

Tracking radar targets with multiple
reflection points

Rev 1.0

Texas Instruments, Incorporated

20450 Century Boulevard

Germantown, MD 20874 USA

Version History

Date Owner Comment

April 13, 2017 Michael Livshitz Initial version

July 20, 2017 Version 1.0

Nov 17, 2017 Version 1.1
- Updated group and centroid covariance matrices

calculation
Updated configuration and added advanced
configuration parameters

Feb 6, 2018 Version 1.2
Updated configuration parameters description

March 9, 2018 Version 1.3
Added derivations for tracking in 3D space

Table of Contents

1. Introduction .. 5

1.1. Tracking Module ... 5

1.2. Radar Geometry .. 6

1.3. Choice of Tracking Coordinate System ... 7

1.5. 2D Space, Constant Velocity Model .. 7

1.6. 2D Space, Constant Acceleration Model ... 10

2. Kalman Filter Operations .. 15

2.1. Prediction Step .. 15

2.2. Update Step .. 15

2.3. Design of Process Noise Matrix... 16

2.3.1. Continuous White Noise Model .. 16

2.3.2. Piecewise White Noise Model .. 17

3. Group Tracking .. 19

3.1. High Level Algorithm Design ... 19

3.2. Group Tracking Block Diagram .. 20

3.3. Prediction Step .. 20

3.4. Association Step .. 20

3.4.1. Gating Function ... 21

3.4.2. Scoring Function .. 22

3.5. Allocation Step .. 23

3.6. Updating Step ... 23

3.7. Maintenance Step ... 25

4. Implementation Details .. 26

4.2. Configuration Parameters ... 26

4.2.1. Mandatory Configuration Parameters .. 27

4.2.2. Advanced parameters ... 27

4.3. Memory Requirements ... 31

4.3.1. Data Memory .. 31

4.3.1. Program Memory .. 31

4.4. Benchmarks ... 32

5. Performance ... 32

5.1. Tracking Reliability .. 32

5.1.1. Test Case description .. 33

5.1.2. Results ... 34

5.2. Tracking Precision ... 36

5.2.1. Test Case description .. 37

5.2.2. Results ... 37

5.3. Tracking Resolution ... 37

5.3.1. Initial Separation Tests .. 37

5.3.2. Dynamic Separation Tests ... 38

6. References .. 38

7. Appendix ... 39

7.1. Evaluating Partial Derivatives for 2D space tracking .. 39

7.1.1. Evaluating range partial derivatives .. 39

7.1.2. Evaluating azimuth partial derivatives .. 39

7.1.1. Evaluating doppler partial derivatives .. 39

7.2. Evaluating Partial Derivatives for 3D space tracking .. 41

7.2.1. Evaluating range partial derivatives .. 41

7.2.2. Evaluating azimuth partial derivatives .. 41

7.2.1. Evaluating elevation partial derivatives .. 42

7.2.2. Evaluating doppler partial derivatives .. 42

1. Introduction

1.1. Tracking Module

In Radar Processing stack, the tracking algorithms are the implementations of the localization processing

Layer. Tracker is expected to work on the Detection layer inputs, and provide localization information to

the classification layers.

Figure 1. Radar Processing Layers

With high resolution Radar sensors, the detection layer is capable of sensing multiple reflections from

real life targets, delivering a rich set of measurement vectors (in some cases, thousands of vectors per

frame), known as a Point Cloud. Each measurement vector represents a reflection point, with Range,

Azimuth, and Radial velocity. Each measurement vector may also contain reliability information.

Tracking Layer is expected to input the point cloud data, perform target localization, and report the

results (a Target List) to a classification layer. Therefore, the output of the tracker is a set of trackable

objects with certain properties (like position, velocity, physical dimensions, point density, and other

features) that can be used by a classifier to make an identification decision.

1.2. Radar Geometry

The picture below illustrates single reflection point at time n. Real life radar targets are represented by

multiple reflection points. Each point is represented by range, angle, and radial velocity (range rate):

 Range r, 𝑅𝑚𝑖𝑛 < 𝑟 < 𝑅𝑚𝑎𝑥

 Azimuth angle , −∅𝑚𝑎𝑥 < 𝜑 < +∅𝑚𝑎𝑥

 Radial velocity �̇�

Figure 2. Radar Geometry in 2D

1.3. Choice of Tracking Coordinate System

For convenience of target motion extrapolation, we chose tracking in Cartesian coordinates. This allows

for simple Newtonian linear prediction models. We chose to keep measurement inputs in polar

coordinates to avoid error coupling. We will use extended Kalman filter to linearize the dependencies

between tracking states and measurement vector.

Tracking can operate in either 2D or 3D Cartesian spaces. For each space, we use either constant

velocity model or constant acceleration model.

1.4. 2D Space Geometry

Figure 3. Tracking in 2D

The angular location coordinates are converted to Cartesian coordinates using

𝑥 = 𝑟 cos(
𝜋

2
− (𝛼 + 𝜑)) = 𝑟𝑠𝑖𝑛 (𝛼 + 𝜑)

𝑦 = 𝑟 sin(
𝜋

2
− (𝛼 + 𝜑)) = 𝑟𝑐𝑜𝑠(𝛼 + 𝜑)

The objective is to track the location of the objects using the noisy measurements of range, angle, and

Doppler (radial velocity)

1.5. 2D Space, Constant Velocity Model

We use Kalman filter to “refine” the location estimates. The state of the Kalman filter at time instant n

is defined as

𝒔(𝑛) = 𝑭𝒔(𝑛 − 1) + 𝒘(𝑛) (1-1)

where the state vector 𝒔(𝑛) is defined in Cartesian coordinates,

𝒔(𝑛) ≜ [𝑥(𝑛) 𝑦(𝑛) �̇�(𝑛) �̇�(𝑛)]
𝑇
, (1-2)

𝑭 is a transition matrix

 𝑭 = [

1 0
0 1

𝑇 0
0 𝑇

0 0
0 0

1 0
0 1

] (1-3)

and 𝒘(𝑛) is the vector of process noise with covariance matrix 𝑸(𝑛) of size 4×4.

The input measurement vector 𝒖(𝑛) includes range, angle and radial velocity

𝒖(𝑛) = [𝑟(𝑛) 𝜑(𝑛) �̇�(𝑛)]𝑇 (1-4)

The relationship between the state of the Kalman filter and measurement vector is expressed as:

𝒖(𝑛) = 𝑯(𝒔(𝑛)) + 𝒗(𝑛), (1-5)

 Where, 𝑯 is a measurement matrix,

𝐇(𝐬(n)) =

[

 √x2 + y2

tan−1(x, y) − α
xẋ+yẏ

√x2+y2]

, (1-6)

 the function tan−1(𝑥, 𝑦) is defined as

tan−1(x, y) ≜

{

 tan

−1 (
x

y
) , y > 0,

π

2
, y = 0,

tan−1 (
x

y
) + π , y < 0.

 (1-7)

 and 𝒗(𝑛) is vector of measurement noise with covariance matrix 𝑹(𝑛) of size 3×3.

In above formulation, the measurement vector 𝒖(𝑛) is related to the state vector 𝒔(𝑛) via a non-linear

relation. Because of this, we use Extended Kalman filter (EKF), which simplifies the relation

between 𝒖(𝑛)and 𝒔(𝑛) by retaining only the first term in the Taylor series expansion of 𝑯(∙).

𝒖(𝑛) = 𝑯(𝒔𝑎𝑝𝑟(𝑛)) + 𝑱𝑯(𝒔𝑎𝑝𝑟(𝑛))[𝒔(𝑛) − 𝒔𝑎𝑝𝑟(𝑛)] + 𝒗(𝑛), (1-8)

 where, 𝒔𝑎𝑝𝑟(𝑛) is a-priori estimation of state vector at time n based on n-1 measurements,

𝑱𝑯(𝒔) =

[

𝜕𝑟

𝜕𝑥

𝜕𝑟

𝜕𝑦

𝜕𝑟

𝜕�̇�

𝜕𝑟

𝜕�̇�

𝜕𝜑

𝜕𝑥

𝜕𝜑

𝜕𝑦

𝜕�̇�

𝜕𝑥

𝜕�̇�

𝜕𝑦

𝜕𝜑

𝜕�̇�

𝜕𝜑

𝜕�̇�

𝜕�̇�

𝜕�̇�

𝜕�̇�

𝜕�̇�]

. (1-9)

Calculating partial derivatives (see the Appendix below):

𝑱𝑯(𝒔) =

[

𝑥

√𝑥2+𝑦2

𝑦

√𝑥2+𝑦2
0 0

𝑦

𝑥2+𝑦2
−

𝑥

𝑥2+𝑦2
0 0

𝑦(�̇�𝑦−�̇�𝑥)

(𝑥2+𝑦2)
3
2⁄

𝑥(�̇�𝑥−�̇�𝑦)

(𝑥2+𝑦2)
3
2⁄

𝑥

√𝑥2+𝑦2

𝑦

√𝑥2+𝑦2]

 (1-10)

1.6. 2D Space, Constant Acceleration Model

For constant acceleration model, the state of the Kalman filter at time instant n is defined as

𝒔(𝑛) = 𝑭𝒔(𝑛 − 1) + 𝒘(𝑛), (1-11)

where the state vector 𝒔(𝑛) is defined in Cartesian coordinates,

𝒔(𝑛) = [𝑥(𝑛) 𝑦(𝑛) �̇�(𝑛) �̇�(𝑛) �̈�(𝑛) �̈�(𝑛)], (1-12)

 𝑭 is a transition matrix

𝑭 =

[

1 0 𝑇 0 0.5𝑇2 0
0 1 0 𝑇 0 0.5𝑇2

0 0 1 0 𝑇 0
0 0 0 1 0 𝑇
0 0 0 0 1 0
0 0 0 0 0 1]

, (1-13)

and 𝒘(𝑛) is the vector of process noise with covariance matrix 𝑸(𝑛) of size 6×6.

