OPT3101 SDK Users Guide

Author: Alex Bhandari-Young - Texas Instruments Incorporated

Contents
INEFOAUCTION .ttt sttt et et e s bt e s bt e s bt e sat e et e e bt e beesbeesaeeemeeemteenseesbeesaeesanenas 2
QUUICK ST ettt ettt he e ettt e bt e s b e s a e e s ab e st e e bt e b e e e beesaeesae e et e e beenheesatesane e b e e nbeenes 2
CaliDration OVEIVIEWoouuiiiiiiieeiieee ettt et ettt sttt e b e b e s be e s ae e s st e et e e sbeesheesaeesane s b eenbeenes 2
Calibration TOOI MOTEcouiiieieeeee ettt sttt et e e s bt e e sab e e sabeesbteesabeeessbeesabeesaneeesabeenans 3
BT c e aaaaaaaeaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaeaaeaeaaaaanns 4
Code ComMPOSEr STUAIO IDE SETUDvvveeieiiieeceiiee e ettt e e eette e e eette e e e etee e e e ebeeeeeebteeeeenbeeeeesnseeeeesnseeeesnnnenns 4
D] 1= (U« IO PPN 7
2=] Tl =3 o Y = PPN 8
SYStEM @VEl COBTFICIENTS .. uiiiiieie e e e st e e e e e e s s sbee e e enabeeas 10

[o Yo [¥Tor o] o WO 111 o] =1 { o] o HNEUET TR 16

Introduction

The OPT3101 device is a high-speed, high-resolution AFE for continuous-wave, time-of-flight based
proximity sensing and range finding. The OPT3101SDK SDK provides pre-written functions for data capture,
register read/write, and calibration of the device. OPT3101 Configurator tool is required to generate certain
functions since the SDK's functions depend on how the OPT3101 system is configured. Additionally, the SDK
can be used in calibration tool mode whereby the SDK will be loaded to an MSP430 Launchpad, wired to an
OPT3101 board to test and calibrate and connected to a PC through USB. All calibration is printed to the COM
port viewer on the PC.

Quick Start

The Calibration Tool Mode section covers the step-by-step to get the SDK up and running on a Tl
MSP430F5529 Launchpad. This serves as both the quick start as well as full instructions for running.

Calibration Overview
Background

As OPT3101 is an analog front-end (AFE) the optical emitter and photodiode components are placed on
the printed circuit board (PCB) at the system level. OPT3101 is compatible with a wide variety of
emitters and photodiodes that can be arranged in various configurations to support many different
applications and use-cases. Due to this every OPT3101 system requires calibration to function correctly.
The calibration is specific to the PCB design and layout, components used, enclosure, etc. Per-unit
calibrations are required on every board and are done in the factory during production. Per-system
calibrations are established on a small subset of boards during testing and then applied to all boards in
production. See the How to set up and calibrate OPT3101 based systems document for more details on
the calibration process.

Different types of calibration
OPT3101 supports crosstalk correction functions for improved performance
Mandatory for any use (testing, evaluation, production)

e Crosstalk single point
e Phase offset single point

Mandatory for typical production ready solution

e Crosstalk single point

e Phase offset single point

e Crosstalk over temperature
e Phase over temperature

e Phase over ambient

http://www.ti.com/tool/OPT3101CONFIG-SW
http://www.ti.com/lit/ug/slau791/slau791.pdf

Using this SDK for calibration

The SDK can be used to perform calibration in the following ways ordered from least to most work for

the end user.

Calibration tool mode on MSP430F5529 Launchpad — SDK is preconfigured to run on an
MSP430F5529 launchpad out of the box. SDK needs to be imported to code composer studio,
configuration file from configurator tool is added to project, calibration step to run is selected in
main.cpp, SDK is compiled in CCS and loaded to the MSP430, MS430 is wired to the 12C lines of
the OPT3101 PCB, MSP430 USB is connected to PC, and calibration is controlled through the
COM port terminal interface.

