ecution of these monitors. The host can con- oring emission power spectral density (dB- gramming this slope parameter. Each moni- about 45us in duration. Therefore the over- bandwidth for the monitoring chirp is given the Chirp Slope are recommended, as with non- FMCW radar, any actual target reflections y be interpreted as noise power and/or cor- iack signal based gain/phase measurement. is to ensure that the RF bandwidth se- nitoring chirp based on slope and start fre- thin FREQ_LIMIT set in AWR_CAL_MON_
b3 Configure TX3 phaseshifter monitor b7:4 RESERVED.	TX_SEL_MASK	1	have to be up a bit to 1 upc configured. Bit number b0 b1 b2 b3	dated with the below configurations. Setting lates the corresponding TX-N monitor to be TX index Configure TX0 phaseshifter monitor Configure TX1 phaseshifter monitor Configure TX2 phaseshifter monitor Configure TX3 phaseshifter monitor

Table 8.3	6 – continued from previous page

		o – continuca nom previous page
PH_SHIFTER_ INC_VAL1	1	Phase shifter monitoring increment value for phase1, the monitoring phase will be incremented by this value in every FTTI interval. In API based trigger MONITORING_MODE, it is important to trigger PS monitor every FTTI to make sure this logic works seamlessly. Bits Phase shift definition b1:0 RESERVED (set it to 0b00) b7:2 Phase shift increment value 1 1 LSB = 5.625°
PH_SHIFTER_ INC_VAL2	1	Phase shifter monitoring increment value for phase2, the monitoring phase will be incremented by this value in every FTTI interval. In API based trigger MONITORING_ MODE, it is important to trigger PS monitor every FTTI to make sure this logic works seamlessly.BitsPhase shift definitionb1:0RESERVED (set it to 0b00)b7:2Phase shift increment value 21LSB = 5.625°
PH_SHIFTER_ INC_VAL3	1	Phase shifter monitoring increment value for phase3, the monitoring phase will be incremented by this value in every FTTI interval. In API based trigger MONITORING_MODE, it is important to trigger PS monitor every FTTI to make sure this logic works seamlessly. Bits Phase shift definition b1:0 RESERVED (set it to 0b00) b7:2 Phase shift increment value 3 1 LSB = 5.625°
PH_SHIFTER_ INC_VAL4	1	Phase shifter monitoring increment value for phase4, the monitoring phase will be incremented by this value in every FTTI interval. In API based trigger MONITORING_ MODE, it is important to trigger PS monitor every FTTI to make sure this logic works seamlessly.BitsPhase shift definition b1:0b1:0RESERVED (set it to 0b00) b7:2b7:2Phase shift increment value 4 1 LSB = 5.625°
PH_SHIFTER_ MON1	1	TX 0 Phase shifter phase1 monitor valueBitsPhase shift definitionb1:0RESERVED (set it to 0b00)b7:2Phase shift monitor value 11 LSB = 5.625°

Table 6.36 – continued from previous page			
PH_SHIFTER_ MON2	1	TX 0 Phase shifter phase2 monitor valueBitsPhase shift definitionb1:0RESERVED (set it to 0b00)b7:2Phase shift monitor value 21 LSB = 5.625°	
PH_SHIFTER_ MON3	1	TX 0 Phase shifter phase3 monitor valueBitsPhase shift definitionb1:0RESERVED (set it to 0b00)b7:2Phase shift monitor value 31 LSB = 5.625°	
PH_SHIFTER_ MON4	1	TX 0 Phase shifter phase4 monitor valueBitsPhase shift definitionb1:0RESERVED (set it to 0b00)b7:2Phase shift monitor value 41 LSB = 5.625°	
TX_PHASE_ER- ROR_THRESH	2	The threshold for deviation of the TX output phase differ- ence between the measured phase values and configured phases for each enabled phase settings. The max error is compared against the threshold given here. The measured phase is part of the monitoring report message (Error bit is set if the max deviation is higher than this threshold, with the units of both quantities being the same). 1 LSB = $360^{\circ}/2^{16}$. Valid range: corresponding to 0° to 359.9° .	
TX_AMPLI- TUDE_ERROR_ THRESH	2	The threshold for deviation of the TX output amplitude dif- ference between all enabled phase settings. The max er- ror is compared against the threshold given here. The measured output amplitude is part of the monitoring report message (Error bit is set if the max deviation is higher than this threshold, with the units of both quantities being the same). 1 LSB = 0.1 dB Valid range: 0 to 65535 (0 to 6553dB)	
RESERVED	8	0x0000	

8.19.5 Sub block 0x0284 – AWR_MONITOR_ADV_TX_GAIN_PHASE_MISMATCH_ CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to TX gain and phase mismatch monitoring. The report is sent as an async event AWR_MONITOR_ADV_TX_GAIN_PHASE_REPORT_AE_SB.

Table 8.37: AWR_MONITOR_ADV_TX_GAIN_PHASE_MISMATCH_CONF_ SB contents

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x02	Value = 0x0284	
SBLKLEN	2	Value = 68		
PROFILE_INDX	1	This field indi ing configurat	cates the Profile Index for which tion applies.	this monitor-
RF_FREQ_BIT- MASK	1	This field indicates the exact RF frequencies inside the pro- file's RF band at which to measure the required parame- ters. When each bit in this field is set, the measurement at the corresponding RF frequency is enabled w.r.t. the pro- file's RF band. Bit number RF frequency RF name		
		b0	Lowest RF frequency in pro- file's sweep bandwidth	RF1
		b1	Center RF frequency in pro- file's sweep bandwidth	RF2
			Highest RF frequency in pro- file's sweep bandwidth e column is mentioned here to e purpose of reporting and deso ackets.	
TX_EN	1	This field indicates the TX channels that should be compared for gain and phase balance. Setting the cor- responding bit to 1 enables that channel for imbalance measurement. Bit number TX Channel		
		b0	TX0	
		b1	TX1	
		b2	TX2	
		b3	TX3	
RX_EN	1	This field indicates the RX channels that should be en- abled for TX to RX loopback measurement. Setting the corresponding bit to 1 enables that channel for imbalance measurement.		Setting the
		Bit number	RX Channel	
		b0	RX0	
		b1	RX1	
		b2	RX2	
		b3	RX3	

	1	
REPORTING_	1	Value Definition
MODE		0 Report is sent every monitoring period without threshold check
		1 Report is send only upon a failure (after checking for thresholds)
		2 Report is sent every monitoring period with threshold check
MON_CHIRP_ SLOPE	1	Frequency slope for each monitoring chirp is encoded in 1 bytes (8 bit signed number) For 77GHz Devices (76GHz to 81Ghz): 1 LSB = $3.6e9 \times 900/2^{26}$ Hz ≈ 48.279 kHz/ μ s Valid range: -128 to +127 (Max 6.13 MHz/ μ s) For 60GHz Devices (57GHz to 64Ghz): 1 LSB = $2.7e9 \times 900/2^{26}$ Hz ≈ 36.21 kHz/ μ s Valid range: -128 to +127 (Max 4.63 MHz/ μ s) NOTE: Monitoring Chirp Slope can be programmed based on the emission specifications. The device transmits on air during the execution of these monitors. The host can con- trol the monitoring emission power spectral density (dB- m/Hz) by programming this slope parameter. Each moni- toring chirp is about 45us in duration. Therefore the over- all RF sweep bandwidth for the monitoring chirp is given by Monitoring Chirp Slope* 45 us. Normally, low values of Monitoring Chirp Slope are recommended, as with non- zero slope in FMCW radar, any actual target reflections can potentially be interpreted as noise power and/or cor- rupt the loopback signal based gain/phase measurement. The user has to ensure that the RF bandwidth se- lected for monitoring chirp based on slope and start fre- quency is within FREQ_LIMIT set in AWR_CAL_MON_ FREQUENCY_TX_POWER_LIMITS_SB API.
TX_GAIN_ MISMATCH_ THRESH	2	The magnitude of difference between measured TX pow- ers across the enabled channels at each enabled RF fre- quency is compared against this threshold. The comparison result is part of the monitoring report mes- sage (Error bit is set if the measurement is above this threshold). Before the comparison, the measured gains for each RF and RX are adjusted by subtracting the offset given in the TX_GAIN_MISMATCH_OFFSET_VALUE field. 1 LSB = 0.1 dB, unsigned number Valid range: 0 to 65535 (0 to 6553.5dB)