The input measurement vector 𝒖(𝑛) is the same as in constant velocity model, includes range, angle

and radial velocity

𝒖(𝑛) = [𝑟(𝑛) 𝜑(𝑛) �̇�(𝑛)]𝑇. (1-14)

The relationship between the state of the Kalman filter and measurement vector is expressed as:

𝒖(𝑛) = 𝑯(𝒔(𝑛)) + 𝒗(𝑛), (1-15)

 where

𝑯(𝒔(𝑛)) =

[

 √𝑥

2 + 𝑦2

tan−1(𝑥, 𝑦)
𝑥�̇�+𝑦�̇�

√𝑥2+𝑦2]

 (1-16)

To linearize state to measurement relations, we perform partial derivatives

𝑱𝑯(𝒔) =

[

𝜕𝑟

𝜕𝑥

𝜕𝑟

𝜕𝑦

𝜕𝑟

𝜕�̇�

𝜕𝑟

𝜕�̇�

𝜕𝑟

𝜕�̈�

𝜕𝑟

𝜕�̈�

𝜕𝜑

𝜕𝑥

𝜕𝜑

𝜕𝑦

𝜕�̇�

𝜕𝑥

𝜕�̇�

𝜕𝑦

𝜕𝜑

𝜕�̇�

𝜕𝜑

𝜕�̇�

𝜕�̇�

𝜕�̇�

𝜕�̇�

𝜕�̇�

𝜕𝜑

𝜕�̈�

𝜕𝜑

𝜕�̈�

𝜕�̇�

𝜕�̈�

𝜕�̇�

𝜕�̈�]

 (1-17)

𝑱𝑯(𝒔) =

[

𝑥

√𝑥2+𝑦2

𝑦

√𝑥2+𝑦2
0 0 0 0

𝑦

𝑥2+𝑦2
−

𝑥

𝑥2+𝑦2
0 0 0 0

𝑦(�̇�𝑦−�̇�𝑥)

(𝑥2+𝑦2)
3
2⁄

𝑥(�̇�𝑥−�̇�𝑦)

(𝑥2+𝑦2)
3
2⁄

𝑥

√𝑥2+𝑦2

𝑦

√𝑥2+𝑦2
0 0

]

 (1-18)

1.7. 3D Space, Geometry

In the picture below, sensor is positioned at the origin. Target trajectory is shown at times 𝑛 − 2, 𝑛 − 1,

and 𝑛. Target is moving with velocity vector 𝒗. Measurement vector 𝒖 at time 𝑛 includes range, azimuth,

elevation and radial velocity:

𝒖(𝑛) = [𝑟(𝑛) 𝜑(𝑛) 𝜃(𝑛) �̇�(𝑛)]𝑇 (1-19)

State vector in Cartesian coordinates will be 𝒔𝟑𝑫𝑽 for constant velocity model, and 𝒔𝟑𝑫𝑨 for constant

velocity model:

𝒔𝟑𝑫𝑽(𝑛) ≜ [𝑥(𝑛) 𝑦(𝑛) 𝑧(𝑛) �̇�(𝑛) �̇�(𝑛) �̇�(𝑛)]
𝑇

 (1-20)

𝒔𝟑𝑫𝑨(𝑛) ≜ [𝑥(𝑛) 𝑦(𝑛) 𝑧(𝑛) �̇�(𝑛) �̇�(𝑛) �̇�(𝑛) �̈�(𝑛) �̈�(𝑛) �̈�(𝑛)]𝑇 (1-21)

Figure 4. Tracking in 3D

1.8. 3D Space, Constant Velocity Model (3DV) and Constant

Acceleration (3DA) models

We use Kalman filter to “refine” the location estimates. The state of the Kalman filter at time instant n

is defined as

𝒔(𝑛) = 𝑭𝒔(𝑛 − 1) + 𝒘(𝑛) (1-22)

where the state vector 𝒔(𝑛) is defined in Cartesian coordinates. For 3D space, we use 𝒔𝟑𝑫𝑽or 𝒔𝟑𝑫𝑨as

defined in previous paragraph.

Transition matrix 𝑭 is

 𝑭𝟑𝑫𝑽 =

[

1 0 0 𝑇 0 0
0 1 0 0 𝑇 0
0 0 1 0 0 𝑇
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 (1-23)

or

𝑭𝟑𝑫𝑨 =

[

1 0 0 𝑇 0 0 0.5𝑇2 0 0
0 1 0 0 𝑇 0 0 0.5𝑇2 0
0 0 1 0 0 𝑇 0 0 0.5𝑇2

0 0 0 1 0 0 𝑇 0 0
0 0 0 0 1 0 0 𝑇 0
0 0 0 0 0 1 0 0 𝑇
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1]

 (1-24)

and 𝒘(𝑛) is the vector of process noise with covariance matrix 𝑸(𝑛) of size 6×6 or 9x9.

The input measurement vector 𝒖(𝑛) includes range, azimuth, elevation, and radial velocity

𝒖(𝑛) = [𝑟(𝑛) 𝜑(𝑛) 𝜃(𝑛) �̇�(𝑛)]𝑇 (1-25)

The relationship between the state of the Kalman filter and measurement vector is expressed as:

𝒖(𝑛) = 𝑯(𝒔(𝑛)) + 𝒗(𝑛), (1-26)

 Where, 𝑯 is a measurement matrix,

𝐇(𝐬(n)) =

[

 √x2 + y2 + z2

tan−1(x, y)

tan−1(z, √𝑥2 + 𝑦2)

xẋ+yẏ+zż

√x2+y2+z2]

, (1-27)

 the function tan−1(𝑎, 𝑏) is defined as

tan−1(a, b) ≜

{

 tan

−1 (
a

b
) , b > 0,

π

2
, b = 0,

tan−1 (
a

b
) + π , b < 0.

 (1-28)

 and 𝒗(𝑛) is vector of measurement noise with covariance matrix 𝑹(𝑛) of size 4×4.

In above formulation, the measurement vector 𝒖(𝑛) is related to the state vector 𝒔(𝑛) via a non-linear

relation. Because of this, we use Extended Kalman filter (EKF), which simplifies the relation

between 𝒖(𝑛)and 𝒔(𝑛) by retaining only the first term in the Taylor series expansion of 𝑯(∙).

𝒖(𝑛) = 𝑯(𝒔𝑎𝑝𝑟(𝑛)) + 𝑱𝑯(𝒔𝑎𝑝𝑟(𝑛))[𝒔(𝑛) − 𝒔𝑎𝑝𝑟(𝑛)] + 𝒗(𝑛), (1-29)

 where, 𝒔𝑎𝑝𝑟(𝑛) is a-priori estimation of state vector at time n based on n-1 measurements,

𝑱𝑯(𝒔) =

[

𝜕𝑟

𝜕𝑥

𝜕𝑟

𝜕𝑦

𝜕𝑟

𝜕z

𝜕𝑟

𝜕�̇�

𝜕𝑟

𝜕�̇�

𝜕𝑟

𝜕�̇�

𝜕𝜑

𝜕𝑥

𝜕𝜑

𝜕𝑦

𝜕𝜑

𝜕𝑧

𝜕𝜑

𝜕�̇�

𝜕𝜑

𝜕�̇�

𝜕𝜑

𝜕�̇�

𝜕𝜃

𝜕𝑥

𝜕𝜃

𝜕𝑦

𝜕𝜃

𝜕𝑧

𝜕𝜃

𝜕�̇�

𝜕𝜃

𝜕�̇�

𝜕𝜃

𝜕�̇�

𝜕�̇�

𝜕𝑥

𝜕�̇�

𝜕𝑦

𝜕�̇�

𝜕𝑧

𝜕�̇�

𝜕�̇�

𝜕�̇�

𝜕�̇�

𝜕�̇�

𝜕�̇�]

. (1-30)

Calculating partial derivatives (see the Appendix below):

𝐽𝐻(𝑠3𝐷𝑉) =

[

𝑥

𝑟

𝑦

𝑟

𝑧

𝑟
0 0 0

𝑦

𝑥2+𝑦2
−

𝑥

𝑥2+𝑦2
0 0 0 0

−
𝑥

𝑟2
𝑧

√𝑥2+𝑦2
−

𝑦

𝑟2
𝑧

√𝑥2+𝑦2

√𝑥2+𝑦2

𝑟2
0 0 0

𝑦(�̇�𝑦−�̇�𝑥)+𝑧(�̇�𝑧−�̇�𝑥)

𝑟3
𝑥(�̇�𝑥−�̇�𝑦)+𝑧(�̇�𝑧−�̇�𝑦)

𝑟3
𝑥(�̇�𝑥−�̇�𝑧)+𝑦(�̇�𝑦−�̇�𝑧)

𝑟3
𝑥

𝑟

𝑦

𝑟

𝑧

𝑟]

 (1-31)

𝐽𝐻(𝑠3𝐷𝐴) =

[

𝑥

𝑟

𝑦

𝑟

𝑧

𝑟
0 0 0 0 0 0

𝑦

𝑥2+𝑦2
−

𝑥

𝑥2+𝑦2
0 0 0 0 0 0 0

−
𝑥

𝑟2
𝑧

√𝑥2+𝑦2
−

𝑦

𝑟2
𝑧

√𝑥2+𝑦2

√𝑥2+𝑦2

𝑟2
0 0 0 0 0 0

𝑦(�̇�𝑦−�̇�𝑥)+𝑧(�̇�𝑧−�̇�𝑥)

𝑟3
𝑥(�̇�𝑥−�̇�𝑦)+𝑧(�̇�𝑧−�̇�𝑦)

𝑟3
𝑥(�̇�𝑥−�̇�𝑧)+𝑦(�̇�𝑦−�̇�𝑧)

𝑟3
𝑥

𝑟

𝑦

𝑟

𝑧

𝑟
0 0 0]

 (1-32)

2. Kalman Filter Operations

The notation we use:

 𝑠𝑖(𝑛) – State vector of tracking object 𝑖 at time 𝑛. Each tracking object has its own state vector,

which is predicted and updated independently. For simplicity reasons we omit the tracking

index.

