syms R; \% Maximum Range, meters
\% constants
k = physconst('Boltzmann'); \% Boltzmann's constant = $1.38 \times 10^{\wedge}-23$ Joules/Kelvin
c = physconst('Lightspeed'); \% Lightspeed
T = 296.15; \% antenna temperature, in Kelvin, that's $23^{\circ} \mathrm{C}$
\% parameters set by myself
$f=64 e 9 ; \quad \%$ frequency, $H z=1 / s$
rcs $=0.5$; \% Radar Cross Section, meter^2, child
snr_dB = 15; \% Minimum signal-to-noise ratio, dB
$s n r=10^{\wedge}\left(s n r _d B / 10\right)$;
\% according to data sheet of IWR6843AoP
EIRP_dBm = 15; \% Effective isotrophic radiated power, in dBm
EIRP_dBW = EIRP_dBm - 30;
$P_{_} t=\left(10^{\wedge}\left(E I R P _d B W / 10\right)\right) * 3 ; \%$ output power of device (with 3 transmitter) in Watts
EINF_dB = 14; \% Effective isotropic noise figure, in dB
EINF = 10^(EINF_dB/10);
G_dBi $=7.5$; \quad \% Transmit antenna gain at 0° from radiation pattern, in dBi
$\mathrm{G}=10^{\wedge}\left(\mathrm{G} _\mathrm{dBi} / 10\right)$;
\% calculate wavelength
l = c/f; \% wavelength, millimeter
\% according to TI calculator (https://dev.ti.com/gallery/view/1792614/mmWaveSensingEstimator/ve
T_meas = 0.1; \% frame periodicity, in s
\% solve radar equation from TI
eqn $=s n r==\left(r c s^{*} P _t^{*} G^{\wedge} 2^{*} l^{\wedge} 2 * T _m e a s\right) /\left(\left((4 * \mathrm{pi})^{\wedge} 3\right) *\left(R^{\wedge} 4\right) * k^{*} T^{*} E I N F\right) ;$
range $=$ solve(eqn, R, 'Real',true);
round(range)
ans =
$\binom{150}{-150}$
\% according to calculator it's 71.11m

