

**PRODUCT SPECIFICATION****Doc. Number:**

- Tentative Specification
- Preliminary Specification
- Approval Specification

**MODEL NO.: P173ZZZ**  
**SUFFIX:BZ1 Rev.A1****V2 PCBa****Customer:****APPROVED BY**  
**Name / Title****SIGNATURE**

(Please return 1 copy for your confirmation with your  
signature and comments.)

| Approved By | Checked By | Prepared By |
|-------------|------------|-------------|
|-------------|------------|-------------|

OWEN.HUNG

MINGHUEI.WANG

Peichun.yao

# PRODUCT SPECIFICATION

## CONTENTS

|                                                           |           |
|-----------------------------------------------------------|-----------|
| <b>1. GENERAL DESCRIPTION .....</b>                       | <b>4</b>  |
| 1.1 OVERVIEW.....                                         | 4         |
| 1.2 GENERAL SPECIFICATIONS .....                          | 4         |
| <b>2. MECHANICAL SPECIFICATIONS .....</b>                 | <b>4</b>  |
| 2.1 CONNECTOR TYPE .....                                  | 5         |
| <b>3. ABSOLUTE MAXIMUM RATINGS .....</b>                  | <b>6</b>  |
| 3.1 ELECTRICAL ABSOLUTE RATINGS.....                      | 6         |
| 3.1.1 TFT LCD MODULE .....                                | 6         |
| Operating Range .....                                     | 6         |
| <b>4. ELECTRICAL SPECIFICATIONS.....</b>                  | <b>7</b>  |
| 4.1 FUNCTION BLOCK DIAGRAM.....                           | 7         |
| 4.2. INTERFACE CONNECTIONS .....                          | 7         |
| 4.3 ELECTRICAL CHARACTERISTICS .....                      | 9         |
| 4.3.1 LCD ELETRONICS SPECIFICATION .....                  | 9         |
| 4.3.2 LED CONVERTER SPECIFICATION.....                    | 11        |
| 4.3.3 BACKLIGHT UNIT.....                                 | 13        |
| 4.4 DISPLAY PORT INPUT SIGNAL TIMING SPECIFICATIONS ..... | 14        |
| 4.4.1 ELECTRICAL SPECIFICATIONS .....                     | 14        |
| 4.4.2 eDP 1.4 Interface Data Format .....                 | 15        |
| 4.5 DISPLAY TIMING SPECIFICATIONS .....                   | 16        |
| 4.6 POWER ON/OFF SEQUENCE .....                           | 17        |
| <b>5. OPTICAL CHARACTERISTICS .....</b>                   | <b>20</b> |
| 5.1 TEST CONDITIONS.....                                  | 20        |
| 5.2 OPTICAL SPECIFICATIONS.....                           | 20        |
| <b>6. RELIABILITY TEST ITEM .....</b>                     | <b>24</b> |
| <b>7. PACKING .....</b>                                   | <b>25</b> |
| 7.1 MODULE LABEL.....                                     | 25        |
| 7.2 CARTON .....                                          | 27        |
| 7.3 PALLET.....                                           | 28        |
| <b>8. PRECAUTIONS .....</b>                               | <b>29</b> |
| 8.1 HANDLING PRECAUTIONS .....                            | 29        |
| 8.2 STORAGE PRECAUTIONS.....                              | 29        |
| 8.3 OPERATION PRECAUTIONS .....                           | 29        |
| Appendix. EDID DATA STRUCTURE.....                        | 30        |

## PRODUCT SPECIFICATION

|                                            |             |    |
|--------------------------------------------|-------------|----|
| Appendix. OUTLINE DRAWING.....             | 33          |    |
| Appendix. SYSTEM COVER DESIGN GUIDANCE     | Ver.7 ..... | 34 |
| Appendix. LCD MODULE HANDLING MANUAL ..... | 42          |    |

# PRODUCT SPECIFICATION

## REVISION HISTORY

| Version    | Date              | Page              | Description |
|------------|-------------------|-------------------|-------------|
| <b>1.0</b> | <b>2021.03.31</b> | <b>P5<br/>P31</b> | 修正尺寸        |
| <b>1.1</b> | <b>2021.04.19</b> | <b>all</b>        |             |
|            |                   |                   |             |

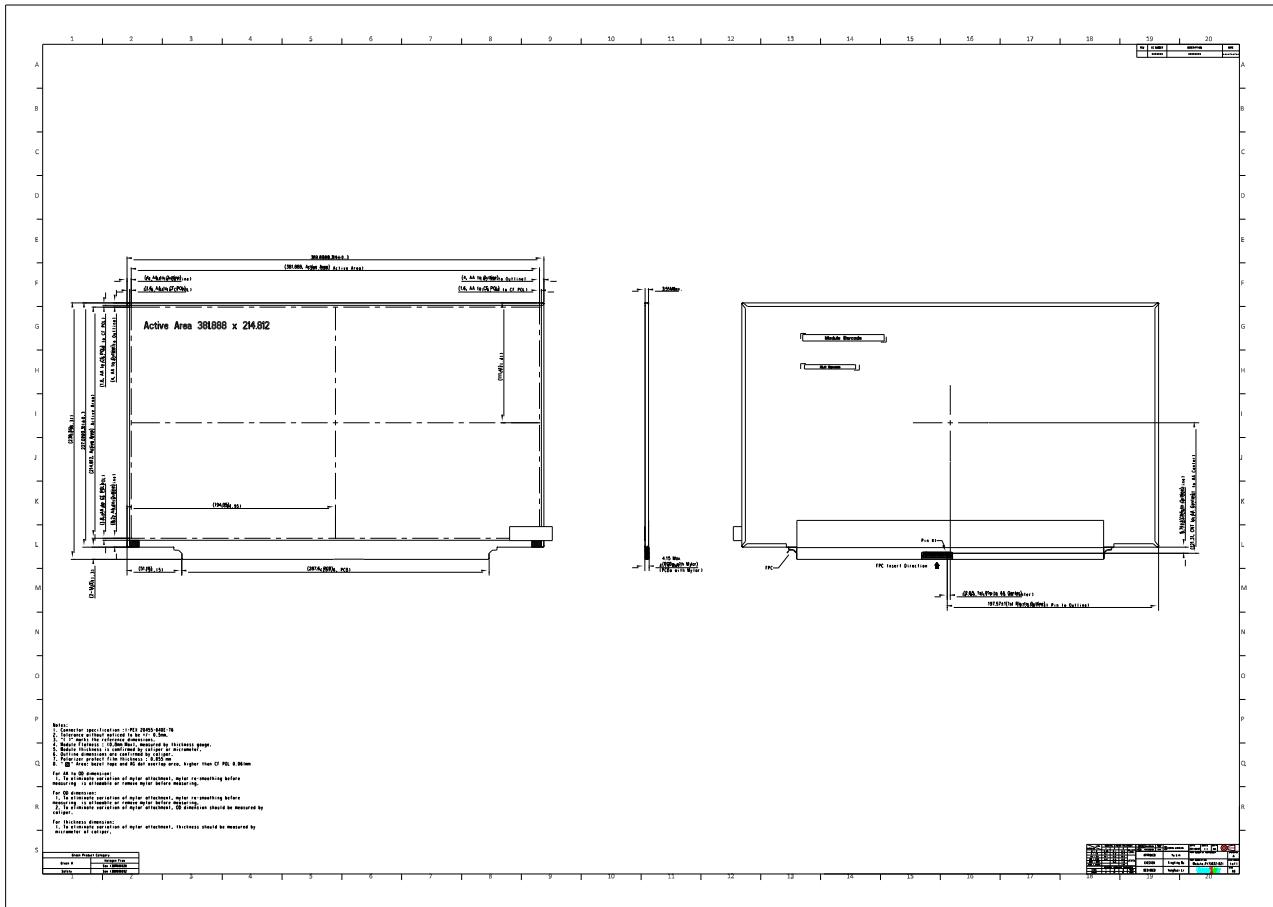
## PRODUCT SPECIFICATION

## 1. GENERAL DESCRIPTION

## 1.1 OVERVIEW

**P173ZZZ-BZ1** is a Color Active Matrix Liquid Crystal Display composed of a TFT LCD panel, a driver circuit, and LED backlight system. The screen format is intended to support the 16:9 UHD, 3840(H) x2160(V) screen and with LED backlight driving circuit. All input signals are eDP(Embedded DisplayPort) interface compatible.

## 1.2 GENERAL SPECIFICATIONS


| Item                                                 | Specification                                           | Unit  | Note |
|------------------------------------------------------|---------------------------------------------------------|-------|------|
| Screen Size                                          | 17.3" (diagonal)                                        | inch  | -    |
| Driver Element                                       | LTPS TFT active matrix                                  | -     | -    |
| Pixel Number                                         | 3840x R.G.B. x 2160                                     | pixel | -    |
| Pixel Pitch                                          | 0.09945(H) x 0.09945(V)                                 | mm    | -    |
| Pixel Arrangement                                    | RGB vertical stripe                                     | -     | -    |
| Contrast Ratio                                       | 100,000:1 typ (HDR on)                                  | -     | -    |
| Response Time [ms]                                   | 25 (typ)                                                | [ms]  |      |
| Transmissive mode                                    | Normally black                                          | -     | -    |
| Surface Treatment                                    | AG                                                      | -     | -    |
| Luminance, White                                     | 1180( Typ).                                             | nits  | -    |
| Electrical Interface                                 | eDP1.4                                                  |       |      |
| Glass Thickness(LCM)                                 | 0.3                                                     | mm    |      |
| Power Consumption<br>(include LED driver efficiency) | Total 23W (Max.) @ cell 2.8 W (Max.) ,1180nit (Full on) | W     | (1)  |

Note (1) The specified power consumption (with converter efficiency) is under the conditions at LCD\_VCC =3.3V, fv = 60Hz, LED\_VCCS = 12V and Ta = 25 ± 2 °C, whereas **Mosaic8\*4** pattern is displayed.

## 2. MECHANICAL SPECIFICATIONS

| Item        | Min.                    | Typ.   | Max.    | Unit   | Note   |
|-------------|-------------------------|--------|---------|--------|--------|
| Module Size | Horizontal (H)          | 389.59 | 389.89  | 390.19 | (1)(2) |
|             | Vertical (V,w/o PCBa)   | 226.71 | 227.01  | 227.31 |        |
|             | Vertical (V,w/i PCBa)   | -      | 238.31  | -      |        |
|             | Thickness (T, w/o PCBa) | -      | 3.29    | 3.5    |        |
| Active Area | Thickness (T, PCBa)     | -      | 3.88    | 4.15   |        |
|             | Horizontal              | -      | 381.888 | -      |        |
|             | Vertical                | -      | 214.812 | -      |        |
|             | Weight                  | -      | 495     | 520    | g      |

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.



Note (2) Dimensions are measured by caliper.



module\_p173zzz-bz1  
\_v2\_plc\_20210407.pdf



## 2.1 CONNECTOR TYPE

Please refer appendix outline drawing for detail design.