 𝑠𝑎𝑝𝑟(𝑛) – A-priori (predicted) estimates of tracking state at time 𝑛.

 𝑷(𝑛) – State vector estimation error covariance matrix at time 𝑛, defined as 𝑷(𝑛) =Cov [𝑠(𝑛) −

𝑠𝑎𝑝𝑟(𝑛)].

 𝑷𝑎𝑝𝑟(𝑛) – A-priory (predicted) estimates of state vector covariance matrix at time 𝑛.

2.1. Prediction Step

With available measurement until time instant n-1, the a priori state and error covariance estimates are

obtained using:

𝑠𝑎𝑝𝑟(𝑛) = 𝑭𝑠(𝑛 − 1) (2-1)

𝑷𝑎𝑝𝑟(𝑛) = 𝑭𝑷(𝑛 − 1)𝑭
𝑻 +𝑸(𝑛 − 1). (2-2)

The above equations constitute the prediction step of the Kalman filter. 𝑸(𝑛) is the process noise

covariance matrix. See section 2.3 for the details.

In addition, we also compute 𝑯(𝑠𝑎𝑝𝑟(𝑛)) using formula above.

2.2. Update Step

As measurements at time instant n become available, state and error covariance estimates are updated

in the following measurement update procedure:

a) Compute innovation (or measurement residual)

𝒚(𝑛) = 𝒖(𝑛) − 𝑯(𝑠𝑎𝑝𝑟(𝑛)) (2-3)

b) Compute innovation covariance

𝑪(𝑛) = 𝑱𝑯 (𝒔𝑎𝑝𝑟(𝑛))𝑷𝑎𝑝𝑟(𝑛) 𝑱𝑯
𝑻 (𝒔𝑎𝑝𝑟(𝑛)) + 𝑹(𝑛) (2-4)

c) Compute Kalman gain

𝑲(𝑛) = 𝑷𝑎𝑝𝑟(𝑛) 𝑱𝑯
𝑻 (𝒔𝑎𝑝𝑟(𝑛)) 𝑖𝑛𝑣[𝑪(𝑛)] (2-5)

d) Compute a-posteriori state vector

𝐬(𝑛) = 𝒔𝑎𝑝𝑟(𝑛) + 𝑲(𝑛)𝒚(𝑛) (2-6)

e) Compute a-posteriori error covariance

𝑷(𝑛) = 𝑷𝑎𝑝𝑟(𝑛) − 𝑲(𝑛)𝑱𝑯 (𝒔𝑎𝑝𝑟(𝑛))𝑷𝑎𝑝𝑟(𝑛) (2-7)

2.3. Design of Process Noise Matrix

This section is adopted from the works in [1].

The choice of 𝑸(𝑛) is important for the behavior of the Kalman filter. If 𝑸 is too small then the filter will

be overconfident in its prediction model and will diverge from the actual solution. If 𝑸 is too large than

the filter will be too much influenced by the noise in the measurements and perform sub-optimally.

The kinematic system (a system that can be modeled using Newton's equations of motion) is

continuous, i.e. their inputs and outputs can vary at any arbitrary point in time. However, Kalman filters

used here are discrete. We sample the system at regular intervals. Therefore we must find the discrete

representation for the noise term in the equation above. This depends on what assumptions we make

about the behavior of the noise. We will consider two different models for the noise.

2.3.1. Continuous White Noise Model

Let's say that we need to model the position, velocity, and acceleration. We can then assume that

acceleration is constant for each discrete time step. Of course, there is process noise in the system and

so the acceleration is not actually constant. The tracked object will alter the acceleration over time due

to external, un-modeled forces. In this section we will assume that the acceleration changes by a

continuous time zero-mean white noise.

Since the noise is changing continuously we will need to integrate to get the discrete noise for the

discretization interval that we have chosen. We will not prove it here, but the equation for the

discretization of the noise is

𝑄 = ∫ 𝐹(𝑡)𝑄𝑐𝐹
𝑇(𝑡)𝑑𝑡

∆𝑡

0
, (2-8)

where 𝑄𝑐 is the continuous noise. The general reasoning should be clear. 𝐹(𝑡)𝑄𝑐𝐹
𝑇(𝑡) is a projection of

the continuous noise based on our process model 𝐹(𝑡) at the instant 𝑡. We want to know how much

noise is added to the system over a discrete interval ∆𝑡, so we integrate this expression over the interval

[0, ∆𝑡].

For the second order Newtonian system, the fundamental matrix is

𝑭 = [
1 ∆𝑡 ∆𝑡2/2
0 1 ∆𝑡
0 0 1

]. (2-9)

We now define the continuous noise as

𝑸𝒄 = [
0 0 0
0 0 0
0 0 1

]𝑠 (2-10)

where 𝑠 is the spectral density of the white noise. This can be derived, but is beyond the scope for

now. In practice we often do not know the spectral density of the noise, and so this turns into an

"engineering" factor - a number we experimentally tune until our filter performs as we expect. We can

see that the matrix that 𝑠 is multiplied by effectively assigns the power spectral density to the

acceleration term. This makes sense; we assume that the system has constant acceleration except for

the variations caused by noise. The noise alters the acceleration.

Computing the integral, we obtain

𝑸 =

[

∆𝑡5

20

∆𝑡4

8

∆𝑡3

6

∆𝑡4

8

∆𝑡3

3

∆𝑡2

2

∆𝑡3

6

∆𝑡2

2
∆𝑡]

𝑠 (2-11)

Extrapolating back to 6 states,

𝑸 =

[

∆𝑡5

20
0

∆𝑡4

8
0

∆𝑡3

6
0

0
∆𝑡5

20
0

∆𝑡4

8
0

∆𝑡3

6

∆𝑡4

8
0

∆𝑡3

3
0

∆𝑡2

2
0

0
∆𝑡4

8
0

∆𝑡3

3
0

∆𝑡2

2

∆𝑡3

6
0

∆𝑡2

2
0 ∆𝑡 0

0
∆𝑡3

6
0

∆𝑡2

2
0 ∆𝑡]

𝑠 (2-12)

2.3.2. Piecewise White Noise Model

Another model for the noise assumes that the that highest order term (say, acceleration) is constant for

the duration of each time period, but differs for each time period, and each of these is uncorrelated

between time periods. In other words there is a discontinuous jump in acceleration at each time step.

This is subtly different than the model above, where we assumed that the last term had a continuously

varying noisy signal applied to it.

We will model this as

𝑓(𝑥) = 𝑭𝑥 + 𝑤 (2-13)

where is the noise gain of the system, and 𝑤 is the constant piecewise acceleration (or velocity, or

jerk, etc).

For the second order system

𝑭 = [
1 ∆𝑡

∆𝑡2

2

0 1 ∆𝑡
0 0 1

] (2-14)

In one time period, the change in acceleration will be 𝑤(𝑡), change in velocity will be 𝑤(𝑡)∆𝑡, and

change in position will be 𝑤(𝑡)∆𝑡2/2. This gives us

 = [
∆𝑡2/2
∆𝑡
1

] (2-15)

The covariance of the process noise is then

𝑸 = [𝑤(𝑡)𝑤(𝑡) 𝑻] = 𝜎𝑣
2 𝑻 (2-16)

𝑸 =

[

∆𝑡4

4

∆𝑡3

2

∆𝑡2

2

∆𝑡3

2
∆𝑡2 ∆𝑡

∆𝑡2

2
∆𝑡 1]

𝜎𝑣
2 (2-17)

It is not clear whether this model is more or less correct than the continuous model - both are

approximations to what is happening to the actual object. Only experience and experiments can guide

to the appropriate model. It is expected that either model provides reasonable results, but typically one

will perform better than the other.

The advantage of the second model is that we can model the noise in terms of 𝜎2 which we can describe

in terms of the motion and the amount of error we expect. The first model requires us to specify the

spectral density, which is not very intuitive, but it handles varying time samples much more easily since

the noise is integrated across the time period. However, these are not fixed rules - use whichever model

(or a model of your own devising) based on testing how the filter performs and/or your knowledge of

the behavior of the physical model.

A good rule of thumb is to set 𝜎 somewhere from
1

2
∆𝑎 to ∆𝑎, where ∆𝑎 is the maximum amount that

the acceleration will change between sample periods. In practice we pick a number, run simulations on

data, and choose a value that works well.

3. Group Tracking

3.1. High Level Algorithm Design

With advances in detection accuracy, the real world radar targets (cars, pedestrians, walls, landing

ground, etc.) are presented to a tracking processing layer as a set of multiple reflection points. Those

detection points form a group of correlated measurements with range, angle, and angular velocity. Of

course, at any time there could be multiple real world targets. Therefore, we seek a tracker capable of

working with multiple target groups.

The group tracking approach is illustrated in figure below.

Figure 5. Group Tracking

3.2. Group Tracking Block Diagram

The algorithm flows through the major steps shown in a block diagram and described below:

Figure 6. Tracking Block Diagram

The functions shown in blue are classical extended Kalman filter operations. The functions are shown in

brown are additions to support multipoint grouping.

3.3. Prediction Step

We use the Kalman filter prediction process to estimate tracking group centroid for time n based on

state and process covariance matrices estimated at time n-1. We compute a-priori state and covariance

estimations for each trackable object. At this step we also compute measurement vector estimations.

See section 2.1 for details.

