
[image: C:\Users\a0875359\Desktop\ti_stk_1c_pos_rgb_tiff\ti_stk_1c_pos_rgb_tiff.tif]

www.ti.com
[image: C:\Users\a0875359\Desktop\ti_stk_1c_pos_rgb_tiff\ti_stk_1c_pos_rgb_tiff.tif]
www.ti.com

[image:]Application Note
	

AWR1642 Secondary Bootloader

This document is a guide to the Secondary Bootloader application for AWR1642 device.
[bookmark: _Toc444620011][bookmark: _Toc444706058][bookmark: _Toc447646302][bookmark: _Toc501011208]Contents
Contents	1
List of Figures	1
1	Introduction	2
2	Application Design Flow	3
3	Decision Analysis and Resolution (DAR)	4
3.1	TCMA vs TCMB	4
3.2	TI-RTOS vs Non-OS	4
4	Detailed Flow	5
4.1	Pre Initialization	5
4.2	MPU Configuration	5
4.3	PinMux	5
4.4	User Input	5
4.5	Can Downloader	6
4.6	Flash Downloader	7
4.7	Soft Reset	7
5	Configurable options	8
6	Usage	9
6.1	Pre requisites	9
6.2	Running the application	9
7	PC based CAN application	13

[bookmark: _Toc501011209]List of Figures
Figure 1: Can Downloader	2
Figure 2: Flash Downloader	3
Figure 3: SBL Design Flow	4
Figure 4: Can downloader Setup	10
Figure 5: SBL Input Prompt	11
Figure 6: Can Downloader Start	12
Figure 7: Can Downloader Finish	12
Figure 8: Flash Downloader	13
[bookmark: _Ref380496668][bookmark: _Ref380497087][bookmark: _Ref380497875]

[bookmark: _Toc501011210]Introduction
In automotive applications, CAN is the only available external interface to the XWR1642 device and hence any update to the application binaries residing in the SFLASH need to be received over CAN. The secondary bootloader primarily is responsible for supporting the following functionality:
1. Provides the capability of updating application binaries in the SFLASH by receiveing the binaries over CAN
2. Loads the application to run on the device. The SBL is never updated once deployed in the field. This ensures that even in case of power outages during the update of the application there is no impact to the availability of the device. On the subsequent power cycle, the SBL again is loaded by the primary (ROM) bootloader to allow for an update to the application.
[bookmark: _GoBack]Secondary bootloader application aims at providing a reference for an application which can fulfill this requirement.
The following Nomenclature is used throughout this document.

	Primary Bootloader or PBL
	The ROM bootloader

	Secondary Bootloader or SBL
	This application

	Application Meta-Image or User Application
	The user’s application Meta-Image that will be loaded over CAN interface

Design Scheme
The application has following two parts:
· Can Downloader: Update a new or existing application Meta-Image in SFLASH
[image:]
[bookmark: _Toc501025128]Figure 1: Can Downloader

· Flash Downloader: Download the existing application Meta-Image from FLASH into the RAMs of all subsystems
[image:]
[bookmark: _Toc501025129]Figure 2: Flash Downloader

[bookmark: _Toc501011211]Application Design Flow
The idea behind this approach is that the Meta-Image (without the BSS patch and DSS image) for the secondary bootloader application will be flashed once over UART. From there on, following each Cold/Warm reset, this application will be loaded from the SFLASH into the MSS RAM by the primary bootloader, which then will allow the user to do either of the following based on the user input over UART:
· Flash the Application Meta-Image at a fixed offset (from the Secondary bootloader image) in the SFLASH.
· Load the Application Meta-Image present at a fixed offset (from the Secondary bootloader image) to the following memories:
· MSS – TCMA, TCMB
· BSS – TCMA, TCMB
· DSS – L2, L3 memories

