
Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

1

MMWAVE SDK User Guide

Product Release 1.0.0

Release Date: May 2, 2017

Document Version: 1.0

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

2

COPYRIGHT

Copyright (C) 2014 - 2017 Texas Instruments Incorporated - http://www.ti.com

http://www.ti.com/

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

3

CONTENTS

1 System Overview
1.1 mmWave Suite
1.2 mmWave Demos
1.3 External Dependencies
1.4 Terms used in this document

2 System Deployment
2.1 xWR14xx
2.2 xWR16xx

3 Getting started
3.1 Connecting the xWR14xx/xWR16xx EVM to PC
3.2 Programming xWR14xx/xWR16xx
3.3 Loading images onto xWR14xx/xWR16xx EVM

3.3.1 Demonstration Mode
3.3.2 CCS development mode

3.4 Running the Demos
3.4.1 mmWave Demo for xWR14xx/xWR16xx
3.4.2 Capture Demo for xWR14xx
3.4.3 Capture demo for xWR16xx

3.5 Configuration (.cfg) File Format
3.6 Running the prebuilt unit test binaries (.xer4f and .xe674)

4 How-To Articles
4.1 How to flash an image onto xWR14xx/xWR16xx EVM
4.2 How to erase flash on xWR14xx/xWR16xx EVM
4.3 How to connect xWR14xx/xWR16xx EVM to CCS using JTAG

4.3.1 Emulation Pack Update
4.3.2 Device support package Update
4.3.3 Target Configuration file for CCS (CCXML)

4.3.3.1 Creating a CCXML file
4.3.3.2 Connecting to xWR14xx/xWR16xx EVM using CCXML in CCS

4.4 Developing using SDK
4.4.1 Build Instructions
4.4.2 Setting up build environment

4.4.2.1 Windows
4.4.2.2 Linux

4.4.3 Building demo
4.4.3.1 Building demo in Windows
4.4.3.2 Building demo in Linux

4.4.4 Advanced build
4.4.4.1 Building drivers/control/alg components

5 MMWAVE SDK deep dive
5.1 Typical mmWave Radar Processing Chain
5.2 Typical Programming Sequence

5.2.1 Control Path
5.2.1.1 xWR14xx (MSS<->RADARSS)
5.2.1.2 xWR16xx

5.2.2 Data Path
5.2.2.1 xWR14xx
5.2.2.2 xWR16xx

5.3 mmWave SDK - TI components
5.3.1 Drivers
5.3.2 OSAL
5.3.3 mmWaveLink
5.3.4 mmWave API

5.3.4.1 Full configuration
5.3.4.2 Minimal configuration

5.3.5 mmWaveLib
5.3.6 RADARSS Firmware
5.3.7 CCS Debug Utility
5.3.8 mmWave SDK - System Initialization

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

4

5.3.8.1 ESM
5.3.8.2 SOC
5.3.8.3 Pinmux

5.3.9 Data Path tests using Test vector method
6 Appendix

6.1 Memory usage
6.2 Register layout
6.3 Enable DebugP logs
6.4 Shared memory usage by SDK demos (xWR1642)
6.5 xWR1xxx Image Creator

6.5.1 xWR14xx
6.5.2 xWR16xx

6.6 xWR16xx mmw Demo: cryptic message seen on DebugP_assert
6.7 Guidelines on optimizing memory usage
6.8 DSPlib integration in xWR16xx C674x application (Using 2 libraries simultaneously)

6.8.1 Integrating individual functions from each library
6.8.2 Patching the installation

6.9 SDK Demos: miscellaneous information
6.10 CCS Debugging of real time application

6.10.1 Using printfs in real time
6.10.2 Viewing expressions/memory in real time

LIST OF FIGURES

Figure 1: xWR14xx Deployment in Hybrid or Standalone mode

Figure 2: xWR14xx Deployment in Satellite mode

Figure 3: Autonomous xWR16xx sensor (Standalone mode)

Figure 4: xWR14xx/xWR16xx PC Connectivity - Device Manager - COM Ports

Figure 5: mmWave Demo Visualizer- mmWave Device Connectivity

Figure 6: Typical mmWave radar processing chain

Figure 7: Typical mmWave radar processing chain using xWR14xx mmWave SDK

Figure 8: Typical mmWave radar processing chain using xWR16xx mmWave SDK

Figure 9: Typical mmWave radar control flow

Figure 10: xWR14xx: Detailed Control Flow (Init sequence)

Figure 11: xWR14xx: Detailed Control Flow (Config sequence)

Figure 12: xWR14xx: Detailed Control Flow (start sequence)

Figure 13: xWR16xx: Detailed Control Flow (Init sequence)

Figure 14: xWR16xx: Detailed Control Flow (Config sequence)

Figure 15: xWR16xx: Detailed Control Flow (Start sequence)

Figure 16: Typical mmWave radar data flow in xWR14xx

Figure 17: Typical mmWave radar data flow in xWR16xx

Figure 18: mmWave SDK Drivers - Internal software design

Figure 19: mmWaveLink - Internal software design

Figure 20: mmWave API - Internal software design

Figure 21: mmWave API - 'Minimal' Config - Sample flow (xWR16xx)

Figure 22: mmWave API - 'Minimal' Config - Sample flow (xWR14xx)

LIST OF TABLES

Table 1: mmWave SDK Demos - CLI commands and parameters

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

5

1. System Overview

The mmWave SDK is split in two broad components: mmWave Suite and mmWave Demos.

1. 1. mmWave Suite

mmWave Suite is the foundational software part of the mmWave SDK and would encapsulate these smaller components:

Drivers
OSAL
mmWaveLink
mmWaveLib
mmWave API
RADARSS Firmware
Board Setup and Flash Utilities

1. 2. mmWave Demos

SDK provides a suite of demos that depict the various control and data processing aspects of a mmWave application. Data visualization of
the demo's output on a PC is provided as part of these demos. These demos are example code that are provided to customers to understand
the inner workings of the mmWave devices and the SDK and to help them get started on developing their own application.

mmWave Processing Demo with TI Gallery App - "mmWave Demo Visualizer"
mmWave Data Capture/Streaming demo

1. 3. External Dependencies

The SDK depends on the following external components which are not part of the SDK package but will be needed to integrate the mmWave
SDK.

TI RTOS (or Custom RTOS)
XDC Tools (if building for TI RTOS)
CCS (for debugging)
TI ARM and C674X compiler
DSPLib and Mathlib

Please refer to the mmWave SDK Release Notes for detailed information on these external dependencies and the list of platforms that are
supported.

1. 4. Terms used in this document

Terms
used

Comment

xWR14xx This is used throughout the document where that section/component/module applies to both AWR14xx and IWR14xx

xWR16xx This is used throughout the document where that section/component/module applies to both AWR16xx and IWR16xx

xWR1xxx This is used throughout the document where that section/component/module applies to all the part: AWR14xx, IWR14xx,
AWR16xx and IWR16xx

BSS This is used in the source code and sparingly in this document to signify the RADARSS. It is also interchangeably referred to
as the mmWave Front End.

MSS Master Sub-system. It is also interchangeably referred to as Cortex R4F.

DSS DSP Sub-system. It is also interchangeably referred to as DSS or C674x core.

2. System Deployment

2. 1. xWR14xx

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

6

1.
a.
b.
c.

2.
a.
b.
c.

3.
a.

b.
c.

A typical mmWave application using xWR14xx would perform these operations:

Control and monitoring of RF front-end through mmwaveLink
External communications through standard peripherals
Some radar data processing using FFT HW accelerator

Typical xWR14xx system deployments could be envisioned as follows:

Autonomous xWR14xx sensor (aka Standalone mode)
xWR14xx program code is downloaded from the serial flash memory to xWR14xx (via QSPI)attached
Optional high level control from remote entity
Sends output (objects detected) to remote entitylow speed data

Hybrid xWR14xx sensor + Controller
Serial flash is attached/in-built to external controller and exists between xWR14xx and controllerSPI interface
High level control from controller (code download, GPIO toggling, etc)
Sends output (objects detected) to controller.low speed data

Satellite xWR14xx sensor + DSP
Program code is either in serial flash memory attached to xWR14xx (via QSPI) or downloaded via the control interface
between xWR14xx and DSP (ex: via SPI)
High level control from DSP
Sends output (1D/2D FFT output) to DSPhigh speed data

These deployments are depicted in the and . Figure 1 Figure 2

Figure 1: xWR14xx Deployment in Hybrid or Standalone mode

Figure 2: xWR14xx Deployment in Satellite mode

Note that the software architecture presented above demonstrates only the mmWave SDK components running on the external devices –
MCU, DSP, PC. There are other software components running on those external devices which are part of the ecosystem of those devices
and out of scope for this document. The mmWave SDK package would provide, in future, sample code for the mmWave API running on these
external devices but the porting of this layer onto these external device ecosystem is the responsibility of system integrator/application code
provider.

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

7

a.
b.
c.
d.

2. 2. xWR16xx

A typical xWR16xx application would perform these operations:

Control and monitoring of RF front-end through mmaveLink
Transport of external communications through standard peripherals
Some radar data processing using DSP

Typical xWR16xx customer deployment is shown in :Figure 3

xWR16xx program code for MSS and DSP-SS is downloaded from the serial flash memory to xWR16xx (via QSPI)attached
Optional high level control from remote entity
Sends output (objects detected) to remote entitylow speed data
Optional high speed data (debug) sent out of device over LVDS

Figure 3: Autonomous xWR16xx sensor (Standalone mode)

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

8

1.

2.

3. Getting started

 The best way to get started with the mmWave SDK is to start running one of the various demos that are provided as part of the package. The
demos are placed at folder. Currently following demos are supported within the SDK:mmwave_sdk_<ver>/packages/ti/demo/<platform>

mmWave Demo: This demo is located at folder. The millimeter wave demommwave_sdk_<ver>/packages/ti/demo/ /mmw<platform>
shows some of the radar sensing and object detection capabilities of the xWR14xx/xWR16xx SoC using the drivers in the mmWave
SDK (Software Development Kit). It allows user to specify the chirping profile and displays the detected objects and other information
in real-time. A detailed explanation of this demo is available in the demo's docs folder: mmwave_sdk_<ver>\packages\ti\demo\<platf

. This demo ships out detected objects and other real-time information that can beorm>\mmw\docs\doxygen\html\index.html
visualized using the TI Gallery App - 'mmWave Demo Visualizer' hosted at . DS3 LED onhttps://dev.ti.com/mmWaveDemoVisualizer
TI EVM is turned on when the sensor is started successfully and turned off when the sensor is stopped successfully. SW1 switch
press on TI EVM will start/stop the demo (sensor needs to be configured atleast once using the CLI).
Capture Demo: This demo is located at folder. The capture demo showsmmwave_sdk /packages/ti/demo/ /capture_<ver> <platform>
some of the radar sensing capabilities of the xWR14xx/xWR16xx SoC using the drivers in the mmWave SDK (Software Development
Kit). It allows user to specify the chirping profile and on successful execution captures ADC data in the device's L3 memory. The data
captured depends on the frame configuration provided and the amount of L3 memory that is available on the device. In xWR14xx,
the data buffer in L3 is implemented as a circular buffer and memory will be overwritten if the frame configuration produces more data
than that can fit in L3 memory. In xWR16xx, the data buffer in L3 is a linear buffer and capture stops when the buffer is full. Typically
this demo should be used to capture only one frame worth of data by specifying number of frame parameter to be 1 in the cli's
frameCfg command. Another constraint is that the interchirp time should be more than 10 usec to allow for DMA to copy the data
from ADC buffer to L3 at every chirp available interrupt.
This demo has additional commands to enable the streaming of ADC data over high speed interface (LVDS for xWR14xx/xWR16xx
and CSI-2 for IWR14xx). In this streaming mode, the data is also copied (via DMA) into the L3 memory to verify that the data
transferred on the LVDS/CSI2 interface matches the ADC samples generated on the mmWave sensor device. Note that this demo
needs mmWave sensor device to be interfaced with another device that has a compatible LVDS/CSI2 interface.
A detailed explanation of this demo is available in the demo's docs folder: mmwave_sdk \packages\ti\demo\ \capture_<ver> <platform>

 \docs\doxygen\html\index.html

Following sections describe the general procedure for booting up the device with the demos and then executing it.

3. 1. Connecting the xWR14xx/xWR16xx EVM to PC

When the EVM is powered on and connected to Windows PC via the supplied USB cable, there should be two additional COM Ports in
Device Manager. See mmWave devices TI EVM User Guide for details on the COM port.

After following the above steps, disconnect and re-connect the EVM and you should see the COM ports now. See the highlighted COM ports
in the belowFigure

Figure 4: xWR14xx/xWR16xx PC Connectivity - Device Manager - COM Ports

1.
2.

Troubleshooting Tip
If the COM ports don't show up in the Device Manager or are not working (i.e. no demo output seen on the data port), then one of
these steps would apply depending on your setup:

If TI code composer studio is not installed on that PC, then XDS110 drivers need to be installed.
If TI code composer studio is installed, then version of CCS and emulation package need to be checked as per the
mmWave SDK release notes. See section for more details.Emulation Pack Update

https://dev.ti.com/mmWaveDemoVisualizer
https://confluence.itg.ti.com/download/attachments/21921859/Device_Manager.png?version=2&modificationDate=1493588318000&api=v2
wendy
螢光標示

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

9

1.
a.

b.

2.

1.
a.

i.

ii.

b.

2.

3. 2. Programming xWR14xx/xWR16xx

xWR14xx

xWR14xx has one cortex R4F core available for user programming and is referred to in this section as MSS or R4F. The demos and the unit
tests executable are provided to be loaded on MSS/R4F.

xWR16xx

xWR16xx has one cortex R4F core and one DSP C674x core available for user programming and are referred to as MSS/R4F and
DSS/C674X respectively. The demos have 2 executables - one for MSS and one for DSS which should be loaded concurrently for the demos
to work. See section for more details. The unit tests may have execuables for either MSS or DSS or both. TheseRunning the Demos
executables are meant to be run in standalone operation. This means MSS unit test executable can be loaded and run on MSS R4F without
downloading any code on DSS. Similarly, DSS unit test execuable can be loaded and run on DSS C674x without downloading any code on
DSS. The only exception to this is the Mailbox unit test named "test_mss_dss_msg_exchange" and mmWave unit tests under full and
minimal.

