Derivation of a FMCW Beat Frequency

Given a transmitted signal with a linear modulated frequency

$$
V_t = a_1 \cos(\phi(t)) \tag{1}
$$

where a_1 is an amplitude constant and $\phi(t)$ is a phase function of time, (t) being defined as

$$
\phi(t) = \omega_o t + \frac{1}{2} m t^2 + \phi_o \tag{2}
$$

where $m = 2\pi \frac{BW}{T_c}$ $\frac{3W}{T_p}$ with BW is the bandwidth of the signal, T_p is the time period of the frequency ramp and ϕ_o is an arbitrary phase constant. The initial radian frequency is $\omega_o = 2\pi f_o$ with f_o being the initial frequency of the ramp. The radian frequency of this signal is then

$$
\frac{d\phi(t)}{dt} = \omega = \omega_o + mt \tag{3}
$$

The received signal is then

$$
V_r = a_2 \cos(\phi(t - T_d))
$$
\n(4)

where a_1 is an amplitude constant and $\phi(t - T_d)$ is the transmitted phase function delayed by $T_d = 2R/c$ which is due the the propagation of the signal through a one way distance of R at the speed of light, c .

The IF signal at a mixer is then

$$
V_b = V_t V_r = a_1 a_2 a_3 \cos \left[\omega_o t + \frac{1}{2} m t^2 + \phi_o \right] \cos \left[\omega_o t + \frac{1}{2} m t^2 + \phi_o - T_d + \phi_1 \right] \tag{5}
$$

where a_3 and ϕ_1 are amplitude and phase constants associated with the mixer.

Reducing the product of the cosines yields

$$
V_b = \frac{1}{2} a_1 a_2 a_3 \cos \left[mT_d t + \omega_o T_d + \frac{m}{2} T_d^2 - \phi_1 + \text{higher order terms} \right] \tag{6}
$$

or

$$
V_b = \frac{1}{2} a_1 a_2 a_3 \cos \left[\omega_b t + \phi_c - \phi_1 \right]
$$
 (7)

where $\omega_b = 2\pi f_b$ with f_b is the beat frequency is given by

$$
\frac{BW}{T_p} \frac{2R}{c} \tag{8}
$$

and phase constant is given by

$$
\phi_c = 2\pi \frac{2R}{\lambda_o} \tag{9}
$$

with $\lambda_o = c/f_o$. The term $\frac{m}{2}T_d^2$ $\frac{d^2}{dt}$ is very small and dropped.