Jitter Measurement Method

September 2016

Rev. 6

Quick Overview

Deserializer Serializer Cable EQ Sampler RXSER PLL Driver **CML PLL** CML **PCLK TXOUT** OUT TP1 TP2 TP3

TEXAS INSTRUMENTS

TP1: t_{IJIT} (**PCLK** input jitter)

Input jitter measurement on PCLK, t_{IJIT}, is measured under the following conditions:

- a) Use TJ@BER with Target BER = 10 (BER = 1E 10)
- b) Set Clock Recover using Custom PLL with loop BW at f/15, where f is the PCLK frequency and damping of 2
- c) Set Low Pass @ f/20, where f is the PCLK frequency.

UI:

92x

* 1UI = 1 / (PCLK*35) and refers to the high speed serial stream.

913A/914A

- * 12bLF: 1UI = 1 / (PCLK*28) and refers to the high speed serial stream.
- * 12bHF: 1UI = 1 / (PCLK*28*2/3) and refers to the high speed serial stream.
- * 10bHF: 1UI = 1 / (PCLK*28*1/2) and refers to the high speed serial stream.

TP2: t_{TJIT} (**TXOUT** Total Jitter)

On the high speed serial stream output DOUT-, DOUT+, measure under the following conditions:

- a) Configure device in serial test pattern mode : Set register 2C = 60h
- b) Set Clock recover using custom PLL with Loop BW at f/15, where f is the PCLK frequency
- c) Use TJ@BER with Target BER = 10 (BER = 1E 10)
- d) Configure to measure DDJ@BER

* UI:

92x

* 1UI = 1 / (PCLK*35) and refers to the high speed serial stream.

913A/914A

- * 12bLF: 1UI = 1 / (PCLK*28) and refers to the high speed serial stream.
- * 12bHF: 1UI = 1 / (PCLK*28*2/3) and refers to the high speed serial stream.
- * 10bHF: 1UI = 1 / (PCLK*28*1/2) and refers to the high speed serial stream.

TP3: Ew (CMLOUT Eye Opening)

CMLOUT Eye Opening can be defined by t_{BIT} (1UI) – TJ@BER:

- a) Enable CMLOUT: Set Register 0x3F[4] = 0'b
- b) Set Clock recover using custom PLL with Loop BW at f/15, where f is the PCLK frequency
- c) Use TJ@BER with Target BER = 10 (BER = 1E 10)

* UI:

92x

* 1UI = 1 / (PCLK*35) and refers to the high speed serial stream.

913A/914A

- * 12bLF: 1UI = 1 / (PCLK*28) and refers to the high speed serial stream.
- * 12bHF: 1UI = 1 / (PCLK*28*2/3) and refers to the high speed serial stream.
- * 10bHF: 1UI = 1 / (PCLK*28*1/2) and refers to the high speed serial stream.

DPOJET Jitter Measurement

Jitter Measurement Guidance

- These guidelines are based on the use of DPOJET
- Goal is to provide guidance to configure the DPOJET settings recommended for measurement of the DS90UH925 input and output jitter
- The images show are for the purpose of illustrating the DPOJET tool configuration process. This is not meant to reflect actual or expected application or device measurements.

LOCK?

- Check LOCK status before starting jitter measurement.
- How?
 - LOCK pin LED
 - LOCK @ General Status Register

Enable Tool

Select drop-down menu

Choose DPOJET & One Touch Jitter

Select "Analog Measurement"

Manually select the analog measurement mode to avoid errors. (This may be set incorrectly with default settings)

Proper Set Scale

Using horizontal scale and resolution knob to set 40uS/div

TP1: T_{IJIT} (PCLK INPUT JITTER)

_

TP1: t_{IJIT} (**PCLK** input jitter)

Input jitter measurement on PCLK, t_{IJIT}, is measured under the following conditions:

- a) Use TJ@BER with Target BER = 10 (BER = 1E 10)
- b) Set Clock Recover using Custom PLL with loop BW at f/15, where f is the PCLK frequency and damping of 2
- c) Set Low Pass @ f/20, where f is the PCLK frequency.

UI:

92x

* 1UI = 1 / (PCLK*35) and refers to the high speed serial stream.

913A/914A

* 12bLF: 1UI = 1 / (PCLK*28) and refers to the high speed serial stream.

* 12bHF: 1UI = 1 / (PCLK*28*2/3) and refers to the high speed serial stream.

* 10bHF: 1UI = 1 / (PCLK*28*1/2) and refers to the high speed serial stream.

PCLK Input Jitter Configure Edge

- 1. Go to **Configure** menu
- 2. Select **Edges**
 - a. Signal Type = Clock
 - b. Clock Edge = Fall (if

using rising edge, change to Rise)

TI Confidential - Selective Disclosure

PCLK Input Jitter Configure Clock Recover

- 1. Go to Configure menu
- 2. Select Clock Recover
 - 2a. Method = PLL Custom BW
 - 2b. PLL Type = **Type II**
 - 2c. Chose Loop BW
 - 2d. Loop BW = f/15

for exaple, pclk=78MHz

f/15 = 5.2MHz

2e. Damping = **2**

3. Apply to All

PCLK Input Jitter Configure RjDj

- 1. Go to **Configure** menu
- 2. Select RjDj
 - a. Pattern = **Repeating**
 - b. Window Length = **2**UI
 - c. Jitter Target BER = 1E-10
- 3. Apply to All