Calibration tool mode on another Tl Launchpad — The SDK code composer studio project is
configured for the MSP430F5529 launchpad, but by changing CCS settings can be reconfigured
to compile and run on another Tl Launchpad.

Calibration tool mode on any host — The SDK can run on any system that can compile C++
including microcontrollers (almost all support C++), Windows, Linux (including Raspberry Pi), etc.
The same calibration tool mode can be used on any other these hosts with modifications to the
hostController.cpp file which includes the functions that are host specific and would need to be
updated. More details for this are in the SDK documentation.

SDK functions called as part of a larger code base — The SDK is written so it’s functions can be
incorporated in any custom C++ system. This allows custom code with access to the SDK high
and low level calibration functions, other OPT3101 functions used by the higher level functions,
data capture functions, and register map and register read/write interface.

Calibration Tool Mode
This section covers the step-by-step to get the SDK up and running on a TI MSP430F5529 Launchpad. For

those using a different host other than the Launchpad these instructions are still applicable, but the

Code Composer Studio IDE Setup section should be skipped.

The SDK works on the MSP430F5529 Launchpad out of the box and can be compiled on other platforms
with slight modification to the SDK. The same can be done on any other platform as well, as long the

hostController is modified to have the reset, i2C communications and pause functions implemented for
the host. Code composer studio software is required for compiling for the launchpad and the SDK
includes a preconfigured CCS project that should compile out of the box.

This sections is divided into the following subsections

1.

Setting up the calibration tool and getting it running

Basic testing and evaluation on a new design

System level coefficient determination for a new design for in-depth testing of the design and
getting ready for production

Production calibration using the tool

Setup
Steps to setup the SDK in calibration mode are as follows.

Code Composer Studio IDE Setup

1.

Install Code Composer Studio (CSS) http://www.ti.com/tool/CCSTUDIO if not already installed.
Installation instructions are here: https://software-

dl.ti.com/ccs/esd/documents/users guide/ccs installation.html#installation-process

Make sure to install with MSP430 processor support as shown below.

% Code Composer Studio v2 Setup

Processor Support

Select Product Families to be installed.

Description
0O SimpleLink™ MSP432™ low power + performance MCUs
0O SimpleLink™ CC13o and CC260 Wireless MCUs o L e
0O SimpleLink™ Wi-Fi® CC32ic Wireless MCUs peripherals for precise sensing &
[CC2538 IEEE 802.15.4 Wireless MCUs measurement. Both Tl and GCC

Enabling the connected world with
innavations in ultra-low-power

Make sure to install MSP FETs support as shown below.

< Code Composer Studio v9 Setup

Select Debug Probes

Select the debug probes you want installed and deselect the debug probes you want to leave out.

Description

MSP Flash/FRAM Emulation Tools (MSP FETs)

This SDK is tested on CCS version 9.1.0 so it is recommended to download this version. This SDK is
tested on MSP430 compiler version Tl v18.12.3.LTS so it is also recommended to install this
compiler version.

Import the SDK project into code composer studio. Following the screenshots below. See here for
more instructions:

http://processors.wiki.ti.com/index.php/Importing Projects into CCS#lmporting an_existing proje
ct

Project Run Scripts Window Help

+ B New CCS Project... import CS Projacts =
@ New Energia Sketch... Import existing CCS Projects or example CCS Projects. -

Examples...

T B B ®) Select search-dlisectory: Browse.
Build Project <

r Select archive fle;
Build All Ctrl+B |I

r ; o ¢ Discovered projects:
Build Configurations > Sekect Al

) Build Working Set > Deselect All

F
Clean... L Refresh
i Build Automatically :
" Show Build Settings... €
L
i
il
g
it
3

Import CCS Projects...

iy

<

b Import Legacy CCSv3.3 Projects...
; Add Files...
k

<

<

1

RTSC Tools 5 W e e e e e e e e e
.] Copy projects into workspace
®. Import Energia Sketch...
o Fa Open Resource Explorer to browse a wide slection of example projects.
=, |Import Energia Libraries... t i Pl el
t
C/C++ Index >
Properties 3 Fir Cancel