TX_PHASE_ 2 The magnitude of measured TX phase mismatch across the enabled channels at each enabled RF frequency is compared against this threshold. The comparison result is part of the monitoring report message (Error bit is set if any measurement is above this threshold). Before the comparison, the measured gains for each RF and RX are adjusted by subtracting the offset given in the TX_PHASE_MISMATCH_OFFSET_VALUE field. TX_GAIN_MIS- 2 0x0000 TX_GAIN_MIS- 24 The offsets to be subtracted from the measured TX gain for each TX and RF before the relevant threshold comparisons are given here. BT_VALUE 24 The offsets to be subtracted from the measured TX gain for each TX and RF before the relevant threshold comparisons are given here. BTX 52.4 11.5S = .300° / 2 ¹⁶ , unsigned number VALUE 24 The offsets to be subtracted from the measured TX gain for each TX and RF before the relevant threshold comparisons are given here. BTY BY 10.0 9:8 17:16 TX1 3:2 11:10 19:18 TX2 5:4 13:12 21:20 TX3 7:6 15:14 23:22 1LSB = .01 dB, signed number Comparisons are given here. Byte numbers corresponding to different RX and RF, in this field are here: RF1 RF2 RF3 TX_PHASE 24 The offsets to be subtract	Table 0.57 – continued nom previous page			
TX_GAIN_MIS- MATCH_OFF- SET_VALUE24The offsets to be subtracted from the measured TX gain for each TX and RF before the relevant threshold comparisons are given here. Byte numbers corresponding to different RX and RF, in this field are here: RF1RF2RF3TX01:09:817:16TX13:211:1019:18TX25:413:1221:20TX37:615:1423:221 LSB = 0.1 dB, signed number Only the entries of enabled RF Frequencies and enabled TX channels are considered.TX_PHASE_ MISMATCH_ OFFSET_VALUE24The offsets to be subtracted from the measured TX phase for each TX and RF before the relevant threshold compar- isons are given here. Byte numbers corresponding to different RX and RF, in this field are here: RF1RF2TX01:09:817:16TX13:211:1019:18TX25:413:1221:20TX37:615:1423:221 LSB = 360°/2 ¹⁶ . Only the entries of enabled RF Frequencies and enabled TX channels are considered.	MISMATCH_	2	the enabled channels at each enabled RF frequency is compared against this threshold. The comparison result is part of the monitoring report mes- sage (Error bit is set if any measurement is above this threshold). Before the comparison, the measured gains for each RF and RX are adjusted by subtracting the offset given in the TX_PHASE_MISMATCH_OFFSET_VALUE field. 1 LSB = $360^{\circ}/2^{16}$, unsigned number	
MATCH_OFF- SET_VALUE each TX and RF before the relevant threshold comparisons are given here. Byte numbers corresponding to different RX and RF, in this field are here: RF1 RF2 RF3 TX0 1:0 9:8 17:16 TX1 3:2 11:10 19:18 TX2 5:4 13:12 21:20 TX3 7:6 15:14 23:22 1 LSB = 0.1 dB, signed number Only the entries of enabled RF Frequencies and enabled TX channels are considered. TX_PHASE_ MISMATCH_ OFFSET_VALUE 24 The offsets to be subtracted from the measured TX phase for each TX and RF before the relevant threshold compar- isons are given here. Byte numbers corresponding to different RX and RF, in this field are here: RF1 RF2 RF3 TX0 1:0 9:8 17:16 TX1 3:2 11:10 19:18 TX2 5:4 13:12 21:20 TX3 7:6 15:14 23:22 1 LSB = 360°/2 ¹⁶ . Only the entries of enabled RF Frequencies and enabled TX channels are considered.	RESERVED	2	0000x0000	
MISMATCH_ OFFSET_VALUE MISMATCH_ OFFSET_VALUE for each TX and RF before the relevant threshold compar- isons are given here. Byte numbers corresponding to different RX and RF, in this field are here: RF1 RF2 RF3 TX0 1:0 9:8 17:16 TX1 3:2 11:10 19:18 TX2 5:4 13:12 21:20 TX3 7:6 15:14 23:22 1 LSB = 360°/2 ¹⁶ . Only the entries of enabled RF Frequencies and enabled TX channels are considered.	MATCH_OFF-	24	each TX and RF before the relevant threshold comparisons are given here. Byte numbers corresponding to different RX and RF, in this field are here: RF1 RF2 RF3 TX0 1:0 9:8 17:16 TX1 3:2 11:10 19:18 TX2 5:4 13:12 21:20 TX3 7:6 15:14 23:22 1 LSB = 0.1 dB, signed number Only the entries of enabled RF Frequencies and enabled	
RESERVED 4 0x0000000	MISMATCH_	24	for each TX and RF before the relevant threshold comparisons are given here. Byte numbers corresponding to different RX and RF, in this field are here: RF1 RF2 RF3 TX0 1:0 9:8 17:16 TX1 3:2 11:10 19:18 TX2 5:4 13:12 21:20 TX3 7:6 15:14 23:22 1 LSB = $360^{\circ}/2^{16}$. Only the entries of enabled RF Frequencies and enabled	
	RESERVED	4	0x0000000	

8.19.6 Sub block 0x0285 – AWR_MONITOR_VMON_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to configuring and enabling the voltage monitors.

NOTE1:	This API is only supported in xWR294x/xWR254x devices. Once configured and enabled, VMON faults are not reported by the RSS firmware. Fault signals are mapped to the MSS ESM and should be responded to by the MSS application. Please refer to the TRM for more information.
NOTE2:	 The BSS firmware enables/disables/self-tests the different BSS VMONs in the below given order when this API is issued. 1. VDDA_BB_1P8V 2. VDDA_VCO_1P8V 3. VDD_RF1_1P0V 4. VDD_RF2_1P0V In case self-tests are enabled and if any of the self-tests fail, the BSS would disable all the BSS VMONs and immediately return an error with the error code indicating the VMON whose self-test failed. It will not proceed ahead and attempt to configure the remaining VMONs in the API.

Table 8.38: AWR_MONITOR_VMON_CONF_SB contents

Field Name	Number of bytes	Descrip	tion	
SBLKID	2	Value =	Value = 0x0285	
SBLKLEN	2	Value =	20	
VDDA_BB_	1	Bit	Function	
1P8V_EN		b0	Set to '0' to disable the VMON. Set '1' to enable the VMON.	
		b1	Set to '0' to disable self-test for the VMON. Set '1' to enable self-test for the VMON.	
		b7:b2	RESERVED	

VDDA_BB_ 1P8V_REF	1	Bit Definition range
		b3:b0 VDDABB UV VMON Reference Selection for nor- mal operation.
		b7:b4 VDDABB UV VMON Reference Selection during self-test.
		VDDABB UV VMON Reference values (normal):
		0x0 = 0.56V
		0x1 = 0.54V
		0x2 = 0.52V 0x3 = 0.5V
		VDDABB UV VMON Reference values (self-test):
		0x0 = 0.66V
		0x1 = 0.64V
		$0x^2 = 0.62V$
		0x3 = 0.6V Please note that all reference values for VDDA BB 1P8V
		are scaled by 3.
VDDA_VCO_	1	Bit Function
1P8V_EN		b0 Set to '0' to disable the VMON. Set '1' to enable the VMON.
		b1 Set to '0' to disable self-test for the VMON. Set '1' to enable self-test for the VMON.
		b7:b2 RESERVED
VDDA_VCO_ 1P8V_REF	1	Bit Definition range
		b3:b0 VDDAVCO UV VMON Reference Selection for normal operation.
		b7:b4 VDDAVCO UV VMON Reference Selection dur-
		ing self-test. VDDAVCO UV VMON Reference values:
		0x0 = 0.56V
		0x1 = 0.54V
		0x2 = 0.52V
		0x3 = 0.5V
		VDDAVCO UV VMON Reference values (self-test): 0x0 = 0.66V
		0x1 = 0.64V
		0x2 = 0.62V
		0x3 = 0.6V
		Please note that all reference values for VDDA_VCO_ 1P8V are scaled by 3.

VDD_RF1_	1	Bit	Function	
1P0V_EN		b0	Set to '0' to disable the VMON. Set '1' to enable the VMON.	
		b1	Set to '0' to disable self-test for the VMON. Set '1' to enable self-test for the VMON.	
		b7:b2	RESERVED	
VDD_RF1_ 1P0V_REF	1	Bit range	Definition	
		b3:b0	VDDRF1 UV VMON Reference Selection for nor- mal operation.	
		b7:b4	VDDRF1 UV VMON Reference Selection during self-test.	
		VDDRF1 UV VMON Reference values:		
		0x0 = 0.53V		
		0x1 = 0.52V		
		0x2 = 0.51V		
		0x3 = 0.	.5V	
		VDDRF	1 UV VMON Reference values (self-test):	
		0x0 = 0.	.62V	
		0x1 = 0.	.61V	
		0x2 = 0.	.6V	
		0x3 = 0.		
		Please	note that all reference values for VDD RF1 1P0V	
		are scal	ed by 1.8.	
VDD_RF2_	1	Bit	Function	
1P0V_EN		b0	Set to '0' to disable the VMON. Set '1' to enable the VMON.	
		b1	Set to '0' to disable self-test for the VMON. Set '1' to enable self-test for the VMON.	
		b7:b2	RESERVED	

VDD RF2	1	Bit	Definition		
1P0V REF		range	Dominion		
		b3:b0	VDDRF2 UV VMON Reference Selection for nor-		
			mal operation.		
		b7:b4	VDDRF2 UV VMON Reference Selection during self-test.		
		VDDRF	1 UV VMON Reference values:		
		0x0 = 0	.52V		
		0x1 = 0	.51V		
		0x2 = 0.49V			
		0x3 = 0	0x3 = 0.48V		
		VDDRF	VDDRF2 UV VMON Reference values (self-test):		
		0x0 = 0.62V			
		0x1 = 0	0x1 = 0.61V		
		0x2 = 0.6V			
		0x3 = 0			
			note that all reference values for VDD_RF2_1P0V		
		are sca	led by 1.8.		
RESERVED	4	0x0000	0000		
RESERVED	4	0x0000	0000		

8.19.7 Sub block 0x0286 – AWR_MONITOR_OVERRIDES_AND_DITHER_CONF_ SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to the monitoring overrides and dither configuration.