3. 3. Loading images onto xWR14xx/xWR16xx EVM

User can choose either one of these modes for loading images onto the EVM.

3. 3. 1. Demonstration Mode

This mode should be used when either experimenting with the pre-built binaries provided in the SDK release or for field deployment of
mmWave sensors.

Follow the procedure mentioned in the section ()How to flash an image onto xWR14xx/xWR16xx EVM .
For xWR16xx: use the as themmwave_sdk_<ver>/packages/ti/demo/xwr16xx/<demo> /xwr16xx_<demo>.bin
METAIMAGE1 file name.
For xWR14xx: use the as themmwave_sdk_<ver>/packages/ti/demo/xwr14xx/<demo> /xwr14xx_<demo>_mss.bin

 MSS_BUILD file name.
Remove the "SOP2" jumper and reboot the device to run the demo image every time on power up. No other image loading step is
required on subsequent boot to run the demo.

3. 3. 2. CCS development mode

This mode should be used when debugging with CCS is involved and/or developing an mmWave application where the .bin files keep
changing constantly and frequent flashing of image onto the board is not desirable. This mode allows you to flash once and then use CCS to
download a different image to the device's RAM on every boot.

This mode is the recommended way to run the unit tests for the drivers and components which can be found in the respective test directory
for that component. See section for location of each component's test codemmWave SDK - TI components

EVM and CCS setup
Follow the procedure mentioned in the section: .How to flash an image onto xWR14xx/xWR16xx EVM

For xWR16xx: use as the METAIMAGE1mmwave_sdk_<ver>/packages/ti/utils/ccsdebug /xwr16xx_ccsdebug.bin
filename for the one-time flash.
For xWR14xx: use as themmwave_sdk_<ver>/packages/ti/utils/ccsdebug /xwr14xx_ccsdebug_mss.bin
MSS_BUILD filename for the one-time flash.

Follow the steps in to setup the environment for CCSHow to connect xWR14xx/xWR16xx EVM to CCS using JTAG
connectivity.

COM Port
Please note that the COM port numbers on your setup maybe different from the one shown above. Please use the correct COM
port number from your setup for following steps.

boot-up sequence
When the xWR1xxx boots up in functional mode, the device bootloader starts executing and checks if a serial flash is attached to
the device. If yes, then it expects valid MSS application (and a valid RADARSS firmware and/or DSS application) to be present on
the flash. During xWR1xxx development phase, flashing the device with the application under development for every small change
can be cumbersome. To overcome this, user should perform a one-time flash as mentioned in the steps below. The actual user
application under development can then be loaded and reloaded to the MSS program memory (TCMA) and/or DSP L2/L3 memory
(xWR16xx only) directly via CCS in the xWR14xx/xWR16xx functional mode.

Refer to Help inside Code Composer Studio (CCS) to learn more about connecting, loading, running the cores, in general.

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

10

2.
a.
b.
c.

i.
ii.

d.
i.
ii.

e.
f.

1.

2.

1.

2.

With "SOP2" jumper removed, after every power cycle/reboot of the EVM, follow these steps to load the application:
Power up the EVM
Launch ccxml file created in step 1.b above.
If the test requires an application to run on MSS

Connect CCS to Cortex_R4_0
Load the MSS program. (for example: xwr16xx_<module>_mss.xer4f prebuilt executables provided in the SDK
release package)

If the test requires an application to run on DSP (xWR16xx only)
Connect CCS to C674X_0
Load the DSS program. (for example: prebuilt executables provided in the SDKxwr16xx_<module>_dss.xe674

 release package)
Run the R4 and/or C674 cores
To reload, disconnect the connected cores, power cycle and connect again

3. 4. Running the Demos

Assuming that you have loaded the right demo binary using the section above, set the EVM to functional mode and power up the device.
Connect the EVM to the PC using its XDS110 micro-USB port/cable. When the USB is connected to the PC, the device manager should
recognize the following COM ports as shown in the above:Figure

XDS110 Class Auxiliary Data port -> This is the port on which binary data generated by the processing chain in the mmWave demo
will be received by the PC. This is the detected object list and its properties (range, doppler, angle, etc). Lets call this visualization

 or .port Data_port
XDS110 Class Application/User UART -> This is the port where runs for all the various demos. LetsCLI (command line interface)
call this .CFG_port

3. 4. 1. mmWave Demo for xWR14xx/xWR16xx

Figure 5: mmWave Demo Visualizer- mmWave Device Connectivity

Power on the EVM in functional mode with right binary loaded (see above) and connect it to the PC as shown above with thesection
USB cable.
Browse to the TI gallery app "mmWave Demo Visualizer" at or use the direct link http://dev.ti.com/gallery https://dev.ti.com/mmWave

. Use HelpREADME.md from inside this app for more information on how to run/configure this app.DemoVisualizer

http://dev.ti.com/gallery
https://dev.ti.com/mmWaveDemoVisualizer
https://dev.ti.com/mmWaveDemoVisualizer

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

11

2.

a.

b.

a.

b.

c.

d.

e.

f.

3.

First Time Setup
If this is the first time you are using this App, you may be requested to install a plug-in and the TI Cloud Agent
Application.
Once the demo is running on the mmWave sensors and the USB is connected from the board to the PC, you
need to configure the serial ports in this App. In the App, go to the Menu->Options->Serial Port.

CFG_port: Use COM port number for "XDS110 Class Application/User UART": Baud: 115200
Data_port: Use COM port "XDS110 Class Auxiliary Data port": Baud: 921600

At this point, this app will automatically try to connect to the target (mmWave Sensor). If it does not connect or if the
connection fails, you should try to connect to the target by clicking in the bottom left corner of this App.

After the App is connected to the target, you can select the configuration parameters in this App (Frequency Band, Platform,
etc) in the "Scene Selection" and "Object Detection" area of the tab.CONFIGURE
Besides selecting the configuration parameters, you should select which plots you want to see. This can be done using the
"check boxes" in the "Plot Selection" area. Adjust the frame rate depending on number of plots you want to see. For
selecting heatmap plots, set frame rate to 1 fps. For selecting frame rate to be 25-30fps, for better GUI performance, select
only the scatter plot and statistics plot.
Once the configuration is selected, you can send the configuration to the device (use "SEND CONFIG TO MMWAVE
DEVICE" button).
After the configuration is sent to the device, you can switch to the view/tab and the plots that you selected will bePLOTS
shown.
You can switch back from "Plots" tab to "Configure" tab, reconfigure your "Scene Selection", "Object Detection" and/or "Plot
Selection" values and re-send the configuration to the device to try a different profile. After a new configuration has been
selected, just press the "SEND CONFIG TO MMWAVE DEVICE" button again and the device will be reconfigured. This can
be done without rebooting the device.

If board is rebooted, follow the steps starting from 1 above.

COM Port
Please note that the COM port numbers on your setup maybe different from the one shown below.
Please use the correct COM port number from your setup for following steps.

COM port after reboot
Note that if you used the CLI COM port directly to send the commands (instead of TI gallery app) you will have to close the
CLI teraterm window and open a new one on every reboot. On TI gallery app "mmWave Demo Visualizer", use the bottom
left serial port connection icon for disconnecting and reconnecting.

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

12

Inner workings of the GUI
In the background, GUI performs the following steps:

Creates or reads the configuration file and sends to the mmWave device using the COM port called . ItCFG_port
saves the information locally to be able to make sense of the incoming data that it will display. Refer to the CFG

 for details on the configuration file contents.Section
Receives the data generated by the demo on the visualization/Data COM port and processes it to create various
displays based on the GUI configuration in the cfg file.

The format of the data streamed out of the demo is documented in mmw demo's doxygen mmwave_sdk_<ver
under section: "Output information sent to\packages\ti\demo\ \mmw\docs\doxygen\html\index.html > <platform>

host".
On every reconfiguration, it sends a 'stopSensor' command to the device first to stop the active run of the mmWave
device. Next, it sends the command 'flushCfg' to flush the old configuration before sending the new configuration. It is
mandatory to flush the old configuration before sending a new configuration.

Advanced GUI options
User can configure the device from their own configuration file or the saved app-generated configuration file by using
the "LOAD CONFIG FROM PC AND SEND" button on the tab. Make sure the first two commands in this configPLOTS
file are "sensorStop" followed by "flushCfg".
User can temporarily pause the mmWave sensor by using the "STOP" button on the plots tab. The sensor can be
restarted by using the "START" button. In this case, sensor starts again with the already loaded configuration and no
new configuration is sent from the App.

Here is an example of plots that mmWave Demo Visualizer produces based on the config that is passed to the demo application running on
mmWave sensor.

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

13

1.

2.

3.

4.
a.

3. 4. 2. Capture Demo for xWR14xx

Power on the xWR14xx EVM in functional mode, connect it to the PC with the USB cable. Open a teraterm or hyperterminal to
connect to "User UART" COM port (see above).figure
The User UART COM port shows the demo cli as follows on power up. If you don't see this banner, hit 'enter' and you should atleast
see the 'CaptureDemo:/>" prompt.

Next choose whether you want to run this demo in " " or " " mode and follow either step 4memory capture streaming over LVDS/CSI
or step 5 below. Note that only one of this mode can be selected per reboot. If streaming mode is selected, make sure a compatible
device is connected to the other end of LVDS/CSI cable for capturing the stream of data.
Memory capture procedure

Send the commands provided in file to themmwave_sdk_<ver>\packages\ti\demo\xwr14xx\capture\capture_demo_script.txt
CLI window. Refer to for details on parameters used in this demo.CFG Section

Capture demo configuration for xWR14xx

flushCfg
dfeDataOutputMode 1
channelCfg 2 1 0
adcCfg 2 2
lowPower 0 0
profileCfg 0 77 20 5 80 0 0 40 1 256 8000 0 0 30
chirpCfg 0 0 0 0 0 0 0 1
frameCfg 0 0 128 1 20 1 0
adcbufCfg 0 0 0 1
sensorStart

Teraterm window would like as follows:

Note this demo requires connecting TI Code Composer studio to the xWR14xx EVM.

If the demo enables streaming then the DevPack (MMWAVE-DEVPACK) is required to be connected to AWR14xx/IWR14xx EVM
to access the LVDS interface and IWR14xx EVM to access the CSI-2 interface. See EVM User guide for details (See section "Conn

").ecting BoosterPack™ to LaunchPad™ or MMWAVE-DEVPACK

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

14

4.
a.

b.

c.

d.
i.

ii.

5.
a.

i.

Without powering off the board, connect the board to CCS. (See section How to connect xWR14xx/xWR16xx EVM to CCS
for details on how to connect to CCS). Load the symbols for the capture demo application using executable file using JTAG

provided at mmwave_sdk_<ver>\packages\ti\demo\xwr14xx\capture\xwr14xx_capture_demo_mss.xer4f.
In CCS Expressions window, view the global variable gCaptureMCB and check DMA interrupt counter(dmaIntCounter) and
chirp interrupt counter(chirpIntCounter) after sensorStart command. The chirpIntCounter should match the configuration. For
the above configuration, the counter should be 128. The dmaIntCounter will be the actual number of DMA transfers
triggered.

Data generated can be saved from CCS and analyzed offline.
Data is saved from L3 memory using global variable gDataCube. The size (CAPTURE_L3RAM_DATA_MEM_SIZE)
is defined in mmwave_sdk_<ver>\packages\ti\demo\xwr14xx\capture\capture.h
Select Tools -> save memory in file ccs_data.dat with format 16-bit Hex TI style, select memory location as
gDataCube and size according to capture.h definition.
Run in Matlab. The script is just anmmwave_sdk_<ver>\packages\ti\demo\xwr14xx\capture\ gui\capture_demo.m
example for offline analyzing. The users are encouraged to re-use or create their own processing algorithms for this
data.

Streaming over LVDS /CSI-2
Send the commands provided in file mmwave_sdk_<ver>\packages\ti\demo\xwr14xx\capture\lvds_stream _demo_script.txt
or to the CLI window. Refer to mmwave_sdk_<ver>\packages\ti\demo\xwr14xx\capture\csi_stream _demo_script.txt CFG

 for details on parameters used in this demo.Section
See sample commands below:

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

15

5.
a.

i.

ii.

iii.

b.

c.

stream_demo_script.txt

/* CLI command script to have 1 frame with 128 chirps */
flushCfg
dfeDataOutputMode 1
channelCfg 2 1 0
adcCfg 2 2
adcbufCfg 0 0 0 1
lowPower 0 0
profileCfg 0 77 20 5 80 0 0 40 1 256 8000 0 0 30
chirpCfg 0 0 0 0 0 0 0 1
frameCfg 0 0 128 1024 20 1 0

setHSI LVDS|CSI

sensorStart

By default the demo does data. The CLI command " " needs to be specified for selecting the "not stream" setHSI
right HSI interface.

Use the following command to select the LVDS as the High speed interface

Select LVDS xWR14xx CLI command

setHSI LVDS

Use the following command to select CSI as the High speed interface

Select CSI IWR14xx CLI command

setHSI CSI

After "sensorStart" command is issued, the mmWave ADC samples are streamed out over the LVDS/CSI-2
interface onto the external device.

Without powering off the board, connect the board to CCS. (See section How to connect xWR14xx/xWR16xx EVM to CCS
for details on how to connect to CCS). Load the symbols for the capture demo application using executable file using JTAG

provided at mmwave_sdk_<ver>\packages\ti\demo\xwr14xx\capture\xwr14xx_capture_demo_mss.xer4f.
The demo maintains a global variable ' ' which has all the configuration and run time information stored for the gStreamMCB

demo. The structure has a stats field which holds the Chirp Interrupt & DMA Interrupt counter. This should match the
configuration which as per the above sample configuration should be set to 128. In addition to streaming it out, the demo
copies all the ADC data to the L3 memory as well to enable matching the data generated on the xWR14xx with the streamed
data captured on the external device. See table below for location of each chirp buffer in xWR14xx L3 memory for the
profile/chirp config shown above .

Chirps xWR14xx L3 buffer location

1 gDataCube

2 gDataCube +0x400

3 gDataCube +0x800

4 gDataCube +0xC00

5 gDataCube +0x1000

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

16

5.

c.

1.

2.

3.

4.

5.
a.

...