3.4. Association Step

Assume existence of one or more tracks and the associated predicted state vector. For each given track

we form a gate about the predicted centroid. The gate should account for a) target maneuver, for the

dispersion of the group and for the measurement noise.

We use group residual covariance matrix to build an ellipsoid in 3D measurement space about the

tracking group centroid. The ellipsoid will represent a gating function to qualify individual

measurements we observe at time n. The gating function design is explained in the section below.

For the measurements within the gate, we compute normalized distance function as a cost function to

associate a measurement to each track

The assignment process minimizes the cost function, assigning one measurement at a time to the

closest track. This creates a set of measurements associated with each track

3.4.1. Gating Function

The gating function represents the amount of innovations we are willing to accept given current state of

uncertainty that exists in a current track.

To measure the amount of uncertainty, we define the group residual covariance matrix as

𝑪𝑮 = 𝑱𝑯 (𝒔𝑎𝑝𝑟(𝑛))𝑷𝑎𝑝𝑟(𝑛) 𝑱𝑯
𝑻 (𝒔𝑎𝑝𝑟(𝑛)) + 𝑹𝑮+ 𝑪𝑫 (3-1)

Note that this group covariance matrix 𝑪𝑮 is between a member of the measurement group and the

group centroid.

Compare group residual covariance with formula for individual target tracking.

The term 𝑱𝑯 (𝒔𝑎𝑝𝑟(𝑛))𝑷𝑎𝑝𝑟(𝑛) 𝑱𝑯
𝑻 (𝒔𝑎𝑝𝑟(𝑛)) represents the uncertainty in the centroid due to target

maneuvering, and is similar to the term used for individual target tracking.

The term 𝑹𝑮 is the measurement error covariance matrix. Since we are building a gate in measurements

coordinates, we don’t need any transformation.

Finally, the term 𝑪𝑫 is the estimation of group track dispersion matrix.

For each existing track 𝑖, for all measurement vectors 𝑗 we obtained at time 𝑛, we define a distance

function 𝑑𝑖𝑗
2 , which represents the amount of innovation the new measurement adds to an existing

track.

𝑑𝑖𝑗
2 ≜ 𝑦𝑖𝑗

𝑇 𝑖𝑛𝑣(𝐶𝑖) 𝑦𝑖𝑗 (3-2)

𝑑𝑖𝑗
2 = [𝑢𝑗(𝑛) − 𝐻𝑖(�̂�

−1(𝑛))]
𝑇
𝑖𝑛𝑣(𝐶𝐺𝑖(𝑛))[𝑢𝑗(𝑛) − 𝐻𝑖(�̂�

−1(𝑛))] (3-3)

We define the chi-squared test (because the sum of squares of M Gaussian random variables with zero

mean is chi-square distribution with degree of freedom M) limits the amount of innovation we are

willing to accept as

𝑑𝑖𝑗
2 < 𝐺 (3-4)

The boundary condition represents arbitrarily oriented ellipsoid centered at a-priory expectation of the

measurement vector, while 𝑮 represents the largest distance from to the measurement that we are

going to accept into the group. However, choice of constant 𝑮 had shown stability issues. Consider the

picture below. Two ellipsoids in XY coordinates with same gate center and G=16 are shown. The larger

ellipsoid represents the 𝑪𝑮 matrix with larger dispersion. Therefore, the parameter 𝑮 can be thought of

as a constant volume magnifying factor to the expected errors described by 𝑪𝑮. Now, imagine the state,

were the group track associates a measurement with large, but still accepted normalized distance. As a

result of this “acquisition”, the track becomes more dispersed, the covariance matrix grows, and the

gating ellipse grows as well, leading to more distant acquisitions. Other way around, with more compact

measurements, the dispersion decreases, leading towards less and less gating volume.

Figure 7. Ellipsoid Gating with G=16

Therefore, the proposed gating solution is based on constant volume concept. We are seeking the gating

function that produces the same volume ellipsoid. Given the constant volume 𝑽 we compute 𝑮. Now,

the group tracks with significant amount of dispersion will see the decresing reach, leading towards less

aggressive track acquisitions. The tracks with access dispersion (those that have incompatible

mesurments) are going to split. That is the desired behaviour.

3.4.2. Scoring Function

The picture below illustrates the post gating situation, where measurement vectors {𝑢1 , 𝑢2 , 𝑢3, 𝑢7 }

pass the gating test for the green track, while vectors {𝑢3 , 𝑢4 , 𝑢5, 𝑢8, 𝑢9} pass the gating test for the

blue track.

Figure 8. Scoring function Illustration

As shown in [2], the likelihood function (assuming Gaussian distribution for the residual) associated with

assignment of observation j to track I is

𝑔𝑖𝑗 =
𝑒
−
𝑑𝑖𝑗
2

2

(2𝜋)𝑀/2√|𝐶𝑖|
 (3-5)

Where, |𝑪𝑖| is determinant of the residual covariance matrix for track 𝑖, 𝑑𝑖𝑗
2 = 𝑦𝑖𝑗

𝑇 𝑖𝑛𝑣(𝑪𝒊) 𝑦𝑖𝑗, and

𝑦𝑖𝑗 is residual vector from observation 𝑗 to track 𝑖.

To maximize the 𝑔𝑖𝑗, by taking the logarithm, we derive the scoring criteria we want to minimize:

𝐷𝑖𝑗
2 = ln|𝑪𝑖| + 𝑑𝑖𝑗

2 (3-6)

3.5. Allocation Step

For measurements not associated with any track (that are outside of any existing gate), new group

tracker is allocated and initialized. This is an iterative process, similar to DBSCAN clustering algorithm. It

is significantly simpler, since it is only done for the leftover measurements.

We first select a leading measurement and set a centroid (range/angle) equal to it. The leading point’s

radial velocity is used to unroll other candidate’s radial velocities. One candidate at a time we first check

whether the point is within velocity bounds (velocity check, followed by a distance check. If passed, the

centroid is recalculated, and point is added to the cluster. Once finished, we perform the few qualifying

tests for cluster. We may need to see minimal number of measurements, strong enough combined SNR,

and/or minimal amount of dynamicity of the centroid. If passed, we create (allocate) a new tracking

object and use the associated points to initialize dispersion matrices. Clusters with fewer points are

ignored.

3.6. Updating Step

This process is similar to the steps described in 2.2. Below we only outline the differences.

Tracks are updated based on the set of associated measurements computed at association step. For

each track, we first compute �̅�(𝑛) which is mean of all associated measurements.

Then, we compute the amount of innovation using the mean of all measurements associated with it:

𝒚(𝑛) = �̅�(𝑛) − 𝑯(𝑠𝑎𝑝𝑟(𝑛)) (3-7)

Then, we compute residual centroid covariance matrix:

𝑪𝒄 = 𝑱𝑯 (𝒔𝑎𝑝𝑟(𝑛))𝑷𝑎𝑝𝑟(𝑛) 𝑱𝑯
𝑻 (𝒔𝑎𝑝𝑟(𝑛)) + 𝑹𝒄 (3-8)

where 𝑹𝒄 is a measurement noise covariance matrix, computed as below:

𝑹𝑪 =
𝑹𝑫

𝑁𝐴
+ 𝑓(𝑁𝐴, �̂�)𝑪𝑫 (3-9)

where,

 𝑪𝑫 is the estimation of group track dispersion matrix,

 𝑁𝐴 is the number of measurements associated with given track,

 �̂� is the estimated number of elements in target tracked by the given track,

 𝑓(𝑁𝐴, �̂�) is a weighting factor that is a function of the number of observations and estimated

number of elements in the target.

From the equation above, measurement noise covariance matrix is the sum of two factors. The first

term
𝑹𝑫

𝑁𝐴
 represents the error in measuring the centroid due to radar measurement error and is

decreased by the number of the measurements associated with tracking centroid. The second term

represents the uncertainty due to the fact that not all the elements may have been observed. We define

the weighting factor for the case with no false detections (𝑁𝐴 ≤ �̂�) as:

𝑓(𝑁𝐴, �̂�) =
�̂�−𝑁𝐴

(�̂�−1)𝑁𝐴
 (3-10)

Note the limits on this function: 𝑓(𝑁𝐴, �̂�) = 0 when all elements are detected and 𝑓(𝑁𝐴, �̂�) = 1 when

we received single associated measurement.

We take �̂� as a configuration parameter, and estimate 𝑪𝑫 recursively as described below.

For the measurement vector 𝒖(𝑛) = [𝑟(𝑛) 𝜑(𝑛) �̇�(𝑛)]𝑇, the dispersion matrix is

𝑫 = [

𝑑𝑟𝑟
2 𝑑𝑟𝜑

2 𝑑𝑟�̇�
2

𝑑𝑟𝜑
2 𝑑𝜑𝜑

2 𝑑𝜑�̇�
2

𝑑𝑟�̇�
2 𝑑𝜑�̇�

2 𝑑𝑟�̇̇�
2

] (3-11)

Where 𝑑𝑎𝑏
2 ≜

1

𝑁
∑ (𝑎𝑖 − �̅�)(𝑏𝑖 − �̅�)
𝑁
𝑖=1 , and 𝑎, 𝑏 ∈ {𝑟, 𝜑, �̇�}, and 𝑎,̅ �̅� are means computed for a given

group of measurements in a standard manner.

𝑪𝑫 = (1 − 𝛼)𝐶𝐷(𝑛 − 1) + 𝛼𝑫 (3-12)

Once 𝑹𝑪 is computed, the rest steps (computing the Kalman gain, state and covariance matrices) are

identical to in 2.2.

3.7. Maintenance Step

Each track goes through a life cycle of events. At maintenance step we may decide to change the state

or to delete the track that is not used any more.