TrTrs—SurTwAR

http://www.ti.com/tool/CCSTUDIO
https://software-dl.ti.com/ccs/esd/documents/users_guide/ccs_installation.html#installation-process
https://software-dl.ti.com/ccs/esd/documents/users_guide/ccs_installation.html#installation-process
http://processors.wiki.ti.com/index.php/Importing_Projects_into_CCS#Importing_an_existing_project
http://processors.wiki.ti.com/index.php/Importing_Projects_into_CCS#Importing_an_existing_project

W Select Search Directory

x
« « 4 1 > ThisPC 5 Documents > opt3101 > SDK > OPT3101DK v o h OPT o
Organize = New folder - @
- Name : Date modified Type Size
launches [
sattings 10
MSP430 (
seriallib it
targetConfigs !
L]

Folder: | OPT3101.SDK

&% Import CCS Projects

O X
Import CCS Projects @
-
Import existing CCS Projects or example CCS Projects.
(® Select search-directory: C:\Users\a0227156\Documents\opt3101\SDK\OPT3101_
O select archive file: Browse...
Discovered projects:
[~]%1 OPT3101_SDK Select All
Deselect All
Refresh
[Automatically import referenced projects found in same search-directory
[[] Copy projects into workspace
Open Resource Explorer to browse a wide selection of example projects...
@ Finish Cancel

Then click finish.

Note: The SDK should be extracted from the zip folder it was downloaded from to be imported.

All files in CCS show up on the left side of the screen

; Project Explorer Z
~ i OPT3101 SDK [Active - Debug] ~
Includes
Debug
MSP430
targetConfigs
& definitions.h
4 environmentControl.cpp
& environmentControlh
4 hostController.cpp
& hostControllerh
s Ink_msp430f5529.cmd
§ main.cpp
< OPT3101_Calibration.cpp
4 OPT3101_configuration.cpp
4 OPT3101Calibration.cpp
5 OPT3101Calibration.h
4 OPT3101Coefficients.cpp
@ OPT3101Crosstalk.cpp
% OPT3101Crosstalk.h
4 OPT3101DesignCoefficients.cpp
& OPT3101DesignCoefficients.h
4 OPT3101device_Functions.cpp
4 OPT3101device_RegisterMap.cpp
5 OPT3101device.h
% OPT3101frameData.h
4 OPT3101PhaseOffset.cpp
% OPT3101PhaseOffseth
5 OPT3101RegisterDefinition.h
4 register.cpp v

Compile and make sure you can compile without errors. To compile first open the console from
View > Console. This will also you to see the build output messages. Then click the build button

«#» workspace_v9 - Code Composer Studio
File Edit View Navigate Project Run Scripts Window Help
il B ri@ vyig viQig v h e Y ooy

5 Project Explorer & ‘ Build 'Debug’ for project 'OPT3101_SDK'
= OPT3101_SDK [Active - Debug]

The process will likely take at least several minutes and up to ten minutes. Ensure there are no
errors as shown below

J Advice B Console SdProgress @ Internal Web Browser ! Problems ¥ 4’ Search 4 Terminal
0 errors, 11 warnings, O others
Description

& Warnings (11 items)

o Advice B Console ® = Progress @ Internal Web Browser 7. Problems 4 Search & Terminal
CDT Build Console [OPT3101_SDK]

“OPT3191:SDK.out“ .text ==> .text
Finished building: "OPT3101_SDK.out"

%¥% Build Finished *¥*

SDK setup

4. Use the OPT3101 Configurator tool to generate the correct configuration for your board. Replace
the default OPT3101_configuration.cpp file with you generated one.