Connector Part No.: IPEX-20455-040E-76

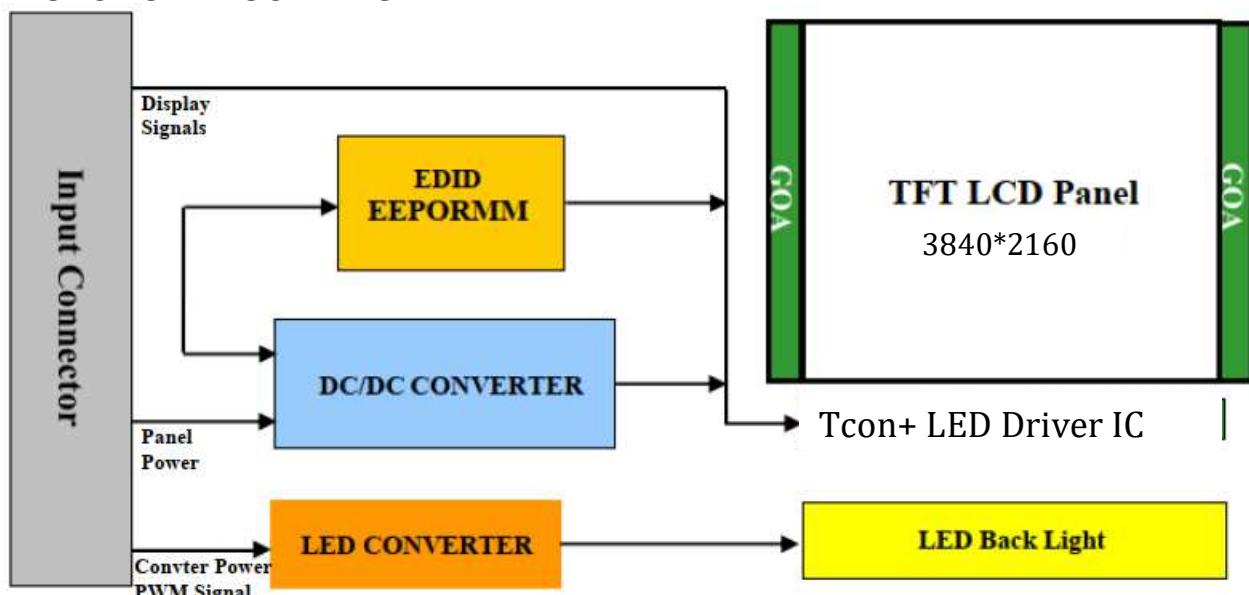
The copyright belongs to InnoLux. Any unauthorized use is prohibited.

## PRODUCT SPECIFICATION

## 3. ABSOLUTE MAXIMUM RATINGS

## 3.1 ELECTRICAL ABSOLUTE RATINGS

## 3.1.1 TFT LCD MODULE


| Item                             | Symbol   | Value |      | Unit | Note       |
|----------------------------------|----------|-------|------|------|------------|
|                                  |          | Min.  | Max. |      |            |
| Power Supply Voltage             | LCD_VCC  | 3.0   | 3.6  | V    | (1)        |
| Converter Input Voltage          | LED_VCCS | 12    | 21   | V    | (1)        |
| Converter Control Signal Voltage | LED_EN   | 3.1   | 3.5  | V    | 3.3V +/-5% |
| Converter Control Signal Voltage | LED_PWM  | 3.1   | 3.5  | V    | 3.3V +/-5% |

Note (1) Stresses beyond those listed in above "ELECTRICAL ABSOLUTE RATINGS" may cause permanent damage to the device. Normal operation should be restricted to the conditions described in "ELECTRICAL CHARACTERISTICS".

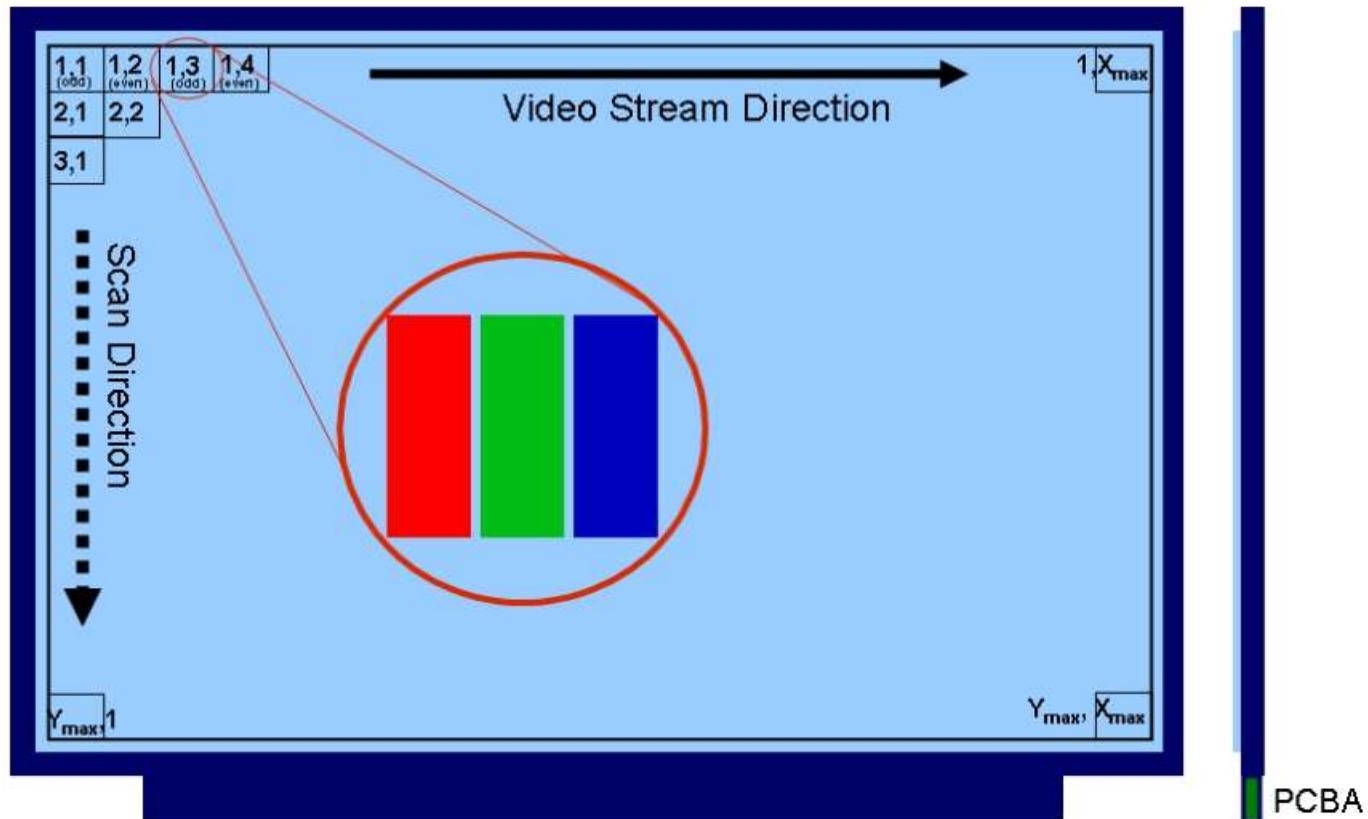
## PRODUCT SPECIFICATION

## 4. ELECTRICAL SPECIFICATIONS

## 4.1 FUNCTION BLOCK DIAGRAM



## 4.2. INTERFACE CONNECTIONS


## PIN ASSIGNMENT

| Pin | Symbol   | Description                             | Remark |
|-----|----------|-----------------------------------------|--------|
| 1   | NC       | No connection                           |        |
| 2   | GND      | Ground                                  |        |
| 3   | RX3N     | eDP differential data3 input (Negative) |        |
| 4   | RX3P     | eDP differential data3 input (Positive) |        |
| 5   | GND      | Ground                                  |        |
| 6   | RX2N     | eDP differential data2 input (Negative) |        |
| 7   | RX2P     | eDP differential data2 input (Positive) |        |
| 8   | GND      | Ground                                  |        |
| 9   | RX1N     | eDP differential data1 input (Negative) |        |
| 10  | RX1P     | eDP differential data1 input (Positive) |        |
| 11  | GND      | Ground                                  |        |
| 12  | RX0N     | eDP differential data0 input (Negative) |        |
| 13  | RX0P     | eDP differential data0 input (Positive) |        |
| 14  | GND      | Ground                                  |        |
| 15  | AUX_P    | True Signal Auxiliary Channel           |        |
| 16  | AUX_N    | Complement Signal Auxiliary Channel     |        |
| 17  | GND      | Ground                                  |        |
| 18  | VCCS_3V3 | 3.3V input                              |        |
| 19  | VCCS_3V3 | 3.3V input                              |        |
| 20  | VCCS_3V3 | 3.3V input                              |        |
| 21  | VCCS_3V3 | 3.3V input                              |        |
| 22  | AGING    | Aging test                              |        |
| 23  | GND      | Ground                                  |        |
| 24  | GND      | Ground                                  |        |

## PRODUCT SPECIFICATION

|    |         |                      |  |
|----|---------|----------------------|--|
| V  | GND     | Ground               |  |
| 26 | GND     | Ground               |  |
| 27 | HPD     | HPD signal pin       |  |
| 28 | GND     | Ground               |  |
| 29 | GND     | Ground               |  |
| 30 | GND     | Ground               |  |
| 31 | GND     | Ground               |  |
| 32 | LED_EN  | LED On / Off         |  |
| 33 | NC      | No connection        |  |
| 34 | NC      | No connection        |  |
| 35 | NC      | No connection        |  |
| 36 | BL_VCCS | Backlight_VCCS input |  |
| 37 | BL_VCCS | Backlight_VCCS input |  |
| 38 | BL_VCCS | Backlight_VCCS input |  |
| 39 | BL_VCCS | Backlight_VCCS input |  |
| 40 | NC      | No connection        |  |

Note (1) The first pixel is odd as shown in the following figure.



Note (2) The setting of BIST function are as follows.

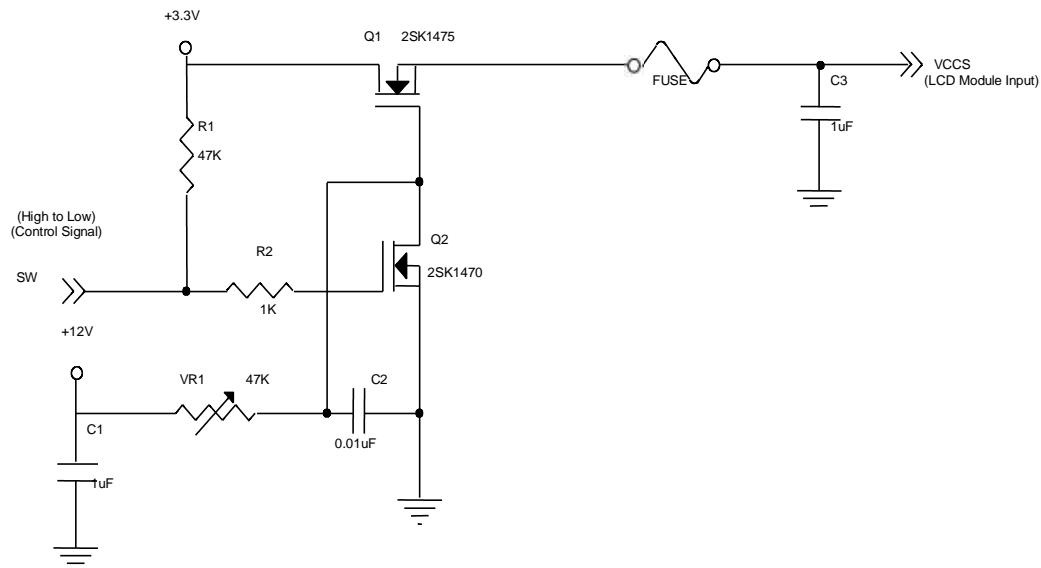
| Pin     | Enable | Disable    |
|---------|--------|------------|
| BIST_EN | Hi     | Lo or Open |

Hi = High level, Lo = Low level.