Table 8.39: AWR_	_MONITOR_	_OVERRIDES_	_AND_	_DITHER_	_CONF_	\mathbf{SB}
		conten	ts			

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0286
SBLKLEN	2	Value = 48

	Table 0.39 – continued from previous page				
MON_INDEX	1		ng Index to which this override API is applicable.		
		Value	Definition		
		0	Tx1 power monitor		
		1	Tx2 power monitor		
		2	Tx3 power monitor		
		3	Tx4 power monitor		
		4	Tx1 Ball Break monitor		
		5	Tx2 Ball Break monitor		
		6	Tx3 Ball Break monitor		
		7	Tx4 Ball Break monitor		
		8	Tx1 Phase Shifter monitor		
		9	Tx2 Phase Shifter monitor		
		10	Tx3 Phase Shifter monitor		
		11	Tx4 Phase Shifter monitor		
		12	Tx1 Internal signal monitor		
		13	Tx2 Internal signal monitor		
		14	Tx3 Internal signal monitor		
		15	Tx4 Internal signal monitor		
		16	Tx Gain Phase monitor		
		17	Rx Gain Phase monitor		
		18	Rx Internal signal monitor		
MON_RF_	1	Override	enables.		
PARAMS_		Bit	Definition		
OVRD_EN		b0	Start frequency override enable		
		b1	Slope override enable		
		b2	TX backoff override enable		
		b7:b3	RESERVED		
RESERVED	2	RESER	/ED		

OVRD_RF_	12	RF start freque	ncy.
START_FREQ		Bytes	Definition
		Bytes 3:0	RF1 Start frequency override
		Bytes 7:4	RF2 Start frequency override
		Bytes 11:8	RF3 Start frequency override
			$/2^{26}$ Hz \approx 53.644 Hz 5471C71C to 0x5A000000
		Mon, Tx Gain elements (RF1 RF (like TX Ba Internal signal	ponitors that have RF1,2,3 (like TX Power phase, Rx gain phase), this will have 3 /RF2/RF3). For monitors that have only 1 all Break Mon, Tx Phase shifter Mon, Tx mon and RX internal signal mon), this will t (RF2 will be used).
OVRD_RF_	6	RF frequency s	slope.
SLOPE		Bytes	Definition
		Bytes 1:0	RF1 Frequency slope override
		Bytes 3:2	RF2 Frequency slope override
		Bytes 5:4	RF3 Frequency slope override
			$ imes 900/2^{26}$ Hz $pprox 48.279$ kHz/ μ s 510 to 5510 (Max 266MHz/us)
		Mon, Tx Gain elements (RF1 RF (like TX Ba Internal signal	ponitors that have RF1,2,3 (like TX Power phase, Rx gain phase), this will have 3 /RF2/RF3). For monitors that have only 1 all Break Mon, Tx Phase shifter Mon, Tx mon and RX internal signal mon), this will t (RF2 will be used).
OVRD_TX_ BACKOFF	1	1 LSB = 1dB	e used during the monitor.

MON_DITHER_ CTRL	1	Control field for dither enables. Bit Definition
		b0 Frequency dithering enable
		b1 Time dithering enable
		b7:b2 RESERVED
		NOTE: If time dithering is enabled, the user has to account for the additional time incurred during monitoring chirps for computing the overall monitoring duration and critical time in an FTTI. For each monitoring chirp with dither enabled, an additional 100uS needs to be added to the critical time and the duration. The number of monitoring chirps for each analog monitor is tabulated in Table 12.8.
RF_MIN_	6	RF1/2/3 minimum dither frequency
DITHER_FREQ		Bytes Definition
		Bytes 1:0 RF1 offset frequency dither min limit
		Bytes 3:2 RF2 offset frequency dither min limit
		Bytes 5:4 RF3 offset frequency dither min limit
		1 LSB = 250kHz
		Valid range: -128MHz to 128MHz
		NOTE: For monitors that have RF1,2,3 (like TX Power Mon, Tx Gain phase, Rx gain phase), this will have 3 elements (RF1/RF2/RF3). For monitors that have only 1 RF (like TX Ball Break Mon, Tx Phase shifter Mon, Tx Internal signal mon and RX internal signal mon), this will have 1 element (RF2 will be used). Note: Max limits should be greater than the min limits.

		DE 1 /0 /0 ·	
RF_MAX_	6		um dither frequency
DITHER_FREQ		Bytes	Definition
		Bytes 1:0	RF1 offset frequency dither max limit
		Bytes 3:2	RF2 offset frequency dither max limit
		Bytes 5:4	RF3 offset frequency dither max limit
		1 LSB = 250kH Valid range: -12	z 28MHz to 128MHz
		Mon, Tx Gain elements (RF1 RF (like TX Ba Internal signal have 1 element	ponitors that have RF1,2,3 (like TX Power phase, Rx gain phase), this will have 3 /RF2/RF3). For monitors that have only 1 all Break Mon, Tx Phase shifter Mon, Tx mon and RX internal signal mon), this will t (RF2 will be used). s should be greater than the min limits.
MON_TIME_ DELAY_MIN_ DITHER	1	random delay dither settings. 1 LSB = 0.5uS Valid range: 0 t	chirp will begin after waiting an additional governed by the minimum and maximum o 99uS. should be greater than the min limit.
MON_TIME_ DELAY_MAX_ DITHER	1	uniform randon imum dither set 1 LSB = 0.5uS Valid range: 0 t	
RESERVED	2	RESERVED	
RESERVED	4	RESERVED	

8.19.8 Sub block 0x0287 – AWR_MONITOR_TX_PHSHIFTER_DAC_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to the TX phaseshifter DAC monitoring. The report is sent as an async event AWR_MONITOR_TX_PHSHIFTER_DAC_REPORT_AE_SB.

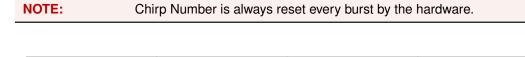
NOTE:	This API is only applicable in xWR294x/xWR254x devices.	The
	previous generation devices have the same functionality as par	rt of
	the TX1/2/3_INTERNAL_SIGNALS_MONITOR	

$\textbf{Table 8.40: AWR_MONITOR_TX_PHSHIFTER_DAC_CONF_SB \ contents}$

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x0287	
SBLKLEN	2	Value = 24	
PROFILE_INDX	1	This field indicates the Profile Index for which this monitor- ing configuration applies.	
REPORTING_	1	Value Definition	
MODE		0 Report is sent every monitoring period without threshold check	
		1 Report is send only upon a failure (after checking for thresholds)	
		2 Report is sent every monitoring period with threshold check	
TX_SEL_MASK	1	TX channel bit mask indicating which of the TX-N monitors have to be updated with the current configuration. Setting a bit to 1 updates the corresponding TX-N monitor to be configured.	
		Bit TX index	
		b0 Configure TX0 phaseshifter DAC monitor	
		b1 Configure TX1 phaseshifter DAC monitor	
		b2 Configure TX2 phaseshifter DAC monitor	
		b3 Configure TX3 phaseshifter DAC monitor	
	4	b7:4 RESERVED.	
RESERVED	1	RESERVED	
TX0_PS_DAC_ MON_THRESH	2	The TX0 phase shifter DAC monitor delta threshold when TX0 phaseshifter DAC monitor is Enabled Unit: 1 LSB = 1.8V/1024 Valid Range: 1 to 1023	
TX1_PS_DAC_ MON_THRESH	2	The TX1 phase shifter DAC monitor delta threshold when TX1 phaseshifter DAC monitor is Enabled Unit: 1 LSB = 1.8V/1024 Valid Range: 1 to 1023	
TX2_PS_DAC_ MON_THRESH	2	The TX2 phase shifter DAC monitor delta threshold when TX2 phaseshifter DAC monitor is Enabled Unit: 1 LSB = 1.8V/1024 Valid Range: 1 to 1023	
TX3_PS_DAC_ MON_THRESH	2	The TX3 phase shifter DAC monitor delta threshold when TX3 phaseshifter DAC monitor is Enabled Unit: 1 LSB = 1.8V/1024 Valid Range: 1 to 1023	

RESERVED	4	RESERVED
RESERVED	4	RESERVED

9 Unsupported Features/APIs and Debug APIs


9.1 Unsupported Features/APIs and Debug APIs

The list of unsupported features, APIs and debug APIs are highlighted in latest DFP release note. Please refer latest AWR2243 DFP release note.

10 Chirp Parameters (CP) and Chirp Quality (CQ) data

10.1 Chirp Parameters data

Chirp parameter information is always updated in the CP registers DSS_REG_VBUSM__CPREG[0-3] for single chirp use case.

		Channel 0				Channel 1			Channel 2				Channel 3				
		Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	Byte 9	Byte 10	Byte 11	Byte 12	Byte 13	Byte 14	Byte 15
	0	Channel Number		6	Chirp her[11:8]	Channel Number		6	Chirp her[11:8]	Channel Number		0]	Chirp her[11:8]	Channel Number		6	Chirp her[11:8]
0.40	2	Profile Number Reserved	Chirp Number[7:0]	Chirp Number[1	Profile Number	Reserved	Chirp Number[7:0]	Chirp Number[1	Profile Number	Reserved	Chirp Number[7:0]	Chirp Number[1	Profile Number	Reserved	Number[7:0]	Chirp Number[1	
	4			Reserved				Reserved	Pro Nun			Reserved			Chirp N	Reserved	
	6 7	Reserved			Rest	Reserved			Rest	Reserved			Rest	Reserved			Rest

Figure 10.1: Chirp parameter information fields

	31	23 16	15 8	7 0
DSS_REG_VBUSM. CH0CPREG0	Byte 3	Byte 2	Byte 1	Byte 0
DSS_REG_VBUSM. CH0CPREG1	Byte 7	Byte 6	Byte 5	Byte 4
DSS_REG_VBUSM. CH0CPREG2	Byte 11	Byte 10	Byte 9	Byte 8
DSS_REG_VBUSM. CH0CPREG3	Byte 15	Byte 14	Byte 13	Byte 12

Figure 10.2: Chirp parameter information from DSS registers

For multichip use case, the CP data is available for up to 8 chirps in DSS_REG_VBUSM.CH[0-7]CPREG[0-3].