5. Make sure #define TIMSP430F5529_LAUNCHPAD_CALIBRATION_TOOL is in your definitions.h file
to set the SDK in interactive mode for Calibration.

definitions.h

31/*! \def TIMSP43@F5529_LAUNCHPAD_CALIBRATION_TOOL

32\brief This pre-processor derivative dictates whether the host is TI MSP43@ calibration hardware is being used or not
33 %/

34 #define TIMSP438F5529_LAUNCHPAD_CALIBRATION_TOOL

2K

6. main.cpp also has several new #defines such as INLAB_STEP_1, INLAB_STEP_2, etc. These can be
uncommented one by one to run the calibrationSession_firstTimeBringUp(),
calibrationSession_perDesignCalibrationCrosstalkTemp(), and other functions. Select the

appropriate one. For new designs step 0 will suffice to start.
4>

44ftdefine INLAB_STEP_©

45 / /#define OPTIONAL_INLAB_STEP_1A
46 / /#define INLAB_STEP_1

47 / /#define INLAB_STEP_2

48 / /#define INLAB_STEP_3

49 / /#define INLAB_STEP_4

50 //#define INPRODCTION
51//#define TESTING_LIVE_VIEW

7. Compile the project in code composer studio. The firmware can be transferred to the MSP430F5519
launchpad using the following command.
1. MSP430Flasher.exe —w <firmware.txt> -v —e ERASE_MAIN
Once firmware is loaded on the MSP430F5529 launch pad, the Launchpad becomes a calibration
hardware interface.

Additional details:

a. Download tool from http://www.ti.com/tool/MSP430-FLASHER and install to
C:\ti\MSPFlasher_1.3.8
b. Open command prompt and run

cd C:\ti\MSPFlasher_1.3.8

http://www.ti.com/tool/MSP430-FLASHER

MSP430Flasher.exe —w path_to_sdk \OPT3101_SDK\Debug\OPT3101_SDK.txt -v —e ERASE_MAIN

Where path_to_sdk needs to be filled in to match where code composer studio is storing the SDK

project.

8. Wire the Launchpad to the OPT3101 using the pin mapping for the Launchpad shown below:
1. P4.1->12CData
2. P4.2 ->12C Clock
3. P2.0 > RSTZ_MS
4. 5V, 3.3V Power and GND pins are marked on the Launchpad silkscreen.

9. Plug the Launchpad into a PC USB port. With the firmware loaded, the Launchpad will enumerate as
a COM port on the host PC. A COMport terminal @9600 can be used to interact with the Launchpad
hardware. Multi-color log message from calibration firmware can be viewed on the host and the
firmware in some cases will wait from a key press from user to continue.

W Tera Term - [disconnected] VT
File Edit Setup Control Window
INFO::Ualidating [2C Transaction

Help

idating OPT3181 Design ID
etting Host

rforming Internal Cross talk Measurement...
ernal Cross talk Measurement Completed

Count-Total |

Phase.Anplud,8igS.AmbhS .HDR!-—iDistmm. Phase.Amplud.Sig8.AmbS . HDR!——!Distmm. Phase.Amplud.SigS.AmbS HDR!I-—iAmb.Cntr.Tmain.Tillum H
1068.0x1f,. +27.-128.0000 0000008 -A003004 |

Basic testing

Step 0: Measure raw crosstalk on the board
IN_LAB_STEP_O is for validating the quality of PCB design and layout and any optical or
electrical shielding. Best raw crosstalk will be <200 codes. Okay crosstalk is <600 codes.
Crosstalk greater than 843 codes requires using the force_scale feature of the OPT3101.
1. Enable IN_LAB_STEP_O, compile and program the launchpad
2. Mask the photodiode or use another method to ensure no light is entering the
photodiode from the LED. See the how to calibrate doc mentioned in the introduction
for more details here. Below is an example of masking the photodiode of the single
channel OPT3101EVM with black electrical tape. See the How to set up and calibrate
OPT3101 based systems document for more details on masking photodiode.

http://www.ti.com/lit/ug/slau791/slau791.pdf
http://www.ti.com/lit/ug/slau791/slau791.pdf