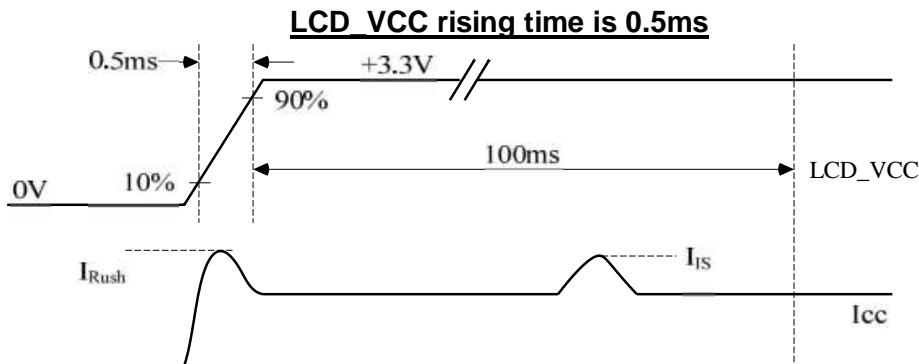
## PRODUCT SPECIFICATION

## 4.3 ELECTRICAL CHARACTERISTICS

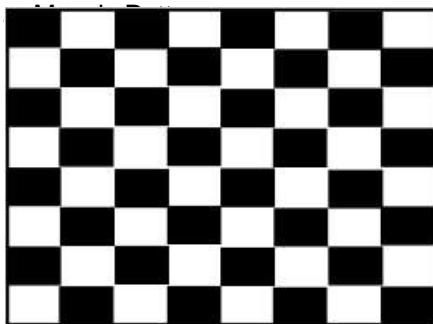
## 4.3.1 LCD ELETRONICS SPECIFICATION


| Parameter            | Symbol            | Value           |      |      | Unit | Note    |      |
|----------------------|-------------------|-----------------|------|------|------|---------|------|
|                      |                   | Min.            | Typ. | Max. |      |         |      |
| Power Supply Voltage | LCD_VCC           | 3.0             | 3.3  | 3.6  | V    | (1)     |      |
| Ripple Voltage       | V <sub>RP</sub>   | -               | -    | 100  | mV   | (1)     |      |
| Inrush Current       | I <sub>RUSH</sub> | -               | -    | 1.8  | A    | (1),(2) |      |
| Power Supply Current | Mosaic 8*6        | I <sub>CC</sub> | 0.65 | -    | 0.85 | mA      | (3)a |
|                      | Black             |                 | 0.63 | -    | 0.83 | mA      | (3)  |
|                      | (HeavyPattern)    |                 | 0.93 | -    | 1.13 | mA      |      |
| HPD output voltage   |                   | 2.25            | -    | 3.6  | V    |         |      |
| HPD Impedance        | R <sub>HPD</sub>  | -               | 100K | -    | ohm  | (4)     |      |
| HPD                  | High Level        |                 | 2.25 | -    | -    | V       | (5)  |
|                      | Low Level         |                 | 0    | -    | 0.7  | V       | (5)  |

Note (1) The ambient temperature is Ta = 25 ± 2 °C.


Note (2) I<sub>RUSH</sub>: the maximum current when LCD\_VCC is rising

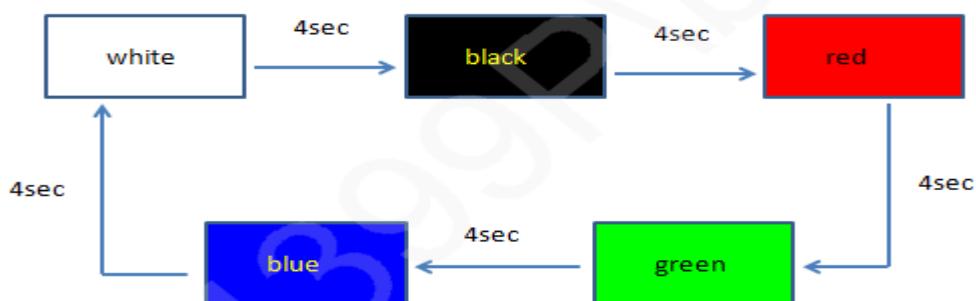
I<sub>IS</sub>: the maximum current of the first 100ms after power-on


Measurement Conditions: Shown as the following figure. Test pattern: black.



## PRODUCT SPECIFICATION




Note (3) The specified power supply current is under the conditions at  $LCD\_VCC = 3.3 V$ ,  $T_a = 25 \pm 2 {}^\circ C$ , DC Current and  $f_v = 60$  Hz, whereas a power dissipation check pattern below is displayed.



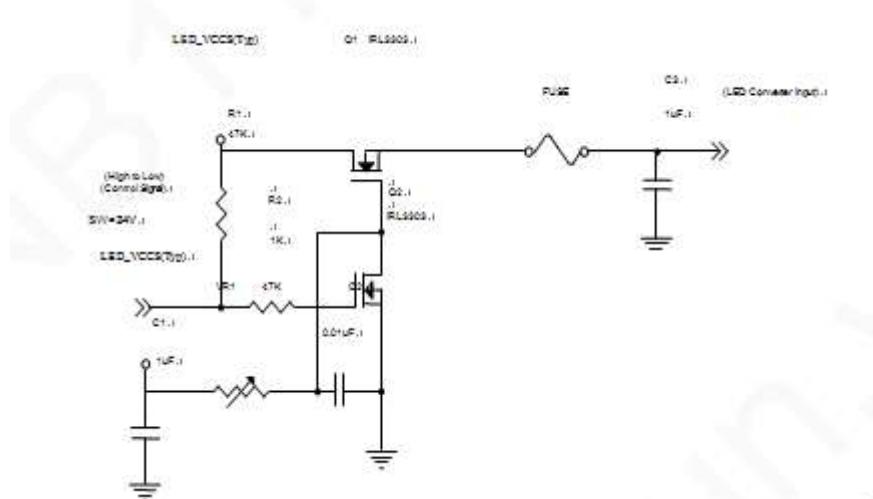
Note (4) The specified signals have equivalent impedances pull down to ground in the LCD module respectively. Customers should keep the input signal level requirement with the load of LCD module. Please refer to Note (4) of 4.3.2 LED CONVERTER SPECIFICATION to obtain more information.

Note (5) When a source detects a low-going HPD pulse, it must be regarded as a HPD event. Thus, the source must read the link / sink status field or receiver capability field of the DPCD and take corrective action.

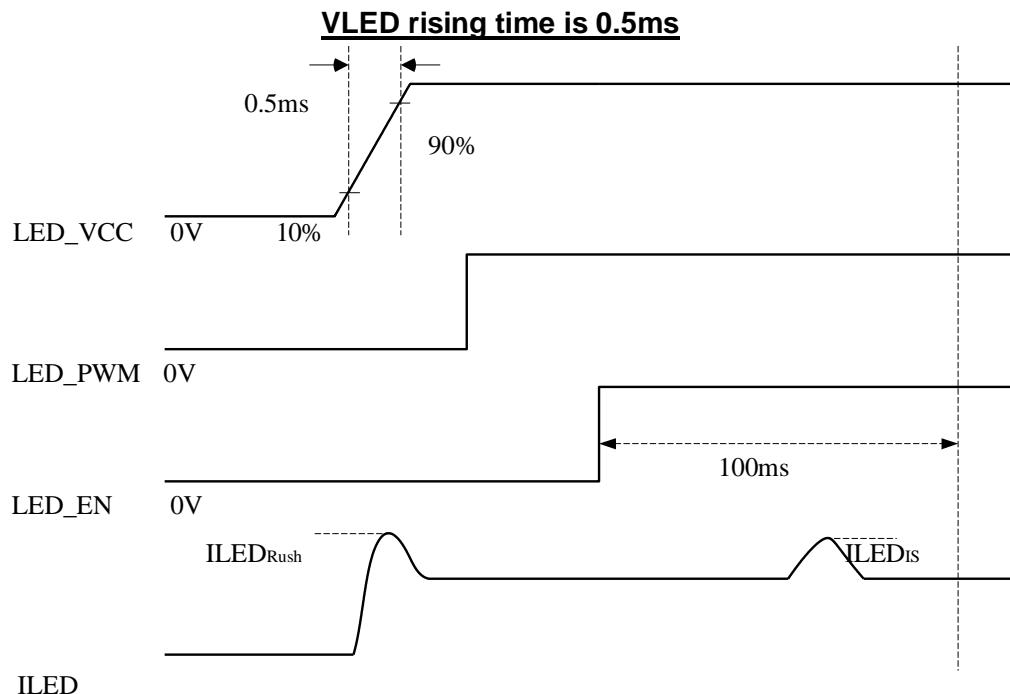
Note (6) LCD panel self-test (BIST mode) pattern are shown as below image. Each pattern displays 2 sec and recurring.



## PRODUCT SPECIFICATION


#### 4.3.2 LED CONVERTER SPECIFICATION

| Parameter                            | Symbol     | Value   |      |      | Unit | Note |     |
|--------------------------------------|------------|---------|------|------|------|------|-----|
|                                      |            | Min.    | Typ. | Max. |      |      |     |
| Converter Input Power Supply Voltage | LED_VCCS   | 12      | -    | 21   | V    |      |     |
| Converter Input Power Supply Current | ILED_VCCS  | 0.75    | -    | 1.15 | A    |      |     |
| Converter Inrush Current             | ILEDRUSH   | -       | -    | 2.8  | A    | (1)  |     |
| Input Voltage<br>(LED_EN)            | High Level | VIH     | 1.26 | -    | 2.1  | V    | (4) |
|                                      | Low Level  | VIL     | 0    | -    | 0.54 | V    | (4) |
| LED_EN Impedance                     |            | RLED_EN | -    | 400  | -    | ohm  | (4) |
| Input Voltage<br>(LED_PWM)           | High Level | VIH     | 0.81 | -    | 1.35 | V    |     |
|                                      | Low Level  | VIL     | 0.36 | -    | 0.72 | V    |     |
| PWM Resolution                       |            |         | 7    | -    | 12   | bits |     |


Note (1) ILED<sub>RUSH</sub>: the maximum current when LED\_VCCS is rising,

I<sub>LEDs</sub>: the maximum current of the first 100ms after power-on,

Measurement Conditions: Shown as the following figure. LED\_VCCS = Typ,  $T_a = 25 \pm 2$  °C,  $f_{PWM} = 200$  Hz, Duty=100%.

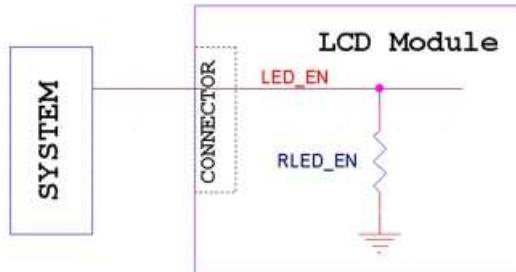


## PRODUCT SPECIFICATION



Note (2) If PWM control frequency is applied in the range less than 1KHz, the “waterfall” phenomenon on the screen may be found. To avoid the issue, it's a suggestion that PWM control frequency should follow the criterion as below.

PWM control frequency  $f_{PWM}$  should be in the range


$$(N + 0.33) * f \leq f_{PWM} \leq (N + 0.66) * f$$

$N$  : Integer ( $N \geq 3$ )

$f$  : Frame rate

Note (3) The specified LED power supply current is under the conditions at “LED\_VCCS = Typ.”,  $T_a = 25 \pm 2^{\circ}\text{C}$ ,  $f_{PWM} = 200$  Hz, Duty=100%.

Note (4) The specified signals have equivalent impedances pull down to ground in the LCD module respectively. Customers should keep the input signal level requirement with the load of LCD module. For example, the figure below describes the equivalent pull down impedance of LED\_EN (If it exists). The rest pull down impedances of other signals (eg. HPD, PWM ...) are in the same concept.