4. Implementation Details

4.1. Group Tracker

Tracking algorithm is implemented as a library. Application task creates an algorithm instance with
configuration parameters that describe sensor, scenery, and behavior of radar targets. Algorithm is
called once per frame from Application Task context. It is possible to create multiple instances of group
tracker.
The figure below explains the steps algorithm goes during each frame call. Algorithm inputs
measurement data in Polar coordinates (range, angle, Doppler), and tracks objects in Cartesian space.
Therefore we use Extended Kalman Filter (EKF) process.

Figure 9. Group Tracking Algorithm

Point cloud input is first tagged based on scene boundaries. Some points may be get tagged as “outside
the boundaries”, and will be ignored in association and allocation processes.
Predict function estimates tracking group centroid for time n based on state and process covariance
matrices estimated at time n-1. We compute a-priori state and error covariance estimations for each
trackable object. At this step we also compute measurement vector estimations.
Association function allows each tracking unit to indicate whether each measurement point is “close
enough” (gating), and if it is, to provide the bidding value (scoring). Point is assigned to a highest bidder.
Points not assigned, are going through an Allocate function. During the Allocation process, points are
first joined into a sets based on their proximity in measurement coordinates. Each set becomes a
candidate for allocation decision. It has to pass multiple tests to become a new track. Once passed, the
new tracking unit is allocated.
During Update step, tracks are updated based on the set of associated points. We compute the
innovation, Kalman gain, and a-posteriori state vector and error covariance. In addition to classic EKF,
the error covariance calculation includes group dispersion in measurement noise covariance matrix.
The Report function queries each tracking unit and produces the algorithm output.

4.2. Configuration Parameters

The configuration parameters are used to configure Tracking algorithm. They shall be adjusted to match
customer usage case based on particular scenery and targets characteristics. Parameters are divided
into mandatory, and optional (advanced). Mandatory parameters are described below.

4.2.1. Mandatory Configuration Parameters

Table 1. Mandatory Configuration Parameters

Parameter Default,
TM

Default,
PC

Dim Description

maxNumPoints 250 250 - Maximum Number of Detection Points per frame

maxNumTracks 20 20 - Maximum Number of Targets to track at any given time

stateTrackingVectorType 2DA 2DA - 2D={x,y,vx,vy}
2DA={x,y,vx,vy,ax,ay} Currently, this is the only
supported option
3D={x,y,z,vx,vy,vz}
3DA={x,y,z,vx,vy,vz,ax,ay,az}

initialRadialVelocity -20 0 m/s Expected target radial velocity at the moment of
detection

maxRadialVelocity N/A N/A m/s Maximum absolute radial velocity reported by sensor.
This shall match sensor chirp configuration

radialVelocityResolution N/A N/A m/s Minimal non-zero radial velocity reported by sensor.
This shall match sensor chirp configuration

maxAccelerationX 0 2 m/s2 Maximum targets acceleration. Used to compute
processing noise matrix

maxAccelerationY 20 2 m/s2 Maximum targets acceleration. Used to compute
processing noise matrix

deltaT N/A N/A ms Frame Rate. This shall match sensor chirp configuration

verbosityLevel NONE NONE - A bit mask representing levels of verbosity:
NONE | WARNING | DEBUG | ASSOCIATION DEBUG |
GATE_DEBUG | MATRIX DEBUG

4.2.2. Advanced parameters

Advanced parameters are divided into few sets. Each set can be omitted, and defaults will be used by an
algorithm. Customer is expected to modify needed parameters to achieve better performance.

Scenery Parameters

This set of parameters describes the scenery. It allows user to configure the tracker with expected
boundaries, and areas of static behavior. User can define up to 2 boundary boxes, and up to 2 static
boxes. Boxes coordinates are in meters, sensor is assumed at (0, 0) of Cartesian (X, Y) space.

Table 2. Scenery Parameters

Parameter Default, TM Default, PC Description

numBoundaryBoxes 1U 0 - Number of boundary boxes defined.
Points outside boundary box will be
ignored

boundaryBox[2] {-1.f, 12.f,15.f,75.f}, {0, 0, 0, 0}, m (left, right, bottom, top}

{0, 0, 0, 0} {0, 0, 0, 0}

numStaticBoxes 1U 0 - Number of static boxes defined.
Targets inside static box are allowed
to persist as static

staticBox[2] {0.f, 11.f,19.f,50.f},
{0, 0, 0, 0}

{0, 0, 0, 0},
{0, 0, 0, 0}

m (left, right, bottom, top}

Measurement Standard Deviation Parameters

This set of parameters is used to estimate standard deviation of the reflection point measurements.

Table 3. Measurements Standard Deviation Parameters

Parameter Default,
TM

Default,
PC

 Description

LengthStd 1/3.46 1/3.46 m Expected standard deviation of measurements in target
length dimension

WidthStd 1/3.46 1/3.46 m Expected standard deviation of measurements in target
width dimension

DopplerStd 1.f 1.f m/s Expected standard deviation of measurements of
target radial velocity

Typically, the uniform distribution of reflection points across target dimensions can be assumed. In such
cases, standard deviation on the interval [a,b] can be computed as below.

𝝈 =
𝒃 − 𝒂

√𝟏𝟐

For example, for the targets of 1m wide, standard deviation can be configured as
𝟏

√𝟏𝟐
.

Allocation Parameters

The reflection points reported in point cloud are associated with existing tracking instances. Points that
don’t get associated are subjects for the allocation decision. Each candidate point is clustered into an
allocation set. To join the set, each point needs to be within maxDistance and maxVelThre from the set’s
centroid. Once the set is formed, it has to have more than setPointsThre members, and pass the
minimal velocity and SNR thresholds.

Table 4. Allocation Parameters

Parameter Default,
TM

Default,
PC

Dim Description

setSNRThre -1.f 150.f - Minimum total SNR for the allocation set, linear sum of
power ratios

setSNRObscThre -1.f 250.f - Minimum total SNR for the allocation set, linear sum of
power ratios, when obscured by another target

setVelThre 1.f 0.1f m/s Minimum radial velocity of the allocation set centroid

setPointsThre 3U 5U - Minimum number of points in the allocation set

maxDistanceThre 4.f 1.f m2 Maximum squared distance between candidate and

centroid to be part of the allocation set

maxVelThre 2.f 2.f m/s Maximum velocity difference between candidate and
centroid to be part of the allocation set

State Transition Parameters

Each tracking instance can be in either FREE, DETECT, or ACTIVE state. Once per frame the instance can
get HIT (have non-zero points associated to a target instance) or MISS (no points associated) event.

Once in FREE state, the transition to DETECT state is made by the allocation decision. See section Error!
eference source not found. for the allocation decision configuration parameters.
Once in DETECT state, we use det2active threshold for the number of consecutive hits to transition to
ACTIVE state, or det2free threshold of number of consecutive misses to transition back to FREE state.
Once in ACTIVE state, the handling of the MISS (no points associated) is as follow:

- If the target is in the “static zone” AND the target motion model is close to static then the
assumption is made that the reason we don’t have detection is because we removed them as
“static clutter”. In this case, we increment the miss count, and use static2free threshold to
“extend the life expectation” of the static targets.

- If the target is outside the static zone, then the assumption is made that the reason we didn’t
get the points is that target is exiting. In this case, we use exit2free threshold to quickly free the
exiting targets.

- Otherwise, (meaning target is in the “static zone”, but has non-zero motion in radial projection)
we assume that the reason of not having detections is that target got obscured by other targets.
In this case, we continue target motion according to the model, and use active2free threshold.

Table 5. State Transitions Parameters

Parameter Default,
TM

Default,
PC

Dim Name

det2activeThre 3U 10U - In DETECT state; how many consecutive HIT events
needed to transition to ACTIVE state

det2freeThre 3U 5U - In DETECT state; how many consecutive MISS events
needed to transition to FREE state

active2freeThre 5U 10U - In ACTIVE state and NORMAL condition; how many
consecutive MISS events needed to transition to FREE
state

static2freeThre 5U 100U - In ACTIVE state and STATIC condition; how many
consecutive MISS events needed to transition to FREE
state

exit2freeThre 5U 5U - In ACTIVE state and EXIT condition; how many
consecutive MISS events needed to transition to FREE
state

Gating Parameters

Gating parameters set is used in association process to provide a boundary for the points that can be
associated with a given track. These parameters are target-specific.

Table 6. Gating Function Parameters

Parameter Default,
TM

Default,
PC

Dim Description

Volume 16.f 2.f Gating volume

LengthLimit 12.f 2.f m Gating Limit in length

WidthLimit 8.f 2.f m Gating Limit in width

VelocityLimit 0.f 0.f m/s Gating Limit in velocity (0 – no limit)

Gating volume can be estimated as the volume of the Ellipsoid, computed as

𝑉 =
4𝜋

3
𝑎𝑏𝑐

 where 𝑎, 𝑏, and 𝑐 are the expected target dimensions in range (m), angle (rad), and doppler

(m/s).

For example, consider a vehicle as a radar target. For the vehicle center, we could want to reach +/- 4m

in range (𝑎 = 8), +/- 3 degree in azimuth (𝑏 = 6𝜋/180), and +/- 2m/s in radial velocity (𝑐 = 4),

resulting in volume about 16.

In addition to setting the volume of the gating ellipsoid, the limits can be imposed to protect ellipsoid
from overstretching. The limits are the function of the geometry and motion of the expected targets.
For example, setting WidthLimit to 8m will not allow the gating function to stretch beyond 8m in width.

4.3. Memory Requirements

Initial memory footprint for group tracker implementation with 250 measurement points and 20 tracks

is 80KB of data and 20KB of program space.