TI Confidential - Selective Disclosure

PCLK Input Jitter Configure Filter

- 1. Go to **Configure** menu
- 2. Select Filters
- 3. Configure the Low Pass filter to f/20
 - a. Use drop-down Low Pass (F2) Filter Spec to select "2rd Order"
 - b. Set Freq (F2) to f/20 Example: PCLK = 75MHz f/20 = 3.75MHz
- 4. Apply to All

PCLK Input Jitter Results

- 1. Go to Results
- 2, Click "**Single**" to capture measurement
- 3, click on "Run" to get distribution of jitter

Measurement results will be reported in this format

TP2: TX OUTPUT JITTER

TEXAS INSTRUMENTS

TP2: t_{TJIT} (**TXOUT** Total Jitter)

On the high speed serial stream output DOUT-, DOUT+, measure under the following conditions:

- a) Configure device in serial test pattern mode : Set register 2C = 60h
- b) Set Clock recover using custom PLL with Loop BW at f/15, where f is the PCLK frequency
- c) Use TJ@BER with Target BER = 10 (BER = 1E 10)
- d) Configure to measure DDJ@BER

UI:

92x

* 1UI = 1 / (PCLK*35) and refers to the high speed serial stream.

913A/914A

- * 12bLF: 1UI = 1 / (PCLK*28) and refers to the high speed serial stream.
- * 12bHF: 1UI = 1 / (PCLK*28*2/3) and refers to the high speed serial stream.
- * 10bHF: 1UI = 1 / (PCLK*28*1/2) and refers to the high speed serial stream.

Tx Output Jitter Select Jitter Measurement

- 1. Go to jitter Select menu
- 2. Select Jitter
- 3. Clear All
- 4. Select TJ@BER
- 5. Select **DDJ**

TI Confidential - Selective Disclosure

Tx Output Jitter Configure Edges

- 1. Go to **Configure** menu
- 2. Select Edges
- 3. Select Auto
- 4. Select **Both (some SW dose not have this option)**

Tx Output Jitter Configure Clock Recover

- 1. Go to **Configure** menu
- 2. Select Clock Recover
 - 2a. Method = PLL Custom BW
 - 2b. PLL Type = **Type II**
 - 2c. Chose Loop BW
 - 2d. Loop BW = f/15

for exaple, pclk=78MHz

f/15 = 5.2MHz

2e. Damping = **2**

3. Apply to All

Tx Output Jitter Configure Filter

- 1. Go to **Configure** menu
- 2. Select Filters
- 3. Chose **No Filter** for both High Pass and Low Pass
- 4. Apply to All

Tx Output Jitter Configure RjDj

- 1. Go to Configure menu
- 2. Select RjDj
 - a. Pattern = **Arbitrary**
 - b. Window Length = 5
 - c. Population = **100**
 - d. Jitter Target BER = 1E-10
- 3. Apply to All

TI Confidential – Selective Disclosure

Tx Output Jitter Results

- 1. Click "**Single**" to capture measurement
- 2. Go to Results
- 3. click on "Run" to get distribution of jitter

Measurement results will be reported in this format

TP3: CMLOUT OUTPUT JITTER

TEXAS INSTRUMENTS

TP3: Ew (CMLOUT Eye Opening)

CMLOUT Eye Opening can be defined by t_{BIT} (1UI) – TJ@BER:

- a) Enable CMLOUT: Set Register 0x3F[4] = 0'b
- b) Set Clock recover using custom PLL with Loop BW at f/15, where f is the PCLK frequency
- c) Use TJ@BER with Target BER = 10 (BER = 1E 10)

UI:

92x

* 1UI = 1 / (PCLK*35) and refers to the high speed serial stream.

913A/914A

* 12bLF: 1UI = 1 / (PCLK*28) and refers to the high speed serial stream.

* 12bHF: 1UI = 1 / (PCLK*28*2/3) and refers to the high speed serial stream.

* 10bHF: 1UI = 1 / (PCLK*28*1/2) and refers to the high speed serial stream.

CMLOUT Output Jitter Select Jitter Measurement

- 1. Go to jitter Select menu
- 2. Select Jitter
- 3. Clear All
- 4. Select TJ@BER

TI Confidential - Selective Disclosure

CMLOUT Output Jitter Configure Edges

- 1. Go to Configure menu
- 2. Select Edges
- 3. Select Auto
- 4. Select **Both (some SW dose not have this option)**

CMLOUT Output Jitter Configure Clock Recover

- 1. Go to **Configure** menu
- 2. Select Clock Recover
 - 2a. Method = PLL Custom BW
 - 2b. PLL Type = **Type II**
 - 2c. Chose Loop BW
 - 2d. Loop BW = f/15

for exaple, pclk=78MHz

f/15 = 5.2MHz

- 2e. Damping = **2**
- 3. Apply to All

CMLOUT Output Jitter Configure Filter

- 1. Go to **Configure** menu
- 2. Select Filters
- 3. Chose **No Filter** for both High Pass and Low Pass
- 4. Apply to All

CMLOUT Output Jitter Configure RjDj

- 1. Go to Configure menu
- 2. Select RjDj
 - a. Pattern = **Arbitrary**
 - b. Window Length = 5
 - c. Population = **100**
 - d. Jitter Target BER = 1E-10
- 3. Apply to All

TI Confidential – Selective Disclosure

CMLOUT Output Jitter Results

- 1. Click "**Single**" to capture measurement
- 2. Go to Results
- 3. click on "Run" to get distribution of jitter

Measurement results will be reported in this format