Note (5) If the cycle-to-cycle difference of PWM duty exceeds 0.1%, especially when the PWM duty is low, slight brightness change might be observed.

## PRODUCT SPECIFICATION

## 4.3.3 BACKLIGHT UNIT

Ta = 25 ± 2 °C

| Parameter                | Symbol          | Value |      |       | Unit | Note |
|--------------------------|-----------------|-------|------|-------|------|------|
|                          |                 | Min.  | Typ. | Max.  |      |      |
| BLU Power Supply Voltage | V <sub>L</sub>  | 5.2   | 5.6  | 6     | V    |      |
| BLU Power Supply Current | I <sub>L</sub>  | 3.393 |      |       | A    |      |
| Power Consumption        | P <sub>L</sub>  | 17.64 | 19   | 20.36 | W    |      |
| LED Life Time            | L <sub>BL</sub> | 15000 | -    | -     | Hrs  |      |

## Note:

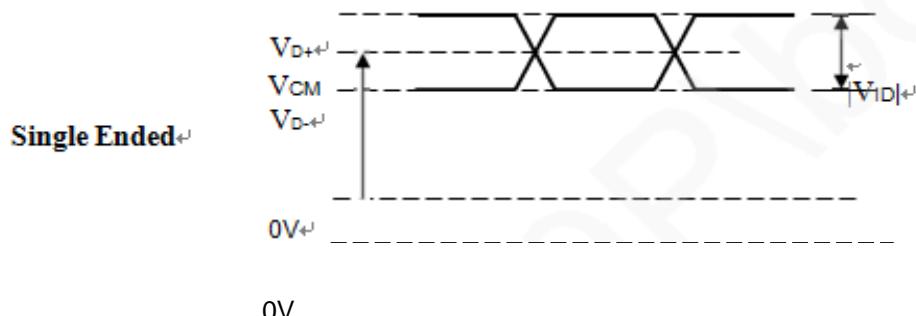
Parallel:2 strings

Series: 2 pcs

Partition:1440 area

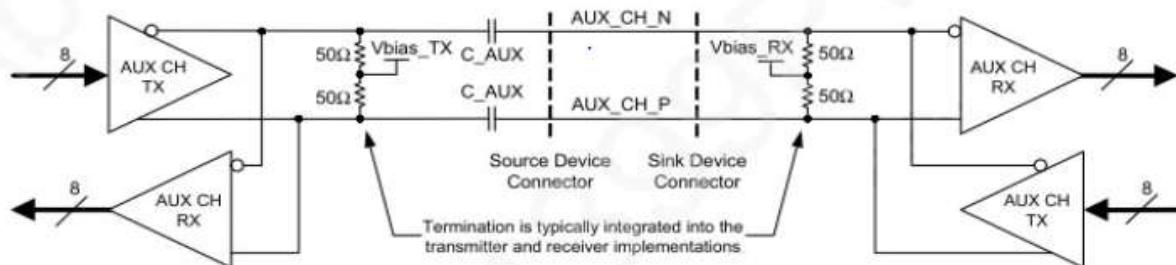
The copyright belongs to InnoLux. Any unauthorized use is prohibited.

## PRODUCT SPECIFICATION

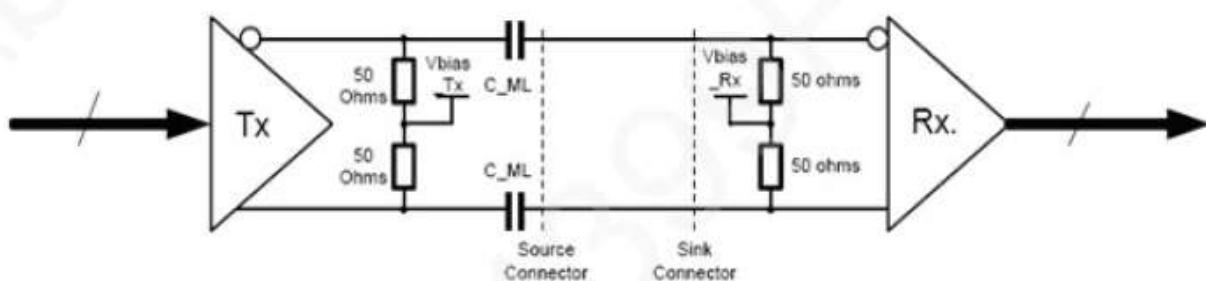

## 4.4 DISPLAY PORT INPUT SIGNAL TIMING SPECIFICATIONS

## 4.4.1 ELECTRICAL SPECIFICATIONS

| Parameter                                                 | Symbol                  | Min. | Typ. | Max. | Unit | Notes  |
|-----------------------------------------------------------|-------------------------|------|------|------|------|--------|
| Differential Signal Common Mode Voltage(MainLink and AUX) | V <sub>CM</sub>         | 0.3  |      | 0.7  | V    | (1)(4) |
| AUX AC Coupling Capacitor                                 | C <sub>Aux_Source</sub> | 75-  |      | 200- | nF   | (2)    |


Note (1)Display port interface related AC coupled signals should follow VESA DisplayPort Standard

Version1. Revision 1a and VESA Embedded DisplayPort™ Standard Version 1.2. There are many optional items described in eDP1.2. If some optional item is requested, please contact us.




0V

(2) AUX CH consists of an AC-coupled, doubly-terminated differential pair. Manchester-II coding is used as the channel coding for AUX transaction over AUX CH. AUX CH provides a data rate of 1Mbps.



3) The Main-Link consists of one, two, or four AC-coupled, doubly terminated differential pairs. Eight link rates are supported (1.62/2.16/2.43/2.7/3.24/4.32/5.4/8.1 Gbps). All enabled lanes must be operating at the same link rate. There is no dedicated clock channel. The clock is extracted from the data stream itself that is encoded with ANSI 8b/10b coding rule.



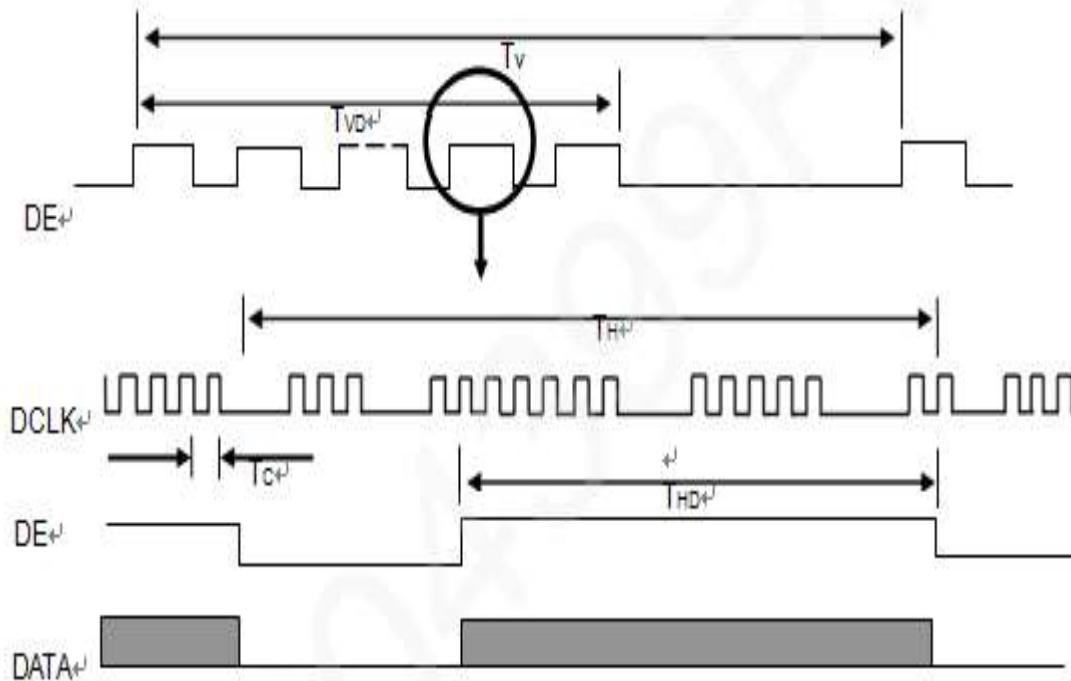
## PRODUCT SPECIFICATION

## 4.4.2 eDP 1.4 Interface Data Format

| Lane 0 | Lane 1 | Lane 2  | Lane 3  |
|--------|--------|---------|---------|
| R0-7:0 | R1-7:0 | R2-7:0  | R3-7:0  |
| G0-7:0 | G1-7:0 | G2-7:0  | G3-7:0  |
| B0-7:0 | B1-7:0 | B2-7:0  | B3-7:0  |
| R4-7:0 | R5-7:0 | R6-7:0  | R7-7:0  |
| G4-7:0 | G5-7:0 | G6-7:0  | G7-7:0  |
| B4-7:0 | B5-7:0 | B6-7:0  | B7-7:0  |
| R8-7:0 | R9-7:0 | R10-7:0 | R11-7:0 |
| G8-7:0 | G9-7:0 | G10-7:0 | G11-7:0 |
| B8-7:0 | B9-7:0 | B10-7:0 | B11-7:0 |

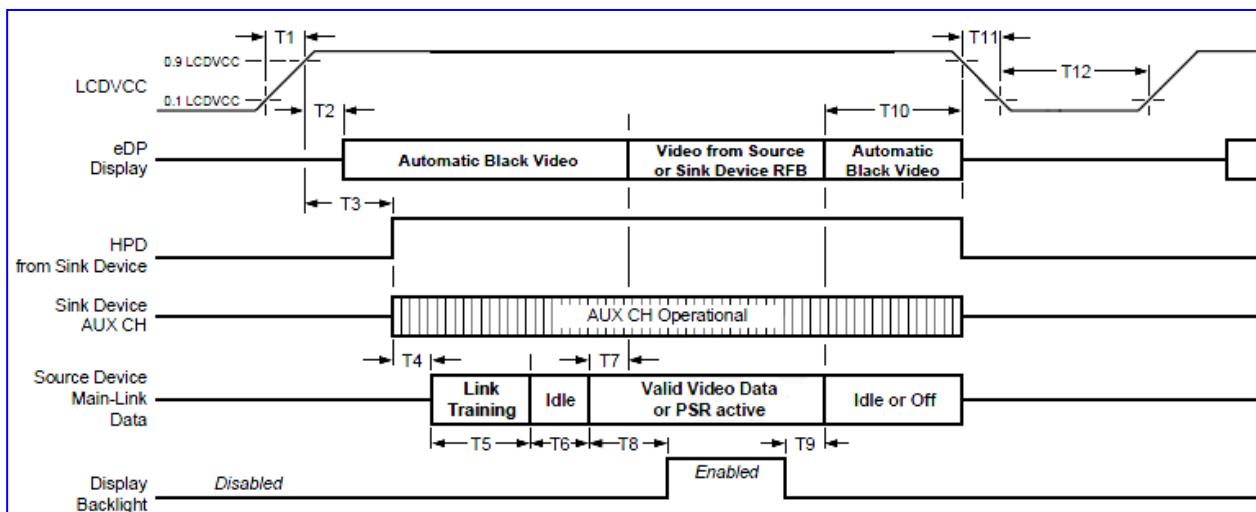
8bit RGB to a 4-Lane Main-Link Mapping

## PRODUCT SPECIFICATION


## 4.5 DISPLAY TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

| Signal | Item                              | Symbol | Min. | Typ.   | Max. | Unit | Note |
|--------|-----------------------------------|--------|------|--------|------|------|------|
| DCLK   | Frequency                         | 1/Tc   | -    | 1267.2 | -    | MHz  | -    |
| DE     | Vertical Total Time               | TV     | -    | 2200   | -    | TH   | -    |
|        | Vertical Active Display Period    | TVD    | -    | 2160   | -    | TH   | -    |
|        | Vertical Active Blanking Period   | TVB    | -    | 40     | -    | TH   | -    |
|        | Horizontal Total Time             | TH     | -    | 4000   | -    | Tc   | -    |
|        | Horizontal Active Display Period  | THD    | -    | 3840   | -    | Tc   | -    |
|        | Horizontal Active Blanking Period | THB    | -    | 160    | -    | Tc   | -    |


Note (1) The panel can operate at 60Hz normal mode and power saving mode, respectively. All reliability tests are based on specific timing of 60Hz refresh rate. We can only assure the panel's electrical function at power saving mode.

INPUT SIGNAL TIMING DIAGRAM



## PRODUCT SPECIFICATION

## 4.6 POWER ON/OFF SEQUENCE



## Time Specifications

| Parameter | Description                                               | Reqd. By      | Value |     | Unit | Notes                                                                                                                             |
|-----------|-----------------------------------------------------------|---------------|-------|-----|------|-----------------------------------------------------------------------------------------------------------------------------------|
|           |                                                           |               | Min   | Max |      |                                                                                                                                   |
| T1        | Power rail rise time, 10% to 90%                          | Source Device | 0.5   | 10  | ms   | -                                                                                                                                 |
| T2        | Delay from LCD,V <sub>CCS</sub> to black video generation | Sink Device   | 0     | 200 | ms   | Automatic Black Video generation prevents display noise until valid video data is received from the Source device. <sup>2,3</sup> |
| T3        | Delay from LCD,V <sub>CCS</sub> to HPD high               | Sink Device   | 0     | 200 | ms   | Sink device AUX CH must be operational upon HPD high. <sup>4</sup>                                                                |
| T4        | Delay from HPD high to link training initialization       | Source Device | 0     | -   | ms   | Allows for Source device to read Link capability and initialize                                                                   |
| T5        | Link training duration                                    | Source Device | 0     | -   | ms   | Dependant on Source device link training protocol                                                                                 |
| T6        | Link idle                                                 | Source Device | 0     | -   | ms   | Min Accounts for required BS-Idle pattern. Max allows for Source frame synchronization                                            |

| Parameter | Description                                                 | Reqd. By      | Value |     | Unit | Notes                                                                                                                                                                                                                                                                                                                                                         |
|-----------|-------------------------------------------------------------|---------------|-------|-----|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |                                                             |               | Min   | Max |      |                                                                                                                                                                                                                                                                                                                                                               |
| T7        | Delay from valid video data from Source to video on display | Sink Device   | 0     | 50  | ms   | Max value allows for the Sink device to validate video data and timing. At the end of T7, the Sink device will indicate that it detection valid video data, by setting the RECEIVE_PORT_0_STATUS bit of the STATUS bit of the SINK_STATUS register (DPCD Address 00205h, bit 0) to logic 1, and Sink device will no longer generate automatic Black Video     |
| T8        | Delay from valid video data from Source to backlight on     | Source Device | 80    | -   | ms   | The Source device must assure display video is stable                                                                                                                                                                                                                                                                                                         |
| T9        | Delay from backlight disable to end of valid video data     | Source Device | 50    | -   | ms   | The Source device must assure that the backlight is no longer illuminated. At the end of T9, the Sink device will indicate that it did not detect valid video data, by setting the RECEIVE_PORT_0_STATUS bit of the SINK_STATUS register (DPCD Address 00205h, bit 0;) to logic 0, and the Sink device will automatically display Black Video. <sup>2,3</sup> |
| T10       | Delay from end of valid video data from Source to power off | Source Device | 0     | 500 | ms   |                                                                                                                                                                                                                                                                                                                                                               |
| T11       | V <sub>CCS</sub> power rail fall time, 90% to 10%           | Source Device | 0.5   | 10  | ms   | -                                                                                                                                                                                                                                                                                                                                                             |
| T12       | V <sub>CCS</sub> Power off time                             | Source Device | 500   | -   | ms   |                                                                                                                                                                                                                                                                                                                                                               |

Remark:

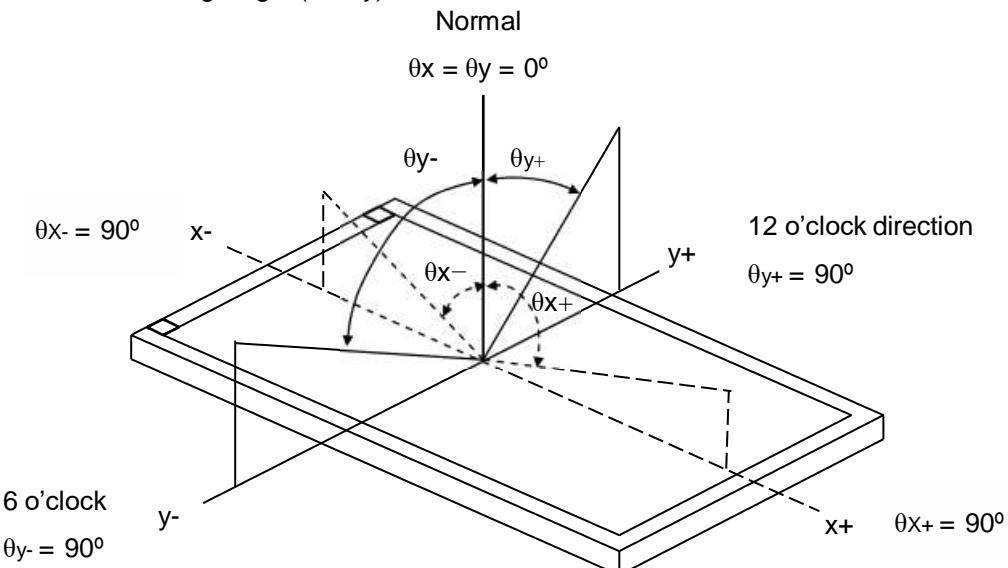
1. Please don't plug or unplug the interface cable when system is turned on.
2. The Sink device must include the ability to automatically and autonomously generate Black Video. The Sink device must automatically enable Black Video under the following conditions:
  - Upon LCDVCC power-on (within T2 max)
  - When the "No Video Stream Flag" (VB-ID Bit 3) is received from the Source device (at the end of T9)
3. The Sink device can implement the ability to disable the automatic Black Video function, as described in footnote "2", for system development and debugging purposes.
4. The Sink must support AUX Channel polling by the Source immediately following LCD VCC power-on without causing damage to the Sink device (the Source device can re-try if the Sink is not ready). The Sink device must be able to response to an AUX Channel transaction within the time specified within T3 max.

## PRODUCT SPECIFICATION

## 5. OPTICAL CHARACTERISTICS

## 5.1 TEST CONDITIONS

| Item                        | Symbol                                                          | Value | Unit |
|-----------------------------|-----------------------------------------------------------------|-------|------|
| Ambient Temperature         | T <sub>a</sub>                                                  | 25±2  | °C   |
| Ambient Humidity            | H <sub>a</sub>                                                  | 50±10 | %RH  |
| Supply Voltage              | V <sub>cc</sub>                                                 | 6     | V    |
| Input Signal                | According to typical value in "4.3. ELECTRICAL CHARACTERISTICS" |       |      |
| LED Light Bar Input Current | I <sub>L</sub>                                                  | 2218  | mA   |


The measurement methods of optical characteristics are shown in Section 5.2. The following items should be measured under the test conditions described in Section 5.1 and stable environment shown in Note (5).

## 5.2 OPTICAL SPECIFICATIONS

| Item                  | Symbol                         | Condition                                                       | Min. | Typ.            | Max. | Unit              | Note            |  |
|-----------------------|--------------------------------|-----------------------------------------------------------------|------|-----------------|------|-------------------|-----------------|--|
| Contrast Ratio        | CR                             | $\theta_x=0^\circ, \theta_Y=0^\circ$<br>Viewing<br>Normal Angle | -    | 10 <sub>5</sub> | -    | -                 | (2),(5),<br>(7) |  |
| Response Time         | T <sub>R</sub> +T <sub>F</sub> |                                                                 | -    | 25              | -    | ms                | (3),(7)         |  |
| Luminance of White    | L                              |                                                                 |      | 1180            |      | cd/m <sup>2</sup> | (4),<br>(6),(7) |  |
| Color<br>Chromaticity | Red                            | $\theta_x=0^\circ, \theta_Y=0^\circ$<br>Viewing<br>Normal Angle |      | TBD             |      | -                 | (1),(7)         |  |
|                       |                                |                                                                 |      | TBD             |      | -                 |                 |  |
|                       | Green                          |                                                                 |      | TBD             |      | -                 |                 |  |
|                       |                                |                                                                 |      | TBD             |      | -                 |                 |  |
|                       | Blue                           |                                                                 |      | TBD             |      | -                 |                 |  |
|                       |                                |                                                                 |      | TBD             |      | -                 |                 |  |
|                       | White                          |                                                                 |      | 0.313           |      | -                 |                 |  |
|                       |                                |                                                                 |      | 0.329           |      | -                 |                 |  |
| Color gamut           | C.G                            |                                                                 | 94.7 | 99.7            | -    | %                 | (8)             |  |
| Viewing Angle         | Horizontal                     | CR≥10                                                           | 80   | 85              | -    | Deg.              | (1),(5),<br>(7) |  |
|                       |                                |                                                                 | 80   | 85              | -    |                   |                 |  |
|                       | Vertical                       |                                                                 | 80   | 85              | -    |                   |                 |  |
|                       |                                |                                                                 | 80   | 85              | -    |                   |                 |  |
| White Variation       | δW <sub>5p</sub>               | $\theta_x=0^\circ, \theta_Y=0^\circ$                            | 80   | 85              | -    | %                 | (5),(6),<br>(7) |  |
|                       | δW <sub>13p</sub>              | $\theta_x=0^\circ, \theta_Y=0^\circ$                            | 60   | 65              | -    | %                 |                 |  |

## PRODUCT SPECIFICATION

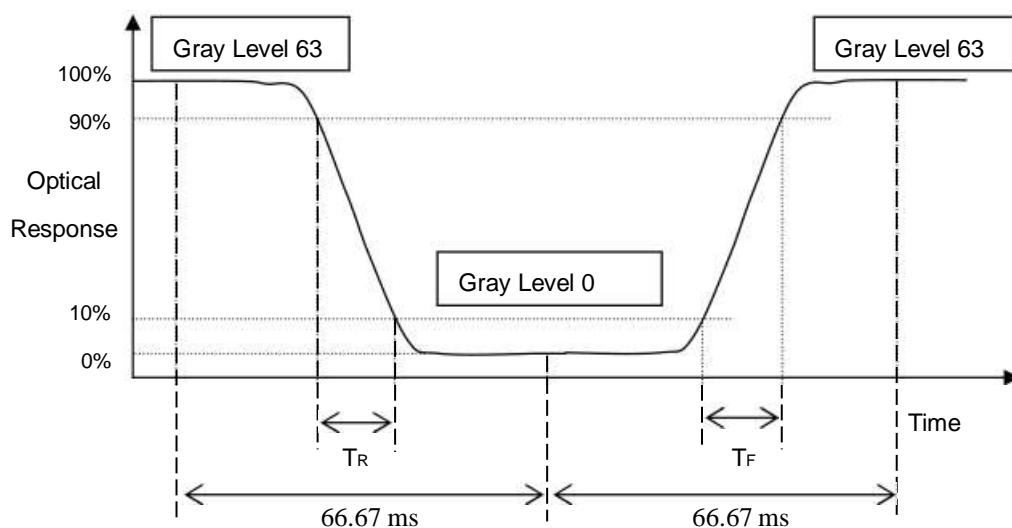
Note (1) Definition of Viewing Angle ( $\theta_x$ ,  $\theta_y$ ):



Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

$$\text{Contrast Ratio (CR)} = L_{255} / L_0$$


$L_{63}$ : Luminance of gray level 255

$L_0$ : Luminance of gray level 0

$$CR = CR (1)$$

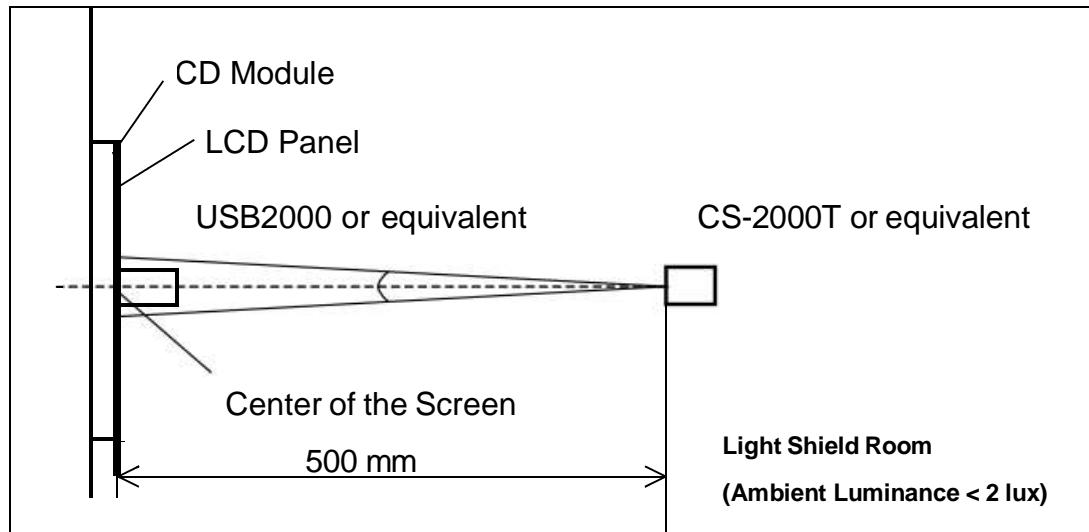
CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

Note (3) Definition of Response Time (TR, TF):



Note (4) Definition of Average Luminance of White ( $L_{AVE}$ ):

Measure the luminance of gray level 255 at 5 points

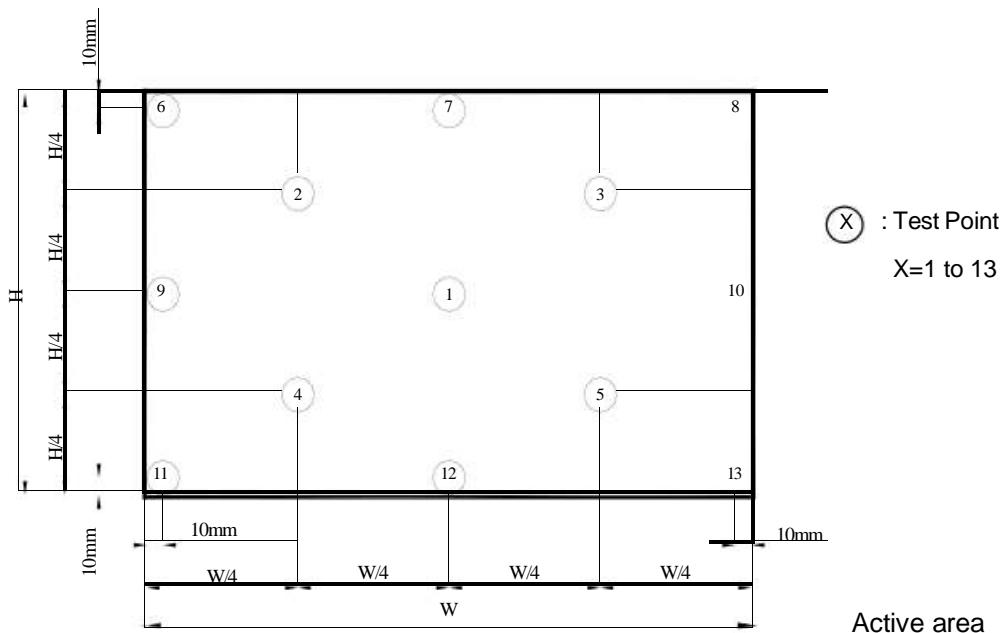

$$L_{AVE} = [L (1) + L (2) + L (3) + L (4) + L (5)] / 5$$

$L (x)$  is corresponding to the luminance of the point X at Figure in Note (6)

# PRODUCT SPECIFICATION

## Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.




## Note (6) Definition of White Variation ( $\delta W$ ):

Measure the luminance of gray level 255 at 5 points

$$\delta W_{5p} = \{ \text{Minimum } [L(1) \sim L(5)] / \text{Maximum } [L(1) \sim L(5)] \} * 100\%$$

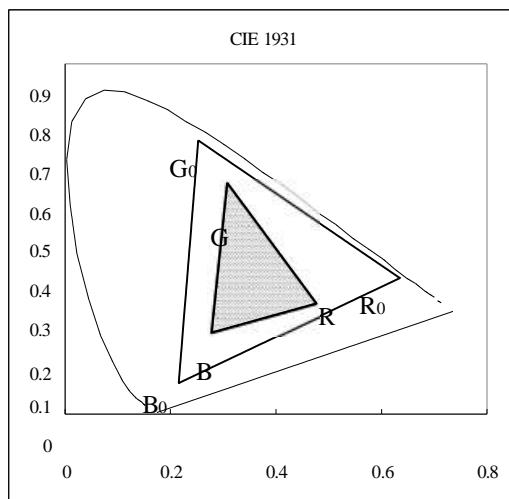
$$\delta W_{13p} = \{ \text{Minimum } [L(1) \sim L(13)] / \text{Maximum } [L(1) \sim L(13)] \} * 100\%$$



## PRODUCT SPECIFICATION

Note (7) The listed optical specifications refer to the initial value of manufacture, but the condition of the specifications after long-term operation will not be warranted.

Note (8) Definition of color gamut (C.G%):


$$C.G\% = \frac{R G B}{R_0 G_0 B_0} * 100\%$$

$R_0, G_0, B_0$  : color coordinates of red, green, and blue defined by NTSC, respectively.

$R, G, B$  : color coordinates of module on 255 gray levels of red, green, and blue, respectively.

$R_0 G_0 B_0$  : area of triangle defined by  $R_0, G_0, B_0$

$R G B$ : area of triangle defined by  $R, G, B$



## PRODUCT SPECIFICATION

## 6. RELIABILITY TEST ITEM

| Test Item                                       | Test Condition                                                                                         | Note    |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------|
| High Temperature Storage Test                   | 60°C, 240 hours                                                                                        | (1) (2) |
| Low Temperature Storage Test                    | -20°C, 240 hours                                                                                       |         |
| Thermal Shock Storage Test                      | -25°C, 0.5hour↔65°C, 0.5hour; 100cycles, 1hour/cycle                                                   |         |
| Low Temperature Operation Test                  | 0°C, 240 hours                                                                                         |         |
| High Temperature & High Humidity Operation Test | 50°C, RH 80%, 240hours                                                                                 |         |
| ESD Test (Operation)                            | 150pF, 330Ω, 1sec/cycle<br>Condition 1 : Contact Discharge, ±8KV<br>Condition 2 : Air Discharge, ±15KV | (1)     |
| Shock (Non-Operating)                           | 210G, 3ms, half sine wave, 1 time for each direction of ±X, ±Y, ±Z                                     | (1)(3)  |
| Vibration (Non-Operating)                       | 1.5G / 10-200-10Hz, Sine wave, 30 min/cycle, 1cycle for each X, Y, Z                                   | (1)(3)  |

Note (1) criteria : Normal display image with no obvious non-uniformity and no line defect.

Note (2) Evaluation should be tested after storage at room temperature for more than two hour

Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough

so that the module would not be twisted or bent by the fixture.

## PRODUCT SPECIFICATION

## 7. PACKING

## 7.1 MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.



(a) Model Name: **P173ZZZ-BZ1**

(b) Revision: Rev. XX, for example: B1, B2 ...etc.

(c) Serial ID: X|X|X|X|X|X|Y|M|D|L|N|N|N|N

Serial No.

Product Line

Year, Month, Date

INNOLUX Internal Use

Revision

INNOLUX Internal Use

(d) Production Location: MADE IN XXXX.

(e) UL logo: XXXX especially stands for panel manufactured by INNOLUX satisfying UL requirement.  
Marking as follows rule:

TW INX\_D Factory =>GEMN

TW INX\_C Factory =>

NB INX\_NA Factory =>LEOO

NB INX\_NB,NC Factory =>VIRO

NB INX\_ND Factory =>COCKN

FS INX\_A&B building=>CAPG

Serial ID includes the information as below:

(a) Manufactured Date: Year: 0~9, for 2010~2019

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1<sup>st</sup> to 31<sup>st</sup>, exclude I , O and U

(b) Revision Code: cover all the change

(c) Serial No.: Manufacturing sequence of product

(d) Product Line: 1 -> Line1, 2 -> Line 2, ...etc.