3. Plugin the launchpad and connect using a COM port terminal. Press enter on the
keyboard to run the code on the device. Step 0 configures the device, corrects for
electrical crosstalk, and runs a live view. The distance data is not useful without running
step 1, but the amplitude measures the raw uncorrected crosstalk. Below the output is
shown for a failing three channel board. You can see that the amplitude measured on all
three channels is too high. This either means the photodiode is not masks correctly and
light is leaking in (tape is not IR blocking,

W Tera Term - [disconnected] VT =i x
File Edit Setup Control Window Help
INFO::Ualidating [2C Transaction

idating OPT3181 Design ID

etting Host
I NF rforming Internal Cross talk Measurement...
INFO: :Internal Cross talk Measurement Completed

iDistmm. Phase.Amplud.8igS.AmbS . HDR!-—iDistmm. Phase.Amplud.Sigs.AmbS . HDR!——iDistmm. Phase.Amplud.SigS.AmbS HDR!I-—iAmb.Cntr.Tmain.Tillum i CountsTotal |
1068.0x1f,. +27.-128.0000 0000008 -A003004 |

Step 1A: Optional Additional Crosstalk Correction

Skip this step unless issues are seen with data output getting stuck due to high crosstalk on a
single channel after running through step 1 and testing. Instructions for this step are in a
separate document and included with the SDK files..

Step 1: Simple Bring-up

Simple bring-up corrects for crosstalk and phase offset. Ensure all channels have crosstalk less
than 843 codes before running this step or force scale is used to reduce the effective crosstalk
seen by the device. Crosstalk is correct with the photodiode masked. Phase offset allows the
device to report the correct distance reading by setting the device at a known distance (defined
in the C++ code) from a target.

1. The phase offset calibration in this step requires the target to be set an a specified
distance. These distances are defined for each channel and HDR setting of the OPT3101
in the OPT3101Coefficients.cpp file as shown below.

L4 OPT3101Coefficients.cpp &

a6
47void environmentalController::manuallySetReferenceDistances(){
48 this->refDistancesInMM[@][0]=18;

49 this->refDistancesInMM[@][1]=20;
5@ this->refDistancesInMM[1][©]=80;
51 this->refDistancesInMM[1][1]=128;
52 this->refDistancesInMM[2][@]=0;
53 this->refDistancesInMM[2][1]=0;
54}

Channels and HDR settings are distinguished as
refDistancesInMMI[TX channel][HDR setting]

In this example the distances are defined for a single channel board using super HDR so
there are 4 distances set for the increasing LED power and range. These values can be
edited to match the configuration of the device. See the How to set up and calibrate

OPT3101 based systems document for more details on phase offset correction and

setting up the target at a known distance.

2. Enable IN_LAB_STEP_1, compile and program the launchpad

3. Plugin the launchpad and connect using a COM port terminal. Press enter on the
keyboard to run the code on the device.

4. Device will prompt user to mask photodiode similar to step 0. After masking and
pressing enter the crosstalk will be corrected.

5. Device will prompt user to set the OPT3101 facing a target at a known distance. See the
How to set up and calibrate OPT3101 based systems document for details on setting up
the target at a known distance.

System level coefficients

If you reach this point you have completed basic power up and testing on a new design. The
following steps cover system level calibration on a subset of boards. These coefficients allow
the device to give stable distance readings over changes in environmental temperature and
infrared light.

In these steps a slope is determined to fit the change in a device reading (crosstalk or phase)
with an environmental factor (temperature or ambient light). The data for this calculation is
logged to the COM port terminal in csv format. The user is expected to take the output and
paste in excel, plot in excel or another program and calculate the coefficients from the slope or
slopes, and update the coefficients in the OPT3101Coefficients.cpp file.