3. 4. 3. Capture demo for xWR16xx

Power on the xWR16xx EVM in functional mode, connect it to the PC with the USB cable. Open a teraterm or Hyperterminal to
connect to "User UART" COM port (see above).figure
The User UART COM port shows Capture demo mode selection window as follows. If you don't see this menu, hit 'enter' :

 If mode 1 (MSS only) and 3 (MSS and DSS running in cooperative mode) are selected, the USER UART COM port shows demo
configuration CLI as follows. For mode 2(DSS only mode), there is no configuration CLI. All configuration parameters are hard-coded
in the code and are same as seen in the capture_demo_script.txt.

Next choose whether you want to run this demo in " " or " " mode and follow either step 5 ormemory capture streaming over LVDS
step 6 below. Note that only one of this mode can be selected per reboot. If streaming mode is selected, make sure a compatible
device is connected to the other end of LVDS cable for capturing the stream of data.
Memory capture procedure

Send the commands provided in file(capture_demo_script.txt) to the CLI window. Refer to for details onConfiguration table
parameters used in this demo.

Test configurations
On CSI: The demo has only been verified in Raw12 and Raw14 mode with the Data format set
to CBUFF_DataFmt_ADC_DATA.

On LVDS: The demo has only been verified in the 16bit output format in DDR mode with the Data format set
to CBUFF_DataFmt_ADC_DATA.

This demo has been tested against the configuration supplied with the release package. User may update the
configuration (such as RX channels, TX ant, real/complex samples, chirp threshold, etc) but they may have to
update the DMA configuration in the demo code as well to copy the right amount of samples to L3 or over
LVDS/CSI-2 and/or update their post processing algorithm to match the format of samples collected.

Streaming more than 1 channel
By default the streaming assumes that there is only 1 active receive channel. If the configuration has been
modified then the CBUFF configuration needs to be updated to reflect all the channels which are active.

Note this demo requires connecting TI Code Composer studio to the xWR16xx EVM.

If the demo enables streaming then the DevPack (MMWAVE-DEVPACK) is required to be connected to xWR16xx EVM to
access the LVDS interface. See xWR16xx EVM User guide for details (See section "Connecting BoosterPack™ to

.")LaunchPad™ or MMWAVE-DEVPACK

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

17

5.
a.

b.

c.

Capture demo configuration

flushCfg
dfeDataOutputMode 1
channelCfg 2 1 0
adcCfg 2 1
adcbufCfg 0 0 1 1
profileCfg 0 77 20 5 80 0 0 40 1 256 8000 0 0 30
chirpCfg 0 0 0 0 0 0 0 1
frameCfg 0 0 128 1 20 1 0
lowPower 0 0
sensorStart

 Teraterm window would like as follows:

Without powering off the board, connect the board to CCS. (See section How to connect xWR14xx/xWR16xx EVM to CCS
for details on how to connect to CCS). Load the symbols for the capture demo application using executable file using JTAG

provided at Use .xer4f for loading symbols onto Cortex_R4_0 andmmwave_sdk_<ver>\packages\ti\demo\xwr16xx\capture.
.xe674 for loading symbols onto DSP core C674X_0.
In CCS Expressions window, view the global variable gCaptureMCB and check DMA interrupt counter(dmaIntCounter) and
chirp interrupt counter(chirpIntCounter) after sensorStart command. The chirpIntCounter should match the configuration. For
the above configuration, the counter should be 0x80. The dmaIntCounter will be the actual number of DMA transfers
triggered.

The stats(counters) should be checked on the Core that runs "data path".

Mode 1: check on R4F (Cortex_R4_0)

Mode 2 and Mode 3: check on DSP (C674X_0)

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

18

5.

c.

d.
e.

f.

6.
a.

i.

1.
2.
3.

Data generated can be saved from CCS and analyzed offline.
Data is saved from L3 memory, base address(gFrameAddress[0]) .
Select Tools -> save memory in file ccs_data.dat with format 16-bit Hex TI style, select memory location and size according
to test configuration.
For the configuration from sample script, address is gFrameAddress[0], data size is 0x20000.
Run mmwave_sdk_<ver>\packages\ti\demo\xwr16xx\capture\gui\capture_demo.m in Matlab. The script is just an example
for offline analyzing.
The users are encouraged to re-use or create their own processing algorithms for this data.

Streaming over LVDS :
Configurations:

For mode 1 (MSS only) and mode 3 (MSS and DSS running in cooperative mode): by default the Capture demo
does not stream data. In order for the demo to stream out the data via the LVDS High speed interface enter the
additional CLI "setHSI LVDS" command. A configuration file capture_demo_script_lvds.txt is provided for reference.

Enable LVDS streaming (capture_demo_script_lvds.txt)

flushCfg
dfeDataOutputMode 1
channelCfg 2 1 0
adcCfg 2 1
adcbufCfg 0 0 1 1
lowPower 0 0
profileCfg 0 77 100 5 80 0 0 40 1 256 8000 0 0 30
chirpCfg 0 0 0 0 0 0 0 1
frameCfg 0 0 128 1024 100 1 0
setHSI LVDS
sensorStart

The LVDS configuration used in the test is as follows:- [This can be modified by changing the parameters in NOTE:
the Demo invocation]CBUFF_open

LVDS lanes is 2
16bit Output format
DDR Clock Mode

Streaming more than 1 channel
By default the streaming assumes that there is only 1 active receive channel. If the configuration has been
modified then the CBUFF configuration needs to be updated to reflect all the channels which are active.

Test Configurations

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

19

6.
a.

i.

ii.

b.

c.

For mode 2(DSS only mode), as there is no configuration CLI: by default streaming is not enabled from the DSS;
but users can modify the source file and set the global flag to enable streaming.

DSS only mode: Enable LVDS streaming

gCaptureMCB.cfg.streamCfg.enableHighSpeedInterface = 1U;

If a compatible device is connected to the other end of the LVDS, data will be streamed out over LVDS lanes and can be
collected on that compatible device.
You can follow the CCS procedure from the "Memory capture" mode to look at internal state/variables.

This demo has been tested against the configuration supplied with the release package. User may update
the configuration (such as RX channels, TX ant, real/complex samples, chirp threshold, etc) but they may
have to update the DMA configuration in the demo code as well to copy the right amount of samples to L3
or over LVDS/CSI-2 and/or update their post processing algorithm to match the format of samples
collected.

The demo also supports continuous mode. The demo directory has
the capture_demo_script_lvds_cont_mode.txt file which has a list of the CLI commands used for
configuring the system in continuous mode.

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

20

3. 5. Configuration (.cfg) File Format

Each line in the .cfg file describes a command with parameters. The various commands and their arguments are described in the table below
(arguments are in sequence) and shown with the profile_2d.cfg configuration as an example below. Note that some of the commands (ex:
guiMonitor) are available for mmWave Demo only.

profile cfg file (profile_2d.cfg for xWR16xx)

sensorStop
flushCfg
dfeDataOutputMode 1
channelCfg 15 3 0
adcCfg 2 1
adcbufCfg 0 0 1 1
profileCfg 0 77 7 7 58 0 0 68 1 256 5500 0 0 30
chirpCfg 0 0 0 0 0 0 0 1
chirpCfg 1 1 0 0 0 0 0 2
frameCfg 0 1 32 0 100 1 0
lowPower 0 0
guiMonitor 1 1 1 0 0 1
cfarCfg 0 2 8 4 4 0 5120
cfarCfg 1 0 8 4 4 0 5120
peakGrouping 1 0 0 1 224
multiObjBeamForming 1 0.5
calibDcRangeSig 0 -5 8 256
sensorStart

Most of the parameters described below are the same as the mmwavelink API specifications: see doxygen mmwave_sdk_<ver>\packages\ti\
.control\mmwavelink\docs\doxygen\html\index.html

Configuration Parameters Values Comments Values Comments

 mmWave Demo: Example Profile

for 2D detection (xWR16xx)

Capture/Stream Demo:

Example Profile

dfeDataOutputMode 1 - frame based chirps

2 - continuous chirping

1 frame based chirps 1 frame based
chirps

channelCfg (see mmwavelink doxgen for details)

 Receive antenna mask e.g for 4 antennas, it is
0x1111b = 15

15 rx1, rx2, rx3, rx4 2 rx2

(See note
"Streaming
more than 1
channel"
above)

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

21

 Transmit antenna mask

For xWR1443

The 2 azimuth antennas can be enabled
using bitmask 0x5 (i.e. tx1 and tx3)
The azimuth and elevation antennas can be
enabled using bitmask 0x7 (i.e. tx1, tx2 and
tx3)

For xWR1642

The 2 azimuth antennas can be enabled
using bitmask 0x3 (i.e. tx1 and tx2)

3 tx1, tx2 1 tx1

 SoC cascading, not applicable, set to 0 0 N/A 0 N/A

adcCfg (see mmwavelink doxgen for details)

 Number of ADC bits (0 for 12-bits, 1 for 14-bits and
2 for 16-bits)

2 16-bit

For mmW Demo, set this
to 16-bits

2 16-bit

 Output format :

0 - real

1 - complex 1x (image band filtered output)

2 - complex 2x (image band visible))

1 complex 1x - image band
filtered

For mmW Demo, set this
to complex

1 complex 1x -
image band
filtered

adcbufCfg

 Input sample format:

0 - complex

1 - real

 0 complex
For mmW Demo, set this
to complex

0 complex
format.

 IQ swap selection:

0 - I in LSB, Q in MSB

1 - Q in LSB, I in MSB

 0 For mmW Demo, set this
to 0

0

 Input sample format with respect to multiple
antennas:

0 - interleaved (not supported on
xWR16xx)

1 - non-interleaved

 1 Must be 1 for xWR16xx.

Use '0' for xWR14xx for
mmW Demo.

1 Must be 1 for
xWR16xx

 Chirp threshold, number of chirps

for ping/pong buffer to trigger ping/pong buffer
switch.

 1 Use '1' for mmW Demo 1

profileCfg (see mmwavelink doxgen for details)

 profile Identifier 0 0

 start frequency in GHz 77 GHz 77 GHz

 idle time in u-sec 7 usec 20 usec

 ADC start time in u-sec 7 usec 5 usec

 Ramp end time in u-sec 58 usec 80 usec

 Tx output power back-off code for tx antennas 0 0

 tx phase shifter for tx antennas 0 0

 frequency slope constant 68
MHz/u-sec

total bandwidth = 68 * 58 =
3.944 GHz

40 total
bandwidth =
40 * 80 =
3.200 GHz

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

22

 tx start time in u-sec 1 1

 number of ADC samples 256 46.54 usec worth of

samples (256/5500 ksps
(next parameter));

sampled bandwidth = 68 *
46.54 = 3.16 GHz

256 46.54 usec
worth of

samples
(256/5500
ksps (next
parameter));

sampled
bandwidth =
40 * 46.54 =
1.86 GHz

 ADC sampling frequency in ksps 5500 ksps 8000

 HPF1 (High Pass Filter 1) corner frequency

0: 175 KHz

1: 235 KHz

2: 350 KHz

3: 700 KHz

0 0

 HPF2 (High Pass Filter 2) corner frequency

0: 350 KHz

1: 700 KHz

2: 1.4 MHz

3: 2.8 MHz

0 0

 rx gain in dB (valid values 24 to 48) 30 dB 30 dB

chirpCfg #0 (see mmwavelink doxgen for details)

 chirp start index 0 0

 chirp end index 0 0

 profile identifier 0 use profile 0 0 use profile 0

 start frequency variation in Hz 0 0

 frequency slope variation in Hz 0 0

 idle time variation in u-sec 0 0

 ADC start time variation in u-sec 0 0

 tx antenna enable mask (Tx2,Tx1) e.g (10)b = Tx2
enabled, Tx1 disabled. See note under "Channel
Cfg" command above.

1 enable Tx1 only 1 enable Tx1
only

chirpCfg #1 (see mmwavelink doxgen for details) NA

 chirp start index 1

 chirp end index 1

 profile identifier 0 use profile 0

 start frequency variation 0

 frequency slope variation 0

 idle time variation 0

 ADC start time variation 0

 tx antenna enable mask 2 enable TX2 only
(xWR16xx)

lowPower (see mmwavelink doxgen for details)

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

23

Analog chain configuration

0 : Complex Chain

1 : Real Chain

0 Only complex chain is
supported

0 Complex
chain

ADC Mode

0 : Regular ADC mode

1 : Low power ADC mode

0 Regular ADC mode 0 Regular ADC
mode

frameCfg (see mmwavelink doxgen for details)

 chirp start index (0-511) 0 Alternating chirp #0 and
chirp #1

0 chirp #0

 chirp end index (chirp start index-511) 1 Alternating chirp #0 and
chirp #1

0

 number of loops (1 to 255) 32 32 times: 64 chirps in total 128 128 times
(128 chirps)

 number of frames (valid range is 0 to 65535, 0
means infinite)

0 infinite 1 one frame

 frame periodicity in ms 100 100 ms 20 20 ms

 trigger select

1: Software trigger

2: Hardware trigger.

1 Software trigger 1 Software
trigger

 Frame trigger delay in ms 0 0 ms 0 0 ms

guiMonitor Not applicable

 All parameters below are flags (1 to enable and 0
to disable)

 detected objects

1 - enable export of detected objects

0 - disable

1 Send detected objects

 log magnitude range

1 - enable export of log magnitude range profile at
zero Doppler

0 - disable

1 Send log-magnitude of
range

noise profile

1 - enable export of log magnitude noise profile

0 - disable

1 Send noise profile

 range-azimuth heat map related information

1 - enable export of zero Doppler radar cube
matrix, all range bins, all antennas to calculate and
display azimuth heat map.

0 - disable

(the GUI computes the FFT of this to show heat
map)

0 Do not send range-azimuth
heat map

 range-doppler heat map

1 - enable export of the whole detection matrix.
Note that the frame period should be adjusted
according to UART transfer time.

0 - disable

0 Do not send range-doppler
heat map

statistics (CPU load, margins, etc)

1 - enable export of stats data.