## PRODUCT SPECIFICATION

## 7.2 CARTON

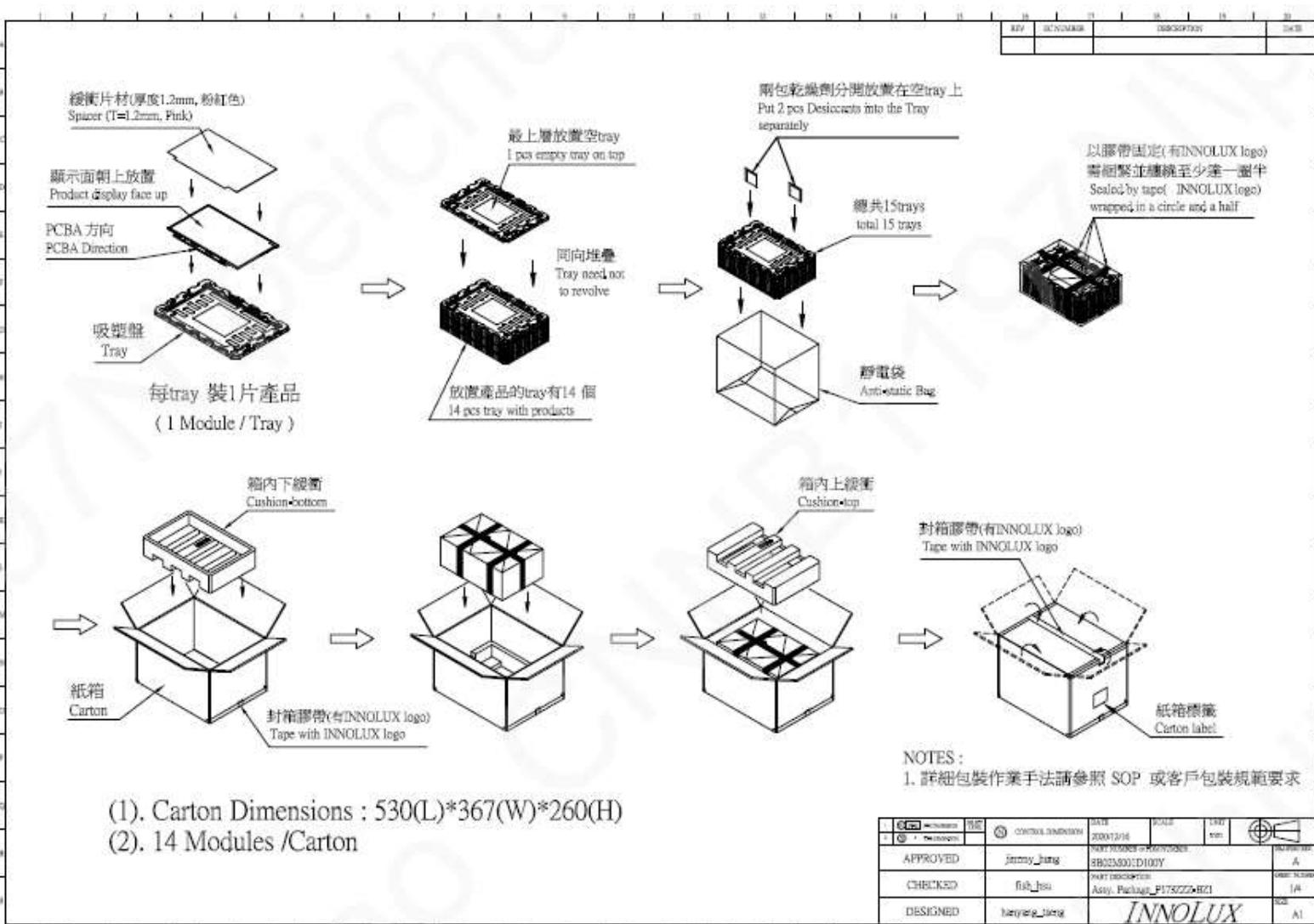



Figure. 7-2 Packing method

## PRODUCT SPECIFICATION

## 7.3 PALLET

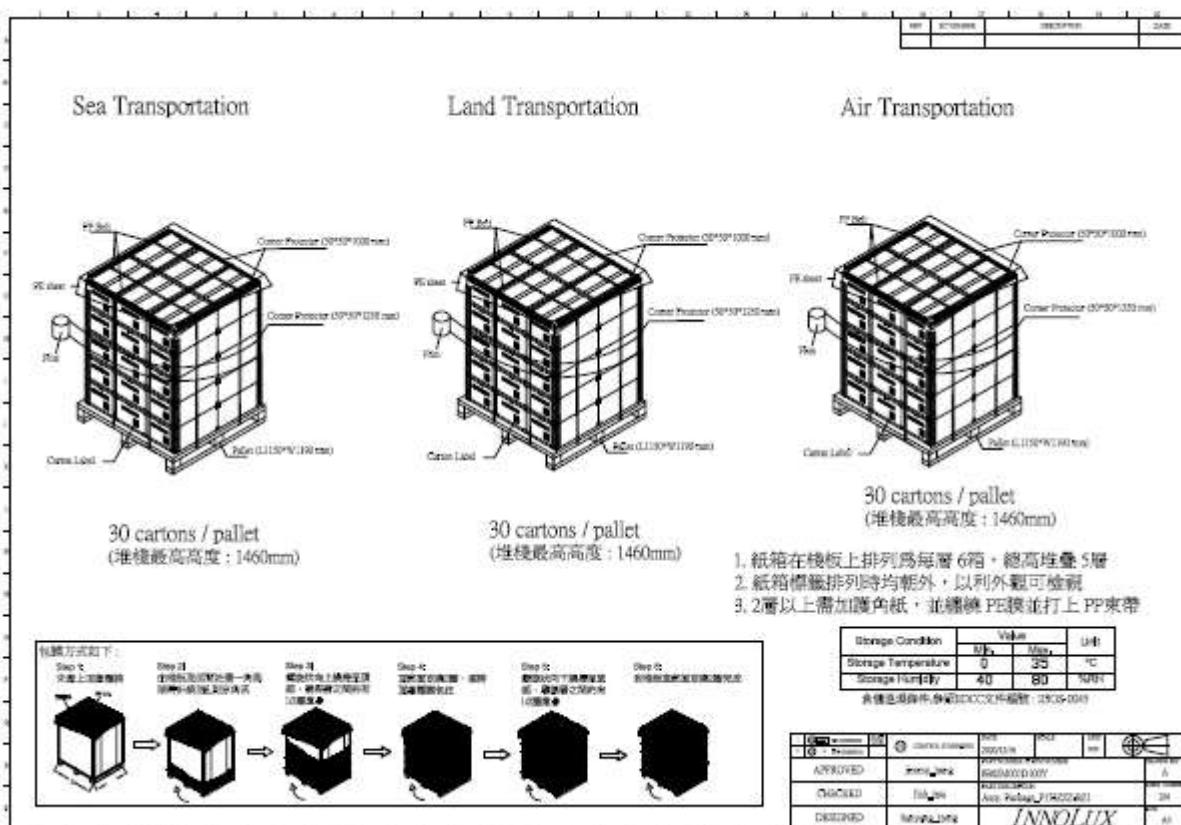



Figure. 7-3 Packing method

# PRODUCT SPECIFICATION

## 8. PRECAUTIONS

### 8.1 HANDLING PRECAUTIONS

- (1) The module should be assembled into the system firmly by using every mounting hole. Be careful not to twist or bend the module.
- (2) While assembling or installing modules, it can only be in the clean area. The dust and oil may cause electrical short or damage the polarizer.
- (3) Use fingerstalls or soft gloves in order to keep display clean during the incoming inspection and assembly process.
- (4) Do not press or scratch the surface harder than a HB pencil lead on the panel because the polarizer is very soft and easily scratched.
- (5) If the surface of the polarizer is dirty, please clean it by some absorbent cotton or soft cloth. Do not use Ketone type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanently damage the polarizer due to chemical reaction.
- (6) Wipe off water droplets or oil immediately. Staining and discoloration may occur if they left on panel for a long time.
- (7) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contacting with hands, legs or clothes, it must be washed away thoroughly with soap.
- (8) Protect the module from static electricity, it may cause damage to the C-MOS Gate Array IC.
- (9) Do not disassemble the module.
- (10) Do not pull or fold the LED wire.
- (11) Pins of I/F connector should not be touched directly with bare hands.

### 8.2 STORAGE PRECAUTIONS

- (1) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (2) It is dangerous that moisture come into or contacted the LCD module, because the moisture may damage LCD module when it is operating.
- (3) It may reduce the display quality if the ambient temperature is lower than 10 °C. For example, the response time will become slowly, and the starting voltage of LED will be higher than the room temperature.

### 8.3 OPERATION PRECAUTIONS

- (1) Do not pull the I/F connector in or out while the module is operating.
- (2) Always follow the correct power on/off sequence when LCD module is connecting and operating. This can prevent the CMOS LSI chips from damage during latch-up.
- (3) The startup voltage of Backlight is approximately 1000 Volts. It may cause electrical shock while assembling with converter. Do not disassemble the module or insert anything into the Backlight unit.

## PRODUCT SPECIFICATION

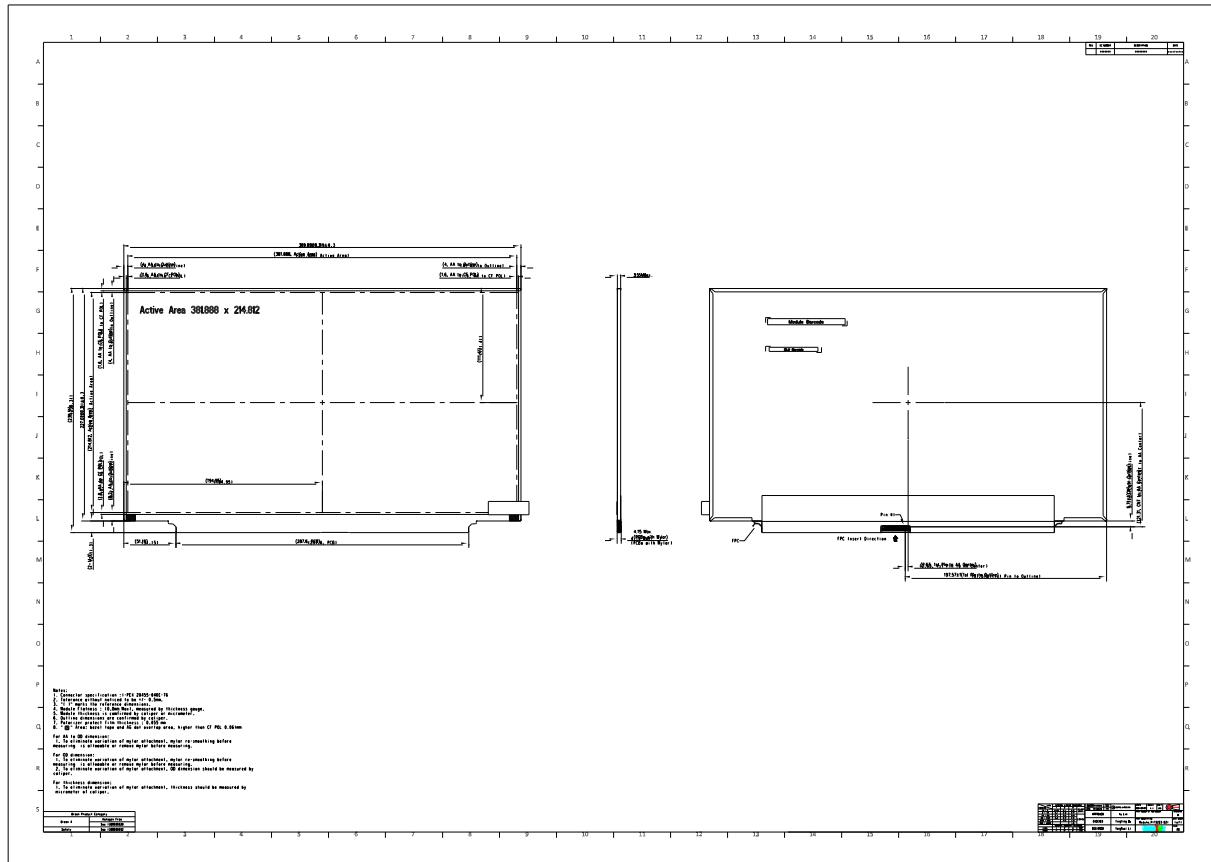
## Appendix. EDID DATA STRUCTURE

The EDID (Extended Display Identification Data) data formats are to support displays as defined in the VESA Plug & Display and FPDI standards.