10.2 Chirp Quality data

Chirp quality information is divided into 3 parts

- 1. CQ0 Wideband signal and image energy information (Reserved for future use)
- 2. CQ1 RX signal and image band energy statistics
- 3. CQ2 RX ADC and IF saturation information

CQ data will be available in CQ RAM which is a ping-pong memory when the CQ monitors are enabled. Currently supported CQ monitors are AWR_MONITOR_RX_SATURATION_DETECTOR_ CONF_SB for CQ2 and AWR_MONITOR_SIG_IMG_MONITOR_CONF_SB for CQ1. CQ data will be refreshed every chirp by the hardware. User has to ensure that before the next chirp finishes, the current chirps' CQ data is either processed or transferred to a local memory for further processing.

NOTE:	CQ0 is not supported by firmware currently, but the CQ RAM will
	be updated for CQ0 data. Maximum size of CQ0 data is 256 bytes.
	Users should ignore the CQ RAM for CQ0.

The starting location (on 128 bit boundary) of each CQ data within the CQ memory can be configured by programming DSS_REG.CQCFG1[12:4] for CQ0, DSS_REG.CQCFG1[21:13] for CQ1 and DSS_REG.CQCFG1[30:22] for CQ2.

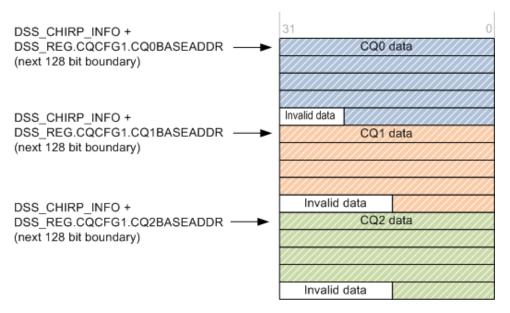


Figure 10.3: CQ data start address configuration in single chirp use case

For N-chirp use case, when user wishes to process N chirps simultaneously, then CQ0 for all N chirps will be concatenated together in memory. Similarly CQ1 and CQ2 for all N chirps will also be concatenated together.

NOTE:	When CQ data is concatenated in N-chirp use case, the CQ data
	for new chirp starts on the next 128 bit boundary.

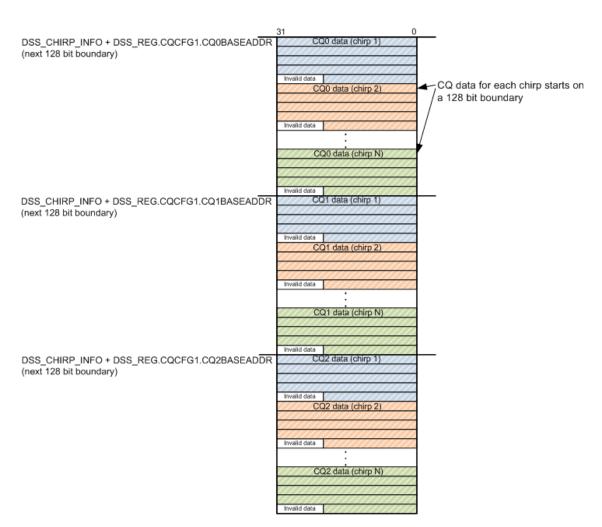


Figure 10.4: CQ data start address configuration in multi chirp use case

The CQDATAWIDTH parameter in DSS_REG.CQCFG1 defines the packing of the CQ data in the CQ memory in either 16-bit mode, 12-bit mode or in 14-bit mode.

10.2.1 CQ1

The signal band and image band are separated using a two-channel filter bank and the ADC sampling time duration is monitored in terms of primary and secondary time slices, as shown below.

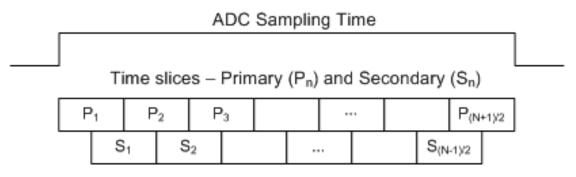


Figure 10.5: Time slices during RX signal and image band monitor and saturation monitor

For each of the two bands (signal and image), for each time slice, the input-referred average power in the slice in negative dBm is recorded as an 8-bit unsigned number, with 1 LSB = -0.5 dBm

CQ1 data is stored in memory as shown below (in 16-bit mode)

31 24	23 16	15 8	7 0
P _{i1}	P _{s1}	0	Ν
P _{i2}	P _{s2}	Si1	S _{s1}
P _{i3}	P _{s3}	S _{i2}	S ₅₂
:	:	:	:
P _{i(N+1)/2}	P _{s(N+1)/2}	S _{i(N-1)2}	S _{8(N-1)/2}

Figure 10.6: CQ1 data format in memory in 16-bit mode

N indicates the total number of primary and secondary slices which are monitored (maximum value of N is 127). P_{s,i_n} indicates the power of primary slice n for {signal, image} band and S_{s,i_n} indicates the power of secondary slice n for {signal, image} band. Each power is encoded in 8 bit unsigned number with each LSB representing -0.5 dBm.

Since maximum value of N is 127, the maximum size of CQ1 data in 16-bit mode is 256 bytes

NOTE:	In real output mode, since there is no image band visibility, only the
	signal band statistics will be meaningful.

Similarly, in 12-bit and 14-bit modes, the CQ1 data in CQ memory will be packed as shown below. Only the relevant bits in each 16 bits of memory (either 12 bits or 14 bits) are useful and other bits and not written by hardware.

63	56 55	48	47 40	39	32 31	24 23	16 15	8 7	0
	SI1	S _{s1} [7:4]	S _{s1} [3:0]	P _{I1}		P_{s1}	0	0	Ν
		4 bits-,	r ,←4 bits-,	8 bits-			4 bits	,⊱4 bits	—8 bits——
127	120 119	112	111 104	103	96 95	88 87	80 79	72 71	64
127	120 119 P ₁₃	112 P _{s3} [7:4]	111 104 P _{s3} [3:0]	103 S ₁₂	96 95	88 87 S _{s2}	80 79 Pt2[7:4]	72 71	64 P _{s2}

Figure 10.7: CQ1 data format in memory in 12-bit mode

63	56 55	48 47	40 39	32 31	24 23	16 15	8 7	0
	P _{s2}	S ₁₁ [7:2]	S _{s1}	P ₁₁ [7:4] P ₁₁	[3:0] P _{s1}	0	0	N
- J	—8 bits——,	6 bits 2 bits	8 bits	+4 bits + -4	bits 🖌 8 bits –	2 bits	6 bits	
1								
127	120 119	112 111	104 103	96 95	88 87	80 79	72 7	1 64
127	120 119 S ₁₃	112 111 S _{s3} [7:2]	104 103 P ₁₃	96 95 P _{s3} [7:4]		<u> </u>	72 7 S _{s2} [5:0]	1 64 P ₁₂

Figure 10.8: CQ1 data format in memory in 14-bit mode

10.2.2 CQ2

The analog to digital interface includes a 100 MHz bit stream indicating saturation events in the ADC/IF sections, for each channel. This one-bit indicator for each channel is monitored during the ADC sampling time duration in a time-sliced manner, as shown in Figure 10.5.

For each time slice, a saturation event count is recorded. This count is the sum of saturation event counts across all RX channels selected for monitoring, capped to a maximum count of 255 (8 bits). The saturation counts are stored in memory as shown below

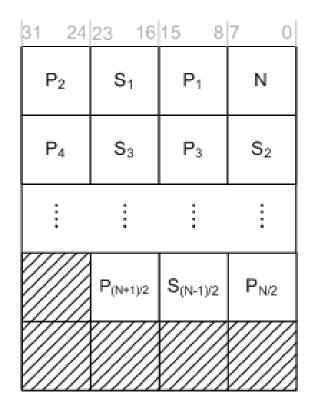


Figure 10.9: CQ2 data format in memory in 16-bit mode

N indicates the total number of primary and secondary slices which are monitored (maximum value of N is 127). P_n indicates the accumulated saturation count for all enabled RX channels in primary slice n, S_n indicates the accumulated saturation count for all enabled RX channels in secondary slice *n*.

Since maximum value of N is 127, the maximum size of CQ2 data in 16-bit mode is 128 bytes. Similarly, in 12-bit and 14-bit modes, the CQ2 data in CQ memory will be packed as shown below. Only the relevant bits in each 16 bits of memory (either 12 bits or 14 bits) are useful and other bits and not written by hardware.