4.3.1. Data Memory

NumTracks 20

NumPoints 250

 Size, B Element Name Element Type Size Num

TrackModule

 544 inst GtrackModuleInstance 544 1

 80 inst->hTracks void * 4 20

 1000 inst->bestScore float 4 250

 500 inst->bestIndex uint16_t 2 250

 6 inst->allocIndex uint16_t 2 3

 240 inst->tidElem GTrack_ListElem 12 20

 720 inst->targetDesc GTRACK_targetDesc 36 20

 40 inst->targetInd uint16_t 2 20

SubTotal 3130

TrackUnit

 11520 inst GtrackUnitInstance 576 20

SubTotal 11520

Total, Bytes 14650

4.3.1. Program Memory

 text data bss dec hex filename

 212 0 0 212 d4 gtrackListlib.oer4f

 252 0 0 252 fc gtrackModuleConstants.oer4f

 1980 0 0 1980 7bc gtrackModuleCreate.oer4f

 1882 0 0 1882 75a gtrackModuleStep.oer4f

 1182 0 0 1182 49e gtrackUnitCreate.oer4f

 320 0 0 320 140 gtrackUnitEvent.oer4f

 442 0 0 442 1ba gtrackUnitPredict.oer4f

 30 0 0 30 1e gtrackUnitReport.oer4f

 1771 0 0 1771 6eb gtrackUnitScore.oer4f

 328 0 0 328 148 gtrackUnitStart.oer4f

 196 0 0 196 c4 gtrackUnitStop.oer4f

 2186 0 0 2186 88a gtrackUnitUpdate.oer4f

 1586 0 0 1586 632 gtrackUtilities.oer4f

 2514 0 0 2514 9d2 matrixMath.oer4f

Total 14881

4.4. Benchmarks

Tracking processing cost ≈ 200µs per tracking object

5. Performance

Tracking performance can be intuitively expressed in three classes of metrics:

1. Tracking Reliability, which shows how many mistakes the tracker made in terms of missing

tracks, false positives, mismatches, failures to recover tracks, etc.

2. Tracking Precision, which expresses how well exact features of the correctly tracked objects are

estimated,

3. Tracking Resolution, which expresses how much feature separation needed between two

objects to be tracked separately

5.1. Tracking Reliability

The test case to measure tracking reliability is simulated randomized longevity test. We modeled tracker

performance in traffic monitoring usage case.

5.1.1. Test Case description

The sensor geometry is illustrated in the picture below. Traffic is simulated by random Poisson process,

where vehicles arrive into 4-Lane intersection at random velocities. The intersection is controlled by the

traffic light with predetermined latencies for green, yellow, and red signals. The stop line is at 20m from

the sensor. Vehicles movement is modeled with

following rules:

1. Each vehicle maintains constant velocity

unless there is an obstacle in front. The

obstacle can be another vehicle in front or

either red or yellow traffic light.

2. With obstacle in front, the vehicle will

decelerate to match the obstacle speed. The

amount of deceleration is bounded to a

maximum allowed for the given vehicle type.

3. The vehicles preserve a safety 2m distance.

4. Once obstacle cleared, the vehicles

accelerate. The acceleration step and

maximum amount of acceleration is

configured per vehicle type.

The reliability test simulates at least 10 minutes of

traffic.

Sensor output (the point cloud) is randomly generated

and is modelled after the test data captured from the

moving vehicle. The model includes statistical

modeling of number of reflection points, points

distribution in range/angle space, and distribution of

doppler information in a cloud. Each vehicle at any

time instance is represented by a point cloud (the set

of reflection points with range/angle and radial

velocity information).

Note: Point cloud from multiple vehicles is assumed additive, so we didn’t model the point cloud

degradation due to multiple objects.

For the point cloud synthesis, we collected reflection points from the field test in two detection layer

configurations:

- Configuration A, with “maximum possible” reflections (single range CFAR-CASO, no windowing

in doppler dimension, 0.2deg DoA step)

- Configuration B, with about 1/3 of reflections (dual pass range/doppler CFAR-CASO, 0.2deg

DoA)

The tracker inputs the points cloud, associates reflection points to the tracked objects, predicts, and

models the objects behavior, and outputs estimated object properties to an upper layer.

Each configuration is run in two subcases: with

The upper layer processing estimates the tracking error by comparing the ground truth with tracker

output. As a ground truth we consider a centroid of the rectangle of simulated vehicle. For each track,

based on global time stamp, we synchronize the ground truth point and tracker output. We compute

mean square error individually for all time instances the tracker existed. We declare correct tracking of

the object if at any point the mean square error did not exceed the desired threshold, and tracking error

event otherwise.

In addition, upper layer processing counts number of objects at 25m lane. This count is compared to a

ground truth number as well.

5.1.2. Results

The results are summarized below

Configuration A results

Lane Number of
Vehicles

Number of
Counted objects
(at 25m)

Counting
Reliability, %

Number of
correctly
tracked
objects

Tracking
Reliability, %

1 58 58 56

2 117 122 110

3 177 184 173

4 228 233 216

Total 580 597 99.5 555 95.7

TODO: Due to changes in unrolling functions, the need to Re-run the configuration A tests

Configuration B results

Lane Number of
Vehicles

Number of
Counted objects
(at 25m)

Counting
Reliability

Number of
correctly
tracked
objects

Tracking
Reliability, %

1 61 60 57

2 124 122 110

3 150 147 126

4 211 208 194

Total 546 537 98.4 487 89.4

Test is reproducible with this random seed:

Test outputs (the 10-minute movie) is saved here:

The error analysis shows that most of the errors fall into two cases:

a) errors due to erroneous split, i.e. at some time instance the tracker observed too much

dispersion within a group, and decided to split a group into two distinct objects

b) errors due to original acquisition, i.e. the track was started with significant deviation from the

ground truth, and wasn’t able to converge fast enough

5.2. Tracking Precision

Tracking Precision expresses how well exact features of the correctly tracked objects are estimated. This

score is independent of tracker ability to identify and follow the objects. For the correctly tracked

object, we compute:

1. Position Tracking Precision. This is the measure of expected positional error (mean and

deviation) for matched objects

2. Velocity Tracking Precision. This is the measure of expected velocity error (mean and deviation)

for matched objects. Shows the ability of the tracker to estimate object velocity

3. Size Tracking Precision. This is the measure of expected dimensional error (mean and deviation)

for matched objects. Shows the ability of the tracker to estimate object size

5.2.1. Test Case description

For tracking precision, we use the same randomized longevity test case as described above. We take

only the “successfully tracked” objects, and derive the error statistics for those cases, comparing the

tracked object with the ground truth.

5.2.2. Results

For successfully tracked objects (95% cases, see the Tracking Reliability Test results), the following was

observed:

Configuration A results

Tracking Precision
(% of cases)

Error, Standard Deviation
at 40m of Range

Latitude (X position), m

Longitude (Y position), m

Velocity, Latitudal, m/s

Velocity, Longtitudal, m/s

Configuration B results

Tracking precision
(89.4 % of cases)

Error, Standard Deviation
at 40m of Range

Latitude (X position), m 0.11

Longitude (Y position), m 0.36

Velocity, Latitudal, m/s 0.99

Velocity, Longtitudal, m/s 0.4

5.3. Tracking Resolution

Tracking Resolution expresses how much of feature separation is needed between two real life objects

to be tracked separately. The feature separation can be measured in Range/Angle/Velocity. We

designed separate test cases for initial separation, and dynamic (split).

5.3.1. Initial Separation Tests

Test Case description

We designed three separate test cases for Range, Anglular, and radial velocity separation. We simulate

the vehicle entry with

a) Range difference (same lane, two vehicles, same velocity, one after each other at given

distance),

b) Angle difference (same range, different lanes, same velocity)

c) Velocity difference (adjacent lanes, minimal angular difference, different velocities)

For all tests we are seeking a minimal separation needed for a tracker to allocate and successfully track

two objects as separate ones in more than 95% of cases.

Results

 Test Case Range Test Case Angle Test Case Velocity

Range Difference, m 4 0 0

Angular Separation, deg 0 4 0

Radial Velocity, m/s 0 0 4

Test Success Rate >95% >95% >95%

5.3.2. Dynamic Separation Tests

Test Case description

Separate test is designed, where at entrance, two objects are not distinguishable. The tracker shall

allocate a single tracking object. However, due to velocity difference, after few tens of frames, tracker

shall be able to trigger a split event and track two targets. We measure the amount of separation

required (in Range AND Angle AND Velocity) when tracker performs split in >95% cases.

Results

 Test Case Split

Range Difference, m 4

Angular Separation, deg 4

Radial Velocity, m/s 4

Test Success Rate >95%

6. References

[1] https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python

[2] Samuel S. Blackman. Multi-Target Tracking with Radar Applications, Artech House, 1986

[3] Muhammad Ikram, Nano radar DSP Algorithm Module, Tracking module description

https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python

7. Appendix

7.1. Evaluating Partial Derivatives for 2D space tracking

We need to calculate set of partial derivatives to compute Jacobian

𝑱𝑯(𝒔) =

[

𝜕𝑟

𝜕𝑥

𝜕𝑟

𝜕𝑦

𝜕𝑟

𝜕�̇�

𝜕𝑟

𝜕�̇�

𝜕𝑟

𝜕�̈�

𝜕𝑟

𝜕�̈�
𝜕𝜑

𝜕𝑥

𝜕𝜑

𝜕𝑦
𝜕�̇�

𝜕𝑥

𝜕�̇�

𝜕𝑦

𝜕𝜑

𝜕�̇�

𝜕𝜑

𝜕�̇�

𝜕�̇�

𝜕�̇�

𝜕�̇�

𝜕�̇�

𝜕𝜑

𝜕�̈�

𝜕𝜑

𝜕�̈�
𝜕�̇�

𝜕�̈�

𝜕�̇�

𝜕�̈�]

