
OPT3101 SDK Users Guide

Author: Alex Bhandari-Young – Texas Instruments Incorporated

Contents
Introduction .. 2

Quick Start ... 2

Calibration Overview .. 2

Calibration Tool Mode .. 3

Setup ... 4

Code Composer Studio IDE Setup ... 4

SDK setup .. 7

Basic testing .. 8

System level coefficients ... 10

Production Calibration .. 16

Introduction
The OPT3101 device is a high-speed, high-resolution AFE for continuous-wave, time-of-flight based

proximity sensing and range finding. The OPT3101SDK SDK provides pre-written functions for data capture,

register read/write, and calibration of the device. OPT3101 Configurator tool is required to generate certain

functions since the SDK's functions depend on how the OPT3101 system is configured. Additionally, the SDK

can be used in calibration tool mode whereby the SDK will be loaded to an MSP430 Launchpad, wired to an

OPT3101 board to test and calibrate and connected to a PC through USB. All calibration is printed to the COM

port viewer on the PC.

Quick Start
The Calibration Tool Mode section covers the step-by-step to get the SDK up and running on a TI

MSP430F5529 Launchpad. This serves as both the quick start as well as full instructions for running.

Calibration Overview
Background

As OPT3101 is an analog front-end (AFE) the optical emitter and photodiode components are placed on

the printed circuit board (PCB) at the system level. OPT3101 is compatible with a wide variety of

emitters and photodiodes that can be arranged in various configurations to support many different

applications and use-cases. Due to this every OPT3101 system requires calibration to function correctly.

The calibration is specific to the PCB design and layout, components used, enclosure, etc. Per-unit

calibrations are required on every board and are done in the factory during production. Per-system

calibrations are established on a small subset of boards during testing and then applied to all boards in

production. See the How to set up and calibrate OPT3101 based systems document for more details on

the calibration process.

Different types of calibration

OPT3101 supports crosstalk correction functions for improved performance

Mandatory for any use (testing, evaluation, production)

 Crosstalk single point

 Phase offset single point

Mandatory for typical production ready solution

 Crosstalk single point

 Phase offset single point

 Crosstalk over temperature

 Phase over temperature

 Phase over ambient

http://www.ti.com/tool/OPT3101CONFIG-SW
http://www.ti.com/lit/ug/slau791/slau791.pdf

Using this SDK for calibration

The SDK can be used to perform calibration in the following ways ordered from least to most work for

the end user.

 Calibration tool mode on MSP430F5529 Launchpad – SDK is preconfigured to run on an

MSP430F5529 launchpad out of the box. SDK needs to be imported to code composer studio,

configuration file from configurator tool is added to project, calibration step to run is selected in

main.cpp, SDK is compiled in CCS and loaded to the MSP430, MS430 is wired to the I2C lines of

the OPT3101 PCB, MSP430 USB is connected to PC, and calibration is controlled through the

COM port terminal interface.

 Calibration tool mode on another TI Launchpad – The SDK code composer studio project is

configured for the MSP430F5529 launchpad, but by changing CCS settings can be reconfigured

to compile and run on another TI Launchpad.

 Calibration tool mode on any host – The SDK can run on any system that can compile C++

including microcontrollers (almost all support C++), Windows, Linux (including Raspberry Pi), etc.

The same calibration tool mode can be used on any other these hosts with modifications to the

hostController.cpp file which includes the functions that are host specific and would need to be

updated. More details for this are in the SDK documentation.

 SDK functions called as part of a larger code base – The SDK is written so it’s functions can be

incorporated in any custom C++ system. This allows custom code with access to the SDK high

and low level calibration functions, other OPT3101 functions used by the higher level functions,

data capture functions, and register map and register read/write interface.

Calibration Tool Mode
This section covers the step-by-step to get the SDK up and running on a TI MSP430F5529 Launchpad. For

those using a different host other than the Launchpad these instructions are still applicable, but the

Code Composer Studio IDE Setup section should be skipped.

The SDK works on the MSP430F5529 Launchpad out of the box and can be compiled on other platforms

with slight modification to the SDK. The same can be done on any other platform as well, as long the

hostController is modified to have the reset, i2C communications and pause functions implemented for

the host. Code composer studio software is required for compiling for the launchpad and the SDK

includes a preconfigured CCS project that should compile out of the box.

This sections is divided into the following subsections

1. Setting up the calibration tool and getting it running

2. Basic testing and evaluation on a new design

3. System level coefficient determination for a new design for in-depth testing of the design and

getting ready for production

4. Production calibration using the tool

Setup
Steps to setup the SDK in calibration mode are as follows.