63	56 55	48	47 40	39 32	31	24 23	16 15	8	7	0
	S ₂	P ₂ [7:4]	P ₂ [3:0]	S ₁		P ₁	0	0	Ν	
Į	-8 bits-	4 bits	∤	8 bits	\downarrow	8 bits-	4 bits	4 bits	8 bits-	\rightarrow
127	120 119	112	111 104	103 96	95	88 87	80 79	72	71	64
127	120 119 S ₅	112 P ₅ [7:4]	111 104 P ₅ [3:0]	103 96 S ₄	95	88 87 P4	80 79 S ₃ [7:4]	72 S ₃ [3:0]	71 P ₃	64

Figure 10.10: CQ2 data format in memory in 12-bit mode

63	56 55	48 47	40 39	32 31	24 23	16 15	8	7 0
	P ₃	S ₂ [7:2]	P ₂	S1[7:4] S1	[3:0] P ₁	0	0	Ν
Ł	8 bits,	6 bits 2	bits 8 bits	+4 bits + -4	bits 8 bits	2 bits	—6 bits—	8 bits
127	400/440					1	1	1
	120 119	112 111	104 103	96 95	88 87	80 79	72 7	71 64
	S ₆		104 103		[3:0] S ₄	<u> </u>	72 7 P ₄ [5:0]	71 64 S ₃

Figure 10.11: CQ2 data format in memory in 14-bit mode

11 Chirp, Burst and Frame timings

xWR294x/xWR254x device minimum chirp cycle time, inter-burst time, inter sub-frame/frame time requirements are documented in this section.

11.1 Chirp Cycle Time

		1 0
Use case	Min Chirp cycle time (μ s)	Description
Typical chirps	13.5	The normal chirps used in a burst or a frame using legacy chirp configuration API
Advance chirps	26	The advance chirps used in a burst or a frame using advanced chirp configuration API
chirps in Con- tinuous framing mode	21	A single advance chirp used in a burst using either normal legacy chirp or advanced chirp configuration API. Continuous framing mode is a mode in which a single chirp is programmed in a burst using advanced frame configuration API. In this mode it is recommended to set idle time of chirp minimum 10us to save Inter chirp power save override time (Refer below table)

 Table 11.1: Minimum chirp cycle time for xWR294x devices

Use case	Min Chirp cycle time (µs)	Description			
Typical chirps	13.5	The normal chirps used in a burst or a frame using legacy chirp configuration API			
Advance chirps	18	When additional parameters and the timings of enabled parameters and the timings of enabled parameters and the time of time of time of the time of tim	ninimum mandatory parameter, C, CHIRP_TX_EN, CHIRP_BF re enabled in the advanced cl	ers enabled PM_VAL). hirp API add	
		API	Parameter	Time in us	
		AWR_ADVANCE_CHIRP_ CONF_SB	CHIRP_FREQ_START_ VAR	1.3	
		AWR_ADVANCE_CHIRP_ CONF_SB	CHIRP_FREQ_SLOPE_ VAR	1	
		AWR_ADVANCE_CHIRP_ CONF_SB	CHIRP_IDLE_TIME_VAR	0.9	
		AWR_ADVANCE_CHIRP_ CONF_SB	CHIRP_ADC_START_ TIME_VAR	0.9	
		AWR_ADVANCE_CHIRP_ CONF_SB	TXn_PHASE_SHIFTER	3.8	
		AWR_RF_MISC_CTL_SB	ADC_START_TIME_RES	1.2	
		AWR_RF_MISC_CTL_SB	INTER_CHIRP_JITTER_ MITIGATION	0.4	
chirps in Con- tinuous framing mode	21	mode in which a single chirp is frame configuration API. In this of chirp minimum 10us to sa	tion API. Continuous framing s programmed in a burst usin	mode is a g advanced set idle time	

Table 11.2: Minimum chirp cycle time for xWR254x devices

11.2 Minimum Inter Burst Time

Min inter burst time	Time (μ s)	Description
Typical inter burst time	57	The minimum inter burst idle time required in normal bursts with legacy chirps configured in a advanced frame configuration API with inter burst power save disabled.
Inter burst SYNTH power save time	55	Add inter burst SYNTH power save time to minimum inter burst time if it is enabled. By default inter-burst SYNTH power save is enabled, it can be disabled (Only in single chip mode) using AWR_RF_DEVICE_CFG_SB API
Inter burst APLL power save time	37	Add inter burst APLL power save time to minimum inter burst time if it is enabled. By default inter-burst APLL power save is enabled, it can be disabled (Only in single chip mode) using AWR_RF_DEVICE_CFG_SB API
Inter chirp power save override time (power save disable)	15	Add inter chirp power save override time to minimum inter burst time if chirp idle time < 10us in a burst or can be controlled using AWR_ DYNAMICPOWERSAVE_CONF_SET_SB API
Advance chirp configuration time	45	Add advance chirp configuration time to minimum inter burst time if advance chirp configuration is enabled in AWR_RF_RADAR_MISC_CTL_SB API. Not applicable for Continuous framing mode (Refer below)
Advance chirp configuration time (Contin- uous framing mode)	30	Add Continuous framing mode advance chirp configuration time to minimum inter burst time if advance chirp configuration is enabled in AWR_ RF_RADAR_MISC_CTL_SB API. Continuous framing mode is a mode in which a single chirp is programmed in a burst using advanced frame configuration API.
Normal chirps (Continuous framing mode)	10	Add Continuous framing mode normal chirp configuration time to minimum inter burst time. Continuous framing mode is a mode in which a single chirp is programmed in a burst using advanced frame configuration API.

Table 11.3: Minimum inter burst time for xWR294x/xWR254x devices

Min inter burst time	Time (μ s)	Description
Calibration or Monitoring chirp time	145	Add calibration or Monitoring chirp time to minimum inter burst time if calibration or monitors intended to be run in inter burst idle time. The calibration and monitoring chirps can run only in inter sub-frame or inter-frame interval if this time is not allocated in inter-burst time. Add calibration or Monitoring duration to minimum inter burst or sub-frame/frame time based on Table 12.4 and Table 12.9

11.3 Minimum Inter Sub-frame or Frame Time

Min inter sub- frame/frame time	Time (μ s)	Description
Typical inter sub- frame/frame time	313	The minimum inter sub-frame/frame idle time required in normal sub-frames with legacy chirps configured in a advanced frame configuration API or in a legacy frame config API. This time includes time required for minimum inter-burst idle time, inter burst power save, inter chirp power save override and single calibration/monitoring chirp time.
Advance chirp config- uration time	45	Add advance chirp configuration time to minimum inter sub-frame/frame time if advance chirp configuration is enabled in AWR_RF_RADAR_ MISC_CTL_SB API
Calibration or Moni- toring duration	Table 12.4 and Table 12.9	Add calibration or Monitoring duration to minimum inter sub-frame/frame time based on Table 12.4 and Table 12.9
Loop-back burst con- figuration time	300	Add Loop-back burst configuration time to minimum inter sub-frame time for loop back sub-frames if it is enabled in advance frame config API.
Dynamic legacy chirp configuration time (for 16 chirps)	20 for 16 chirps + 500	Add dynamic legacy chirp configuration time to minimum inter frame time if dynamic chirp/phase-shifter APIs are issued in runtime.
Dynamic advance chirp configuration time (without LUT)	500	Add dynamic advance chirp configuration time to minimum inter frame time if dynamic advance chirp API is issued in runtime. The dynamic update of advance chirp generic LUT is done immediately when the API is received at BSS and there is no impact to inter frame time, however user has to take care of timing of the LUT update as it should not corrupt the ongoing chirp configuration.
Dynamic profile con- figuration time (for 1 profile)	1200	Add dynamic profile configuration time to minimum inter frame time if dynamic profile API is issued in runtime.
Test source config time	190	Add test source configuration time to minimum inter sub-frame time if test source API is issued.

Table 11.5:	Minimum int	ter sub-frame	/frame time	for xWR294x	/xWR254x devices
-------------	-------------	---------------	-------------	-------------	------------------

12 Calibration and monitoring durations

12.1 Boot time calibration durations

xWR294x/xWR254x/AWR2243/xWR6243 device boot time calibration durations are mentioned in the tables below:

Table 12.1:	Duration of boot time calibrations for $xWR294x/xWR254x$ device

SI. No.	Calibration	Duration (μ s)
1	APLL	500
2	Synth VCO	2600
3	LO DIST	1500
4	ADC DC	600
5	HPF cutoff	3000
6	LPF cut off	200
7	Peak detector	7000
8	TX power (for each TX)	2000
9	RX gain	1500
10	TX phase (for each TX)	12 000

_

SI. No.	Calibration	Duration (μ s)
1	APLL	500
2	Synth VCO	2500
3	LO DIST	1500
4	ADC DC	600
5	HPF cutoff	3500
6	LPF cut off	200
7	Peak detector	7000
8	TX power (for each TX)	2000
9	RX gain	1500
10	TX phase (for each TX)	12000
11	RX IQMM	42 000

 Table 12.2:
 Duration of boot time calibrations for AWR2243 device

Table 12.3: Duration of boot time calibrations for xWR6243 device

SI. No.	Calibration	Duration (μ s)
1	APLL	500
2	Synth VCO (VCO1,VCO2)	2500
	Synth VCO (VCO1,VCO2,VCO3)	3750
3	LO DIST	12
4	ADC DC	600
5	HPF cutoff	3500
6	LPF cut off	200
7	Peak detector	8000
8	TX power (for each TX)	3000
9	RX gain	1500
10	TX phase (for each TX)	12 000
11	RX IQMM	42 000

12.2 Run time calibration durations

xWR294x/xWR254x runtime calibration durations are captured in Table 12.4, AWR2243 run time calibration durations captured in Table 12.5 and xWR6243 run time calibration durations are captured in Table 12.6. The Calibration Total duration is consist of two components,

1. Critical calibration chirp time, this is fixed to 145 μ s. Each calibration can have multiple critical chirps to complete the task, the total critical time captured in below table. The critical tasks are done in chunks of 145 μ s, refer Table 11.4 for more info.