7.1.1. Evaluating range partial derivatives

𝑟 = √𝑥2 + 𝑦2

𝜕𝑟

𝜕𝑥
=
𝜕

𝜕𝑥
(√𝑥2 + 𝑦2) =

𝑥

√𝑥2 + 𝑦2

𝜕𝑟

𝜕𝑦
=
𝜕

𝜕𝑦
(√𝑥2 + 𝑦2) =

𝑦

√𝑥2 + 𝑦2

7.1.2. Evaluating azimuth partial derivatives

𝜕𝜑

𝜕𝑥
=
𝜕

𝜕𝑥
(tan−1 (

𝑥

𝑦
))

Let 𝑤 = tan−1 𝑢 with 𝑢 =
𝑥

𝑦

Using the chain rule:
𝜕𝜑

𝜕𝑥
=

𝑑𝑤

𝑑𝑢

𝜕𝑢

𝜕𝑥
= (

1

1+𝑢2
) (

1

𝑦
) =

1

1+(
𝑥

𝑦
)
2

1

𝑦
=

𝑦

𝑥2+𝑦2

Using the chain rule:
𝜕𝜑

𝜕𝑦
=

𝑑𝑤

𝑑𝑢

𝜕𝑢

𝜕𝑦
= (

1

1+𝑢2
) (

−𝑥

𝑦2
) =

1

1+(
𝑥

𝑦
)
2

−𝑥

𝑦2
= −

𝑥

𝑥2+𝑦2

7.1.1. Evaluating doppler partial derivatives

�̇� =
𝑥�̇� + 𝑦�̇�

√𝑥2 + 𝑦2

𝜕�̇�

𝜕𝑥
=
𝜕

𝜕𝑥
(
𝑥�̇� + 𝑦�̇�

√𝑥2 + 𝑦2
) = �̇�

𝜕

𝜕𝑥
(

𝑥

√𝑥2 + 𝑦2
) + 𝑦�̇�

𝜕

𝜕𝑥
(

1

√𝑥2 + 𝑦2
)

Using the quotient rule
𝜕

𝜕𝑥
(
𝑓

𝑔
) =

𝜕𝑓

𝜕𝑥
𝑔−

𝜕𝑔

𝜕𝑥
𝑓

𝑔2
, solving the first part

𝜕

𝜕𝑥
(

𝑥

√𝑥2+𝑦2
) =

√𝑥2+𝑦2−
𝑥

√𝑥2+𝑦2
𝑥

(√𝑥2+𝑦2)
2 =

𝑦2

(𝑥2+𝑦2)
3
2⁄
.

For the second part,
𝜕

𝜕𝑥
(

1

√𝑥2+𝑦2
) = −

1

2

2𝑥

(𝑥2+𝑦2)
3
2⁄
= −

𝑥

(𝑥2+𝑦2)
3
2⁄
.

𝜕

𝜕𝑥
(
𝑥�̇� + 𝑦�̇�

√𝑥2 + 𝑦2
) = �̇�

𝑦2

(𝑥2 + 𝑦2)
3
2⁄
− 𝑦�̇�

𝑥

(𝑥2 + 𝑦2)
3
2⁄
=
𝑦(�̇�𝑦 − �̇�𝑥)

(𝑥2 + 𝑦2)
3
2⁄

Similarly,

𝜕�̇�

𝜕𝑦
=
𝜕

𝜕𝑦
(
𝑥�̇� + 𝑦�̇�

√𝑥2 + 𝑦2
) = �̇�

𝜕

𝜕𝑦
(

𝑦

√𝑥2 + 𝑦2
) + 𝑥�̇�

𝜕

𝜕𝑦
(

1

√𝑥2 + 𝑦2
) = �̇�

𝑥2

(𝑥2 + 𝑦2)
3
2⁄
− 𝑥�̇�

𝑦

(𝑥2 + 𝑦2)
3
2⁄

=
𝑥(�̇�𝑥 − �̇�𝑦)

(𝑥2 + 𝑦2)
3
2⁄

𝜕�̇�

𝜕�̇�
=
𝜕

𝜕�̇�
(
𝑥�̇� + 𝑦�̇�

√𝑥2 + 𝑦2
) =

𝑥

√𝑥2 + 𝑦2

𝜕�̇�

𝜕�̇�
=
𝜕

𝜕�̇�
(
𝑥�̇� + 𝑦�̇�

√𝑥2 + 𝑦2
) =

𝑦

√𝑥2 + 𝑦2

Putting all together:

𝑱𝑯(𝒔) =

[

𝑥

√𝑥2 + 𝑦2

𝑦

√𝑥2 + 𝑦2
0 0 0 0

𝑦

𝑥2 + 𝑦2
−

𝑥

𝑥2 + 𝑦2
0 0 0 0

𝑦(�̇�𝑦 − �̇�𝑥)

(𝑥2 + 𝑦2)
3
2⁄

𝑥(�̇�𝑥 − �̇�𝑦)

(𝑥2 + 𝑦2)
3
2⁄

𝑥

√𝑥2 + 𝑦2

𝑦

√𝑥2 + 𝑦2
0 0

]

7.2. Evaluating Partial Derivatives for 3D space tracking

We need to calculate set of partial derivatives to compute Jacobians for 3DV and 3DA models:

𝑱𝑯(𝒔𝟑𝑫𝑽) =

[

𝜕𝑟

𝜕𝑥

𝜕𝑟

𝜕𝑦

𝜕𝑟

𝜕z

𝜕𝑟

𝜕�̇�

𝜕𝑟

𝜕�̇�

𝜕𝑟

𝜕�̇�
𝜕𝜑

𝜕𝑥

𝜕𝜑

𝜕𝑦

𝜕𝜑

𝜕𝑧

𝜕𝜑

𝜕�̇�

𝜕𝜑

𝜕�̇�

𝜕𝜑

𝜕�̇�
𝜕𝜃

𝜕𝑥

𝜕𝜃

𝜕𝑦

𝜕𝜃

𝜕𝑧

𝜕𝜃

𝜕�̇�

𝜕𝜃

𝜕�̇�

𝜕𝜃

𝜕�̇�
𝜕�̇�

𝜕𝑥

𝜕�̇�

𝜕𝑦

𝜕�̇�

𝜕𝑧

𝜕�̇�

𝜕�̇�

𝜕�̇�

𝜕�̇�

𝜕�̇�

𝜕�̇�]

and

𝑱𝑯(𝒔𝟑𝑫𝑨) =

[

𝜕𝑟

𝜕𝑥

𝜕𝑟

𝜕𝑦

𝜕𝑟

𝜕z

𝜕𝑟

𝜕�̇�

𝜕𝑟

𝜕�̇�

𝜕𝑟

𝜕�̇�

𝜕𝑟

𝜕�̈�

𝜕𝑟

𝜕�̈�

𝜕𝑟

𝜕�̈�
𝜕𝜑

𝜕𝑥

𝜕𝜑

𝜕𝑦

𝜕𝜑

𝜕𝑧

𝜕𝜑

𝜕�̇�

𝜕𝜑

𝜕�̇�

𝜕𝜑

𝜕�̇�

𝜕𝜑

𝜕�̈�

𝜕𝜑

𝜕�̈�

𝜕𝜑

𝜕�̈�
𝜕𝜃

𝜕𝑥

𝜕𝜃

𝜕𝑦

𝜕𝜃

𝜕𝑧

𝜕𝜃

𝜕�̇�

𝜕𝜃

𝜕�̇�

𝜕𝜃

𝜕�̇�

𝜕𝜃

𝜕�̈�

𝜕𝜃

𝜕�̈�

𝜕𝜃

𝜕�̈�
𝜕�̇�

𝜕𝑥

𝜕�̇�

𝜕𝑦

𝜕�̇�

𝜕𝑧

𝜕�̇�

𝜕�̇�

𝜕�̇�

𝜕�̇�

𝜕�̇�

𝜕�̇�

𝜕�̇�

𝜕�̈�

𝜕�̇�

𝜕�̈�

𝜕�̇�

𝜕�̈�]

7.2.1. Evaluating range partial derivatives

𝑟 = √𝑥2 + 𝑦2+𝑧2

𝜕𝑟

𝜕𝑥
=
𝜕

𝜕𝑥
(√𝑥2 + 𝑦2 + 𝑧2) =

𝑥

√𝑥2 + 𝑦2 + 𝑧2

𝜕𝑟

𝜕𝑦
=
𝜕

𝜕𝑦
(√𝑥2 + 𝑦2 + 𝑧2) =

𝑦

√𝑥2 + 𝑦2 + 𝑧2

𝜕𝑟

𝜕𝑧
=
𝜕

𝜕𝑧
(√𝑥2 + 𝑦2 + 𝑧2) =

𝑧

√𝑥2 + 𝑦2 + 𝑧2

7.2.2. Evaluating azimuth partial derivatives

𝜕𝜑

𝜕𝑥
=
𝜕

𝜕𝑥
(tan−1 (

𝑥

𝑦
))

Let 𝑤 = tan−1 𝑢 with 𝑢 =
𝑥

𝑦

Using the chain rule:
𝜕𝜑

𝜕𝑥
=

𝑑𝑤

𝑑𝑢

𝜕𝑢

𝜕𝑥
= (

1

1+𝑢2
) (

1

𝑦
) =

1

1+(
𝑥

𝑦
)
2

1

𝑦
=

𝑦

𝑥2+𝑦2

Using the chain rule:
𝜕𝜑

𝜕𝑦
=

𝑑𝑤

𝑑𝑢

𝜕𝑢

𝜕𝑦
= (

1

1+𝑢2
) (

−𝑥

𝑦2
) =

1

1+(
𝑥

𝑦
)
2

−𝑥

𝑦2
= −

𝑥

𝑥2+𝑦2

𝜕𝜑

𝜕𝑧
= 0

7.2.1. Evaluating elevation partial derivatives

θ = tan−1 (
z

√𝑥2 + 𝑦2
)