0 - disable

1 Send statistics information

cfarCfg Not applicable

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

24

Processing direction:

0 – CFAR detection in range direction
1 – CFAR detection in Doppler direction (applies to
xWR16xx only)

<0|1> 2 separate commands
need to be sent; one for
Range and other for
doppler (xWR16xx only)

 CFAR averagining mode (<mode>):

0 - CFAR_CA (Cell Averaging)

1 - CFAR_CAGO (Cell Averaging Greatest
Of)

2 - CFAR_CASO (Cell Averaging Smallest
Of)

0 CFAR-CA

 noise averaging window length (<noiseWin>)

Length of the noise averaged cells in samples

8 units: samples

 guard length in samples 4 units: samples

 Cumulative noise sum divisor expressed as a shift
<divShift>.

Sum of noise samples is divided by 2^<divShift>.
Based on platform, <mode> and <noiseWin> , this
value should be set as:

CFAR_CA:

<divShift> = log (2 x)2

CFAR_CAGO/_CASO:

xWR14:

<divShift> = log (<noiseWin>)2

xWR16:

<divShift> = log (2 x <noiseWin>)2

4 In this example, noise sum
is divided by 2^4=16 to get
the average of noise
samples with window
length of 8 samples in
CFAR -CA mode.

The value to be used here
should match the "CFAR
averaging mode" and the
"noise averaging window
length" that is selected
above. The actual value
that is used for division
(2^x) is a power of 2, even
though the "noise
averaging window length"
samples may not have that
restriction.

 cyclic mode or Wrapped around mode.

0- Disabled

1- Enabled

xWR16xx: This control is not supported on
xWR16xx, where it is always enabled in CFAR
detection in Doppler direction and always disabled
in CFAR detection in range direction.

xWR14xx: used for programming the CFAR engine
inside HWA

0

 Threshold scale.

This is used in conjuntion with the noise sum
divisor (say x).

the CUT comparison for log input is:

CUT > Threshold scale + (noise sum / 2^x)

Detection threshold is specified as log2 value,
expressed in Q9 format for xWR14xx, or Q8 format
for xWR16xx. The threshold value can be
converted from the value expressed in dB as

For AWR14xx: T = 512 x T / 6cli dB

For AWR16xx: T = 256 x numVirtualAntennas xcli
T / 6.dB

Note: log input is used for both xWR14xx and
xWR16xx mmw demo

 5000

peakGrouping With peak grouping scheme enabled, instead of
reporting a cluster of detected neighboring points,
only one point, the highest one, will be reported,
this reducing the total number of detected points
per frame. Two different schemes are implemented
in AWR16xx, and one in AWR14xx.

Not applicable

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

25

scheme

1 –
MMW_PEAK_GROUPING_DET_MATRIX_BASED

Peak grouping is based on peaks of the
neighboring bins read from detection matrix. CFAR
detected peak is reported if it is greater than its
neighbors, located in detection matrix.

2 –
MMW_PEAK_GROUPING_CFAR_PEAK_BASED

Peak grouping is based on peaks of neighboring
bins that are CFAR detected. CFAR detected
peak is reported if it is greater than its neighbors,
located in the list of CFAR detected peaks. This
scheme is implemented only in xWR16xx.

For more detailed look at mmw demo’s doxygen
documentation.

1

 peak grouping in Range direction:

0 - disabled

1 - enabled

1

 peak grouping in Doppler direction:

0 - disabled

1 - enabled

1

Start Range Index

Minimum range index of detected object to be sent
out.

1 Skip 0th bin and start peak
grouping from range bin#1

End Range Index

Maximum range index of detected object to be
sent out.

(Range FFT
size -1)

Skip last bin and stop peak
grouping at (Range FFT
size -1)

multiObjBeamForming This feature allows radar to separate reflections
from multiple objects originating from the same
range/Doppler detection. The procedure searches
for the second peak after locating the highest peak
in Azimuth FFT. If the second peak is greater than
the specified threshold, the second object with the
same range/Doppler is appended to the list of
detected objects. The threshold is proportional to
the height of the highest peak.

Not applicable

Enabled

0 - disabled

1 - enabled

1

threshold

0 to 1 – threshold scale for the second peak
detection in azimuth FFT output. Detection
threshold is equal to <thresholdScale> multiplied
by the first peak height. Note that FFT output is
magnitude squared.

0.5

calibDcRangeSig Antenna coupling signature dominates the range
bins close to the radar. These are the bins in the
range FFT output located around DC. When this
feature is enabled, the signature is estimated
during the first N chirps, and then it is subtracted
during the subsequent chirps. During the
estimation period the specified bins around DC are
accumulated and averaged. It is assumed that no
objects are present in the vicinity of the radar at
that time. This procedure is initiated by the
following CLI command, and it can be initiated any
time while radar is running. Note that the maximum
number of compensated bins is 32.

Not applicable

Enable DC removal using first few chirps

0 - disabled

1 - enabled

0

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

26

negative Bin Index (to remove DC from farthest
range bins)

Maximum negative range FFT index to be included
for compensation. Negative indices are indices
wrapped around from far end of 1D FFT.

-5 Last 5 bins

positive Bin Index (to remove DC from closest
range bins)

Maximum positive range FFT index to be included
for compensation

8 First 8 bins

number of chirps to average to collect DC
signature (which will then be applied to all chirps
beyond this).

The value must be power of 2, and also in
xWR14xx, it must be greater than the number of
Doppler bins.

256 First 256 chirps (after
command is issued and
feature is enabled) will be
used for collecting
(averaging) DC signature
in the bins specified above.
From 257th chirp, the
collected DC signature will
be removed from every
chirp.

setHSI High speed Interface name over which the data is
streamed out

Not
applicable

LVDS

CSI

Stream out
the data over
the selected
High Speed
Interface i.e.
LVDS
(xWR16xx or
xWR14xx) or
CSI
(IWR14xx
only)

contModeCfg (see mmwavelink doxgen for details) Not
applicable

startFreq (start frequency in GHz) 77

txOutPower (Tx output power back-off code for tx
antennas)

0

txPhaseShifter (tx phase shifter for tx antennas) 0

digOutSampleRate (ADC sampling frequency in
ksps)

8000

hpfCornerFreq1

HPF1 (High Pass Filter 1) corner frequency

0: 175 KHz

1: 235 KHz

2: 350 KHz

3: 700 KHz

0

hpfCornerFreq2

HPF2 (High Pass Filter 2) corner frequency

0: 350 KHz

1: 700 KHz

2: 1.4 MHz

3: 2.8 MHz

0

rxGain

rx gain in dB (valid values 24 to 48)

30

txEnable

tx antenna enable mask

1

numSamples

number of ADC samples

1024

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

27

sensorStart Starts the sensor. This function triggers the
transmission of the frames as per the frame and
chirp configuration. By default, this function also
sends the configuration to the mmWave Front End
and the processing chain.

Optionally, user can provide an argument
'doReconfig'

1 - Do full reconfiguration of the device

0 - Skip reconfiguration and just start the
sensor using already provided
configuration.

sensorStop Stops the sensor.

If the sensor is running, it will stop the mmWave
Front End and the processing chain.

After the command is acknowledged, a new config
can be provided and sensor can be restarted or
sensor can be restarted without a new config (i.e.
using old config). See 'sensorStart' command.

flushCfg This command be issued after should
'sensorStop' command to flush the old
configuration and provide a new one.

% Any line starting with '%' character is considered
as comment line and is skipped by the CLI parsing
utility.

Table 1: mmWave SDK Demos - CLI commands and parameters

3. 6. Running the prebuilt unit test binaries (.xer4f and .xe674)

Unit tests for the drivers and components can be found in the respective test directory for that component. See section "mmWave SDK - TI
 for location of each component's test code. For example, UART test code that runs on TI RTOS is in components" mmwave_sdk_<ver>/pack

. In this test directory, you will find .xer4f and .xe674 files (either prebuilt or build as a part of instructionsages/ti/drivers/uart/test/<platform>
mentioned in). Follow the instructions in section " to download and execute"Building drivers/control components" CCS development mode"
these unit tests via CCS.

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

28

1.

2.

a.

i.

ii.
b.

i.
ii.

1.
2.

3.

4.

1.
2.
3.

4. How-To Articles

4. 1. How to flash an image onto xWR14xx/xWR16xx EVM

You will need the mmWave Device TI EVM, USB cable and a Windows 7 PC to perform these steps.

Setup the Booster Pack EVM for Flashing

Refer to the EVM User Guide to understand the bootup modes of the EVM and the SOP jumper locations (See "Sense-on-Power
" section in mmWave device's EVM user guide). To put the EVM in flashing mode, power off the board and place(SOP) Jumpers

jumpers on pins marked as SOP2 and SOP0 .

SOP2

jumper

SOP1

jumper

SOP0

jumper

Bootloader mode & operation

0 0 1 Functional Mode

Device Bootloader loads user application from QSPI Serial Flash to internal RAM and switches the control to it

1 0 1 Flash Programming Mode

Device Bootloader spins in loop to allow flashing of user application to the serial flash.

Procure the Images
For flashing xWR1xxx devices, use the TI Uniflash tool available at and follow the instructionshttp://www.ti.com/tool/UNIFLASH
described in the mmWave SDK document " " located at UniFlash User Guide for mmWave Devices http://processors.wiki.ti.com/ind

. ex.php/Category:CCS_UniFlash
Select the following images in the Uniflash tool.

xWR16xx:
For the SDK packaged xWR16xx demos and ccsdebug utility, there is a bin file provided in their respective folder:
xwr16xx_<demo|ccsdebug>.bin which is the metaImage to be used for flashing. The metaImage already has the MSS, BSS
(RADARSS) and DSS application combined into one file. Users can use this for flashing their own metaImage as well.

For demo mode, either or mmwave_sdk_<ver>\ti\demo\xwr16xx\mmw\xwr16xx_mmw_demo.bin mmwave_sdk_<ve
 should be selected.r>\ti\demo\xwr16xx\capture\xwr16xx_capture_demo.bin

For CCS development mode, should be selected. mmwave_sdk_<ver>\ti\ utils\ccsdebug\xwr16xx_ccsdebug.bin
xWR14xx:
For correct operation of mmWave SDK demos, this utility needs 2 binary images:

BSS : mmwave_sdk_<ver>\firmware\radarss\xwr12xx_xwr14xx_radarss.bin
MSS For the SDK packaged xWR14xx demos and ccsdebug utility, there is a bin file provided in their respective:
folder
For demo mode, choose from of these binary files from the SDK: one

mmwave_sdk_<ver>\packages\ti\demo\xwr14xx\mmw\xwr14xx_mmw_demo_mss.bin
mmwave_sdk_<ver>\packages\ti\demo\xwr14xx\capture\xwr14xx_capture_demo_mss.bin

 For CCS development mode, mmwave_sdk_<ver>\ti\ utils\ccsdebug\xwr14xx_ccsdebug_mss.bin should be
 selected.

Flashing procedure

Power up the EVM and check the Device Manager in your windows PC. Note the number for the serial port marked as "XDS110
" for the EVM. Lets say for this example, it showed up as COM25. Use this COM port in the TIClass Application/User UART

Uniflash tool. Follow the remaining instructions in the " " to complete the flashing.UniFlash v4 User Guide for mmWave Devices
Switch back to Functional Mode

Refer to the EVM User Guide to understand the bootup modes of the EVM and the SOP jumpers (See "Sense-on-Power (SOP)
" section in mmWave device's EVM user guide). To put the EVM in functional mode, power off the board and removeJumpers

jumpers from "SOP2" pin and leave the jumper on "SOP0" pin.

4. 2. How to erase flash on xWR14xx/xWR16xx EVM

Setup the Booster Pack EVM for flashing as mentioned in step 1 of the section: How to flash an image onto xWR14xx/xWR16xx EVM
Follow the instructions in " " section " ".UniFlash v4 User Guide for mmWave Devices Format SFLASH Button
Switch back to Functional Mode as mentioned in step 4 of the section: How to flash an image onto xWR14xx/xWR16xx EVM

4. 3. How to connect xWR14xx/xWR16xx EVM to CCS using JTAG

Debug/JTAG capability is available via the same XDS110 micro-USB port/cable on the EVM. TI Code composer studio would be required for

http://www.ti.com/tool/UNIFLASH
http://processors.wiki.ti.com/index.php/Category:CCS_UniFlash
http://processors.wiki.ti.com/index.php/Category:CCS_UniFlash
http://processors.wiki.ti.com/index.php/Category:CCS_UniFlash
http://processors.wiki.ti.com/index.php/Category:CCS_UniFlash
http://processors.wiki.ti.com/index.php/Category:CCS_UniFlash

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

29

1.
2.
3.
4.

accessing the debug capability of the device. Refer to the release notes for TI code composer studio and emulation pack version that would
be needed.

4. 3. 1. Emulation Pack Update

Refer to the mmWave SDK release notes for the emulation pack version that would be needed within CCS to connect to the EVM. Check if
that particular or its later version of "TI Emulators" is available within your CCS installation. If you have an older version on your system, refer
to CCS help on how to update software packages within CCS.

4. 3. 2. Device support package Update

To create the ccxml file for connecting to the EVM, you will need to first update the device support package within CCS. Refer to the
mmWave SDK release notes for the device support package version that would be needed within CCS to connect to the EVM. Check if that
particular or its later version of "mmWave Radar Device Support" is available within your CCS installation. If you have an older version on
your system, refer to CCS help on how to update software packages within CCS.

4. 3. 3. Target Configuration file for CCS (CCXML)

4. 3. 3. 1. Creating a CCXML file

Assuming you have updated the device support package and Emulation pack as mentioned in the above, follow the steps mentionedsection
below to create a target configuration file in CCS.

If your CCS does not already show "Target Configurations" window, do View->Target Configurations
This will show the "Target Configurations" window, right click in the window and select "New Target Configuration"
Give an appropriate name to the ccxml file you want to create for the EVM
Scroll the "Connection" list and select "Texas Instruments XDS110 USB Debug Probe", when this is done, the "Board or Device" list
will be filtered to show the possible candidates, find and choose AWR1642 or AWR1443 and check the box. Click Save and the file
will be created.

4. 3. 3. 2. Connecting to xWR14xx/xWR16xx EVM using CCXML in CCS

Follow steps in above to create a ccxml file. Once created, the target configuration file will be seen in the " " listsection Target Configurations
and you can launch the target by selecting it and with right-click select the "Launch Selected Configuration" option. This will launch the target
and the Debug window will show all the cores present on the device. You can connect to the target with right-click and doing "Connect
Target".

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

30

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

31

1.

4. 4. Developing using SDK

4. 4. 1. Build Instructions

Follow the mmwave_sdk_release_notes instructions to install the mmwave_sdk in your development environment (windows or linux). Install
all the tools versions mentioned in the mmwave_sdk_release_notes for the particular release. Most tools have their separate installer
(windows or linux) and installation procedure should be straightforward.

4. 4. 2. Setting up build environment

4. 4. 2. 1. Windows

Create command prompt at < folder. Set the paths shown below as permmwave_sdk_<ver> install path>\packages\scripts\windows
your tools installation location. Place these commands in a batch file setenv_tools.bat and run .setenv_tools.bat

setenv_tools.bat

@REM Select your device. Options (case sensitive) are: awr14xx,
iwr14xx, awr16xx, iwr16xx
set MMWAVE_SDK_DEVICE=awr16xx

@REM Common settings for awr14xx, awr16xx, iwr14xx and iwr16xx
@REM TI ARM compiler
set
R4F_CODEGEN_INSTALL_PATH=C:/ti/ccsv7/tools/compiler/ti-cgt-arm_16.9.1
.LTS
@REM Path to <mmwave_sdk installation path>/packages folder
set MMWAVE_SDK_INSTALL_PATH=c:/ti/mmwave_sdk_<ver>/packages
@REM TI XDC
set XDC_INSTALL_PATH=c:/ti/xdctools_3_50_00_10_core
@REM TI BIOS
set BIOS_INSTALL_PATH=C:/ti/bios_6_50_01_12/packages
@REM perl
set PERL_INSTALL_PATH=C:/Strawberry/perl/bin
@REM if using CCS to download, set below define to yes else no
set DOWNLOAD_FROM_CCS=yes
@REM install from web (free s/w). skip if doxygen output is not needed
@REM set DOXYGEN_INSTALL_PATH=C:/ti/doxygen

@REM Following only needed for awr16xx and iwr16xx
@REM TI DSP compiler
set
C674_CODEGEN_INSTALL_PATH=C:/ti/ccsv7/tools/compiler/ti-cgt-c6000_8.1
.3
@REM DSPlib
set C64Px_DSPLIB_INSTALL_PATH=C:/ti/dsplib_c64Px_3_4_0_0
@REM MATHlib
set C674x_MATHLIB_INSTALL_PATH=C:/ti/mathlib_c674x_3_1_2_1
@REM awr16xx/iwr16xx radarss firmware. Use the RPRC formatted binary
file.
set
XWR16XX_RADARSS_IMAGE_BIN=%MMWAVE_SDK_INSTALL_PATH%/../firmware/radar
ss/xwr16xx_radarss_rprc.bin

Even though the build is in Windows environment the paths have to use forward slashes "/" in the paths shown above

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

32

1.

2.

3.

1.

Obtain () and copy it to your Perl installation'sCRC.pm http://cpansearch.perl.org/src/OLIMAUL/Digest-CRC-0.21/lib/Digest/CRC.pm
lib\Digest path. ex: C:\Strawberry\perl\lib\Digest
Run This should and should give the following output. The build environment is nowmmwave_sdk_setupenv.bat. not give errors
setup

mmWave Build Environment Configured

4. 4. 2. 2. Linux

Open a terminal and cd to < . Set the paths shown below as per your toolsmmwave_sdk_<ver> install path>/packages/scripts/unix
installation location. Place these commands in a shell script setenv_tools.sh, enable execute permission and source it.

Path setting for TI tools is done by mmwave_sdk_setupenv.bat below

Please note that the versions shown above are examples. The actual versions of the mmwave sdk and tools to be used
Paths have to be updated with the correct location of the toolsare given in the Release notes of a particular release.

installed on the user's machine

http://CRC.pm
http://cpansearch.perl.org/src/OLIMAUL/Digest-CRC-0.21/lib/Digest/CRC.pm

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

33

1.

2.

setenv_tools.sh

Select your device. Options (case sensitive) are: awr14xx, iwr14xx,
awr16xx, iwr16xx
export MMWAVE_SDK_DEVICE=awr16xx

By default all tools are installed under ~/ti folder. Change this if
installing to a different location
export DEFAULT_TOOLS_PATH=~/ti

Common settings for awr14xx, awr16xx, iwr14xx, iwr16xx
TI ARM compiler
export
R4F_CODEGEN_INSTALL_PATH=${DEFAULT_TOOLS_PATH}/ccsv7/tools/compiler/t
i-cgt-arm_16.9.1.LTS
Path to <mmwave_sdk installation path>/packages folder
export
MMWAVE_SDK_INSTALL_PATH=${DEFAULT_TOOLS_PATH}/mmwave_sdk_<ver>/packag
es
TI XDC
export XDC_INSTALL_PATH=${DEFAULT_TOOLS_PATH}/xdctools_3_50_00_10_core
TI BIOS
export
BIOS_INSTALL_PATH=${DEFAULT_TOOLS_PATH}/bios_6_50_01_12/packages
perl
export PERL_INSTALL_PATH=/usr/bin
if using CCS to download, set below define to yes else no
export DOWNLOAD_FROM_CCS=yes

Following only needed for awr16xx and iwr16xx
TI DSP compiler
export
C674_CODEGEN_INSTALL_PATH=${DEFAULT_TOOLS_PATH}/ccsv7/tools/compiler/
ti-cgt-c6000_8.1.3
DSPlib
export
C64Px_DSPLIB_INSTALL_PATH=${DEFAULT_TOOLS_PATH}/dsplib_c64Px_3_4_0_0
MATHlib
export
C674x_MATHLIB_INSTALL_PATH=${DEFAULT_TOOLS_PATH}/mathlib_c674x_3_1_2_1
awr16xx/iwr16xx radarss firmware. Use the RPRC formatted binary
file.
export
XWR16XX_RADARSS_IMAGE_BIN=${MMWAVE_SDK_INSTALL_PATH}/../firmware/rada
rss/xwr16xx_radarss_rprc.bin

Run setenv_tools.sh

chmod +x setenv_tools.sh
source ./setenv_tools.sh

Path setting for TI tools is done by mmwave_sdk_setupenv.sh below

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

34

2.

3.

4.

Install CRC for the perl installation:

Install other needed tools

sudo apt-get --assume-yes install libdigest-crc-perl

Install Mono. This is needed to run windows executable to convert
.out to .bin (flashable application executable)
The following command was tested for Ubuntu. For other Linux
distributions refer to
http://www.mono-project.com/download/#download-lin
sudo apt-get --assume-yes install mono-complete

Assuming build is on a Linux 64bit machine, install modules that allows Linux 32bit binaries to run. This is needed for Image Creator
binaries

sudo dpkg --add-architecture i386

Run mmwave_sdk_setupenv.sh as shown below. This should not give errors and should print the message "Build Environment
configured". The build environment is now setup.

Run mmwave_sdk_setupenv.sh

source ./mmwave_sdk_setupenv.sh

4. 4. 3. Building demo

To clean build a demo, first make sure that the environment is setup as detailed in earlier section. Then run the following command. On
successful execution of the command, the output is <demo>.xe* which can be used to load the image via CCS and <demo>.bin which can be
used as the binary in the steps mentioned in section "."How to flash an image onto xWR14xx/xWR16xx EVM

4. 4. 3. 1. Building demo in Windows

Please note that the versions shown above are examples. The actual versions of the mmwave sdk and tools to be used
are given in the Release notes of a particular release. Paths have to be updated with the correct location of the tools
installed on the user's machine

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

35

Building demo in windows

REM Use xwr14xx or xwr16xx for <device type> below. Use mmw or capture for
<demo> below
cd %MMWAVE_SDK_INSTALL_PATH%/ti/demo/<device type>/<demo>

REM Clean and build
gmake clean
gmake all

REM Incremental build
gmake all

REM For example to build the mmw demo for awr14xx or iwr14xx
cd %MMWAVE_SDK_INSTALL_PATH%/ti/demo/xwr14xx/mmw
gmake clean
gmake all
REM This will create xwr14xx_mmw_demo_mss.xer4f & xwr14xx_mmw_demo_mss.bin
binaries under %MMWAVE_SDK_INSTALL_PATH%/ti/demo/xwr14xx/mmw folder

REM For example to build the mmw demo for awr16xx or iwr16xx
cd %MMWAVE_SDK_INSTALL_PATH%/ti/demo/xwr16xx/mmw
gmake clean
gmake all
REM This will create xwr16xx_mmw_demo_mss.xer4f, xwr16xx_mmw_demo_dss.xe674
& xwr14xx_mmw_demo.bin binaries under
%MMWAVE_SDK_INSTALL_PATH%/ti/demo/xwr16xx/mmw folder

4. 4. 3. 2. Building demo in Linux

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

36

Building demo in linux

Use xwr14xx or xwr16xx for <device type> below. Use mmw or capture for
<demo> below
cd ${MMWAVE_SDK_INSTALL_PATH}/ti/demo/<device type>/<demo>

Clean and build
make clean
make all

Incremental build
make all

For example to build the mmw demo for awr14xx or iwr14xx
cd ${MMWAVE_SDK_INSTALL_PATH}/ti/demo/xwr14xx/mmw
make clean
make all
This will create xwr14xx_mmw_demo_mss.xer4f & xwr14xx_mmw_demo_mss.bin
binaries under ${MMWAVE_SDK_INSTALL_PATH}/ti/demo/xwr14xx/mmw folder

For example to build the mmw demo for awr16xx or iwr16xx
cd ${MMWAVE_SDK_INSTALL_PATH}/ti/demo/xwr16xx/mmw
make clean
make all
This will create xwr16xx_mmw_demo_mss.xer4f, xwr16xx_mmw_demo_dss.xe674 &
xwr14xx_mmw_demo.bin binaries under
${MMWAVE_SDK_INSTALL_PATH}/ti/demo/xwr16xx/mmw folder

4. 4. 4. Advanced build

The mmwave sdk package includes all the necessary libraries and hence there should be no need to rebuild the driver, algorithms or control
component libraries. In case a modification has been made to any of these modules then the following section details how to build these
components.

4. 4. 4. 1. Building drivers/control/alg components

 To clean build driver, control or alg component and its unit test, first make sure that the environment is setup as detailed in earlier section.
Then run the following commands

Each demo has dependency on various drivers and control components. The libraries for those components need to be available in
their respective lib folders for the demo to build successfully.

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

37

Building component in windows

cd %MMWAVE_SDK_INSTALL_PATH%/ti/<path to the component>
gmake clean
gmake all

REM For example to build the adcbuf lib and unit test
cd %MMWAVE_SDK_INSTALL_PATH%/ti/drivers/adcbuf
gmake clean
gmake all
REM If MMWAVE_SDK_DEVICE is set to awr14xx or iwr14xx, the commands will
create
REM libadcbuf_xwr14xx.aer4f library under
%MMWAVE_SDK_INSTALL_PATH%/ti/drivers/adcbuf/lib folder
REM xwr14xx_adcbuf_mss.xer4f unit test binary under
%MMWAVE_SDK_INSTALL_PATH%/ti/drivers/adcbuf/test/xwr14xx folder
REM If MMWAVE_SDK_DEVICE is set to awr16xx or iwr16xx, the commands will
create
REM libadcbuf_xwr16xx.aer4f library for MSS under
%MMWAVE_SDK_INSTALL_PATH%/ti/drivers/adcbuf/lib folder
REM xwr16xx_adcbuf_mss.xer4f unit test binary for MSS under
%MMWAVE_SDK_INSTALL_PATH%/ti/drivers/adcbuf/test/xwr16xx folder
REM libadcbuf_xwr16xx.ae674 library for DSS under
%MMWAVE_SDK_INSTALL_PATH%/ti/drivers/adcbuf/lib folder
REM xwr16xx_adcbuf_dss.xe674 unit test binary for DSS under
%MMWAVE_SDK_INSTALL_PATH%/ti/drivers/adcbuf/test/xwr16xx folder

REM For example to build the mmwavelink lib and unit test
cd %MMWAVE_SDK_INSTALL_PATH%/ti/control/mmwavelink
gmake clean
gmake all
REM If MMWAVE_SDK_DEVICE is set to awr14xx or iwr14xx, the commands will
create
REM libmmwavelink_xwr14xx.aer4f library under
%MMWAVE_SDK_INSTALL_PATH%/ti/control/mmwavelink/lib folder
REM xwr14xx_link_mss.xer4f unit test binary under
%MMWAVE_SDK_INSTALL_PATH%/ti/drivers/control/mmwavelink/test/xwr14xx folder
REM If MMWAVE_SDK_DEVICE is set to awr16xx or iwr16xx, the commands will
create
REM libmmwavelink_xwr16xx.aer4f library for MSS under
%MMWAVE_SDK_INSTALL_PATH%/ti/control/mmwavelink/lib folder
REM xwr16xx_link_mss.xer4f unit test binary for MSS under
%MMWAVE_SDK_INSTALL_PATH%/ti/control/mmwavelink/test/xwr16xx folder
REM libmmwavelink_xwr16xx.ae674 library for DSS under
%MMWAVE_SDK_INSTALL_PATH%/ti/control/mmwavelink/lib folder
REM xwr16xx_link_dss.xe674 unit test binary for DSS under
%MMWAVE_SDK_INSTALL_PATH%/ti/control/mmwavelink/test/xwr16xx folder

REM Additional build options for each component can be found by invoking
make help
gmake help

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

38

Building component in linux

cd ${MMWAVE_SDK_INSTALL_PATH}/ti/<path to the component>
make clean
make all

For example to build the adcbuf lib and unit test
cd ${MMWAVE_SDK_INSTALL_PATH}/ti/drivers/adcbuf
make clean
make all
If MMWAVE_SDK_DEVICE is set to awr14xx or iwr14xx, the commands will
create
libadcbuf_xwr14xx.aer4f library under
${MMWAVE_SDK_INSTALL_PATH}/ti/drivers/adcbuf/lib folder
xwr14xx_adcbuf_mss.xer4f unit test binary under
${MMWAVE_SDK_INSTALL_PATH}/ti/drivers/adcbuf/test/xwr14xx folder
If MMWAVE_SDK_DEVICE is set to awr16xx or iwr16xx, the commands will
create
libadcbuf_xwr16xx.aer4f library for MSS under
${MMWAVE_SDK_INSTALL_PATH}/ti/drivers/adcbuf/lib folder
xwr16xx_adcbuf_mss.xer4f unit test binary for MSS under
${MMWAVE_SDK_INSTALL_PATH}/ti/drivers/adcbuf/test/xwr16xx folder
libadcbuf_xwr16xx.ae674 library for DSS under
${MMWAVE_SDK_INSTALL_PATH}/ti/drivers/adcbuf/lib folder
xwr16xx_adcbuf_dss.xe674 unit test binary for DSS under
${MMWAVE_SDK_INSTALL_PATH}/ti/drivers/adcbuf/test/xwr16xx folder

For example to build the mmwavelink lib and unit test
cd ${MMWAVE_SDK_INSTALL_PATH}/ti/control/mmwavelink
make clean
make all
If MMWAVE_SDK_DEVICE is set to awr14xx or iwr14xx, the commands will
create
libmmwavelink_xwr14xx.aer4f library under
${MMWAVE_SDK_INSTALL_PATH}/ti/control/mmwavelink/lib folder
xwr14xx_link_mss.xer4f unit test binary under
${MMWAVE_SDK_INSTALL_PATH}/ti/drivers/control/mmwavelink/test/xwr14xx
folder
If MMWAVE_SDK_DEVICE is set to awr16xx or iwr16xx, the commands will
create
libmmwavelink_xwr16xx.aer4f library for MSS under
${MMWAVE_SDK_INSTALL_PATH}/ti/control/mmwavelink/lib folder
xwr16xx_link_mss.xer4f unit test binary for MSS under
${MMWAVE_SDK_INSTALL_PATH}/ti/control/mmwavelink/test/xwr16xx folder
libmmwavelink_xwr16xx.ae674 library for DSS under
${MMWAVE_SDK_INSTALL_PATH}/ti/control/mmwavelink/lib folder
xwr16xx_link_dss.xe674 unit test binary for DSS under
${MMWAVE_SDK_INSTALL_PATH}/ti/control/mmwavelink/test/xwr16xx folder

Additional build options for each component can be found by invoking make
help
make help

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

39

example output of make help for drivers and mmwavelink

**
* Makefile Targets for the ADCBUF
clean -> Clean out all the objects
drv -> Build the Driver only
drvClean -> Clean the Driver Library only
test -> Builds all the unit tests for the SOC
testClean -> Cleans the unit tests for the SOC
**

example output of make help for mmwave control and alg component

**
* Makefile Targets for the mmWave Control
clean -> Clean out all the objects
lib -> Build the Core Library only
libClean -> Clean the Core Library only
test -> Builds all the Unit Test
testClean -> Cleans all the Unit Tests
**

Please note that not all drivers are supported for all devices. List of supported drivers for each device is listed in the Release Notes.

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

40

5. MMWAVE SDK deep dive

5. 1. Typical mmWave Radar Processing Chain

Following shows a typical mmWave Radar processing chain:figure

Figure 6: Typical mmWave radar processing chain

Using mmWave SDK the above chain could be realized as shown in the following for xWR14xx and xWR16xx. In the following figure,figure
green arrow shows the control path and red arrow shows the data path. Blue blocks are mmWave SDK components and yellow blocks are
custom application code. The hierarchy of software flow/calls is shown with embedding boxes. Depending on the complexity of the higher
algorithms (such as clustering, tracking, etc) and their memory/mips consumption, they can either be partially realized inside the AR device or
would run entirely on the external processor.

Figure 7: Typical mmWave radar processing chain using xWR14xx mmWave SDK

https://confluence.itg.ti.com/download/attachments/21921859/typical_mmwave_processing_chain.png?version=1&modificationDate=1492924812000&api=v2
https://confluence.itg.ti.com/download/attachments/21921859/image2016-9-30%2010%3A27%3A32.png?version=1&modificationDate=1492924812000&api=v2

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

41

Figure 8: Typical mmWave radar processing chain using xWR16xx mmWave SDK

Please refer to the code and documentation inside the mmwave_sdk_<ver>\packages\ti\demo\<platform>\mmw folder for more details and
example code on how this chain is realized using mmWave SDK components.

5. 2. Typical Programming Sequence

The above processing chain can be split into two distinct blocks: control path and data path.

5. 2. 1. Control Path

The control path in the above processing chain is depicted by the following blocks.

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

42

Figure 9: Typical mmWave radar control flow

Following set of figures shows how an application programming sequence would be for setting up the typical control path - init, config, start.
This is a high level diagram simplified to highlight the main sofwtare APIs and may not show all the processing elements and call flow. For an
example implementation of this call flow, please refer to the code and documentation inside the mmwave_sdk_<ver>\packages\ti\demo\<platf
orm>\mmw folder.

5. 2. 1. 1. xWR14xx (MSS<->RADARSS)

On xWR14xx, the control path runs on the Master subsystem (Cortex-R4F) and the application can simply call the mmwave APIs in the SDK
to realize most of the functionality.

Figure 10: xWR14xx: Detailed Control Flow (Init sequence)

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

43

Figure 11: xWR14xx: Detailed Control Flow (Config sequence)

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

44

Figure 12: xWR14xx: Detailed Control Flow (start sequence)

5. 2. 1. 2. xWR16xx

On xWR16xx, the control path can run on MSS only, DSS only or in "co-operative" mode where the init and config are initiated by the MSS
and the start is initiated by the DSS after the data path configuration is complete. In the figures below, control path runs on MSS entirely and
MSS is responsible for properly configuring the RADARSS (RF) and DSS (data processing). The co-operative mode can be seen in the MMW
demo. The "capture" demo provides a sample implementation of all 3 modes.

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

45

Figure 13: xWR16xx: Detailed Control Flow (Init sequence)

Figure 14: xWR16xx: Detailed Control Flow (Config sequence)

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

46

Figure 15: xWR16xx: Detailed Control Flow (Start sequence)

5. 2. 2. Data Path

5. 2. 2. 1. xWR14xx

In xWR14xx, the data path in the above processing chain is depicted by the following blocks running on the MSS (Cortex-R4F).

Figure 16: Typical mmWave radar data flow in xWR14xx

Please refer to the documentation provided here formmwave_sdk_<ver>\packages\ti\demo\xwr14xx\mmw\docs\doxygen\html\index.html
more details on each of the individual blocks of the data path.

5. 2. 2. 2. xWR16xx

In xWR16xx, the data path in the above processing chain is depicted by the following blocks running on primarlity on the DSS (C674x).

Figure 17: Typical mmWave radar data flow in xWR16xx

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

47

Please refer to the documentation provided here formmwave_sdk_<ver>\packages\ti\demo\xwr16xx\mmw\docs\doxygen\html\index.html
more details on each of the individual blocks of the data path.

5. 3. mmWave SDK - TI components

The mmWave SDK functionality broken down into components are explained in next few subsections.

5. 3. 1. Drivers

Drivers encapsulate the functionality of the various hardware IPs in the system and provide a well defined API to the higher layers. The
drivers are designed to be OS-agnostic via the use of OSAL layer. Following figure shows typical internal software blocks present in the SDK
drivers. The source code for the SDK drivers are present in the folder. Documentation of themmwave_sdk_<ver>\packages\ti\drivers\<ip>
API is available via doxygen and placed at . The driver's unit testmmwave_sdk_<ver>\packages\ti\drivers\<ip>\docs\doxygen\html\index.html
code, running on top of SYSBIOS is also provided as part of the package . The library formmwave_sdk_<ver>\packages\ti\drivers\<ip>\test\
the drivers are placed in the directory and the file is named lib<ip>_<platform>.aer4f formmwave_sdk_<ver>\packages\ti\drivers\<ip>\lib
MSS and lib<ip>_<platform>.ae 674 for DSP.

Figure 18: mmWave SDK Drivers - Internal software design

5. 3. 2. OSAL

An OSAL layer is present within the mmWave SDK to provide the OS-agnostic feature of the foundational components (drivers,
mmWaveLink, mmWaveAPI). This OSAL provides an abstraction layer for some of the common OS services: Semaphore, Mutex, Debug,
Interrupts, Clock, Memory. The source code for the OSAL layer is present in the folder.mmwave_sdk_<ver>\packages\ti\drivers\osal
Documentation of the APIs are available via doxygen and placed at mmwave_sdk_<ver>\packages\ti\drivers\osal\docs\doxygen\html\index.ht

. A sample porting of this OSAL for TI RTOS is provided as part of the mmWave SDK. System integrators could port the OSAL for theirml
custom OS or customize the same TI RTOS port for their custom application, as per their requirements.

Examples of what integrators may want to customize:

MemoryP module - for example, choosing from among a variety of heaps available in TI RTOS (SYSBIOS), or use own allocator.
Hardware interrupt mappings. This case is more pronounced for the C674 DSP on xWR16xx which has only 16 interrupts (of which
12 are available under user control) whereas the events in the SOC are much more than 16. These events go to the C674 through
an interrupt controller (INTC) and Event Combiner (for more information see the C674x megamodule user guide at http://www.ti.com/

). The default OSAL implementation provided in the release routes all events used by the drivers throughlit/ug/sprufk5a/sprufk5a.pdf
the event combiner. If a user chooses to route differently (e.g for performance reasons), they may add conditional code in OSAL
implementation to route specific events through the INTC and event combiner blocks. User can conveniently use event defines in
ti/common/sys_common_*.h to acheive this.

5. 3. 3. mmWaveLink

 mmWaveLink is a control layer and primarily implements the protocol that is used to communicate between the Radar Subsystem
(RADARSS) and the controlling entity which can be either Master subsystem (MSS R4F) and/or DSP subsystem (DSS C674x, xWR16xx
only). It provides a suite of low level APIs that the application (or the software layer on top of it) can call to enable/configure/control the
RADARSS. It provides a well defined interface for the application to plug in the correct communication driver APIs to communicate with the
RADARSS. Following figure shows the various interfaces/APIs of the mmWaveLink component. The source code for mmWaveLink is present
in the mmwave_sdk_<ver>\packages\ti\control\mmwavelink .folder Documentation of the API is available via doxygen and placed at mmwave

http://www.ti.com/lit/ug/sprufk5a/sprufk5a.pdf
http://www.ti.com/lit/ug/sprufk5a/sprufk5a.pdf

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

48

. The component's unit test code, running on top of SYSBIOS is _sdk_<ver>\packages\ti\control\mmwavelink\docs\doxygen\html\index.html
also provided as part of the package: .mmwave_sdk_<ver>\packages\ti\control\mmwavelink\test\

Figure 19: mmWaveLink - Internal software design

5. 3. 4. mmWave API

mmWaveAPI is a higher layer control running on top of mmWaveLink and LLD API (drivers API). It is designed to provide a layer of
abstraction in the form of simpler and fewer set of APIs for application to perform the task of mmWave radar sensing. In xWR16xx, it also
provides a layer of abstraction over IPC to synchronize and pass configuration between the MSS and DSS domains. The source code for
mmWave API layer is present in the . Documentation of the API is available viammwave_sdk_<ver>\packages\ti\control\mmwave folder
doxygen and placed at . The component's unit test code,mmwave_sdk_<ver>\packages\ti\control\mmwave\docs\doxygen\html\index.html
running on top of SYSBIOS is also provided as part of the package: .mmwave_sdk_<ver>\packages\ti\control\mmwave\test\

mmWave Front End Calibrations
mmWave API, by default, enables all init/boot time time calibrations for mmWave Front End. Moreover, when application requests
the one-time and periodic calibrations in MMWave_start API call, mmWave API enables all the available one-time and periodic
calibrations for mmWave Front End.

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

49

Figure 20: mmWave API - Internal software design

There are two modes of configurations which are provided by the mmWave module.

5. 3. 4. 1. Full configuration

The "full" configuration mode implements the basic chirp/frame sequence of mmWave Front end and is the recommended mode for
application to use when using the basic chirp/frame configuration. In this mode the application will use the entire set of services provided by
the mmWave control module. These features includes:-

Initialization of the mmWave Link
Synchronization services between the MSS and DSS on the xr16xx
Asynchronous Event Management
Start & Stop services
Configuration of the RADARSS for Chirp & Continuous mode
Configuration synchronization between the MSS and DSS

In the full configuration mode; it is possible to create multiple profiles with multiple chirps. The following APIs have been added for this
purpose:-

Chirp Management:

MMWave_addChirp
MMWave_delChirp

Profile Management:

MMWave_addProfile
MMWave_delProfile

5. 3. 4. 2. Minimal configuration

For advanced users, that either need to use advanced frame config of mmWave Front End or need to perform extra sequence of commands
in the CONFIG routine, the minimal mode is recommended. In this mode the application has access to only a subset of services provided by
the mmWave control module. These features includes:-

Initialization of the mmWave Link

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

50

Synchronization services between the MSS and DSS on the xr16xx
Asynchronous Event Management
Start & Stop services

In this mode the application is responsible for directly invoking the mmWave Link API in the correct order as per their configuration
requirements. The configuration services are not available to the application; so in xWR16xx, the application is responsible for passing the
configuration between the MSS and DSS if required.

See sample call flow below:

Figure 21: mmWave API - 'Minimal' Config - Sample flow (xWR16xx)

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

51

Figure 22: mmWave API - 'Minimal' Config - Sample flow (xWR14xx)

5. 3. 5. mmWaveLib

mmWaveLib is a collection of algorithms that provide basic functionality needed for FMCW radar-cube processing. This component is
available for xWR16xx only and contains optimized library routines for C674 DSP architecture only. This component is not available for cortex
R4F (MSS). These routines do not encapsulate any data movement/data placement functionality and it is the responsibility of the application
code to place the input and output buffers in the right memory (ex: L2) and use EDMA as needed for the data movement. The source code for
mmWaveLib is present in the . Documentation of the API is available via doxygen andmmwave_sdk_<ver>\packages\ti\alg\mmwavelib folder
placed at . The component's unit test code, running on top ofmmwave_sdk_<ver>\packages\ti\ \docs\doxygen\html\index.htmlalg\mmwavelib
SYSBIOS is also provided as part of the package: .mmwave_sdk_<ver>\packages\ti\ \test\alg\mmwavelib

5. 3. 6. RADARSS Firmware

This is a binary () that runs on Radar subsystem of the xWR14xx/xWR16xx and realizes the mmWavemmwave_sdk_<ver>\firmware\radarss
front end. It exposes configurability via a set of messages over mailbox which is understood by the mmWaveLink component running on the
MSS. RADARSS firmware is responsible for configuring RF/analog and digital front-end in real-time, as well as to periodically schedule
calibration and functional safety monitoring. This enables the mmWave front-end to be self-contained and capable of adapting itself to handle
temperature and ageing effects, and to enable significant ease-of-use from an external host perspective.

5. 3. 7. CCS Debug Utility
This is a simple binary that can flashed onto the board to facilitate the development phase of mmWave application using TI Code Composer
Studio (CCS). See section for more details. For xWR14xx, this binary is for R4F (MSS) and for xWR16xx, there is anCCSdevelopmentmode
executable for both R4F (MSS) and C674 (DSS) and is combined into one metaImage for flashing along with RADARSS firmware. Note that
the CCS debug application for C674 (DSS) has the L1 and L2 cache turned off so that new application that gets downloaded via CCS can
enable it as needed, without any need for cache flush operations, etc during switching of applications.

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

52

5. 3. 8. mmWave SDK - System Initialization

Application should call init APIs for the following system modules (ESM, SOC, Pinmux) to enable correct operation of the device

5. 3. 8. 1. ESM

ESM_init should be the first function that is called by the application in its main(). Refer to the doxygen for this function at mmwave_sdk_<ver
 to understand the API specification. >\packages\ti\drivers\esm \docs\doxygen\html\index.html

5. 3. 8. 2. SOC

SOC_init should be the next function that should be called after ESM_init. Refer to the doxygen for this function at mmwave_sdk_<ver>\pack
 to understand the API specification. It primarily takes care of following things:ages\ti\drivers\soc \docs\doxygen\html\index.html

DSP un-halt

This applies for xWR16xx only. Bootloader loads the DSP application from the flash onto DSP's L2/L3 memory but doesnt un-halt the C674x
core. It is the responsibility of the MSS application to un-halt the DSP. SOC_init for xWR16xx MSS provides this functionality under its hood.

RADARSS un-halt/System Clock

To enable selection of system frequency to use "closed loop APLL", the SOC_init function unhalts the RADARSS and then spins around
waiting for acknowledgement from the RADARSS that the APLL clock close loop calibration is completed successfully.

MPU (Cortex R4F)

MPU or Memory Protection Unit needs to be configured on the Cortex R4F of xWR14xx and xWR16xx for the following purposes:

Protection of memories and peripheral (I/O) space e.g not allowing execution in I/O space or writes to program (.text) space.
Controlling properties like cacheability, buferability and orderability for correctness and performance (execution time, memory
bandwidth). Note that since there is no cache on R4F, cacheability is not enabled for any region.

MPU has been implemented in the SOC module as a private function SOC_mpu_config() that is called by public API SOC_init(). Doxygen of
SOC (has SOC_mpu_config() documented with details of choicemmwave_sdk_<ver>\packages\ti\drivers\soc \docs\doxygen\html\index.html)
of memory regions etc. When MPU violation happens, BIOS will automatically trap and produce a dump of registers that indicate which
address access caused violation (e.g DFAR which indicates what data address access caused violation). Note: The SOC function uses as
many MPU regions as possible to cover all the memory space available on the respective device. There may be some free MPU regions
available for certain devcies (ex: xWR14xx) for the application to use and program as per their requirement. See the function
implementation/doxygen for more details on the usage and availability of the MPU regions.

MARs (xWR16xx C674)

The cacheability property of the various regions as seen by the DSP (C674x in xWR16xx) is controlled by the MAR registers. These registers
are programmed as per driver needs in in the SOC module as a private function SOC_configMARs() that is called by public API SOC_init().
See the doxygen documentation of this function to get more details. Note that the drivers do not operate on L3 RAM and HS-RAM, hence
L3/HS-RAM cacheability is left to the application/demo code writers to set and do appropriate cache (writeback/invalidate etc) operations from
the application as necessary, depending on the use cases. The L3 MAR is MAR32 -> 2000_0000h - 20FF_FFFFh and HS-RAM MAR is
MAR33 -> 2100_0000h - 21FF_FFFFh.

5. 3. 8. 3. Pinmux

Pinmux module is provided under with API documentation and available device pads locatedmmwave_sdk_<ver>\packages\ti\drivers\pinmux
at . Application should call these pinmux APIs in the main() tommwave_sdk_<ver>\packages\ti\drivers\pinmux\docs\doxygen\html\index.html
correctly configure the device pads as per their hardware design.

Note that this function assumes that the crystal frequency is 40MHz.

A build time option called DOWNLOAD_FROM_CCS has been added which when set to yes prevents program space from being
protected. This option should be set to yes when debugging using CCS because CCS, by default, attempts to put software
break-point at main() on program load which requires it to change (temporarily) the instruction at beginning main to software
breakpoint and this will fail if program space is read-only. Hence the benefit of code space protection is not there when using CCS
for download. It is however recommended to set this option to no when building the application for production so that program
space is protected.

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

53

5. 3. 9. Data Path tests using Test vector method

The data path processing on mmWave device for 1D, 2D and 3D processing consists of a coordinated execution between the MSS,
HWA/DSS and EDMA. This is demonstrated as part of millimeter wave demo. The demo runs in real-time and has all the associated
framework for RADARSS control etc with it.

The “HWA_EDMA” for xwr14xx and "DSP_EDMA" for xwr16xx tests (located at) aremmwave_sdk_<ver>\packages\ti\drivers\test
stand-alone tests that allow data path processing chain to be executed in non real-time. This allows developer to use it as a
debug/development aid towards eventually making the data path processing real-time with real chirping. Developer can easily step into the
code and test against knowns input signals. The core data path processing source code is shared between this test and the mmw demo.
Most of the documentation is therefore shared as well and can be looked up in the mmw demo documentation.

The “HWA_EDMA” and "DSP_EDMA" tests also provide a test generator, which allows user to set objects artificially at desired range, doppler
and azimuth bins, and noise level so that output can be checked against these settings. It can generate one frame of data. The test
generation and verification are integrated into the “HWA_EDMA” and "DSP_EDMA" tests, allowing developer to run a single executable that
contains the input vector and also verifies the output (after the data path processing chain), thereby declaring pass or fail at the end of the
test. The details of test generator can be seen in the doxygen documentation of these tests located at mmwave_sdk_<ver>\packages\ti\driver

. s\test\<test_dir>\docs\doxygen\html\index.html

TI Pinmux Utility
TI Pinmux Tool available at supports mmWave devices and can be used for designing the pinmuxhttps://dev.ti.com/pinmux
configuration for custom board. It also generates code that can be included by the application and compiled on top of mmWave
SDK and its Pinmux driver.

https://dev.ti.com/pinmux

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

54

1.

2.

6. Appendix

6. 1. Memory usage

The map files of demo and driver unit test application captures the memory usage of various components in the system. They are located in
the same folder as the corresponding .xer4f/.xe674 and .bin files.

6. 2. Register layout

The register layout of the device is available inside each hardware IP's driver source code. See mmwave_sdk_<ver>\packages\ti\drivers\<ip>
. The system level registers (RCM, TOPRCM, etc) are available under the SOC module (\include\reg_*.h mmwave_sdk_<ver>\packages\ti\dri

).vers\soc\include\reg_*.h

6. 3. Enable DebugP logs

The DebugP_log OSAL APIs in ti/drivers/osal/DebugP.h are used in the drivers and test/app code for debug streaming. These are tied to
BIOS's Log_* APIs and are well documented in SYSBIOS documentation. The logs generated by these APIs can be directed to be stored in a
circular buffer and observed using ROV in CCS ().http://rtsc.eclipse.org/docs-tip/Runtime_Object_Viewer

Following steps should be followed to enable these logs:

Enable the flag DebugP_LOG_ENABLED before the header inclusion as seen below.

#define DebugP_LOG_ENABLED 1
#include <ti/drivers/osal/DebugP.h>

Add the following lines in your SYSBIOS cfg file with appropriate setting of numEntries (number of messages) which will impact
memory space:

http://rtsc.eclipse.org/docs-tip/Runtime_Object_Viewer

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

55

2.

Application SYSBIOS cfg file

var Log = xdc.useModule('xdc.runtime.Log');
var Main = xdc.useModule('xdc.runtime.Main');
var Diags = xdc.useModule('xdc.runtime.Diags');
var LoggerBuf =
xdc.useModule('xdc.runtime.LoggerBuf');
LoggerBuf.TimestampProxy =
xdc.useModule('xdc.runtime.Timestamp');

/* Trace Log */
var loggerBufParams = new LoggerBuf.Params();
loggerBufParams.bufType = LoggerBuf.BufType_CIRCULAR;
//BufType_FIXED
loggerBufParams.exitFlush = false;
loggerBufParams.instance.name = "_logInfo";
loggerBufParams.numEntries = 100; <-- number of messages this will
affect memory consumption
// loggerBufParams.bufSection = ;
_logInfo = LoggerBuf.create(loggerBufParams);
Main.common$.logger = _logInfo;

/* Turn on USER1 logs in Main module (all non-module functions) */
Main.common$.diags_USER1 = Diags.RUNTIME_ON;

/* Turn on USER1 logs in Task module */
Task.common$.diags_USER1 = Diags.RUNTIME_ON;

A sample ROV log looks like below after code is re-build and run with above changes :

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

56

6. 4. Shared memory usage by SDK demos (xWR1642)

Existing SDK demos (capture, mmw) for xWR1642 assigns 5 banks of L3 memory to DSS (i.e. 640KB) and 1 bank of L3 memory to
RADARSS(128KB). No additional banks are added to MSS TCMA and TCMB; they remain at the default memory size. See TRM for more
details on the L3 memory layout and "xWR1xxx Image Creator User Guide" in SDK for more details on shared memory allocation when
creating flash images. Note that the image that is programmed into the flash of the xWR1642 device determines the shared memory
allocation. So in CCS development mode, its the allocation defined in ccsdebug image that applies and not the application that you download
via CCS.

In SDK code, you can relate to these settings in the following places:

Linker command files in show the 640KB allocation (0xA0000) for the L3mmwave_sdk_<ver>\packages\ti\platform\xWR16xx
memory section
Makefiles for the following components use the value 0x01000005 for SHMEM_ALLOC parameter when invoking the
generateMetaImage script. (See section)xWR1xxx Image Creator

mmwave_sdk_<ver>\packages\ti\utils\ccsdebug
mmwave_sdk_<ver>\packages\ti\demo\xwr16xx\mmw
mmwave_sdk_<ver>\packages\ti\demo\xwr16xx\capture

6. 5. xWR1xxx Image Creator

This section outlines the tools used for image creation needed for flashing the mmWave devices. The application executable generated after
the compile and link step needs to be converted into a bin form for the xWR1xxx bootloader to understand and burn it onto the serial flash
present on the device. The demos inside the mmWave SDK already incorporate the step of bin file generation as part of their makefile and no
further steps are required. This section is helpful for application writers that do not have makefiles similar to the SDK demos. Once the
compile and link step is done, follow the steps below to create the flash images based on the mmWave device that it is intended for.

6. 5. 1. xWR14xx

Use the generateBin script present under or formmwave_sdk_<ver>\packages\ scripts\windows mmwave_sdk_<ver>\packages\ scripts\linux
the conversion of out file to bin for the MSS R4F. Set or and MMWAVE_SDK_DEVICE=awr14xx MMWAVE_SDK_DEVICE=iwr14xx MMWA

in your environment before calling this script.This script needs 3 parameters: VE_SDK_INSTALL_PATH= mmwave_sdk_<ver>\packages

.out file : this is the input file and the parameter represents the file generated after the link step for the application (application
executable). (this can be with file path)
.bin file : this is the output file generated by the script and this parameter represents the filename for the flash binary (this can be with
file path)
offset : this is the offset for the MSS image section needed by the Bootloader and should be 0x200000

The .bin file generated by this script should be used for the MSS_BUILD during flashing step (How to flash an image onto
)xWR14xx/xWR16xx EVM

Unaligned sections
MSS Bootloader for xWR14xx requires that the loadable sections be aligned to 16 bytes using ALIGN(16) in the linker command
file. If this is not done, then out2rprc.exe (called from generateBin script) will throw following error and the bin file generated by
generateBin will be incomplete!

Unaligned sections: File conversion failure

Parsing the input object file, xwr14xx_mmw_demo_mss.xer4f.
Appending zeros 0
Appending zeros 256
Appending zeros 125192
Unaligned section 125192
File conversion failure!

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

57

1.

2.

6. 5. 2. xWR16xx

Application Image generation is two-step process for xWR16xx. Refer to "xWR1xxx Image Creator User Guide" in the SDK docs directory for
details on the internal layout and format of the files generated in these steps.

RPRC format conversion:
Firstly, application executable has to be converted from ELF/COFF format to custom TI RPRC image format.
Use the generateBin script present under or mmwave_sdk_<ver>\packages\ scripts\windows mmwave_sdk_<ver>\packages\ scripts\

 for the conversion of out file to bin for the MSS R4F and for the DSS C674 (need to run the script twice). Set linux MMWAVE_SDK_
 or and iDEVICE=awr16xx MMWAVE_SDK_DEVICE=iwr16xx MMWAVE_SDK_INSTALL_PATH= mmwave_sdk_<ver>\packages

n your environment before calling this script. This script needs 2 parameters:
executable (.xer4f or .xe674) file : this is the input file and the parameter represents the file generated after the link step for
the application (application executable).
binary (.bin) file : this is the output file generated by the script and this parameter represents the filename for the flash binary

Multicore Image file generation:
The Application Image interpreted by the bootloader is a consolidated Multicore image file that includes the RPRC image file of
individual subsystems along with a Meta header. The Meta Header is a Table of Contents like information that contains the offsets to
the individual subsystem RPRC images along with an integrity check information using CRC. In addition, the allocation of the shared
memory to the various memories of the subsystems also has to be specified. The bootloader performs the allocation accordingly. It is
recommended that the allocation of shared memory is predetermined and not changed dynamically.
Use the generateMetaImage script present under or mmwave_sdk_<ver>\packages\ scripts\windows mmwave_sdk_<ver>\packages\

 for merging the MSS, DSS and RADARSS binaries into one metaImage and appending correct CRC. Set scripts\linux MMWAVE_S
in your environment before calling this script. This script needs 5DK_INSTALL_PATH= mmwave_sdk_<ver>\packages

parameters:
FLASHIMAGE: [output] multicore file that will be generated by this script and should be used for flashing onto the board
SHMEM_ALLOC:[input] shared memory allocation in 32-bit hex format where each byte (left to right) is the number of banks
needed for RADARSS (BSS),TCMB,TCMA and DSS. Refer to the the TRM on details on L3 shared memory layout and
"xWR1xxx Image Creator User Guide" in the SDK.
MSS_IMAGE: [input] MSS input image in RPRC (,bin) format as generated by generateBin script in the step above, use
keyword NULL if not needed
BSS_IMAGE: [input] RADARSS (BSS) input image in RPRC (,bin) format, use keyword NULL if not needed. Use mmwa

 here.ve_sdk_<ver>\firmware\radarss\xwr16xx_radarss_rprc.bin
DSS_IMAGE: [input] DSP input image in RPRC (,bin) format as generated by generateBin script in the step above, use
keyword NULL if not needed

The FLASHIMAGE file generated by this script should be used for the METAIMAGE1 during flashing step (How to flash an image onto
)xWR14xx/xWR16xx EVM

6. 6. xWR16xx mmw Demo: cryptic message seen on DebugP_assert

In mmw demo, the BIOS cfg file dss_mmw.cfg has below code at the end to optimize BIOS size. Because of some of these changes,
exceptions, such as those generated through DebugP_assert() calls may give a cryptic message instead of file name and line number that
helps identify easily where the exception is located. To be able to restore this capability, the user can comment out the lines marked with the
comment "" below. For more information, refer to the BIOS user guide.

/* Some options to reduce BIOS code and data size, see BIOS User Guide
section
 "Minimizing the Application Footprint" */
System.maxAtexitHandlers = 0; /* COMMENT THIS FOR FIXING DebugP_Assert
PRINTS */
BIOS.swiEnabled = false; /* We don't use SWIs */
BIOS.libType = BIOS.LibType_Custom;
Task.defaultStackSize = 1500;
Task.idleTaskStackSize = 800;
Program.stack = 1048; /* for isr context */
var Text = xdc.useModule('xdc.runtime.Text');
Text.isLoaded = false;

6. 7. Guidelines on optimizing memory usage

Depending on requirements of a given application, there may be a need to optimize memory usage, particularly given the fact that the
mmWave devices do not have external RAM interfaces to augment on-chip memories. Below is a list of some optimizations techniques, some

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

58

1.

2.

3.

4.

5.
a.

b.

6.

of which are illustrated in the mmWave SDK demos (mmW demo). It should be noted, however, that the demo application memory
requirements are dictated by requirements like ease/flexibility of evaluation of the silicon etc, rather than that of an actual embedded product
deployed in the field to meet specific customer user cases.

On R4F, compile portions of code that is not compute (MIPS) critical with ARM thumb option (depending on the compiler use). If
using the TI ARM compiler, the option to do thumb is The pre-built drivers in the SDK are not built with the thumbcode_state=16.
option because at the driver level, decisions cannot be made as to what APIs will be in compute critical path and what will not be and
it will depend on the customer use cases. The demo code is also not built with thumb option to keep build artifacts and code
organization simpler. Another relevant compiler option (when using TI compiler) to play with to trade-off code size versus speed is --
opt_for_speed=0-5. For more information, refer to and .ARM Compiler Optimizations ARM Optimizing Compiler User's Guide
On C674X, compile portions of code that are not in compute critical path with appropriate -msX option. The -ms options are presently
not used in the SDK drivers or demos. For more details, refer to The TI C6000 compiler user guide at C6000 Optimizing Compiler

. Another option to consider is -mo (this is used in SDK) and for more information, see section "Generating FunctionUsers Guide
Subsections (--gen_func_subsections Compiler Option)" in the compiler user guide. A link of references for optimization (both
compute and memory) is at .Optimization Techniques for the TI C6000 Compiler
Even with aggressive code size reduction options, the C674X tends to have a bigger footprint of control code than the same C code
compiled on R4F. So if feasible, partition the software to use C674X mainly for compute intensive signal-processing type code and
keep more of the control code on the R4F. An example of this is in the mmw demo, where we show the usage of mmwave API to do
configuration (of RADARSS) from R4F instead of the C674X (even though the API allows usage from either domain). In mmw demo,
this prevents linking of (in) and (in mmwave mmwave_sdk_<ver>\packages\ti\control mmwavelink mmwave_sdk_<ver>\pa

) code that is involved in configuration (profile config, chirp config etc) on the C674X side as seen from theckages\ti\control
.map files of mss and dss located at .ti/demo/xwr16xx/mmw
If using TI BIOS as the operating system, depending on the application needs for debug, safety etc, the BIOS footprint in the
application may be reduced by using some of the techniques listed in the BIOS User Guide in the section "Minimizing the Application
Footprint". Some of these are illustrated in the mmw demo on R4F and C674X.
If there is no requirement to be able to restart an application without reloading, then following suggestions may be used:

one time/first time only program code can be overlaid with data memory buffers used after such code is executed. This is
illustrated in the mmw demo on C674X side where such code is overlaid with (load time uninitialized) radar cube data in L3
RAM, refer to the file . (Note:ti\demo\xwr16xx\mmw\dss\dss_mmw_linker.cmdmmwave_sdk_<ver>\packages\
Ability to place code at function granularity requires to use the aforementioned -mo option).
the linker option may be used to eliminate the section overhead. For more details, see compiler user--ram_model .cinit
guide referenced previously. Presently, ram model cannot be used on R4F due to bootloader limitation but can be used on
C674X. The SDK uses ram model when building C674X executable images (unit tests and demos).

On C674X, smaller L1D/L1P cache sizes may be used to increase static RAM. The L1P and L1D can be used as part SRAM and
part cache. Smaller L1 caches can increase compute time due to more cache misses but if appropriate data/code is allocated in the
SRAMs, then the loss in compute can be compensated (or in some cases can also result in improvement in performance). In the
demos, the caches are sized to be 16 KB, allowing 16 KB of L1D and 16 KB of L1P to be used as SRAM. On the mmw demo, the
L1D SRAM is used to allocate some buffers involved in data path processing whereas the L1P SRAM has code that is frequently and
more fully accessed during data path processing. Thus we get overall 32 KB more memory. The caches can be reduced all the way
down to 0 to give the full 32 KB as SRAM, how much cache or RAM is a decision each application developer can make depending on
the memory and compute (MIPS) needs.

When using TI compilers for both R4F and C674x, the map files contain a nice module summary of all the object files included in the
application. Users can use this as a guide towards identifying components/source code that could be optimized. See one sample snapshot
below:

http://processors.wiki.ti.com/index.php/ARM_compiler_optimizations
http://www.ti.com/lit/ug/spnu151o/spnu151o.pdf
http://www.ti.com/lit/ug/sprui04a/sprui04a.pdf
http://www.ti.com/lit/ug/sprui04a/sprui04a.pdf
http://processors.wiki.ti.com/index.php/Optimization_Techniques_for_the_TI_C6000_Compiler

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

59

Module summary inside application's .map file

MODULE SUMMARY

 Module code ro data rw data
 ------ ---- ------- -------

 obj_xwr14xx/
 main.oer4f 5191 0 263980
 data_path.oer4f 8441 0 65536
 config_hwa_util.oer4f 4049 0 0
 post_processing.oer4f 2480 0 0
 mmw_cli.oer4f 2308 0 0
 config_edma_util.oer4f 1276 0 0
 sensor_mgmt.oer4f 1144 0 24
 +--+-------------------------------+--------+---------+---------+
 Total: 24889 0 329540

6. 8. DSPlib integration in xWR16xx C674x application (Using 2 libraries simultaneously)

The TI C674X DSP is a merger of C64x+ (fixed point) and C67x+ (floating point) DSP architectures and DSPlib offers two different flavors of
library for each of these DSP architectures. An application on C674X may need functions from both architectures. Normally this would be a
straight-forward exercise like integrating other TI components/libraries. However there is a problem during integration of the two DSPLib
libraries in the same application since the top level library API header has the same name and same relative path from thedsplib.h
packages/ directory as seen below in the installation:

C:\ti\dsplib_c64Px_3_4_0_0\packages\ti\dsplib\dsplib.h
C:\ti\dsplib_c674x_3_4_0_0\packages\ti\dsplib\dsplib.h

Typically when integrating TI components, the build paths are specified up to directory and headers are referred as below:packages\

#include <ti/dsplib/dsplib.h>

However this will create an ambiguity when both libraries are to be integrated because the above path is same for both. There are a couple of
ways to resolve this:

6. 8. 1. Integrating individual functions from each library

In this case, the headers individual functions are included in the application source file and the build infrastructure (makefiles for example)
refers to the paths to the individual functions. This style of integration is illustrated in the mmw demo code as seen in the following code
snippets: (Note: the mmw demo only uses one (C64P) dsplib so it could have been integrated in the straight-forward way but it is deliberately
done this way to illustrate the method in question here and allows for future integration with C674x dsplib).

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

60

Sample DSPLib integration using individual functions
In file dss_mmw.mak:

dss_mmw.mak

dssDemo: C674_CFLAGS +=
--cmd_file=$(BUILD_CONFIGPKG)/compiler.opt
\

-i$(C64Px_DSPLIB_INSTALL_PATH)/packages/ti/dsplib/src/DSP_fft16x
16/c64P \ <-- include path for DSP_fft16x16

-i$(C64Px_DSPLIB_INSTALL_PATH)/packages/ti/dsplib/src/DSP_fft32x
32/c64 \ <-- include path for DSP_fft32x32
 -i$(C674x_MATHLIB_INSTALL_PATH)/packages
\

In dss_data_path.c:

dss_data_path.c

#include "DSP_fft32x32.h"
#include "DSP_fft16x16.h"

The C674P library can be integrated in the above code similar to the how the C64P has been done, this will not create any
conflict.

A variant (not illustrated in mmw demo) of the above could be as follows where the paths are now in the .c and .mak only refers
to the installation:

dss_mmw.mak

dssDemo: C674_CFLAGS +=
--cmd_file=$(BUILD_CONFIGPKG)/compiler.opt \
 -i$(C64Px_DSPLIB_INSTALL_PATH)/packages
\
 -i$(C674x_MATHLIB_INSTALL_PATH)/packages
\

dss_data_path.c

#include <ti/dsplib/src/DSP_fft16x16/c64P/DSP_fft32x32.h>
#include <ti/dsplib/src/DSP_fft16x16/c64P/DSP_fft16x16.h>

6. 8. 2. Patching the installation

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

61

The previous method can get cumbersome if there are many functions to be integrated from both libraries. Patching the installation to
rename/duplicate the top level API header allows a straight-forward integration. This prevents the name conflict of the twodsplib.h
headers. So the installation after patching would look like below for example:

C:\ti\dsplib_c64Px_3_4_0_0\packages\ti\dsplib\dsplib_c64P.h [one can
retain the older dsplib.h if one wants to]
C:\ti\dsplib_c674x_3_4_0_0\packages\ti\dsplib\dsplib_c674x.h [one can
retain the older dsplib.h if one wants to]

And the .mak and code will look like below:

Sample DSPLib integration after renaming header files
In file dss_mmw.mak:

dss_mmw.mak

dssDemo: C674_CFLAGS +=
--cmd_file=$(BUILD_CONFIGPKG)/compiler.opt \
 -i$(C64Px_DSPLIB_INSTALL_PATH)/packages
\ <-- C64P dsplib
 -i$(C674x_DSPLIB_INSTALL_PATH)/packages
\ <-- C674x dsplib
 -i$(C674x_MATHLIB_INSTALL_PATH)/packages
\

In dss_data_path.c:

dss_data_path.c

#include <ti/dsplib/dsplib_c64P.h>
#include <ti/dsplib/dsplib_c674x.h>

The present dsplibs do not have name conflicts among their functions so they can both be integrated in the above manner.

6. 9. SDK Demos: miscellaneous information

A detailed explanation of the mmW demo is available in the demo's docs folder: mmwave_sdk_<ver>\packages\ti\demo\<platform>\mmw\doc
s\doxygen\html\index.html. Some miscellaneous details are captured here:

In xWR14xx, when elevation is enabled during run-time via configuration file, the number of detected objects are limited by the
amount of HWA memory that is available for post processing.
Demo's rov.xs file is provided in the SDK package to facilitate the CCS debugging of pre-built binaries when demo is directly flashed
onto the device (instead of loading via CCS).
When using non-interleaved mode for ADCBuf, the ADCBuf offsets for every RX antenna/channel enabled need to be multiple of 16
bytes.
Output packet of mmW demo data over UART is in TLV format and its length is a multiple of 32 bytes. This enables post processing
elements on the remote side (PC, etc) to process TLV format with header efficiently.

6. 10. CCS Debugging of real time application

6. 10. 1. Using printfs in real time

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

62

This applies to SYSBIOS and debugging using CCS. Once the application starts real-time processing (i.e. once sensor start is issued), there
should ideally be no prints on the console because CCS will halt the processor (unless CIO is disabled) on which such prints are issued for as
long as it takes it to transfer the print string data from target to PC over JTAG and print the string on the PC (which can be of the order of
seconds). This is true for any real-time application that uses SYSBIOS on any SoC (not just mmWave SDK/devices). For logging in real-time,
SYSBIOS offers other options like LOG module, etc - although these will incur some memory overheads. For example, see "Enable DebugP

" section. It is also possible in cfg file of SYSBIOS based application to direct System_printfs to an internal log buffer (circular or saturate)logs
which will also prevent the hiccup by CCS (See ' ' in SYSBIOS/XDC).xdc.runtime.SysMin

6. 10. 2. Viewing expressions/memory in real time

When debugging real time application (for example: mmw demo) in CCS, if the continuous refresh of variables in the Expression or Memory
browser window is enabled without enabling the silicon real-time mode as shown in the picture, the code may crash at a random time
showing the message in the console window. To avoid this crash, please put CCS in to “Silicone Real-time” mode after selecting the target
core.

Continuous refresh:

Crash in Console window:

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

63

Enable “Silicone Real-time” mode:

Copyright (C) 2017, Texas Instruments Incorporated
http://www.ti.com MMWAVE SDK User Guide

64

	MMWAVE SDK User Guide