[image:]
[bookmark: _Toc501025130]Figure 3: SBL Design Flow

[bookmark: _Toc501011212]Decision Analysis and Resolution (DAR)
[bookmark: _Toc501011213]TCMA vs TCMB
Whether to execute the Secondary Bootloader code from TCMA or TCMB.
· TCMA advantages over TCMB
As the primary bootloader already load the code into the TCMA, no additional effort is required in the SBL application code. Thus, the execution time will be relatively less and the SBL code would be simpler.
· TCMB advantages over TCMA
If the SBL code is executing from the TCMA, the user application code has to be loaded at an offset larger or equal to the SBL code size. The available TCMA memory available for the user application will be reduced. Whereas, executing the code from TCMB allows the user application code to use the whole of TCMA memory. Also, the TCMB memory is initialized by the application startup code ensuring there would be no reduction in the TCMB memory for user application.
· Decision
Apart from the startup code responsible for copying the code into the TCMB memory, the SBL code will be kept in TCMB memory.
[bookmark: _Toc501011214]TI-RTOS vs Non-OS
· TI-RTOS advantages over Non-OS
The OS environment will allow using the mmwave-sdk drivers to write the application as the osal layer for ti-rtos is already provided in the mmwave-sdk. Also, the ping pong mode for DMA can be used thus ensuring less time for downloading the Meta-Image from Flash to RAMs.
· Non-OS advantages over TI-RTOS
The size of the SBL application would be smaller by around 20KB. Also, as it is a controlled application, there would be no overhead of task switching without compromising the application performance.
· Decision
Both options are provided as separate applications.

[bookmark: _Toc501011215]Detailed Flow
The Secondary Bootloader application code is divided into various phases. The functioning and relevance of each phases is explained in the following subsections.
[bookmark: _Toc501011216]Pre Initialization
As most of the code would be executing from the MSS TCMB memory, it needs to be copied from TCMA to TCMB as part of the pre initialization routine. The following variables are defined in the linker command file which will be used to copy the code.

extern uint32_t _libRunAddr, _libLoadStart, _libLoadEnd;
extern uint32_t _constRunAddr, _constLoadStart, _constLoadEnd;
extern uint32_t _startupRunAddr, _startupLoadStart, _startupLoadEnd;

[bookmark: _Toc501011217]MPU Configuration
The following Memory sections will be relevant for this application. The MPU setting of each of these sections is also specified.
· MSS TCMA : Read, Write and Executable
· MSS TCMB : Read, Write and Executable
· BSS TCMA : Read, Write and Executable
· BSS TCMB : Read and Write
· DSS L1 :
· DSS L2 :
[bookmark: _Toc501011218]PinMux
The following peripherals are used for this application. Hence the pin muxing for these peripherals is required.
· CAN : CAN-Tx and CAN-Rx
· QSPI : CLK, CS, D0(IN/OUT), D1(IN), D2(IN), D3(IN)
· UART : UART-Tx, UART-Rx
[bookmark: _Toc501011219]User Input
The UART is initialized with following configuration:
Baudrate : 115200
Data : 8 bit
Parity : None
Stop bit : 1 bit
Flow control : None

User can choose from one of the following option:
a. Update Meta Image via CAN(FD)
b. Download existing Meta Image from Flash
[bookmark: _Toc501011220]Can Downloader
The following steps are performed in this phase:
· Initialize QSPI Flash interface.
· Initialize CAN interface with following configuration:
· 1 Mbps as nominal bit-rate
Propagation segment: 8
Phase segment1: 6
Phase segment2 : 5
Sync jump: 1
BRP : 2
Nominal Bit rate = (40)/(((8+6+5)+1)*BRP) = 1Mhz

· 5 Mbps as data bit-rate
Propagation segment: 2
Phase segment1: 2
Phase Segment2 : 3
Sync jump: 1
BRP : 1
Data Bit rate = (40)/(((2+2+3)+1)*BRP) = 5Mhz

· Create an Rx object with DATA_MSG_ID
· Create an Rx object with TERMINATE_MSG_ID
· Erase the SFLASH for ERASE_SIZE_KB at an offset of METAIMAGE_OFFSET
· Wait to receive a CAN message in a loop
· If the received message ID is DATA_MSG_ID, write it to the SFLASH
· If the received message ID is TERMINATE_MSG_ID, break out of the loop
· Close the QSPI Flash interface
[bookmark: _Toc501011221]Flash Downloader
The following steps are performed in this phase:
· Initialize the DMA
· Initialize QSPI Flash interface
· Parse the Application Meta-Image present in the SFLASH
· Load each Sub-System image in their respective RAMs
· If no Error: Close the QSPI Flash interface
· If Error: wait in an infinite loop for debug
[bookmark: _Toc501011222]Soft Reset
Reset the MSS core