The types of data to plot and the type of fit is shown below. See the How to set up and calibrate

OPT3101 based systems document for more details.

e [llumination crosstalk temperature coefficient
o Two simple y=mx+b slopes values. The offset b is ignored as it is covered by the
single point crosstalk calibration step in simple bring-up and factory calibration
steps.
= | PHASE illumination crosstalk reading vs temperature in codes
= Q_PHASE illumination crosstalk reading vs temperature in codes
e Phase temperature coefficient
o One simple y=mx+b slope value.

http://www.ti.com/lit/ug/slau791/slau791.pdf
http://www.ti.com/lit/ug/slau791/slau791.pdf
http://www.ti.com/lit/ug/slau791/slau791.pdf
http://www.ti.com/lit/ug/slau791/slau791.pdf
http://www.ti.com/lit/ug/slau791/slau791.pdf

Step 2:

= Phase reading vs temperature in codes
o The offset b isignored as it is covered by the single point phase offset calibration
step in simple bring-up and factory calibration steps.
Phase ambient coefficient
o Unlike the other two coefficients, phase ambient is not a linear relationship so a
piece-wise linear fit is required. This fit uses 4 slope values and 3 knee points
that define where each slope is are used.
= Each of the 4 slopes is phase reading vs ambient codes

Crosstalk temperature coefficient

Set temperature sweep settings in definitions.h

definitions.h &=

63
64#define TEMP_CYCLE_DELAY_IN_SECONDS_BETWEEN_DATA_POINTS 1
65 #define TEMP_CYCLE_TOTAL_NUMBER_OF_DATA_POINTS_PER_SETTING 1000

This defines how long the device will wait between each data points and the total
number of data points to take. This allows the data collection to be adapted to the
heating/cooling rate and total time needed to log data.

Enable IN_LAB STEP_2, compile and program the launchpad.

Place device in a thermal chamber.

Plug in the launchpad and connect using a COM port terminal. Press enter on the
keyboard to run the code on the device.

Device will prompt to mask the photodiode as in the simple bring-up step.

Device will prompt to set the thermal chamber to 70 degrees. This is just a guideline.
The displayed value does not affect data collected. It can be changed as shown below in
the OPT3101_Calibration.cpp file if desired. Set the chamber temperature to 70
degrees.

16 OPT3101_Calibration.cpp #

237void OPT3101::device::calibrationSession_perDesignCalibrationCrosstalkTemp() {
238 uint8_t c@, cl;

239 uintl6_t count;

240 /// Algorithm of the method is as follows»

241 OPT3101::crosstalkC illumXtalk; ///* Declares temporary variable of OPT3181::crosstalkl
242 this->reset(); ///* Resets the device calling OPT3161::device::reset method

243 this->initialize(); ///* Initializes the OPT31@1 device by calling OPT3181::device::in:
244 this->measureAndCorrectInternalCrosstalk(&this->calibration->internalCrosstalk[@e]); //
245 inity OB 2rPhotodiode(); ///* Calls the method environm
246 IenvController.setChamberTemperature(?G); ///* Calls the method environmentalController

7. Once the temperature is reached turn off the chamber. The device should start to self-cool.

Wait 1-2 minutes for the device to thermally stabilize. Then press enter to start data collection.

The chamber door can be cracked open slightly to increase cooling rate before pressing enter if

chamber is too well insulated and faster cooling is required. This cooling step during data
collection usually takes 15 minutes to an hour.

8. After collection finishes or devices reaches a stable near ambient temperature (~40 degrees or
less is okay) copy the data and paste into excel. Note: Use the paste import wizard when pasting
into excel. Select comma delimited.

Text Import Wizard - Step 2 of 3 ? X
This screen lets you set the delimiters your data contains. You can see how your text is affected in the preview
below.
Delimiters
[1ab
[] semicalon Treat consecutive delimiters as one
= []Comma
.‘7 : Text qualifier: |" bd
Space
[] other:
L]
5 Data preview
B (ctrl) v
Paste Options: A
- |Distmm [Phase plud Sigs S HDR|-—|Distmm [Phase plud [Sigs S HDRI-——1
A 1004269 (018666 000173 0 o [l]--100258% 11366 (000205 0 o L1--F2]
v
Use Text Import Wizard... < >
z\ Cance < Back Finish

9. Plot and find the slope for
a. |_PHASE illumination crosstalk reading vs tmain
b. Q_PHASE illumination crosstalk reading vs tmain
These slope coefficients are determined for each TX channel and HDR mode. All this data is
outputted in one run.

10. Write the coefficients into OPT3101Coefficients.cpp as shown below. If a channel or HDR mode
is not used it can be left at 0 to disable the calibration.

l&l OPT3101Coefficients.cpp &

29

38void OPT3101::device: :manuallySetIllumCrosstalkTempCoffs(){

31

32 ///* Units for coefficient: ScaledIorQ/tempRegister/MagnitudeCalc

i33 this->calibration[@].illumCrosstalkTempCoff[@][8].coffI=0.124734811687;
i34 this->calibration[@].illumCrosstalkTempCoff[@][0].coffQ=0©.13592223628;
i35 this->calibration[@].illumCrosstalkTempCoff[@][1].coffI=0.121257044071;
i36 this->calibration[@].illumCrosstalkTempCoff[@][1].coffQ=0.082908795903941;
i37 this->calibration[@].illumCrosstalkTempCoff[1][@].coffI=-0.0800172933230344;
i38 this->calibration[@].illumCrosstalkTempCoff[1][@].coffQ=-0.0163536237361;
i39 this->calibration[@].illumCrosstalkTempCoff[1][1].coffI=-0.010450043412;
i40 this->calibration[®@].illumCrosstalkTempCoff[1][1].coffQ=-0.09108940906909;
i41 this->calibration[®].illumCrosstalkTempCoff[2][@].coffI=0.8;

i42 this->calibration[8].illumCrosstalkTempCoff[2][@].coffQ=0.8;

i43 this->calibration[@].illumCrosstalkTempCoff[2][1].coffI=0.8;

i44 this->calibration[@].illumCrosstalkTempCoff[2][1].coffQ=0.0;

45}

46

Step 3: Phase temperature coefficient
Repeat the same steps from the above step using IN_LAB_STEP_3 instead of IN_LAB_STEP_2.
Instead of masking the photodiode the device needs to be setup with a target at the same

11. Itis suggested to test that the coefficients work. This can be done by running the live view with
calibration loaded by enabling #define TESTING LIVE VIEW

known distance from the phase offset step in simple bring-up. Since each TX channel and HDR

setting can have a different target distance this step needs to be run TX channels * HDR settings

per channel times. Each time it will prompt for setting target distance and then setting

temperature. Each time data will be printed giving a number of outputs needing to be pasted to

excel and plotted.

1. For each channel and HDR setting plot and find the slope for
a. Phase reading vs tmain
2. Write the coefficients into OPT3101Coefficients.cpp as shown below. If a channel or HDR mode
is not used it can be left at O to disable the calibration.

L2 OPT3101Coefficients.cpp =

53 this->refDistancesInMM[2][1]=0;

54}

55

56void OPT3101::device: :manuallySetPhaseTempCoffs(){

57 ///* Units for coefficient: Phase/tempRegister

i58 this->calibration[@].phaseTempCoff[@][@].coff=3.1183945334;
i59 this->calibration[@].phaseTempCoff[©][1].coff=3.91217820975;
i60 this->calibration[@].phaseTempCoff[1][@].coff=3.25081198763;
i6l this->calibration[@].phaseTempCoff[1][1].coff=2.73744376613;
i62 this->calibration[@].phaseTempCoff[2][@].coff=0.0;

i63 this->calibration[@].phaseTempCoff[2][1].coff=06.0;

