
RadarStudio carries with it a full Matlab runtime engine which can be used to perform different

kinds of analysis on the adc data with a fixed set of APIs.

What does 0dBFs mean?

The primary purpose of most of the APIs is to measure the power of a sinusoid (or the power in a

certain bandwidth). This power measurement is given in dBFs.

To make sense of this number, note that the tone power of a ‘full-scale’ real sinusoid when

processed with ‘Gain Compensation’ (described later) and an integration bandwidth of ‘0’Hz, and

with sufficient oversampling gives an output of 0 dBFs. If a ‘full-scale’ complex sinusoid is

processed with the same API and the same option, its tone power is 3 dBFs. The processing

necessary for making a dBFs measurement is shown in the next section.

Note: There are different definitions for 0dBFs, and our choice (i.e. a ‘full-scale’ real sinusoid being

0dBFs) is arbitrary.

Raw ADC data to dBFs.

Given � complex ADC samples, with each sample having ���� bits (i.e. ���� 	 bits for I and ���� bits

for Q), we apply a window (the elements of the window are given by ��, �
, �� 	…	�
�
), and then

perform an FFT (note that Matlab’s fft is un-normalized).

The output of the FFT is then corrected so that a ‘full-scale’ real sinusoid after FFT processing

becomes a tone of strength 0dBFs. In other words,

����(����) = ����	(���) − ������ !�"�����#

������ !�"�����# = 	20 log
�
2()*+	�	

1 + 20 log
� . �/

�

/0�
− 20 log
�√2	

The first term normalizes the raw adc code-word to a number between ±		1	.
The second term compensates for windowing loss and fft gain. Normalizing by the ‘sum of window

coefficients’ is referred to as ‘Gain normalization’, normalizing by the ‘energy of the window

coefficients’ is called ‘Energy normalization’. If no windowing was used (i.e.	�/ 	 = 	1	∀	! ∈
[0, 1, 2, … , � − 1]), then the second term becomes	20 log
� �.

The final term is a correction factor that allows a full-scale real sine-wave to be 0 dBFs.

When		���� 	= 	16, and no windowing is used, then the above equation becomes

������ !�"�����# = 	20 log
� 2
8 + 20 log
� � − 20 log
�√2	

Converting dBFs to dBm (at ADC input).

A power measurement in dBFs may need to be translated to a dBm (or dBV) measurement before

being used. The following table can be used to convert a dBFs measurement (from radarstudio) to a

dBm measurement.

Codes

(ADC output)

Signal type

(ADC Input)

RMS

(V) dBVrms dBm

Radarstudio

reports using API

+/-2^15 (full scale)

real sinusoid +/- 1V Real sinusoid 1/√2 -3 10 0dBFs

+/-2^15 (full scale)

complex sinusoid

+/- 1V Complex

sinusoid 1 0 13 3dBFs

In other words,
����(��:) = ����(����) + 10