[bookmark: _Toc501011223]Configurable options
Only the following options should be configured as per the requirement (in main.c):
#define DATA_MSG_ID 		0x29E

The CAN message ID for the receiving the Meta-Image.

#define TERMINATE_MSG_ID 		0x19E

The CAN message ID for the notifying the end of CAN transmission.

#define METAIMAGE_OFFSET 	(300 * 1024)

The user application Meta-Image offset from the start of flash memory. This value shall be larger than the size of SBL Meta-Image.

#define ERASE_SIZE_KB 	(1024)

	
This is the size of flash memory that needs to be cleared before flashing the application Meta-Image. This value shall be larger than the size of the application Meta-Image.

[bookmark: _Toc501011224]Usage
[bookmark: _Toc501011225]Pre requisites
· ECO’s: As this application receives the image over CAN interface, the ECOs for enabling the CAN-FD interface on the EVM are required. Below are the ECOs
· Mount 0 ohms on R11 and R12
· Remove R6 and R4
· Setup: The setup required for this application is shown below.
[image:]
[bookmark: _Toc501025131]Figure 4: Can downloader Setup

· PC based CAN application: For the CAN downloader part of the application, where the Application Meta-Image will be updated at an offset in the SFlash, a PC based application is required. This PC based application will communicate with the device over USB-to-CAN dongle. The purpose of this application is to send the Meta-Image over CAN in chunks of 64 bytes each. For more information on this application refer to PC based CAN application.
[bookmark: _Toc501011226]Running the application
The Meta-Image for SBL application will be created automatically along with the out file upon compiling this application. Note that this image will contain only the MSS binary (no BSS or DSS binary). This Meta-Image needs to be flashed once using the conventional method (uniflash). From this point onwards, this image will reside in the SFLASH as the primary Meta-Image (until a new image is flashed using the uniflash) and will be loaded each time after a cold or warm reset. Follow the below steps to run the application
· Find the COM port which shows as “XDS110 Class Application/User UART” under device manager.
· Connect to the COM port found in previous step (using any serial terminal application like Teraterm, Hyperterminal etc.) and configure this port with following configuration.
Baudrate : 115200
Data : 8 bit
Parity : None
Stop bit : 1 bit
Flow control : None

· Restart the device by pressing the “SW2” on the EVM. The following prompt will appear on the serial terminal console. Refer to the below figure.
[image:]
[bookmark: _Toc501025132]Figure 5: SBL Input Prompt
· Enter “a” on the console. The application will start erasing the portion of SLFASH, where the user application Meta-Image will reside. After the Erase has completed the application will ask the user to start the PC based CAN application. Refer to below figure.
[image:]
[bookmark: _Toc501025133]Figure 6: Can Downloader Start

· Run the PC based CAN application. Once the application has sent the complete Meta-Image over the CAN, the console will show the total number of bytes transferred. This can be used to ensure that the complete image has been transferred. The application will restart and the input prompt will show up again. Refer to the below figure.
[image:]
[bookmark: _Toc501025134]Figure 7: Can Downloader Finish
· Select the “b” option this time. The SBL will download the individual binaries for each subsystem into their respective RAMs and preform and MSS core reset.
· If there is no error is the application Meta-Image, the application will start executing automatically. Refer to the below figure.

[image:]
[bookmark: _Toc501025135]Figure 8: Flash Downloader

[bookmark: _PC_based_CAN][bookmark: _Toc501011227]PC based CAN application
A PC based CAN application based on the Peak System USB to CAN Dongle is already provided. For other similar dongles, the application has to be ported. The General flow of the application is explained in the below flow diagram
[image: C:\Users\a0132167\Downloads\CAN_Metaimage_Flasher (1).jpg]
AWR1642 Secondary Bootloader 	 2
Copyright © 2016, Texas Instruments Incorporated

AWR1642 Secondary Bootloader 	 15

Copyright © 2016, Texas Instruments Incorporated

image1.png
13 TEXAS
INSTRUMENTS

image2.png
(4)Applcation Metaimage stored
I SFLASH over QoA merace

() ROM bootioader

*~ downloads the
SBL into MSS
RAIM

(@ secondary
= bootoader
staris
MSSRAM | executing

I Appiication etamage
= received over
CAN Interface

PC sending Appication
Metalmage over CAN

555 s

£2f sE

$23 s

282 2
Applcation SFLasH
Vetalmage

Offset

image3.png
(%) Applcation Metalmage read from
SFLASH over QSP Interface

) Secondary boofloader

2 starts execuing ;
) Save the Vector Table i !
= for MSS image : () ROM bootioader :
T) Wi Restof the MSS : ~ downioads the ;
< image into MSS TOMARAM | SBL o NiSS ;
%) Update the Vector tablein | A id
=~ MSS TCMARAM wihthe | _
one saved instep 4. i Eg
) Reset ihe MSS core : 25
§ Mss RAM 82
- Applcation SFLasH
Write the BSS DWite eSS aiaimage
patch info BSS " image ntoDSS Ofreet
RAM RAM

BSS RAM \ Dss rRam

image4.jpeg
PBL downloads the SBL into MSS RAM

SBL application starts Executing

Flash Downloader& = Can Downloader

a
Check for Initialize the Receive Data over

Application Ik::i’[QSPl and CAN CAN and store into
Meta Image B driver Buffer

Keep waiting in Initialize the Receive Data over Upload the image

ainfinite loop QSPI and DMA QSPI and to Flash (at offset

for debug driver download to RAM from SBL image)
using QSPI

Disable IRQ and
Copy the Int Vecs
Also updates the BSS to Start location Perform a MSS

patch and DSS image core reset

Perform Application Image Perform a MSS
Warm/Cold reset N Executing core reset

image5.jpg
USB Connection o

——— CAN interface for USB
PC running CAN application

ARIEXX EVM

image6.png
ud - Tera Term

Dehug: Secondary Bootloader Application Start

select one of the following options

- Update Meta Image via CANCFD>

[b. Dounload existing Meta Image from Flash

image7.png
ud - Tera T

Control - Windoy

Dehug: Secondary Bootloader Application Start

select one of the following options
- Update Meta Image via CANCFD>
b Dounload existing Meta Image from Flash

- Update Meta Image via CANCFD) => selected

device info : Manufature 1, device type = 48, capacity = 16
[Erasing SFlash.

[Flash Erase complete

Istart the CAN application

image8.png
& con u Term VT

File Edit Setup Control Windo

Dehug: Secondary Bootloader Application Start

select one of the following options
- Update Meta Image via CANCFD>

[b. Dounload existing Meta Image from Flash

- Update Meta Image via CANCFD) => selected

device info : Manufature 1, device type = 48, capacity = 16
[Erasing SFlash.

[Flash Erase complete

IStart the CAN application
fTotal data uritten = Bx6a54d

Dehug: Secondary Bootloader Application Start

ISelect one of the following options
- Update Meta Image via CANCFD>

b Dounload existing Meta Image from Flash

image9.png
ud - Tera T

Control - Windoy

Dehug: Secondary Bootloader Application Start

select one of the following options
- Update Meta Image via CANCFD>
b Dounload existing Meta Image from Flash

Ih. Dounload existing Meta Image from Flash > selected

device info : Manufature 1, device type = 48, capacity = 16
[Parsing conpleted

baR1630c MMY Demo 01.01.00.02

InmuDeno />

image10.jpeg
Read the Meta-Image
File-path-name from
command line
argument

—

Initialize CAN interface

No Yes

Exit Open the Meta-Image
file

~—

Read 64 bytes from file
and send over CAN
interface

been sent

image11.tiff
13 TEXAS
INSTRUMENTS