64 this->calibration[@].phaseTempCoff[@][@].1istMainCoff=true;
65 this->calibration[@].phaseTempCoff[@][1].istMainCoff=true;
66 this->calibration[@].phaseTempCoff[1][@].istMainCoff=true;
67 this->calibration[@].phaseTempCoff[1][1].istMainCoff=true;
68 this->calibration[@].phaseTempCoff[2][@].istMainCoff=true;
69 this->calibration[@].phaseTempCoff[2][1].istMainCoff=true;
70}

71
It is suggested to test that the coefficients work. This can be done by running the live view with

calibration loaded by enabling #define TESTING LIVE VIEW

1]
1]
2]
2]
0]
e]
1]
1]
2]
2]

Step 4: Phase ambient coefficient
Repeat the same steps from the above step using IN_LAB_STEP_4 instead of IN_LAB_STEP_3.
The device also needs to be setup with a target at the same known distance, but this calibration

is only needed on one combination of TX channel/HDR setting since it is a characteristic of the

photodiode. Device can be removed from the thermal chamber for this test. A strong halogen

lamp is required to create the ambient light. See the how to calibrate doc for more details.

1.

Update temperature sweep settings in definitions.h. These setting while called
temperature are also used for the ambient test time between points and total number
of points.

definitions.h =

63
64 #define TEMP_CYCLE_DELAY_IN_SECONDS_BETWEEN_DATA_POINTS 1
65 #define TEMP_CYCLE_TOTAL_NUMBER_OF_DATA_POINTS_PER_SETTING 1000

Device will prompt to set distance. Set the target at this distance.

Press enter to start collecting data.

Use the halogen lamp to sweep the ambient levels. Starting far away and slowly moving
closer allows the full range of ambient levels to be covered. See how to calibrate doc for
more details.

Paste data into excel and save as a CSV.

Apply a piecewise linear fit to the data. The SDK files contain a python script that can be
run to determine these coefficients. Instruction for using the script are shown below.

a. The script requires numpy, pandas, matplotlib (for generating output plot only),
scipy, and pwilf libraries. Install if needed.

b. The data should first be plotted and 4 separate regions of the plot identified
where 4 lines are be drawn to fit the data well. The 3 break points are manually
selected using this method for the best fit and inputted into the python script as
x0, x1, x2 as shown below.

v def pwlFit(x,c0,c1,c2,c3):
x0=15

x1=40
x2-90

np.piecewise(x,

c. The python script should be placed in the same directory as the data. If the data
is named “phase_ambient.csv” the filename can be left as in. If another directory
is required this can filename can be modified

df = pd.read_csv("phase_ambient.csv")

dataX = df.ambient.values.astype(np.float)
dataY - (df.phase - df.phase.max()).values.astype(np.float)

d. After running the coefficients are displayed to the console. An output plot is also
generated to visualize the fit.
7. Write the coefficients and split points into OPT3101Coefficients.cpp variables shown below.

72void OPT3101::device: :manuallySetPhaseAmbientCoffs() {
73 ///* Warning: User is expected to curve fit the phase amb

i74 this->calibration[@].phaseAmbientCoff[@].coff[@] = ©.8; ///* Use
i75 this->calibration[@].phaseAmbientCoff[@].coff[1] = ©.8; // Set t
i76 this->calibration[@].phaseAmbientCoff[@].coff[2] = ©.8; // Set t
i77 this->calibration[@].phaseAmbientCoff[@].coff[3] = ©.8; // Set t
78 this->calibration[@].phaseAmbientCoff[@].splitsReg[@] = @; // Se
79 this->calibration[@].phaseAmbientCoff[©].splitsReg[1] = ©; // Se
8o this->calibration[@].phaseAmbientCoff[@].splitsReg[2] = @; ///* |

81}
82

Production Calibration
Step 5: Production Calibration

Production calibration is similar to simple bring-up except that the all the system level coefficients are
loaded to the device as well. Further after completing this step all calibration values will be written into
the EEPROM connected to the OPT3101 if one exists and was configured using the configurator tool.
This step is meant to be run in a factory setting during production. Modifications to the code will likely
be necessary to streamline the process and integrate with the factory flow.