2. Non critical setup and processing time, this is a variable component specific to each calibration, the total calibration duration captured in below table = total critical time + non critical time.

Note that the User has to ensure the total idle time in one CALIB_MON_TIME_UNIT is sufficient to fit the enabled calibrations.

SI. No.	Calibration	Total Duration (μ s)	Total Critical Time (μ s)
1	APLL	150	145
2	Synth VCO	300	290
3	LO DIST	30	0
4	Peak detector	600	580
5	TX power CLPC (for each TX and for 1 profile)	720	580
6	TX power OLPC (In case CLPC is disabled)	30	0
7	RX gain	30	0
8	TX phase	700	0
9	Application of calibration to hardware (This needs to be included always)	60	60

Table 12.4: Duration of run time calibrations for xWR294x/xWR254x devices

SI. No.	Calibration	Total Duration (μ s)	Total Critical Time (μ s)
1	APLL	150	145
2	Synth VCO	300	290
3	LO DIST	30	0
4	Peak detector	600	580
5	TX power CLPC (for each TX and for 1 profile)	800	580
6	TX power OLPC (In case CLPC is disabled)	30	0
7	RX gain	30	0
8	Application of calibration to hardware (This needs to be included always)	50	50

 Table 12.5: Duration of run time calibrations for AWR2243 devices

Table 12.6:	Duration of run	time calibrations	for xWR6243 devices
-------------	-----------------	-------------------	---------------------

SI. No.	Calibration	Total Duration (μ s)
1	APLL	150
2	Synth VCO (VCO1,VCO2)	350
	Synth VCO (VCO1,VCO2,VCO3)	525
3	LO DIST	30
4	Peak detector	600
5	TX power CLPC (for each TX and for 1 profile)	800
6	TX power OLPC (In case CLPC is disabled)	30
7	RX gain	30
8	Application of calibration to hardware (This needs to be included always)	50

To configure CALIB_MON_TIME_UNIT, user has to calculate the total available IDLE time in the frames and please refer Table 11.4 for the same. The duration for all the enabled calibrations should be included and following Table 12.14 software overheads should be added to that number.

12.3 Monitoring duration

Table 12.7 lists the duration of all analog monitors for xWR254x and Table 12.8 lists the duration of all analog monitors for xWR294x and Table 12.9 lists the duration of all digital monitors for xWR294x/xWR254x. Table 12.10 lists the duration of all analog monitors for AWR2243 and Table 12.11 lists the duration of all digital monitors for AWR2243. Table 12.12 lists the duration of all analog monitors for xWR6243 and Table 12.13 lists the duration of all digital monitors for xWR6243.

The Monitor Total duration is consist of two components,

1. Critical Monitoring chirp time, this is fixed to 145 μ s. Each Monitor can have multiple critical chirps to complete the task, the total critical time captured in below table. The critical tasks are done in chunks of 145 μ s, refer Table 11.4 for more info.

2. Non critical setup and processing time, this is a variable component specific to each Monitoring, the total Monitor duration captured in below table = total critical time + non critical time.

Note that the User has to ensure the total idle time in one CALIB_MON_TIME_UNIT is sufficient to fit the enabled monitoring.

SI. No.	Monitors	Total Duration (μ s)	Total Critical Time (μ s)	Num of mon chirps
1	RX gain phase (assumes 1 RF frequency)	480	290	2
2	RX noise figure (assumes 1 RF frequency)	270	145	1
3a	RX IF stage (LPF monitor disabled)	750	580	4
3b	RX IF stage (LPF monitor enabled. Debug only)	2490	2320	16
4	TX power (assumes 1 TX, 1 RF frequency)	240	145	1
5	TX ballbreak (assumes 1 TX)	250	145	1
6	TX gain phase mismatch (assumes 1 TX, 1 RF fre- quency)	310	130	1
7	TX phase shifter (assumes 1 TX and 1 phase)	300	130	1
8	Synthesizer frequency Live	50	0	0
9	TX Internal analog signals (assumes 1 TX)	230	130	1
10	TX Phase shifter DAC moni- tor	2650	2610	18
11	RX internal analog signals	670	520	4
12	PMCLKLO internal analog signals	250	145	1
13	GPADC internal signals	80	70	0
14	PLL control voltage (APLL and SYNTH)	230	200	0
15	Dual clock comparator	190	190	0
16	RX saturation detector	50	0	0
17	Synthesizer frequency Non- live monitor (Single VCO)	235	145	1

SI. No.	Monitors	Total Duration (μ s)	Total Critical Time (μ s)	Num of mon chirps
1	RX gain phase (assumes 1 RF frequency)	480	290	2
2	RX noise figure (assumes 1 RF frequency)	270	145	1
3	RX IF stage	1110	725	5
4	TX power (assumes 1 TX, 1 RF frequency)	240	145	1
5	TX ballbreak (assumes 1 TX)	250	145	1
6	TX gain phase mismatch (assumes 1 TX, 1 RF fre- quency)	310	130	1
7	TX phase shifter (assumes 1 TX and 1 phase)	300	130	1
8	Synthesizer frequency Live	50	0	0
9	TX Internal analog signals (assumes 1 TX)	230	130	1
10	TX Phase shifter DAC moni- tor	2650	2610	18
11	RX internal analog signals	670	520	4
12	PMCLKLO internal analog signals	250	145	1
13	GPADC internal signals	80	70	0
14	PLL control voltage (APLL and SYNTH)	230	200	0
15	Dual clock comparator	140	140	0
16	RX saturation detector	50	0	0
17	Synthesizer frequency Non- live monitor (Single VCO)	235	145	1

 Table 12.8:
 Duration of analog monitors for xWR294x device

_

SI. No.	Monitors	Total Duration (μ s)	Total Critical Time (μ s)
1	Periodic configuration register readback	50	50
2	DFE LBIST monitoring	580	580
3	Frame timing monitoring	10	0

Table 12.9:Duration of digital monitors for xWR294x/xWR254x device

SI. No.	Monitors	Total Duration (μ s)	Total Critical Time (μ s)
1	RX gain phase (assumes 1 RF frequency)	1100	725
2	RX noise figure (assumes 1 RF frequency)	250	145
3	RX IF stage (assumes 1 RF frequency)	1300	725
4	TX power (assumes 1 TX, 1 RF frequency)	220	145
5	TX ballbreak (assumes 1 TX)	250	145
6	TX gain phase mismatch (assumes 1 TX, 1 RF frequency)	350	145
7	TX phase shifter (assumes 1 TX and 1 phase)	250	145
8	Synthesizer frequency Live	50	0
9	External analog signals (all 6 GPADC channels enabled)	150	100
10	TX Internal analog signals (assumes 1 TX)	250	145
	TX Phase shifter DAC monitor (assumes 1 TX)	2250	2175
11	RX internal analog signals	1950	1740
12	PMCLKLO internal analog signals and 20G Sync	550	435
13	GPADC internal signals	50	30
14	PLL control voltage (APLL and SYNTH)	300	260
15	Dual clock comparator (assumes 6 clock comparators)	280	270
16	RX saturation detector	50	0
17	RX signal and image band monitor	50	0
18	RX mixer input power	650	580
19	Synthesizer frequency Non-live monitor (Single VCO)	235	145

 Table 12.10:
 Duration of analog monitors for AWR2243 device

SI. No.	Monitors	Total Duration (μ s)	Total Critical Time (μ s)
1	Periodic configuration register readback	50	30
2	DFE LBIST monitoring	300	240
3	Frame timing monitoring	10	0

 Table 12.11:
 Duration of digital monitors for AWR2243 device

Table 12.12: Duration of analog monitors for xWR6243 devic	Table 12.12:	Duration of	of analog n	nonitors for	xWR6243 device
--	--------------	-------------	-------------	--------------	----------------

SI. No.	Monitors	Total Duration (μ s)
1	RX gain phase (assumes 1 RF frequency)	1250
2	RX noise figure (assumes 1 RF frequency)	250
3	RX IF stage (assumes 1 RF frequency)	1400
4	TX power (assumes 1 TX, 1 RF frequency)	250
5	TX ballbreak (assumes 1 TX)	300
6	TX gain phase mismatch (assumes 1 TX, 1 RF frequency)	400
7	TX phase shifter (assumes 1 TX and 1 phase)	250
8	Synthesizer frequency Live	50
9	External analog signals (all 6 GPADC channels enabled)	150
10	TX Internal analog signals (assumes 1 TX)	300
	TX Phase shifter DAC monitor (assumes 1 TX)	2300
11	RX internal analog signals	1950
12	PMCLKLO internal analog signals and 20G Sync	550
13	GPADC internal signals	50
14	PLL control voltage (APLL and SYNTH)	300
15	Dual clock comparator (assumes 6 clock compara- tors)	300
16	RX saturation detector	100
17	RX signal and image band monitor	100
18	RX mixer input power	700
19	Synthesizer frequency Non-live monitor (Single VCO)	250

SI. No.	Monitors	Total Duration (μ s)
1	Periodic configuration register readback	70
2	DFE LBIST monitoring	300
3	Frame timing monitoring	10

 Table 12.13:
 Duration of digital monitors for xWR6243 device

To configure CALIB_MON_TIME_UNIT, user has to calculate the total available IDLE time in the frames and please refer Table 11.4 for the same. The duration for all the enabled monitors should be included and following Table 12.14 software overheads should be added to that number.

12.4 Software overheads

-

When the calibrations or monitorings are enabled, the software needs certain time for reading the temperature sensors, reading the DFE statistics, preparing the calibration or monitoring reports and to clear the watchdog (WDT). All these time durations should also be accounted when computing the CALIB_MON_TIME_UNIT. The details of the software overheards are given in the Table 12.14

Table 12.14:	Software ove	erheads eve	ry FTTI tha	at should be accou	inted to program
	CALIB_MC	DN_TIME_	_UNIT and	CALIBRATION_	_PERIODICITY

SI. No.	Software overhead	Total Duration (μ s)	Total Critical Time (µs)
1	Periodic monitoring of stack usage	20	20
2	Minimum monitoring duration (report formation, digital energy monitor at the end of CALIB_MON_ TIME_UNIT, temperature read every CALIB_ MON_TIME_UNIT)	600	100
3	Minimum run time calibration duration (report for- mation, temperature read every CALIB_MON_ TIME_UNIT)	300	100
4	Idle time needed per FTTI for windowed watchdog (WDT)	Frame period × CALIB_ MON_TIME_UNIT/8 i.e.~12.5% of Frame period × CALIB_MON_ TIME_UNIT is reserved for watchdog clearing time	0

12.4.1 Note on idle time for clearing the watchdog (WDT)

The clearing window of the watchdog is 12.5% of total FTTI as shown in the figure below. One FTTI can have multiple frames in legacy frame configuration or in advanced frame configuration - each frame can have multiple sub-frames and each sub-frame can have multiple bursts.

The required idle time for clearing watchdog is absolute 12.5% of the overall FTTI interval, this 12.5% clearing window can have multiple frames or subframes or bursts. The granularity of the required watchdog idle time calculation is limited to sub-frame period.

Example

A user has enabled advanced frame configuration where each frame consists of 3 sub-frames and each sub-frame is of 5 ms duration. FTTI is configured as 25 frames. Each sub-frame contains 100 chirps, each chirp consisting of 4 μ s idle time and 21 μ s ramp time. i.e. duty cycle is 50%. The watchdog clearing window and time for calibration and monitoring is calculated as follows

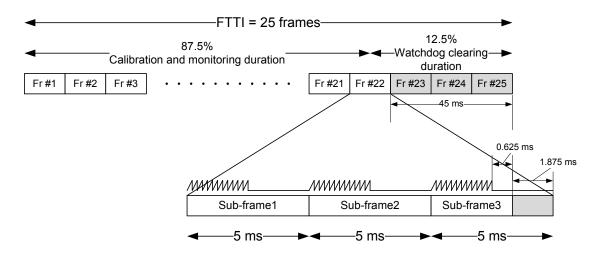


Figure 12.1: Watchdog idle time calculation

Frame duty cycle	=	50	%
Idle time per frame (50% of 15 ms)	=	7.5	ms
FTTI (15 ms $ imes$ 25 frames)	=	375	ms
Available idle time per FTTI (50% of 375 ms)	=	187.5	ms
Ideal watchdog clearing window (12.5% of 375 ms)	=	46.875	ms
The calculated watchdog clearing window in firmware is as follows			
Duration of complete frames which can be fit in watchdog		45	
clearing window $(\lceil 46.875/15 \rceil \times 15) \int$	=	45	ms
Fractional watchdog clearing time (which will be fit in the		1 075	
sub-frame idle time) $(46.875 - (15 \times 3))$	=	1.875	ms
Time available for calibration/monitoring per FTTI		109 105	
$(21 \text{ frames} \times 7.5 \text{ ms}) + (2 \text{ sub-frames} \times 2.5 \text{ ms}) + 0.625 \text{ ms}) $	=	163.125	ms

The following examples show how the user can budget for calibration and monitoring time and configure the FTTI correctly.

A user has enabled 4 TX, uses only 1 profile, frame configuration consists of 64 chirps, each chirp is of duration is 66 μ s (56 μ s ramp time and 10 μ s chirp idle time) and frame periodicity is 10 ms. CALIB_MON_TIME_UNIT has been set to 4. User has enabled all run time calibrations. None of the analog monitoring is enabled.

Frame duty cycle	=	42.24%
Idle time per frame (57.76% of 10 ms)	=	5.776 ms
Idle time available for calibration/monitoring per frame $(100 \ \mu s \text{ is for frame preparation})$	=	5.676 ms
Time needed for all run time calibrations	=	6650 μ s
Minimum time for software overheads $20 + 600 + 300 + (10000 \times 4/8)$	=	5920 μ s
Total time needed per FTTI for calibration $\begin{cases} \\ 6650 \ \mu s + 5920 \ \mu s \end{cases}$	=	12570 μ s

Total time needed per FTTI for calibration is 12.570 ms which is less than the total frame idle time in the FTTI (5.676 * 4 = 22.704 ms) and hence this configuration will be honored by the MMIC. CALIB_MON_TIME_UNIT in actual time units is also within the allowed range of 40-250ms. User can set CALIBRATION_PERIODICITY as 25. With this setting calibrations are triggered once every 100 frames (i.e. once every 1 s)

Consider another example where the frame configuration remains the same as in example 1, but frame periodicity is reduced to 6 ms.

Frame duty cycle	=	70.40%
Idle time per frame (29.60% of 6 ms)	=	1.776 ms
Idle time available for calibration/monitoring per frame $(100 \ \mu s \text{ is for frame preparation})$	=	1.676 ms
Time needed for all run time calibrations	=	6650 μ s
Minimum time for software overheads	=	3920 μ s
Total time needed per FTTI for calibration $\int 6650 \ \mu s + 3920 \ \mu s \int$	=	10570 μ s

Total time needed per FTTI for calibration is 10.57 ms which is more than the total frame idle time in an FTTI (1.676 * 4 = 6.704 ms) and hence this configuration will **not** be honored by the MMIC. Also, CALIB_MON_TIME_UNIT in actual time units is 4 * 6 ms = 24 ms, which is **not** within the allowed range of 40-250ms.

User can set CALIB_MON_TIME_UNIT to 10 and CALIBRATION_PERIODICITY as 17. With this setting the Total time needed per FTTI for calibration is 15.07 ms which is less than the total frame idle time in an FTTI (1.676 * 10 = 16.760 ms). Calibrations are triggered once every 170 frames (i.e. once every 1.02 s)

A user has enabled 2 TX, uses 2 profiles, frame configuration consists of 32 chirps, each chirp is of duration is 90 μ s (80 μ s ramp time and 10 μ s chirp idle time) and frame periodicity is 6 ms. CALIB_MON_TIME_UNIT is set to 1. User has enabled all run time calibrations. None of the analog monitoring is enabled.

Frame duty cycle	=	48.00%
Idle time per frame (52.00% of 6 ms)	=	3.120 ms
Idle time available for calibration/monitoring per frame	=	3.020 ms
(100 μ s is for frame preparation)		
Time needed for all run time calibrations	_	6650 μ s
$150 + 300 + 30 + 400 + (720 \times 2 \times 2) + 30 + 2800 + 60$	_	
Minimum time for software overheads)	=	1670 μ s
$20 + 600 + 300 + (6000 \times 1/8)$		
Total time needed per frame for calibration $\Big)$	=	8320 μ s
6650 μs + 1670 μs∫		

Total time needed per FTTI for calibration is 8.320 ms which is more than the overall frame idle time in the FTTI (3.020 ms) and hence this configuration will **not** be honored by the MMIC device. Also, the CALIB_MON_TIME_UNIT in actual time units is 6 ms which is **not** within the allowed range of 40-250ms.

User can set CALIB_MON_TIME_UNIT to 7 and CALIBRATION_PERIODICITY as 24. With this setting, minimum required time is 12.82 ms and available idle time for calibration/monitoring is 3.020 ms * 7 = 21.14 ms and calibrations are triggered once every 168 frames (i.e. once every 1.008 s)

A user has enabled 2 TX, uses 2 profiles, frame configuration consists of 32 chirps, each chirp is of duration is 90 μ s (80 μ s ramp time and 10 μ s chirp idle time) and frame periodicity is 6 ms. CALIB_MON_TIME_UNIT is set to 1. User has enabled all run time calibrations. Analog monitorings which are enabled are (a) TX output power monitor for TX0 and TX1 (b) TX Ballbreak monitor for TX0 and TX1 and (c) RX gain phase monitor. Each of the monitors are configured to be run for 1 profile and 3 RF frequencies (low, mid and high) as defined by the profile.

Frame duty cycle	=	48.00%
Idle time per frame (52.00% of 6 ms)	=	3.120 ms
Idle time available for calibration/monitoring per frame	=	3.020 ms
(100 μ s is for frame preparation)		
Time needed for all run time calibrations	=	6650 μ s
$150 + 300 + 30 + 400 + (720 \times 2 \times 2) + 30 + 2800 + 60$		
Time needed for all monitoring	=	3380 μ s
$(240 \times 2 \times 3) + (250 \times 2) + (480 \times 3) $		
Minimum time for software overheads)	=	1670 μ s
$20 + 600 + 300 + (6000 \times 1/8)$		
Total time needed per frame for calibration and monitoring	=	11700
6650 μs + 3380 μs + 1670 μs ∫		11700 μ s

Total time needed per FTTI for calibration is 11.700 ms which is more than the overall frame idle time in the FTTI (3.020 ms) and hence this configuration will **not** be honored by the MMIC. User can set CALIB_MON_TIME_UNIT to 7 and CALIBRATION_PERIODICITY as 24. With this setting, minimum required time for calibration and monitoring is 16.20 ms and available idle time for calibration/monitoring is 21.14 ms. Monitoring is triggered once in 7 frames and calibration is triggered once in 168 frames (i.e. once every 1.008 s)

12.5 Sample Application

For sample application please refer DFP (device firmware package) user guide document.