Code Composer Studio IDE Setup

1. Install Code Composer Studio (CSS) http://www.ti.com/tool/CCSTUDIO if not already installed.

Installation instructions are here: https://software-

dl.ti.com/ccs/esd/documents/users_guide/ccs_installation.html#installation-process

Make sure to install with MSP430 processor support as shown below.

Make sure to install MSP FETs support as shown below.

This SDK is tested on CCS version 9.1.0 so it is recommended to download this version. This SDK is

tested on MSP430 compiler version TI v18.12.3.LTS so it is also recommended to install this

compiler version.

2. Import the SDK project into code composer studio. Following the screenshots below. See here for

more instructions:

http://processors.wiki.ti.com/index.php/Importing_Projects_into_CCS#Importing_an_existing_proje

ct

http://www.ti.com/tool/CCSTUDIO
https://software-dl.ti.com/ccs/esd/documents/users_guide/ccs_installation.html#installation-process
https://software-dl.ti.com/ccs/esd/documents/users_guide/ccs_installation.html#installation-process
http://processors.wiki.ti.com/index.php/Importing_Projects_into_CCS#Importing_an_existing_project
http://processors.wiki.ti.com/index.php/Importing_Projects_into_CCS#Importing_an_existing_project

Then click finish.

Note: The SDK should be extracted from the zip folder it was downloaded from to be imported.

All files in CCS show up on the left side of the screen

3. Compile and make sure you can compile without errors. To compile first open the console from

View > Console. This will also you to see the build output messages. Then click the build button

The process will likely take at least several minutes and up to ten minutes. Ensure there are no

errors as shown below

SDK setup

4. Use the OPT3101 Configurator tool to generate the correct configuration for your board. Replace

the default OPT3101_configuration.cpp file with you generated one.

5. Make sure #define TIMSP430F5529_LAUNCHPAD_CALIBRATION_TOOL is in your definitions.h file

to set the SDK in interactive mode for Calibration.

6. main.cpp also has several new #defines such as INLAB_STEP_1, INLAB_STEP_2, etc. These can be

uncommented one by one to run the calibrationSession_firstTimeBringUp(),

calibrationSession_perDesignCalibrationCrosstalkTemp(), and other functions. Select the

appropriate one. For new designs step 0 will suffice to start.

7. Compile the project in code composer studio. The firmware can be transferred to the MSP430F5519

launchpad using the following command.

1. MSP430Flasher.exe –w <firmware.txt> -v –e ERASE_MAIN

Once firmware is loaded on the MSP430F5529 launch pad, the Launchpad becomes a calibration

hardware interface.

 Additional details:

a. Download tool from http://www.ti.com/tool/MSP430-FLASHER and install to

C:\ti\MSPFlasher_1.3.8

b. Open command prompt and run

cd C:\ti\MSPFlasher_1.3.8

http://www.ti.com/tool/MSP430-FLASHER

MSP430Flasher.exe –w path_to_sdk \OPT3101_SDK\Debug\OPT3101_SDK.txt -v –e ERASE_MAIN

Where path_to_sdk needs to be filled in to match where code composer studio is storing the SDK

project.

8. Wire the Launchpad to the OPT3101 using the pin mapping for the Launchpad shown below:

1. P4.1 -> I2C Data

2. P4.2 -> I2C Clock

3. P2.0  RSTZ_MS

4. 5V, 3.3V Power and GND pins are marked on the Launchpad silkscreen.

9. Plug the Launchpad into a PC USB port. With the firmware loaded, the Launchpad will enumerate as

a COM port on the host PC. A COMport terminal @9600 can be used to interact with the Launchpad

hardware. Multi-color log message from calibration firmware can be viewed on the host and the

firmware in some cases will wait from a key press from user to continue.

Basic testing

Step 0: Measure raw crosstalk on the board

IN_LAB_STEP_0 is for validating the quality of PCB design and layout and any optical or

electrical shielding. Best raw crosstalk will be <200 codes. Okay crosstalk is <600 codes.

Crosstalk greater than 843 codes requires using the force_scale feature of the OPT3101.

1. Enable IN_LAB_STEP_0, compile and program the launchpad

2. Mask the photodiode or use another method to ensure no light is entering the

photodiode from the LED. See the how to calibrate doc mentioned in the introduction

for more details here. Below is an example of masking the photodiode of the single

channel OPT3101EVM with black electrical tape. See the How to set up and calibrate

OPT3101 based systems document for more details on masking photodiode.

http://www.ti.com/lit/ug/slau791/slau791.pdf
http://www.ti.com/lit/ug/slau791/slau791.pdf

3. Plug in the launchpad and connect using a COM port terminal. Press enter on the

keyboard to run the code on the device. Step 0 configures the device, corrects for

electrical crosstalk, and runs a live view. The distance data is not useful without running

step 1, but the amplitude measures the raw uncorrected crosstalk. Below the output is

shown for a failing three channel board. You can see that the amplitude measured on all

three channels is too high. This either means the photodiode is not masks correctly and

light is leaking in (tape is not IR blocking,

Step 1A: Optional Additional Crosstalk Correction

Skip this step unless issues are seen with data output getting stuck due to high crosstalk on a

single channel after running through step 1 and testing. Instructions for this step are in a

separate document and included with the SDK files..

Step 1: Simple Bring-up

Simple bring-up corrects for crosstalk and phase offset. Ensure all channels have crosstalk less

than 843 codes before running this step or force scale is used to reduce the effective crosstalk

seen by the device. Crosstalk is correct with the photodiode masked. Phase offset allows the

device to report the correct distance reading by setting the device at a known distance (defined

in the C++ code) from a target.

1. The phase offset calibration in this step requires the target to be set an a specified

distance. These distances are defined for each channel and HDR setting of the OPT3101

in the OPT3101Coefficients.cpp file as shown below.

Channels and HDR settings are distinguished as

refDistancesInMM[TX channel][HDR setting]

In this example the distances are defined for a single channel board using super HDR so

there are 4 distances set for the increasing LED power and range. These values can be

edited to match the configuration of the device. See the How to set up and calibrate

OPT3101 based systems document for more details on phase offset correction and

setting up the target at a known distance.

2. Enable IN_LAB_STEP_1, compile and program the launchpad

3. Plug in the launchpad and connect using a COM port terminal. Press enter on the

keyboard to run the code on the device.

4. Device will prompt user to mask photodiode similar to step 0. After masking and

pressing enter the crosstalk will be corrected.

5. Device will prompt user to set the OPT3101 facing a target at a known distance. See the

How to set up and calibrate OPT3101 based systems document for details on setting up

the target at a known distance.

System level coefficients

If you reach this point you have completed basic power up and testing on a new design. The

following steps cover system level calibration on a subset of boards. These coefficients allow

the device to give stable distance readings over changes in environmental temperature and

infrared light.

In these steps a slope is determined to fit the change in a device reading (crosstalk or phase)

with an environmental factor (temperature or ambient light). The data for this calculation is

logged to the COM port terminal in csv format. The user is expected to take the output and

paste in excel, plot in excel or another program and calculate the coefficients from the slope or

slopes, and update the coefficients in the OPT3101Coefficients.cpp file.

The types of data to plot and the type of fit is shown below. See the How to set up and calibrate

OPT3101 based systems document for more details.

 Illumination crosstalk temperature coefficient

o Two simple y=mx+b slopes values. The offset b is ignored as it is covered by the

single point crosstalk calibration step in simple bring-up and factory calibration

steps.

 I_PHASE illumination crosstalk reading vs temperature in codes

 Q_PHASE illumination crosstalk reading vs temperature in codes

 Phase temperature coefficient

o One simple y=mx+b slope value.

http://www.ti.com/lit/ug/slau791/slau791.pdf
http://www.ti.com/lit/ug/slau791/slau791.pdf
http://www.ti.com/lit/ug/slau791/slau791.pdf
http://www.ti.com/lit/ug/slau791/slau791.pdf
http://www.ti.com/lit/ug/slau791/slau791.pdf

 Phase reading vs temperature in codes

o The offset b is ignored as it is covered by the single point phase offset calibration

step in simple bring-up and factory calibration steps.

 Phase ambient coefficient

o Unlike the other two coefficients, phase ambient is not a linear relationship so a

piece-wise linear fit is required. This fit uses 4 slope values and 3 knee points

that define where each slope is are used.

 Each of the 4 slopes is phase reading vs ambient codes

Step 2: Crosstalk temperature coefficient

1. Set temperature sweep settings in definitions.h

This defines how long the device will wait between each data points and the total

number of data points to take. This allows the data collection to be adapted to the

heating/cooling rate and total time needed to log data.

2. Enable IN_LAB_STEP_2, compile and program the launchpad.

3. Place device in a thermal chamber.

4. Plug in the launchpad and connect using a COM port terminal. Press enter on the

keyboard to run the code on the device.

5. Device will prompt to mask the photodiode as in the simple bring-up step.

6. Device will prompt to set the thermal chamber to 70 degrees. This is just a guideline.

The displayed value does not affect data collected. It can be changed as shown below in

the OPT3101_Calibration.cpp file if desired. Set the chamber temperature to 70

degrees.

7. Once the temperature is reached turn off the chamber. The device should start to self-cool.

Wait 1-2 minutes for the device to thermally stabilize. Then press enter to start data collection.

The chamber door can be cracked open slightly to increase cooling rate before pressing enter if

chamber is too well insulated and faster cooling is required. This cooling step during data

collection usually takes 15 minutes to an hour.

8. After collection finishes or devices reaches a stable near ambient temperature (~40 degrees or

less is okay) copy the data and paste into excel. Note: Use the paste import wizard when pasting

into excel. Select comma delimited.

9. Plot and find the slope for

a. I_PHASE illumination crosstalk reading vs tmain

b. Q_PHASE illumination crosstalk reading vs tmain

These slope coefficients are determined for each TX channel and HDR mode. All this data is

outputted in one run.

10. Write the coefficients into OPT3101Coefficients.cpp as shown below. If a channel or HDR mode

is not used it can be left at 0 to disable the calibration.

11. It is suggested to test that the coefficients work. This can be done by running the live view with

calibration loaded by enabling #define TESTING_LIVE_VIEW

Step 3: Phase temperature coefficient

Repeat the same steps from the above step using IN_LAB_STEP_3 instead of IN_LAB_STEP_2.

Instead of masking the photodiode the device needs to be setup with a target at the same

known distance from the phase offset step in simple bring-up. Since each TX channel and HDR

setting can have a different target distance this step needs to be run TX channels * HDR settings

per channel times. Each time it will prompt for setting target distance and then setting

temperature. Each time data will be printed giving a number of outputs needing to be pasted to

excel and plotted.

1. For each channel and HDR setting plot and find the slope for

a. Phase reading vs tmain

2. Write the coefficients into OPT3101Coefficients.cpp as shown below. If a channel or HDR mode

is not used it can be left at 0 to disable the calibration.

3. It is suggested to test that the coefficients work. This can be done by running the live view with

calibration loaded by enabling #define TESTING_LIVE_VIEW

Step 4: Phase ambient coefficient

Repeat the same steps from the above step using IN_LAB_STEP_4 instead of IN_LAB_STEP_3.

The device also needs to be setup with a target at the same known distance, but this calibration

is only needed on one combination of TX channel/HDR setting since it is a characteristic of the

photodiode. Device can be removed from the thermal chamber for this test. A strong halogen

lamp is required to create the ambient light. See the how to calibrate doc for more details.

1. Update temperature sweep settings in definitions.h. These setting while called

temperature are also used for the ambient test time between points and total number

of points.

2. Device will prompt to set distance. Set the target at this distance.

3. Press enter to start collecting data.

4. Use the halogen lamp to sweep the ambient levels. Starting far away and slowly moving

closer allows the full range of ambient levels to be covered. See how to calibrate doc for

more details.

5. Paste data into excel and save as a CSV.

6. Apply a piecewise linear fit to the data. The SDK files contain a python script that can be

run to determine these coefficients. Instruction for using the script are shown below.

a. The script requires numpy, pandas, matplotlib (for generating output plot only),

scipy, and pwlf libraries. Install if needed.

b. The data should first be plotted and 4 separate regions of the plot identified

where 4 lines are be drawn to fit the data well. The 3 break points are manually

selected using this method for the best fit and inputted into the python script as

x0, x1, x2 as shown below.

c. The python script should be placed in the same directory as the data. If the data

is named “phase_ambient.csv” the filename can be left as in. If another directory

is required this can filename can be modified

d. After running the coefficients are displayed to the console. An output plot is also

generated to visualize the fit.

7. Write the coefficients and split points into OPT3101Coefficients.cpp variables shown below.

Production Calibration
Step 5: Production Calibration

Production calibration is similar to simple bring-up except that the all the system level coefficients are

loaded to the device as well. Further after completing this step all calibration values will be written into

the EEPROM connected to the OPT3101 if one exists and was configured using the configurator tool.

This step is meant to be run in a factory setting during production. Modifications to the code will likely

be necessary to streamline the process and integrate with the factory flow.