Let 𝑤 = tan−1 𝑢 with 𝑢 =
z

√𝑥2+𝑦2

Using the chain rule:
𝜕𝜃

𝜕𝑥
=

𝑑𝑤

𝑑𝑢

𝜕𝑢

𝜕𝑥
= (

1

1+𝑢2
)
𝜕𝑢

𝜕𝑥
=

1

1+
𝑧2

𝑥2+𝑦2

(−
1

2
) 2𝑥

𝑧

(𝑥2+𝑦2)3/2
= −

𝑥2+𝑦2

𝑥2+𝑦2+𝑧2
𝑥𝑧

(𝑥2+𝑦2)
3
2

=

−
𝑥

(𝑥2+𝑦2+𝑧2)

𝑧

√𝑥2+𝑦2
= −

𝑥

𝑟2
tan 𝜃

Using the chain rule:
𝜕𝜃

𝜕𝑦
=

𝑑𝑤

𝑑𝑢

𝜕𝑢

𝜕𝑦
= (

1

1+𝑢2
)
𝜕𝑢

𝜕𝑦
=

1

1+
𝑧2

𝑥2+𝑦2

(−
1

2
) 2𝑦

𝑧

(𝑥2+𝑦2)3/2
= −

𝑥2+𝑦2

𝑥2+𝑦2+𝑧2
𝑦𝑧

(𝑥2+𝑦2)
3
2

=

−
𝑦

(𝑥2+𝑦2+𝑧2)

𝑧

√𝑥2+𝑦2
= −

𝑦

𝑟2
tan 𝜃

Using the chain rule:
𝜕𝜃

𝜕𝑧
=

𝑑𝑤

𝑑𝑢

𝜕𝑢

𝜕𝑧
= (

1

1+𝑢2
)
𝜕𝑢

𝜕𝑧
=

1

1+
𝑧2

𝑥2+𝑦2

1

√𝑥2+𝑦2
=

𝑥2+𝑦2

𝑥2+𝑦2+𝑧2
1

√𝑥2+𝑦2
=

√𝑥2+𝑦2

(𝑥2+𝑦2+𝑧2)
=

√𝑥2+𝑦2

𝑟2

7.2.2. Evaluating Doppler partial derivatives

�̇� =
𝑥�̇� + 𝑦�̇� + 𝑧�̇�

√𝑥2 + 𝑦2 + 𝑧2

𝜕�̇�

𝜕𝑥
=
𝜕

𝜕𝑥
(
𝑥�̇� + 𝑦�̇� + 𝑧�̇�

√𝑥2 + 𝑦2 + 𝑧2
) = �̇�

𝜕

𝜕𝑥
(

𝑥

√𝑥2 + 𝑦2 + 𝑧2
) + (𝑦�̇� + 𝑧�̇�)

𝜕

𝜕𝑥
(

1

√𝑥2 + 𝑦2 + 𝑧2
) ;

Using the quotient rule
𝜕

𝜕𝑥
(
𝑓

𝑔
) =

𝜕𝑓

𝜕𝑥
𝑔−

𝜕𝑔

𝜕𝑥
𝑓

𝑔2
, solving

𝜕

𝜕𝑥
(

𝑥

√𝑥2+𝑦2+𝑧2
) =

√𝑥2+𝑦2+𝑧2−
𝑥

√𝑥2+𝑦2+𝑧2
𝑥

𝑥2+𝑦2+𝑧2
=

𝑦2+𝑧2

(𝑥2+𝑦2+𝑧2)
3
2⁄
;

Using chain rule,
𝜕

𝜕𝑥
(

1

√𝑥2+𝑦2+𝑧2
) = −

1

2

2𝑥

(𝑥2+𝑦2+𝑧2)
3
2⁄
= −

𝑥

(𝑥2+𝑦2+𝑧2)
3
2⁄
;

𝜕

𝜕𝑥
(
𝑥�̇� + 𝑦�̇� + 𝑧�̇�

√𝑥2 + 𝑦2 + 𝑧2
) = �̇�

𝑦2 + 𝑧2

(𝑥2 + 𝑦2 + 𝑧2)
3
2⁄
− (𝑦�̇� + 𝑧�̇�)

𝑥

(𝑥2 + 𝑦2 + 𝑧2)
3
2⁄
=

=
𝑦(�̇�𝑦 − �̇�𝑥) + 𝑧(�̇�𝑧 − �̇�𝑥)

(𝑥2 + 𝑦2 + 𝑧2)
3
2⁄

;

Due to symmetry:

𝜕�̇�

𝜕𝑦
=
𝑥(�̇�𝑥 − �̇�𝑦) + 𝑧(�̇�𝑧 − �̇�𝑦)

(𝑥2 + 𝑦2 + 𝑧2)
3
2⁄

;

𝜕�̇�

𝜕𝑧
=
𝑥(�̇�𝑥 − �̇�𝑧) + 𝑦(�̇�𝑦 − �̇�𝑧)

(𝑥2 + 𝑦2 + 𝑧2)
3
2⁄

;

𝜕�̇�

𝜕�̇�
=
𝜕

𝜕�̇�
(
𝑥�̇� + 𝑦�̇� + 𝑧�̇�

√𝑥2 + 𝑦2 + 𝑧2
) =

𝑥

√𝑥2 + 𝑦2 + 𝑧2
;

𝜕�̇�

𝜕�̇�
=
𝜕

𝜕�̇�
(
𝑥�̇� + 𝑦�̇� + 𝑧�̇�

√𝑥2 + 𝑦2 + 𝑧2
) =

𝑦

√𝑥2 + 𝑦2 + 𝑧2
;

𝜕�̇�

𝜕�̇�
=
𝜕

𝜕�̇�
(
𝑥�̇� + 𝑦�̇� + 𝑧�̇�

√𝑥2 + 𝑦2 + 𝑧2
) =

𝑧

√𝑥2 + 𝑦2 + 𝑧2
;

Putting all together:

𝐽𝐻(𝑠3𝐷𝑉) =

=

[

𝑥

𝑟

𝑦

𝑟

𝑧

𝑟
0 0 0

𝑦

𝑥2 + 𝑦2
−

𝑥

𝑥2 + 𝑦2
0 0 0 0

−
𝑥

𝑟2
𝑧

√𝑥2 + 𝑦2
−
𝑦

𝑟2
𝑧

√𝑥2 + 𝑦2

√𝑥2 + 𝑦2

𝑟2
0 0 0

𝑦(�̇�𝑦 − �̇�𝑥) + 𝑧(�̇�𝑧 − �̇�𝑥)

𝑟3
𝑥(�̇�𝑥 − �̇�𝑦) + 𝑧(�̇�𝑧 − �̇�𝑦)

𝑟3
𝑥(�̇�𝑥 − �̇�𝑧) + 𝑦(�̇�𝑦 − �̇�𝑧)

𝑟3
𝑥

𝑟

𝑦

𝑟

𝑧

𝑟]

;

𝐽𝐻(𝑠3𝐷𝐴) =

=

[

𝑥

𝑟

𝑦

𝑟

𝑧

𝑟
0 0 0 0 0 0

𝑦

𝑥2 + 𝑦2
−

𝑥

𝑥2 + 𝑦2
0 0 0 0 0 0 0

−
𝑥

𝑟2
𝑧

√𝑥2 + 𝑦2
−
𝑦

𝑟2
𝑧

√𝑥2 + 𝑦2

√𝑥2 + 𝑦2

𝑟2
0 0 0 0 0 0

𝑦(�̇�𝑦 − �̇�𝑥) + 𝑧(�̇�𝑧 − �̇�𝑥)

𝑟3
𝑥(�̇�𝑥 − �̇�𝑦) + 𝑧(�̇�𝑧 − �̇�𝑦)

𝑟3
𝑥(�̇�𝑥 − �̇�𝑧) + 𝑦(�̇�𝑦 − �̇�𝑧)

𝑟3
𝑥

𝑟

𝑦

𝑟

𝑧

𝑟
0 0 0]

;

where 𝑟 = √𝑥2 + 𝑦2 + 𝑧2.

7.3. Orthogonal projection of an Ellipsoid E onto a given line

We consider a given line ℒ, parameterized by a scalar s, defined by

ℒ ≝ {𝑥|𝑥 = 𝑥0 + 𝑠𝒗},

where 𝑥0 is a given point and 𝒗 is a given non-zero vector, see Figure 10.

Given any point 𝑥 in the space, based on orthogonality of (𝑥 − 𝑥0) − 𝑠𝑣 and 𝑣, its orthogonal projection

𝑠 onto ℒ corresponds to

𝑠 =
𝑣𝑇(𝑥 − 𝑥0)

𝑣𝑇𝑣

Figure 10. The orthogonal projection of the ellipsoid E onto the line 𝓛 is the interval [S-, S+],

Now, the ellipsoid E is given by

𝐸 = {𝑥|𝑥 = 𝑐 + 𝐿−𝑇𝑦, ‖𝑦‖ < 1}

Thus the projection of points in E correspond to values of s

𝑠 =
𝑣𝑇(𝑐 + 𝐿−𝑇𝑦 − 𝑥0)

𝑣𝑇𝑣
= 𝑠0 +𝑤

𝑇𝑦, ‖𝑦‖ < 1

where

𝑠0 =
𝑣𝑇(𝑐 − 𝑥0)

𝑣𝑇𝑣

𝑐
𝐸

𝑠+

𝑠−

𝑠0

𝒗 𝑥0

𝓛

𝑤 =
𝐿−1𝑣

𝑣𝑇𝑣

Given the condition ‖𝑦‖ < 1, it is evident that the orthogonal projection of 𝐸 onto ℒ corresponds to the

interval [𝑠−, 𝑠+] with

𝑠± = 𝑠0 ± |𝑤|

And the projection length is

𝑠± = 𝑠+ − 𝑠− = 2|𝑤|

The projections onto orthogonal axes

𝑆𝑥,𝑦,𝑧 = 2|𝐿
−1𝑣𝑥,𝑦,𝑧|

