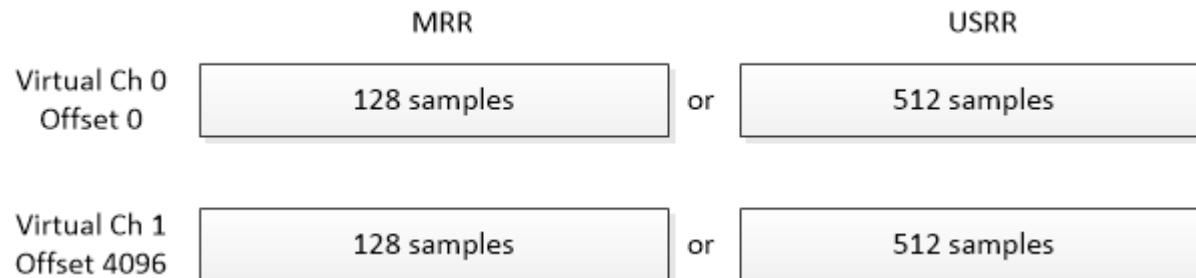


MRR Beamsteering HWA Demo Implementation Notes



Note

- Note:
 - The demo released in Radar Toolbox supports only MRR mode
 - \radar_toolbox_2_20_00_05\source\ti\examples\ADAS\mrr_beamsteering
 - There were some issues with the USRR mode but supporting this mode was not a mktg requirement and the team did not have sufficient time to debug it.

ADCBuf format/usage

1. First, ADCBuf must be configured to set “sampleInterleave” to I(MSB), Q(LSB) format for HWA usage. Otherwise, range bins will appear reversed in the range FFT output.
2. Second, this demo uses a fixed offset in the ADCBuf for each Rx antenna’s data. This is because the USRR data is not the same size as MRR and we don’t want to reconfigure the ADCBuf each sub-frame.
 - In MRR_DSS_dssDataPathConfigAdcBuf(), we set the channel offset = $(16 * 1024) / 4$.
 - In HWA_configRangeFFT(), we set .source.srcBidx = $(16 * 1024) / 4$.
3. Third, we use the shared mode where there is a single input buffer used for HWA, so that we do not have to EDMA copy samples into the HWA buffers.
4. The demos uses “single chirp” mode, meaning only 4 virtual antenna’s data are in the buffer at any point.
5. Format for each Rx antenna:

ADCBuf format/usage (cont.)

- **MRR_DSS_dssDataPathConfigAdcBuf();**

- Notice in this function the hard-coded ADCBuf config
 - ADCBuf_dataFormat dataFormat;
 - dataFormat.adcOutFormat = 0; // Complex mode
 - dataFormat.channelInterleave = 1; // No Interleaving
 - dataFormat.sampleInterleave = 1; // Sample Interleave must be I(MSB) Q(LSB) for HWA usage
- ADCBuf_RxChanConf rxChanConf;

```
/* Divide 16KB of the ADC buffer into 4 parts. Note that in the ADCBuf mode
```

```
* we are using, there is a single input buffer to the HWA for all chirps. */
```

```
rxChanConf.offset = ((16 * 1024) / 4);
```

```
chirpThreshold = 1;
```

Advanced Frame Configuration

This demo runs three different chirp patterns, arranged into two sub-frames:

- Subframe 0: MRR, 3 Tx * 4 Rx, SIMO
 - 128 “Fast” Chirps, 256 samples, followed by
 - 128 “Slow” Chirps, 256 samples
- Subframe 1: USRR, 3 Tx * 4 Tx, MIMO
 - 32 Chirps per Tx, 512 samples
- There is a frame interrupt for each sub-frame, followed by the chirp interrupts, followed by the inter-frame period for frame processing of each sub-frame.
- **Note: In this release the USRR mode has not been validated. It should be used only in MRR mode.**

Radar Cube format

The radar cube was changed to IWR1443 interleaved format for HWA usage (see Appendix A). This is DP1F Format 2, with one exception: for MRR, the slow chirp data follows the fast chirp data for each virtual antenna:

RangeBin 0	Rx1, offset 0	Fast chirps 128 dopplerbins	Slow chirps 128 dopplerbins
	Rx2, offset 0x400	Fast chirps 128 dopplerbins	Slow chirps 128 dopplerbins
	Rx3, offset 0x800	Fast chirps 128 dopplerbins	Slow chirps 128 dopplerbins
	Rx4, offset 0xc00	Fast chirps 128 dopplerbins	Slow chirps 128 dopplerbins
RangeBin 1	Rx1, offset 0	Fast chirps 128 dopplerbins	Slow chirps 128 dopplerbins
	Rx2, offset 0x400	Fast chirps 128 dopplerbins	Slow chirps 128 dopplerbins
	Rx3, offset 0x800	Fast chirps 128 dopplerbins	Slow chirps 128 dopplerbins
	Rx4, offset 0xc00	Fast chirps 128 dopplerbins	Slow chirps 128 dopplerbins

Range bin offset 0x1000

Radar Cube format

For MRR, the cube is organized as follows:

- 256 Range Bins, each consisting of
 - 4 virtual antennas, having
 - » 128 fast chirp Doppler bins followed by
 - » 128 slow chirp Doppler bins each.
- (so Doppler bin is the fastest incrementing dimension; Range bin is the slowest)
- Total cube size = $256 * 4 * (128+128) * 4 = 1\text{MB}$

For USRR, the cube is organized as follows:

- 512 Range Bins, each consisting of
 - 12 virtual antennas, having
 - » 32 Doppler bins each
- (so Doppler bin is the fastest incrementing dimension; Range bin is the slowest)
- Total cube size = $512 * 12 * 32 * 4 = 768\text{KB}$

HWA/EDMA 1D FFT Config (MRR and USRR)

- HWA source (see HWUtil_configRangeFFT)
 - A count = 255 or 511 (samples – 1)
 - A index = 4 (sample size)
 - B count = 3 or 11 (number virtual channels – 1)
 - B index = $(16 * 1024) / 4$ (channel offset)
- HWA dest
 - A count = 255 or 511 (range bins – 1)
 - A index = $(4 \text{ or } 12) * 4$ (number virtual channels * word size)
 - B index = 4 (word size)
- EDMA source – not needed
- EDMA dest (see EDMAUtil_configHwaTranspose)
 - SyncAB type, transposing
 - A count = $(4 \text{ or } 12) * 4$ (number of virt channels * word size)
 - B count = 256 or 512 (number of range bins)
 - C count = $(256 \text{ or } 32)/2$ (number of chirps / 2 (ping pong))
 - Src B index = A count
 - Dest B index = A count * (128 or 32) (A count * number of chirps (Doppler bins))
 - Src C index = 0
 - Dest C index = A count * 2 (2 accounts for ping and pong)

HWA/EDMA 2D FFT Config (MRR and USRR)

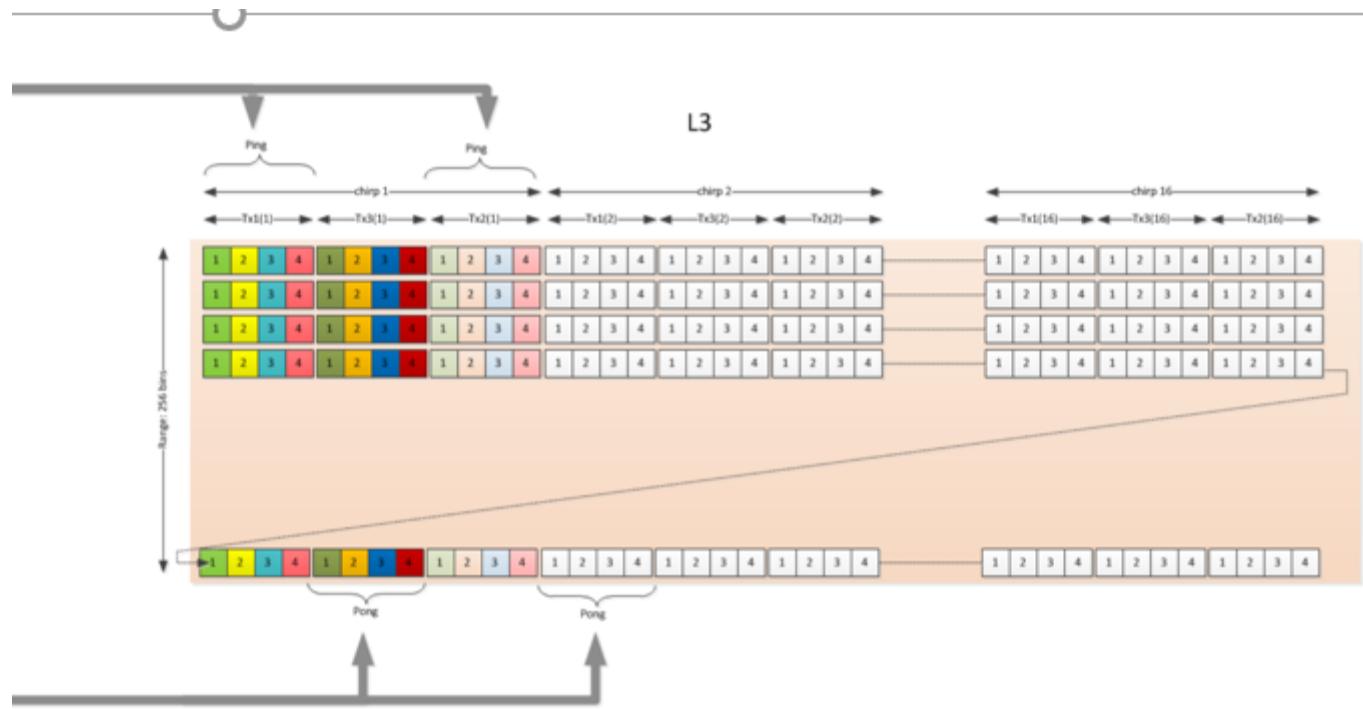
- HWA source (see HWUtil_configDopplerFFT)
 - A count = 127 or 31 (Doppler bins – 1)
 - A index = (4 or 12) * 4 (number virtual channels * sample size)
 - B count = 3 or 11 (number virtual channels – 1)
 - B index = 4 (word size)
- HWA dest
 - A count = 127 or 31 (Doppler bins – 1)
 - A index = (4 or 12) * 4 (number virtual channels * word size)
 - B index = 4 (word size)
- EDMA source (see Config_2d_and_Azm_Edma)
 - SyncAB type
 - A count = 4 (word size)
 - B count = 128 or 32 (number of Doppler bins)
 - C count = 4 or 12 (number of virtual antennas)
 - Src B index = (4 or 12) * 4 (number of virtual antennas * word size)
 - Dest B index = 4 (word size)
 - Src C index = 4 (word size)
 - Dest C index = (128 or 32) * 4 (number of Doppler bins * word size)
- EDMA dest – not needed

1D FFT HWA and EDMA Paramset Usage

1D FFT		MRR Usage													
trigger	paramset	HWA		EDMA					EDMA + HWA 1D sequence						
		type		ch/param	type	ch/param	type	ch/param	type	ch/param	type	ch/param	type	ch/param	type
trigger	paramset	1	dummy	<-- ch 1	7	ping 1hot	66		link						
SW ch1 ->	2	FFT		-->	17	ping data	64		link						
	3	dummy	<-- ch 2		10	pong 1hot	67		link						
SW ch2 ->	4	FFT	-->		18	pong data	65		link						
USRR Usage															
HWA		EDMA													
trigger	paramset	type		ch/param	type	ch/param	type	ch/param	type	ch/param	type	ch/param	type	ch/param	type
	5	dummy	<-- ch 3		11	ping 1hot	70		link						
SW ch3 ->	6	FFT	-->		19	ping data	68		link						

2D FFT HWA and EDMA Paramset Usage

2D FFT		MRR Usage																			
trigger	paramset	HWA		EDMA				HWA parms													
		type		ch/param	type	ch/param	type	paramset	trig mode	fft en	win en	log2 en	abs en								
SW ch5 ->	9	FFT rb1	<-- ch 5		35	ping 1hot		75	link		9	3	1	1	1	1	1	1	1		
	10	FFT rb2			34	ping in		74	link		10	0	1	1	1	1	1	1	1		
	11	log2mag	-->								11	0	0	0	0	0	0	0	0		
	12	sum			21	ping out		72	link		12	0	1	0	0	0	0	0	0		
SW ch6 ->	13	FFT rb1	<-- ch 6		38	pong 1hot		79	link		13	3	1	1	1	1	1	1	1		
	14	FFT rb2			37	pong in		78	link		14	0	1	1	1	1	1	1	1		
	15	log2mag									15	0	0	0	0	0	0	0	0		
	16	sum	-->		22	pong out		76	link		16	0	1	0	0	0	0	0	0		
USRR Usage																					
		HWA		EDMA				EDMA + HWA 2D sequence:													
trigger	paramset	type		ch/param	type	ch/param	type	EDMA + HWA 2D sequence:													
SW ch5 ->	9	FFT rb1	<-- ch 5			ping 1hot			link	SW starts channels 34 (ping), 37 (pong)											
	10	FFT rb2				ping in			link	34, 37 copy from L3 to HWA input											
	11	log2mag	-->							34, 37 chain to 35, 38											
	12	sum				ping out			link	35, 38 are 1hot to trigger HWA channels 5, 6											


Appendix A – AWR1443 OOB Demo


1D Radar Cube Format

- The AWR1443 OOB Demo Radar Cube format is documented in mmWave SDK 2.1
- C:/ti/mmwave_sdk_02_01_00_04/packages/ti/demo/xwr14xx/mmw/docs/doxygen/html/index.html
- AWR1443 BOOST EVM antenna pattern is identical to AWR1843 BOOST EVM antenna pattern

Appendix A – AWR1443 OOB Demo

1D Radar Cube Format (cont.)

TEXAS
INSTRUMENTS

© Copyright 2017 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly “as-is,” for informational purposes only, and without any warranty.
Use of this material is subject to TI’s **Terms of Use**, viewable at TI.com