Appendices

A AWR2243 API changes

The Scope of this section is to highlight the new APIs and changes to existing APIs w.r.t. AWR1243 device APIs, all the features/APIs of AWR1243 are supported and applicable to AWR2243 (Backward Compatible) in addition to new APIs unless otherwise it is explicitly captured below. Please refer mmWaveLink driver migration guide document for more info for API migration. Refer revision history for more details in page xxii.

The following are the absolute new APIs added in AWR2243 device DFP.

- 1. AWR_APLL_SYNTH_BW_CONTROL_SB
- 2. AWR_MONITOR_TYPE_TRIG_CONF_SB
- 3. AWR_AE_RF_MONITOR_TYPE_TRIGGER_DONE_SB
- 4. AWR_MONITOR_SYNTHESIZER_FREQUENCY_NONLIVE_REPORT_AE_SB
- 5. AWR_DEV_RF_DEBUG_SIG_SET_SB
- 6. AWR_DEV_DEV_HSI_DELAY_DUMMY_CFG_SET_SB
- 7. AWR_ADVANCE_CHIRP_CONF_SB
- 8. AWR_ADVANCE_CHIRP_GENERIC_LUT_LOAD_SB
- 9. New timing information added in page 528
- 10. AWR_ADVANCE_CHIRP_DYN_LUT_ADDR_OFFSET_CFG_SB

The following are the changes to existing APIs, backward compatibility is impacted due to these changes; however these APIs are unsupported in AWR1243 device.

- 1. AWR_MONITOR_RX_IFSTAGE_CONF_SB
- 2. AWR_MONITOR_RX_IFSTAGE_REPORT_AE_SB
- AWR_DIGITAL_COMP_EST_CONTROL_SB (previously called AWR_INTER_RX_GAIN_ PHASE_CONTROL_SB)
- AWR_MONITOR_TX0_PHASE_SHIFTER_CONF_SB (previously called AWR_MONITOR_ TX0_BPM_CONF_SB)
- 5. AWR_MONITOR_TX1_PHASE_SHIFTER_CONF_SB (previously called AWR_MONITOR_ TX1_BPM_CONF_SB)
- AWR_MONITOR_TX2_PHASE_SHIFTER_CONF_SB (previously called AWR_MONITOR_ TX2_BPM_CONF_SB)
- 7. AWR_MONITOR_TX0_PHASE_SHIFTER_REPORT_AE_SB (previously called AWR_MONITOR_ TX0_BPM_REPORT_AE_SB)
- 8. AWR_MONITOR_TX1_PHASE_SHIFTER_REPORT_AE_SB (previously called AWR_MONITOR_ TX1_BPM_REPORT_AE_SB)
- 9. AWR_MONITOR_TX2_PHASE_SHIFTER_REPORT_AE_SB (previously called AWR_MONITOR_

TX2_BPM_REPORT_AE_SB)

The following are the updates to existing APIs in 'reserved' fields, backward compatibility is not impacted due to these changes.

- 1. Updated MISC_FUNC_CTRL in AWR_RF_TEST_SOURCE_CONFIG_SET_SB
- 2. Updated ANA_MONITORING_ENABLES and LDO_VMON_SC_MONITORING_EN in AWR_ MONITOR_ANALOG_ENABLES_CONF_SB
- 3. Added new fields in AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_CONF_SB
- 4. Added new fields in AWR_MONITOR_TX1_INTERNAL_ANALOG_SIGNALS_CONF_SB
- 5. Added new fields in AWR_MONITOR_TX2_INTERNAL_ANALOG_SIGNALS_CONF_SB
- 6. Added new fields in AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_REPORT_ AE_SB
- 7. Added new fields in AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_REPORT_ AE_SB
- 8. Added new fields in AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_REPORT_ AE_SB
- 9. Updates to AWR_CHAN_CONF_SET_SB
- 10. Updates to API AWR_CAL_DATA_SAVE_SB
- 11. Updates to AWR_PROFILE_CONF_SET_SB
- 12. Added new fields in AWR_CALIB_MON_TIME_UNIT_CONF_SB
- 13. Added new fields in AWR_RUN_TIME_CALIBRATION_CONF_AND_TRIGGER_SB
- 14. Updates to AWR_RF_BOOTUPBIST_STATUS_GET_SB
- 15. Updates to AWR_AE_DEV_RFPOWERUPDONE
- 16. Updates to AWR_MONITOR_RF_DIG_LATENTFAULT_REPORT_AE_SB
- 17. Added new fields in AWR_MONITOR_SYNTHESIZER_FREQUENCY_CONF_SB
- 18. Added new fields in AWR_DEV_CSI2_CFG_SET_SB
- 19. Updates to AWR_LOOPBACK_BURST_CONF_SET_SB
- 20. Updates to AWR_MONITOR_PLL_CONTROL_VOLTAGE_REPORT_AE_SB
- 21. Updates to AWR_BPM_CHIRP_CONF_SET_SB
- 22. Updates to AWR_RF_RADAR_MISC_CTL_SB
- 23. Updates to AWR_ADVANCED_FRAME_CONF_SB
- 24. Updates to AWR_FRAME_CONF_SET_SB
- 25. Added new fields in AWR_MONITOR_TX_GAIN_PHASE_MISMATCH_REPORT_AE_SB
- 26. Added new fields in AWR_FRAMESTARTSTOP_CONF_SB
- 27. Added new fields in AWR_AE_RF_CPUFAULT_SB
- 28. Updates to AWR_MONITOR_RX_GAIN_PHASE_REPORT_AE_SB
- 29. Updates to AWR_AE_MSS_CPUFAULT_SB
- 30. Updates to AWR_RF_DEVICE_CFG_SB
- 31. Updates to AWR_MONITOR_TX_GAIN_PHASE_MISMATCH_CONF_SB
- 32. Updates to AWR_MONITOR_DUAL_CLOCK_COMP_CONF_SB
- 33. Updates to AWR_MONITOR_DUAL_CLOCK_COMP_REPORT_AE_SB
- 34. Updates to AWR_MSS_LATENTFAULT_TEST_CONF_SB

- 35. Updates to AWR_AE_MSS_LATENTFAULT_TESTREPORT_SB
- 36. Updates to AWR_AE_DEV_MSSPOWERUPDONE_SB
- 37. Updates to AWR_MSSCPUFAULT_STATUS_GET_SB
- 38. Updates to AWR_AE_MSS_BOOTERRORSTATUS_SB
- 39. Updates to AWR_AE_MSS_ESMFAULT_STATUS_SB
- 40. Updates to AWR_DEV_RX_DATA_PATH_CLK_SET_SB
- 41. Updates to AWR_DEV_FILE_DOWNLOAD_SB
- 42. Updates to AWR_PROG_FILT_COEFF_RAM_SET_SB
- 43. Updates to AWR_PROG_FILT_CONF_SET_SB
- 44. Updates to timings in page 535
- 45. Added new fields in AWR_APLL_SYNTH_BW_CONTROL_SB
- 46. Added new fields in AWR_MONITOR_RX_GAIN_PHASE_CONF_SB

B xWR6243 API changes

The Scope of this section is to highlight the new APIs and changes to existing APIs w.r.t. AWR2243 device APIs.

The following are the absolute new APIs added in AWR6243 device DFP.

1. AWR_POWER_SAVE_MODE_CONF_SET_SB

The following are the updates to existing APIs in 'reserved' fields, backward compatibility is not impacted due to these changes.

- 1. Updated fields in AWR_PROFILE_CONF_SET_SB API
- 2. Updates to AWR_AE_RF_INITCALIBSTATUS_SB
- 3. Updates to AWR_RUN_TIME_CALIB_SUMMARY_REPORT_AE_SB
- 4. Added new fields in AWR_MONITOR_TX0_BALLBREAK_CONF_SB
- 5. Added new fields in AWR_MONITOR_TX1_BALLBREAK_CONF_SB
- 6. Added new fields in AWR MONITOR TX2 BALLBREAK CONF SB
- 7. Added new fields in AWR_MONITOR_TX0_POWER_CONF_SB
- 8. Added new fields in AWR_MONITOR_TX1_POWER_CONF_SB
- 9. Added new fields in AWR_MONITOR_TX2_POWER_CONF_SB
- 10. Added new fields in AWR_MONITOR_PLL_CONTROL_VOLTAGE_SIGNALS_CONF_SB
- 11. Updates to AWR_MONITOR_PLL_CONTROL_VOLTAGE_REPORT_AE_SB
- 12. Added new fields in AWR_APLL_SYNTH_BW_CONTROL_SB
- 13. Updated fields in AWR_CONT_STREAMING_MODE_CONF_SET_SB
- 14. Updated fields in AWR_CAL_DATA_SAVE_SB
- 15. Updated fields in AWR_DIGITAL_COMP_EST_CONTROL_SB

IMPORTANT NOTICE

Texas Instruments Incorporated ("TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your noncompliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include; without limitation, TI's standard terms for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated