TI Designs

Acoustic Echo Canceller Reference Design Guide

TI Designs

Acoustic echo canceller (AEC) reference design provides a robust, wideband AEC algorithm software module that runs on the TMS320C674X or OMAP-L13X suite of processors. The design lets developers insert the AEC, running on the digital signal processor (DSP) on the TMS320C6748 DSP low-cost development kit (LCDK), into the audio path of hands-free equipment. The developer can then tune the audio path and the AEC, and test the performance of the AEC in a realistic environment. When the developer has proven that the AEC brings superior voice quality to the product, they can confidently choose the appropriate TMS320C674X or OMAP-L13X device on which to run the AEC and can leverage the AEC reference design software and adapt it to meet the specific hardware requirements of the product.

Design Features

- Wideband AEC
- Powerful Noise Reduction (NR)
- Dereverberation
- Simple Command Line User Interface
- Out-of-the Box Testing With Target Hardware

Featured Applications

- Speakerphone
- Voice-Enabled Internet of Things (IoT) Equipment
- Automatic Speech Recognition (ASR) Preprocessing

Design Resources

- TIDEP0071
- DSP Soundware AEC-LCDK-REF
- TMS320C6748
- OMAP138
- TMDLDCDK6748
- TMDLDCDK138
- Starterware-C6748

ASK Our E2E Experts

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and other important disclaimers and information.

C6000, StarterWare are trademarks of Texas Instruments.
ARM9 is a trademark of ARM Limited.
ARM is a registered trademark of ARM Limited.
All other trademarks are the property of their respective owners.
1 Key System Specifications

- Full-duplex operation: Type 1
- Initial convergence: Less than 0.6 seconds
- Reconvergence: Less than 0.7 seconds
- Echo return loss enhancement (ERLE): 38 dB (without NLP)
- Programmable sampling rate: 8 to 48 kHz
- Nonlinear processor (NLP)
- Spectrally representative comfort noise generator (CNG)
- Noise reduction (NR): 18-dB signal-to-noise ratio (SNR) improvement typical
- Dereverberation: 6-dB improvement typical
2 System Description

Figure 1 shows a block diagram of a typical product that employs the AEC.

Because the AEC is designed for use in hands-free equipment such as speakerphones and intercoms, a typical design includes a speaker and microphone. The speaker and microphone are connected to one of the many TI analog interface chips (AICs). The AIC includes a microphone interface and a speaker amplifier, which eliminates additional circuitry. The AIC has integrated anti-aliasing filters.

The AIC is connected to the TMS320C6748 DSP through the multichannel audio serial port (McASP). The McASP can support the commonly used I2S interface. The typical design includes the TMS320C6748 DSP and a host processor. In the TMS320C6748 LCDK-based demonstration, a PC emulates a host processor. The PC is connected to the DSP through a USB-serial interface. When the AEC is used in an embedded system, a typical host processor can be connected to the DSP through a number of TMS320C6748 peripherals such as the host port interface (HPI), inter-integrated circuit bus (I²C), or Ethernet media access controller (EMAC). If an ARM® ARM9™ core is an appropriate host processor, the designer can choose the OMAP-L138 or OMAP-L132, which include an ARM9 core and a TMS320C674X core. This additional integration saves cost and board space, and allows for sharing external memory between the DSP and ARM-9 core.

In this example, a DDR2 is connected to the DDR interface of the DSP, providing external RAM. A NAND flash memory is connected to the external memory interface (EMIF). The JTAG interface is crucial for bringing up hardware, developing software, and debugging.
3 Block Diagram

Figure 2 shows the block diagram of the TMS320C6748 DSP processor.

![Block Diagram of TMS320C6748 DSP Processor](image)

Figure 2. TMS320C6748 DSP Processor Block Diagram
4 Highlighted Products

The C6748 LCDK design is based on the TI TMS320C6748 DSP processor and its associated peripherals and is the engine of the design. The TMS320C6748 C6000™ DSP processor is a low-power applications processor based on a C674x DSP core. This processor provides significantly lower power than other members of the TMS320C6000 platform of DSPs.

The TMS320C6748 processor includes the following features:

- 375- and 456-MHz C674x fixed- and floating-point VLIW DSP
- C674x instruction set features:
 - Superset of the C67x+ and C64x+ ISAs
 - Up to 3648 MIPS and 2746 MFLOPS
 - Byte-addressable capability (8-, 16-, 32-, and 64-bit data)
 - 8-bit overflow protection
 - Bit field extract, set, clear
 - Normalization, saturation, and bit-counting
 - Compact 16-bit instructions
- C674x 2-level cache memory architecture:
 - 32KB of L1P program RAM/cache
 - 32KB of L1D data RAM/cache
 - 256KB of L2 unified Mapped RAM/cache
 - Flexible RAM/cache partition (L1 and L2)
- Enhanced direct memory access controller 3 (EDMA3):
 - 2 channel controllers
 - 3 transfer controllers
 - 64 independent DMA channels
 - 16 quick DMA channels
 - Programmable transfer burst size
- TMS320C674x floating-point VLIW DSP core
 - Load-store architecture with nonaligned support
 - 64 general-purpose registers (32-bit)
 - Six ALU (32- and 40-bit) functional units
 - 32-bit integer, SP (IEEE single precision/32-bit) and DP (IEEE double precision/64-bit) floating point
 - Up to four SP additions per clock and four DP additions every two clocks
 - Up to two floating-point (SP or DP), reciprocal approximation (RCPxP), and square-root reciprocal approximation (RSQRxP) operations per cycle
 - Two multiply functional units:
 - Mixed-precision IEEE floating-point multiply supported up to the following:
 - 2 SP × SP → SP per clock
 - 2 SP × SP → DP every two clocks
 - 2 SP × DP → DP every three clocks
 - 2 DP × DP → DP every four clocks
 - Fixed-point multiply that supports two 32 × 32-bit multiplies, four 16 × 16-bit multiplies, or eight 8 x 8-bit multiplies per clock cycle, and complex multiplies
 - Instruction packing that reduces code size
 - All instructions as conditional
 - Hardware support for modulo loop operation
• Protected mode operation
• Exceptions support for error detection and program redirection

• Software Support
 – StarterWare™
 – Chip support library
 – DSP library

• 128KB of RAM shared memory

• 1.8- or 3.3-V LVCMOS I/Os (except for USB and DDR2 interfaces)

• Two external memory interfaces:
 – EMIFA
 • NOR (8- or 16-bit-wide data)
 • NAND (8- or 16-bit-wide data)
 • 16-bit SDRAM with 128-MB address space
 – DDR2/Mobile DDR memory controller with one of the following:
 • 16-bit DDR2 SDRAM with 256-MB address space
 • 16-bit mDDR SDRAM with 256-MB address space

• Three configurable 16550-Type UART modules:
 – Modem control signals
 – 16-byte FIFO
 – 16x or 13x oversampling option

• LCD controller

• Two serial peripheral interfaces (SPIs) each with multiple chip selects

• Two multimedia card (MMC)/secure digital (SD) card interfaces with secure data I/O (SDIO) interfaces

• Two master and slave inter-integrated circuits (I²C bus)

• One host-port interface (HPI) with 16-bit-wide muxed address and data bus for high bandwidth

• Programmable real-time unit subsystem (PRUSS)
 – Two independent programmable real-time unit (PRU) cores
 • 32-bit load-store RISC architecture
 • 4KB of instruction RAM per core
 • 512 bytes of data RAM per core
 • Capability to disable PRUSS through software to save power
 • Capability to export register 30 of each PRU from the subsystem in addition to the normal R31 output of the PRU cores
 – Standard power-management mechanism
 • Clock gating
 • Entire subsystem under one PSC clock gating domain
 – Dedicated interrupt controller
 – Dedicated switched central resource

• USB 1.1 OHCI (host) with integrated PHY (USB1)

• USB 2.0 OTG port with integrated PHY (USB0)
 – USB 2.0 high- and full-speed client
 – USB 2.0 high-, full-, and low-speed host
 – Endpoint 0 (control)
 – Endpoints 1, 2, 3, 4 (control, bulk, interrupt, or ISOC) RX and TX

• One McASP:
 – Two clock zones and 16 serial data pins
- TDM, I2S, and similar formats
- DIT capable
- FIFO buffers for transmit and receive

- Two multichannel buffered serial ports (McBSPs):
 - TDM, I2S, and similar formats
 - AC97 audio codec interface
 - Telecom interfaces (ST-Bus, H100)
 - 128-channel TDM
 - FIFO buffers for transmit and receive

- 10/100 Mbps EMAC:
 - IEEE 802.3 compliant
 - MII media-independent interface
 - RMII reduced media-independent interface
 - Management data I/O (MDIO) module

- Video port interface (VPIF):
 - Two 8-bit SD (BT.656), single 16-bit or single raw (8-, 10-, and 12-bit) video capture channels
 - Two 8-bit SD (BT.656), single 16-bit video display channels

- Universal parallel port (uPP):
 - High-speed parallel interface to FPGAs and data converters
 - Data width on both channels is 8- to 16-bit inclusive
 - Single-data rate (SDR) or dual-data rate (DDR) transfers
 - Multiple interfaces with START, ENABLE, and WAIT controls

- Serial ATA (SATA) controller:
 - SATA I (1.5 Gbps) and SATA II (3.0 Gbps)
 - All SATA power-management features
 - Hardware-assisted native command queueing (NCQ) for up to 32 entries
 - Port multiplier and command-based switching

- Real-time clock (RTC) with 32-kHz oscillator and separate power rail
- Three 64-bit general-purpose timers (configurable as two 32-bit timers)
- One 64-bit general-purpose or watchdog timer (configurable as two 32-bit general-purpose timers)
- Two enhanced high-resolution pulse width modulators (eHRPWMs):
 - Dedicated 16-bit time-base counter with period and frequency control
 - Six single-edge outputs, six dual-edge symmetric outputs, or three dual-edge asymmetric outputs
 - Dead-band generation
 - PWM chopping by high-frequency carrier
 - Trip zone input

- Three 32-bit enhanced capture (eCAP) modules:
 - Configurable as three capture inputs or three auxiliary pulse width modulator (APWM) outputs
 - Single-shot capture of up to four event time stamps

- Packages:
 - 361-ball Pb-Free plastic ball grid array (PBGA) [ZCE suffix], 0.65-mm ball pitch
 - 361-ball Pb-Free PBGA [ZWT suffix], 0.80-mm ball pitch

For more information on the TMMS320C6748 (including data sheets, silicon errata, and technical reference manuals), see http://www.ti.com/product/TMS320C6748.
5 System Theory

Whenever using a hands-free device, there are acoustic impairments. The following sections discuss the impairments and the methods used to combat them.

5.1 Acoustic Impairments

This design solves three types of acoustic impairments:

- Echo
- Reverberation
- Background noise

Acoustic echo is caused by coupling the speaker of a hands-free device (speakerphone, intercom, and so forth) and a microphone. Figure 3 shows acoustic echo as a light green signal coming from the person at the bottom of the diagram, through the telecommunications network, to the speakerphone on the conference room table. From the speaker, the signal couples directly to the microphone of the speakerphone and indirectly through reflections of the walls ceiling, floor, and objects in the room.

Figure 3 shows reverberation in red and blue. A direct path (blue) between the presenter and the speakerphone and indirect path (red) reflects before reaching the speakerphone. The fan on the right wall with its signal moving toward the speakerphone shows background noise.

Without acoustic echo cancellation to cancel the echo, dereverberation to mitigate the reverberation, and noise reduction to reduce the noise, the person at the other end of the phone connection can experience severely degraded voice quality and intelligibility.

Even a moderate amount of echo can be a serious impairment to voice quality. The degree of the impairment depends on the loudness of the echo and the delay between the original speech and the incidence of the echo.
When you speak in an enclosed space, your speech travels directly from your mouth to your ears with almost no delay. Your speech also reflects off of walls and so forth and you hear a slightly delayed signal. Multiple reflections occur at different delays. The delay is typically so small that you cannot perceive the reflections as an echo.

In the case of a voice communication system, the sources of delay follow:

- **Network:** A network can be the traditional public-switched telephone network (PSTN), the internet (in the case of voice over IP [VoIP]), or some other type. There is always a finite amount of time for a speech signal to pass through a network. Longer delays are attributable to propagation delay when using satellites and packet transmission delay in packet networks.
- **Buffering:** In a digital system, speech samples may be buffered into frames—each frame is usually the same duration. Buffering can occur in a software operating system or some other layer of an embedded software system. Buffering occurs in both directions of transmission.
- **Packetization:** In the case of a packet-switched network, speech data is sent in bursts that comprise many frames worth of speech. Each frame contains a segment of speech—each segment is usually of the same duration. Before sending a packet, all the frames of speech must be collected and sometimes processed. This process causes a delay.
- **Acoustic:** Acoustic delay is caused by the finite speed of sound. This delay is typically short for the direct paths (mouth to microphone and speaker to ears), but the indirect paths through reflections can be longer.

If the total round-trip delay is short, the echo is imperceptible. If the delay becomes longer, the echo becomes perceptible. This effect is known as the **precedence effect**. When a sound and a delayed copy is heard, the two copies are perceptually linked if the delay is short enough. As the delay increases, a person becomes more aware of the echo; the echo (and reverberation) must be removed more effectively to achieve acceptable voice quality.

5.2 Eliminating the Impairments

Suppressing an echo is the simplest way to remove it in a 2-way voice communication system. An echo suppressor determines which party is dominant by monitoring the speech signal level of both parties. Echo suppression turns what should be full-duplex (2-way) conversation into a half-duplex one. When both parties speak at the same time, only one party can hear the other one. This effect causes the parties to talk in intermittent periods, often asking the other person to repeat themselves often. Conversely, an echo canceller estimates the echo and subtracts it rather than suppressing it. This effect results in full-duplex conversation.

Noise can be suppressed easily when speech is not present. When suppression is used, the noise is present when the speech is present. Noise reduction must be employed that can remove noise when speech is present and when it is not.

Reverberation is more complex. Reverberation cannot be suppressed like noise because reverberation is present only when near-end speech is present. Also, blindly suppressing reverberation has the unwanted effect of suppressing desired speech. Dereverberation, AEC, and noise reduction must achieve a balance between removing the undesired signals while preserving the desired signals.
5.3 High-Level Description

Figure 4 shows some of the primary aspects of an AEC operating in a hands-free product.

Transmit (Tx) and receive (Rx) are defined with respect to the person (blue) using the hands-free device that contains the echo canceller. He is speaking into the microphone of the device and listening to the speaker of the device. His speech is being transmitted to the other party (red) and he is listening to the signal that is received from the other party. Specifically, the inputs and outputs are defined as follows:

- **Tx In** (transmit input) is the signal coming from the local microphone.
- **Tx Out** (transmit output) is the signal transmitted to the person at the other end of the link.
- **Rx In** (receive input) is the signal that is received from the person at the other end of the link.
- **Rx Out** (receive output) is the signal that is sent to the local speaker.

Follow the path of the signal path. The signal of the far-end talker is sent through the network (shown as a cloud in Figure 4) and enters the AEC through the Rx In port. The signal passes through a nonlinear processor (NLP) that can attenuate the signal somewhat when both parties are speaking (double-talk). The output of the NLP is sent to the Rx Out port, which is connected to the local speaker and is also sent to an adaptive filter described later.

An acoustic path exists between the speaker and microphone. The speech of the far-end talker passes from the Rx Out port (speaker) to the Tx In port (microphone). The loss (gain) between the speaker and microphone is echo return loss (ERL), which is usually expressed in dB. If the local talker is quiet and there is no background noise in the room, the Tx In port consists only of echo. This condition is far-end single talk.

The Tx In port is connected to the adaptive filter. The filter estimates the acoustic echo characteristics and formulates a filter that estimates the echo, when excited by the Rx Out signal. The echo estimate is subtracted from the Tx In port to form the residual signal, sometimes called the residual echo signal. During far-end single-talk, the goal of the adaptive filter is for the residual echo to be zero. Adaptive filtering techniques are imperfect for the following reasons:

- Near-end speech or background noise interferes with adaptation.
- Approximations are made by the algorithm.
- Computational Precision can result in small numerical errors.

Echo return loss enhancement (ERLE) is the echo attenuation achieved by the adaptive filter. An important figure of merit for an AEC, ERLE is usually expressed in dB. A higher ERLE translates to a lower-level echo, which results in less-perceptible echo.

The sum of the ERLE of the adaptive filter and the ERL of the acoustic loss cannot sufficiently remove the echo. Some NLP must be incorporated to further suppress the echo. Avoid engaging the NLP during double-talk to avoid making the conversation half-duplex.
A higher ERLE leads to less reliance on NLP. The International Telecommunications Union (ITU) categorizes hands-free equipment in terms of how much it relies NLP or according to the degree of full-duplex operation that it can achieve.

There are NLP blocks in both the receive and transmit paths of the block diagram. The transmit NLP does the majority of the work. Because the perceived echo at the far end is the sum of all losses (receive NLP, ERL, ERLE, and transmit NLP), some benefit can be gained by applying an NLP in the receive direction.

Noise reduction (NR), comfort noise generation (CNG), and dereverberation are included in the same block as the NLP. When the NLP activates, it suppresses not only the residual echo but the background noise returns. When the NLP disengages, the attenuation is removed and the background noise returns. As a result, the far-end talker hears no background noise each time they speak but the background noise returns each time they pause. This effect is noise pumping and can be annoying. The CNG replaces the suppressed noise with artificially generated noise that matches the background noise in level and spectral characteristics.

Talker echo loudness rating (TELR) is the echo loudness as perceived by the far-end talker. The loudness is a function of the all the signal processing components of the AEC and by the ERL of the speaker-to-microphone loss.

6 Performance

Table 1 lists characterization data measured using the TMS320C6748 LCDK with L2 configured as all (256KB) cache, 300-MHz CPU clock, and 150-MHz DDR2. The AEC was configured at a sampling rate of 16 kHz.

<table>
<thead>
<tr>
<th>Tail Length (msec)</th>
<th>Program (KB)</th>
<th>Data (KB)</th>
<th>Per Channel Data</th>
<th>MIPS (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>31.2</td>
<td>6.5</td>
<td>229</td>
<td>93</td>
</tr>
<tr>
<td>128</td>
<td>31.2</td>
<td>6.5</td>
<td>257</td>
<td>99</td>
</tr>
<tr>
<td>256</td>
<td>31.2</td>
<td>6.5</td>
<td>315</td>
<td>114</td>
</tr>
</tbody>
</table>
Getting Started

7 Getting Started

7.1 Equipment

To run the demonstration, the following is required:
• The DSP Soundware Algorithm Demonstration Kit
• The TMS320C6748 LCDK
• The Flashburn utility
• An audio source
• An audio listening device (speaker or headphones)
• A PC with USB serial port and terminal program (such as Tera Term)

7.2 Getting Started

See the quick start guide that accompanies the DSP Soundware Algorithm Demonstration Kit to learn about the following:
• Setting up the hardware
• Installing the software
• Running tests
• Tuning the algorithms

To request the DSP Soundware Algorithm Demonstration Kit, see http://www.dspsoundware.com/demo-software/aec-lcdk-ref or e-mail sales@dspsoundware.com.

8 Design Files

This TI Design highlights the audio subsystem on the TMS320C6748 LCDK. Download the design files including schematics, schematic source, and bill-of-materials for the audio subsystem at http://www.ti.com/tool/TIDEP0071.
8.1 Bill of Materials

To download the bill of materials for the audio subsystem, see the design files at http://www.ti.com/tool/TIDEP0071.

Table 2. Bill of Materials

<table>
<thead>
<tr>
<th>Item</th>
<th>Qty</th>
<th>Reference</th>
<th>Value</th>
<th>Part Description</th>
<th>Manufacturer</th>
<th>Manufacturer Part Number</th>
<th>PCB Footprint</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
<td>C172, C176, C180, C182, C183, C185, C186, C187, C188, C189, C190</td>
<td>0.1 µF/16-V X7R</td>
<td>CAP .10 µF 16 V CERAMIC X7R</td>
<td>Murata</td>
<td>GRM155R71C104KA88D</td>
<td>402</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>C173, C175</td>
<td>0.47 µF/16-V X5R</td>
<td>CAP CER .47 µF 16 V XSR 0402</td>
<td>TDK</td>
<td>C1005X5R1C474M050BC</td>
<td>402</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>C174, C177</td>
<td>220 pF/50-V X7R</td>
<td>CAP 220 pF 50 V CERAMIC X7R 0402</td>
<td>Yageo</td>
<td>CC0402KR7R9BB221</td>
<td>402</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>C178, C179, C184, C181</td>
<td>10 µF/10-V X5R</td>
<td>CAP 10 µF 10 V CERAMIC X5R 0805</td>
<td>TDK</td>
<td>C2012X5R1A106M125AB</td>
<td>805</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>C181</td>
<td>1 µF/10-V X5R</td>
<td>CAP CER 1 µF 10 V XSR 0402</td>
<td>Murata</td>
<td>GRM155R61A105KE15D</td>
<td>402</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>FB14, FB15, FB16</td>
<td>FERRITE CHIP 120 Ω</td>
<td>FERRITE CHIP 120 Ω 800 MA 0805</td>
<td>TDK</td>
<td>MMZ2012S121A</td>
<td>805</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>J10</td>
<td>CK3.5-1230-08</td>
<td>CONN STEREO JACK 3.5-MM 3/3P PCB</td>
<td>Fosen Electronics Technology Co. Ltd. / Zai Kuai Sales, Ltd. Co.</td>
<td>CK3.5-1230-08</td>
<td>CX3.5-1230-08</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>J11</td>
<td>STX-3500-4NTR</td>
<td>Phone Connectors 3.5-mm SMT STEREO JACK 4P NON THREADED T/R</td>
<td>Kycon</td>
<td>STX-3500-4NTR</td>
<td>STX3500</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>R94, R95, R164</td>
<td>33E /5%/1 1/16 W</td>
<td>RES 33-Ω 1/16 W 5% 0402 SMD</td>
<td>Yageo</td>
<td>RC0402FR-0733RL</td>
<td>402</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>R150, R151, R158, R159, R162</td>
<td>2 K/1%/1 1/16 W</td>
<td>RES 2-kΩ 1/16 W 1% 0402 SMD</td>
<td>Vishay Dale</td>
<td>CRCW04022K00FKED</td>
<td>402</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>R152, R154</td>
<td>0E/5%/1 1/10 W</td>
<td>RES zero-Ω 1/10 W 5% 0402</td>
<td>Panasonic</td>
<td>ERJ-2GE0R00X</td>
<td>402</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>R153, R155</td>
<td>5.6 K, DNI</td>
<td>RES 5.6-kΩ 1/16 W 1% 0402</td>
<td>Yageo</td>
<td>ACO402FR-0756L</td>
<td>402</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>R156, R157</td>
<td>20 K/1%/1 1/16 W</td>
<td>RES 20-kΩ 1/16 W 1% 0402 SMD</td>
<td>Yageo</td>
<td>RC0402FR-0720KL</td>
<td>402</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>R160</td>
<td>2 K/1%/1 1/16 W, DNI</td>
<td>RES 2-kΩ 1/16 W 1% 0402 SMD</td>
<td>Vishay Dale</td>
<td>CRCW04022K00FKED</td>
<td>402</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>R161</td>
<td>20 K, DNI</td>
<td>RES 20-kΩ 1/16 W 1% 0402 SMD</td>
<td>Yageo</td>
<td>RC0402FR-0720KL</td>
<td>402</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>R163</td>
<td>4.7 K/5%/1 1/16 W</td>
<td>RES 4.7-kΩ 1/16 W 5% 0402 SMD</td>
<td>Yageo</td>
<td>RC0402JR-074K7L</td>
<td>402</td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td>TP16, TP17</td>
<td>TEST POINT, DNI</td>
<td>CONN HEADER 1 PΩ 1 POS 100" SGL GOLD</td>
<td>SAMTEC</td>
<td>TSW-101-07-G-S</td>
<td>tp</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>U7</td>
<td>OMAP-L138</td>
<td>LOW-POWER ARM+DSP CONTROLLER</td>
<td>TI</td>
<td>OMAPL138ZWT</td>
<td>bga361_w19_p8_16x16_s16</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>U22</td>
<td>TLV320AIC3106IRGZ</td>
<td>LOW-POWER STEREO AUDIO CODEC</td>
<td>TI</td>
<td>TLV320AIC3106IRGZ</td>
<td>QFN48_25</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>Y5</td>
<td>CB3LV-3I-24M5760</td>
<td>OSCILLATOR 24.5760-MHz 3.3-V SMD</td>
<td>ABRACON</td>
<td>ASFL1-24.576MHC-EC-T</td>
<td>OSC4_90-100SMD_130X200</td>
</tr>
</tbody>
</table>
8.2 Software Files

To request the DSP Soundware Algorithm Demonstration Kit on DSP Soundware’s website, see http://www.dspsoundware.com/demo-software/aec-lcdk-ref or e-mail sales@dspsoundware.com.

9 References

Texas Instruments E2E Community, http://e2e.ti.com/
10 About the Author

SCOTT KURTZ, the founder and president of DSP Soundware, has been working in the DSP software field since 1983. Since 1984 when the first commercially available TI DSP (the TMS32010) was introduced, Scott has been using TI DSPs in various products at a number of different companies. Scott began his career at RCA developing HF modems for defense communication systems. He continued his career at InterDigital Communications Corporation where he was instrumental in developing voice and modem technology for a digital wireless local loop telephone system. InterDigital’s equipment was the predecessor to the technology that makes our cell phones work today. Before founding DSP Soundware, Scott was a cofounder of Adaptive Digital Technologies and served as VP of Engineering there for 17 years. At Adaptive Digital, Scott built an engineering team and DSP software product line that is licensed for use in many of today’s VoIP and voice-enabled products. Currently, as founder and president of DSP Soundware, Scott pursues a mission to improve voice quality in hands-free equipment through the use of Digital Signal Processing algorithms and technology – hence the mantra – “Better Living Through DSP.” Scott has a Master’s degree in Electrical Engineering from Drexel University and a Bachelor’s degree in Electrical Engineering from Lehigh University. Scott has authored 12 patents.

RAHUL PRABHU is a senior software applications engineer in TI’s Embedded Processing organization who supports ARM-based and the DSP-based SoCs such as AM57xx, 66AK2EXX, OMAPL138, and C667x devices. Rahul brings to this role his extensive experience and knowledge in signal processing, optimizing algorithms, system integration, and application development. Rahul earned MS in Electrical and Computer Engineering from University of Houston.
IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated (“TI”) reference designs are solely intended to assist designers (“Buyers”) who are developing systems that incorporate TI semiconductor products (also referred to herein as “components”). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer’s systems and products. TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design. TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI REFERENCE DESIGNS ARE PROVIDED "AS IS", TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER’S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer’s safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use.

Only those TI components that have specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have not been so designated is solely at Buyer’s risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated