

Getting Started Guide

mmWave LAB Object Data Over CAN

Overview

- This lab exercise demonstrates the ability of AWR-1642 TI-mmWave sensor to estimate and track the position (in the azimuthal plane), the velocity of objects and sends the detections over CAN interface.
- The mmWave sensor AWR1642BOOST ES 2.0 is used for lab demonstration

Required Hardware

- AWR1642BOOST ES 2.0
- CAN adapter such as <u>PCAN-USBFD</u> to receive data on PC.
- Simple CAN BUS circuit board to connect multiple CAN lines on same bus.
- 5v/>2.5A Power Supply for AWR1642BOOST ES 2.0
 - o <u>https://www.digikey.com/product-detail/en/cuiinc/SMI36-5-V-P5/102-3589-ND/5415060</u>

Getting Started

Step 1: Download the Lab Project

• The mmWave Lab projects are available as part of the TI CLOUD TOOLS under **Resource Explorer**

- Open the following page: <u>https://dev.ti.com/</u> and select Resource Explorer
- In the Resource Explorer Window, select **Software ► mmWave Sensors ► Automotive Toolbox**
- Click the Download button Image in the window that opens on the right side
- Download and install the Automotive Toolbox zip file
- The pre-built binaries are located in the folder:
 - \labs\ lab0005-Object-Data-Over-CAN\odoc_target\pre-built-Binaries\AWR1642BOOST\xwr16xx_odoc_ti_design_lab.bin

Step 2a: Flash Lab Binaries on AWR1642BOOST

- Power on the EVM using a 5V/2.5A power supply.
- Connect the EVM to your PC and check the COM ports in Windows Device Manager
- The EVM exports two virtual COM ports as shown below:
- XDS110 Class Application/User UART (COM_{UART}):
- Used for passing configuration data and firmware to the EVM
- XDS110 Class Auxiliary Data Port (COM_{AUX})
- Used to send processed radar data output
- Note the COM_{UART} and COM_{AUX} port numbers, as they will be used later for flashing and running the Lab.

COM_{UART}: COM38 COM_{AUX}: COM39

- The actual port numbers on your machine may be different
- Put the EVM in flashing mode by connecting jumpers on SOP0 and SOP2 as shown in the image.
- Open the **UniFlash** tool
- Download from <u>TI.com/tool/uniflash</u>
- In the New Configuration section, locate and select the appropriate device AWR1642BOOST
- Click Start to proceed

• In the Program tab, browse and locate demo binary file shown in Step 1

UniFlash Session - Ab	pout		🔹 Settings
Configured Device : Serial Connection > AWR1642 [download ccxml]			Cortex_R4_0
Program	Select and Load Images		
Settings & Utilities	Flash Image(s)		
Standalone Command Line	🗹 Meta Image 1	xwr16xx_odoc_ti_design_lab.bin Size: 313.82 KB	💻 Browse 🗙
	🗋 Meta Image 2		A Browse
	Meta Image 3		Browse
	Meta Image 4		🔔 Browse

 In the Settings & Utilities tab, fill the COM Port text box with the Application/User UART COM port number (COM_{UART}) noted earlier

- Return to the **Program** tab, power cycle the device and click on **Load Images**
- When the flash procedure completes, UniFlash's console should indicate: [SUCCESS] Program Load completed successfully
- Power off the board and remove the jumper from only header **SOP2** (this puts the board back in functional mode)

Step 3: Run the Lab

- Install <u>XDS Emulation Package</u> on the PC host if needed from the following
 - o <u>http://processors.wiki.ti.com/index.php/XDS_Emulation_Software_Package.</u>
- If CCS is installed on the PC host, the XDS Emulation package has already been installed during the CCS installation process.

• Execute the Demo GUI located in:

\labs\lab0005-Object-Data-Over-CAN\odoc-host\gui\gui_exe\MMWAVECANVISUALIZER.exe

- The executable provided only works in a Windows operating system
- CANBUS circuit

- Connect the CAN lines on the AWR1642BOOST to the CANBUS circuit.
- Connect the PCAN-USBFD CAN lines to the CANBUS circuit

Pin assignment on the PCAN-USBFD.

Note: The AWR1642BOOST has only 1 CANFD so there is no need to use the CANBUS circuit. The CAN lines can be connected directly to PCAN-USBFD . If there are multiple AWR1642BOOST then use the CANBUS circuit.

Figure 1 AWR1642BOOST CAN Connection

- Check that PCAN-USBFD is connected to the PC host running the application.
- Open the MMWAVECANVisualizer.exe

Note: MMWAVECANVisualizer.exe is developed based on the SDK(pcan-basic.zip) from Peak-System for the PCAN-USBFD

• Initialize the PCAN-USBFD

• Turn ON the AWR1642BOOST that is flashed with the image. The point cloud should be seen on the X-Y scatter plot. CAN messages are seen in the "Messages Reading" Window.

Getting Started Guide: TI mmWave Lab Object Data Over CAN