| Byte # (decimal) | Byte # (hex) | Field Name and Comments                   | Value (hex) | Value (binary) |
|------------------|--------------|-------------------------------------------|-------------|----------------|
| 0                | 00           | Header                                    | 00          | 00000000       |
| 1                | 01           | Header                                    | FF          | 11111111       |
| 2                | 02           | Header                                    | FF          | 11111111       |
| 3                | 03           | Header                                    | FF          | 11111111       |
| 4                | 04           | Header                                    | FF          | 11111111       |
| 5                | 05           | Header                                    | FF          | 11111111       |
| 6                | 06           | Header                                    | FF          | 11111111       |
| 7                | 07           | Header                                    | 00          | 00000000       |
| 8                | 08           | EISA ID manufacturer name ("CMN")         | 0D          | 00110000       |
| 9                | 09           | EISA ID manufacturer name                 | AE          | 10101110       |
| 10               | 0A           | ID product code (LSB)                     | 01          | 00000001       |
| 11               | 0B           | ID product code (MSB)                     | AD          | 10101101       |
| 12               | 0C           | ID S/N (fixed "0")                        | 00          | 00000000       |
| 13               | 0D           | ID S/N (fixed "0")                        | 00          | 00000000       |
| 14               | 0E           | ID S/N (fixed "0")                        | 00          | 00000000       |
| 15               | 0F           | ID S/N (fixed "0")                        | 00          | 00000000       |
| 16               | 10           | Week of manufacture (fixed week code)     | 2F          | 00101111       |
| 17               | 11           | Year of manufacture (fixed year code)     | 1E          | 00011110       |
| 18               | 12           | EDID structure version ("1")              | 01          | 00000001       |
| 19               | 13           | EDID revision ("4")                       | 04          | 00000100       |
| 20               | 14           | Video I/P definition ("Digital")          | B5          | 10110101       |
| 21               | 15           | Active area horizontal ("27.9 cm")        | 26          | 00100110       |
| 22               | 16           | Active area vertical ("17.4cm")           | 15          | 00010101       |
| 23               | 17           | Display Gamma (Gamma = "2.2")             | 78          | 01111000       |
| 24               | 18           | Feature support ("Active off, RGB Color") | 02          | 00000010       |
| 25               | 19           | Rx1, Rx0, Ry1, Ry0, Gx1, Gx0, Gy1, Gy0    | 4F          | 01001111       |
| 26               | 1A           | Bx1, Bx0, By1, By0, Wx1, Wx0, Wy1, Wy0    | B5          | 10110101       |
| 27               | 1B           | Rx=0.644                                  | AE          | 10101110       |
| 28               | 1C           | Ry=0.324                                  | 4F          | 01001111       |
| 29               | 1D           | Gx=0.306                                  | 3E          | 00111110       |
| 30               | 1E           | Gy=0.609                                  | B1          | 10110001       |
| 31               | 1F           | Bx=0.153                                  | 27          | 00100111       |
| 32               | 20           | By=0.063                                  | 0D          | 00001101       |
| 33               | 21           | Wx=0.315                                  | 50          | 01010000       |
| 34               | 22           | Wy=0.327                                  | 54          | 01010100       |
| 35               | 23           | Established timings 1                     | 00          | 00000000       |
| 36               | 24           | Established timings 2                     | 00          | 00000000       |
| 37               | 25           | Manufacturer's reserved timings           | 00          | 00000000       |
| 38               | 26           | Standard timing ID # 1                    | 01          | 00000001       |
| 39               | 27           | Standard timing ID # 1                    | 01          | 00000001       |
| 40               | 28           | Standard timing ID # 2                    | 01          | 00000001       |
| 41               | 29           | Standard timing ID # 2                    | 01          | 00000001       |

The copyright belongs to InnoLux. Any unauthorized use is prohibited.

## PRODUCT SPECIFICATION

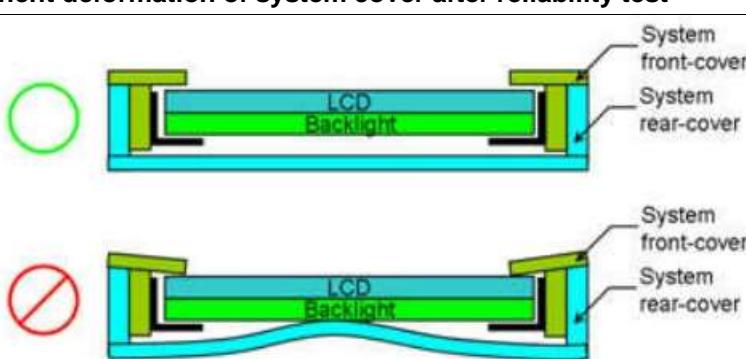
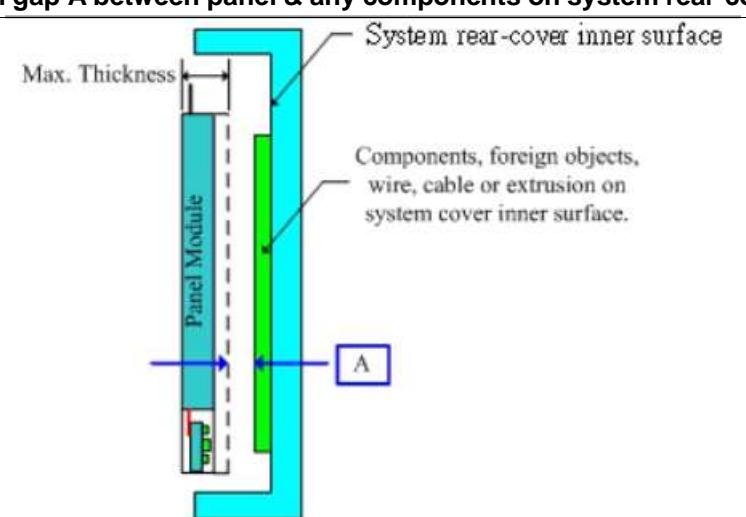

|    |    |                                                                         |    |          |
|----|----|-------------------------------------------------------------------------|----|----------|
| 42 | 2A | Standard timing ID # 3                                                  | 01 | 00000001 |
| 43 | 2B | Standard timing ID # 3                                                  | 01 | 00000001 |
| 44 | 2C | Standard timing ID # 4                                                  | 01 | 00000001 |
| 45 | 2D | Standard timing ID # 4                                                  | 01 | 00000001 |
| 46 | 2E | Standard timing ID # 5                                                  | 01 | 00000001 |
| 47 | 2F | Standard timing ID # 5                                                  | 01 | 00000001 |
| 48 | 30 | Standard timing ID # 6                                                  | 01 | 00000001 |
| 49 | 31 | Standard timing ID # 6                                                  | 01 | 00000001 |
| 50 | 32 | Standard timing ID # 7                                                  | 01 | 00000001 |
| 51 | 33 | Standard timing ID # 7                                                  | 01 | 00000001 |
| 52 | 34 | Standard timing ID # 8                                                  | 01 | 00000001 |
| 53 | 35 | Standard timing ID # 8                                                  | 01 | 00000001 |
| 54 | 36 | Detailed timing description # 1 Pixel clock ("180.77MHz")               | 4D | 01001101 |
| 55 | 37 | # 1 Pixel clock (hex LSB first)                                         | D1 | 11010001 |
| 56 | 38 | # 1 H active ("2160")                                                   | 00 | 00000000 |
| 57 | 39 | # 1 H blank ("44")                                                      | A0 | 10100000 |
| 58 | 3A | # 1 H active : H blank                                                  | F0 | 11110000 |
| 59 | 3B | # 1 V active ("1350")                                                   | 70 | 01110000 |
| 60 | 3C | # 1 V blank ("17")                                                      | 3E | 00111110 |
| 61 | 3D | # 1 V active : V blank                                                  | 80 | 10000000 |
| 62 | 3E | # 1 H sync offset ("16")                                                | 30 | 00110000 |
| 63 | 3F | # 1 H sync pulse width ("16")                                           | 20 | 00100000 |
| 64 | 40 | # 1 V sync offset : V sync pulse width ("8 : 1")                        | 35 | 00110101 |
| 65 | 41 | # 1 H sync offset : H sync pulse width : V sync offset : V sync width   | 00 | 00000000 |
| 66 | 42 | # 1 H image size ("279 mm")                                             | 7D | 01111101 |
| 67 | 43 | # 1 V image size ("174 mm")                                             | D6 | 11010110 |
| 68 | 44 | # 1 H image size : V image size                                         | 10 | 00010000 |
| 69 | 45 | # 1 H boarder ("0")                                                     | 00 | 00000000 |
| 70 | 46 | # 1 V boarder ("0")                                                     | 00 | 00000000 |
| 71 | 47 | # 1 Non-interlaced, Normal, no stereo, Separate sync, H/V pol Negatives | 18 | 00011000 |
| 72 | 48 | Detailed timing description # 2                                         | 00 | 00000000 |
| 73 | 49 | # 2 Flag                                                                | 00 | 00000000 |
| 74 | 4A | # 2 Reserved                                                            | 00 | 00000000 |
| 75 | 4B | # 2 ASCII string Model name                                             | 00 | 00000000 |
| 76 | 4C | # 2 Flag                                                                | 00 | 00000000 |
| 77 | 4D | # 2 Character of Model name ("")                                        | 00 | 00000000 |
| 78 | 4E | # 2 Character of Model name ("")                                        | 00 | 00000000 |
| 79 | 4F | # 2 Character of Model name ("")                                        | 00 | 00000000 |
| 80 | 50 | # 2 Character of Model name ("")                                        | 00 | 00000000 |
| 81 | 51 | # 2 Character of Model name ("")                                        | 00 | 00000000 |
| 82 | 52 | # 2 Character of Model name ("")                                        | 00 | 00000000 |
| 83 | 53 | # 2 Character of Model name ("")                                        | 00 | 00000000 |
| 84 | 54 | # 2 Character of Model name ("")                                        | 00 | 00000000 |
| 85 | 55 | # 2 Character of Model name ("")                                        | 00 | 00000000 |
| 86 | 56 | # 2 Character of Model name ("")                                        | 00 | 00000000 |
| 87 | 57 | # 2 Character of Model name ("")                                        | 00 | 00000000 |

## PRODUCT SPECIFICATION

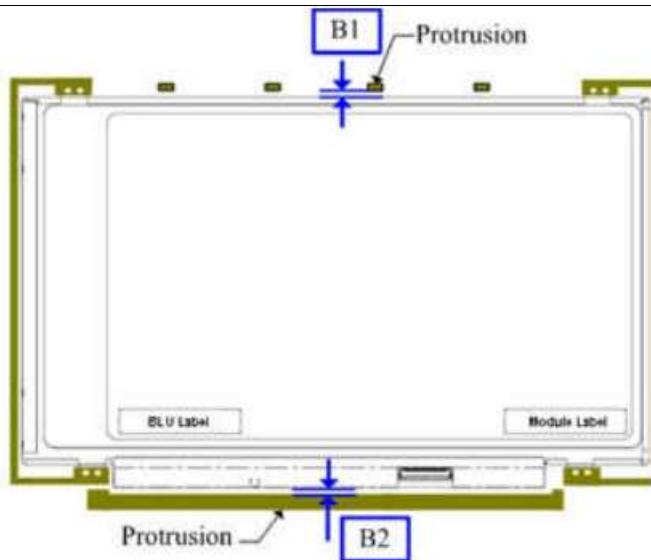
|     |    |                                                      |    |          |
|-----|----|------------------------------------------------------|----|----------|
| 88  | 58 | # 2 New line character indicates end of ASCII string | 00 | 00000000 |
| 89  | 59 | # 2 Padding with "Blank" character                   | 00 | 00000000 |
| 90  | 5A | Detailed timing description # 3                      | 00 | 00000000 |
| 91  | 5B | # 3 Flag                                             | 00 | 00000000 |
| 92  | 5C | # 3 Reserved                                         | 00 | 00000000 |
| 93  | 5D | # 3 ASCII string Vendor                              | 00 | 00000000 |
| 94  | 5E | # 3 Flag                                             | 00 | 00000000 |
| 95  | 5F | # 3 Character of string ("")                         | 00 | 00000000 |
| 96  | 60 | # 3 Character of string ("")                         | 00 | 00000000 |
| 97  | 61 | # 3 Character of string ("")                         | 00 | 00000000 |
| 98  | 62 | # 3 New line character indicates end of ASCII string | 00 | 00000000 |
| 99  | 63 | # 3 Padding with "Blank" character                   | 00 | 00000000 |
| 100 | 64 | # 3 Padding with "Blank" character                   | 00 | 00000000 |
| 101 | 65 | # 3 Padding with "Blank" character                   | 00 | 00000000 |
| 102 | 66 | # 3 Padding with "Blank" character                   | 00 | 00000000 |
| 103 | 67 | # 3 Padding with "Blank" character                   | 00 | 00000000 |
| 104 | 68 | # 3 Padding with "Blank" character                   | 00 | 00000000 |
| 105 | 69 | # 3 Padding with "Blank" character                   | 00 | 00000000 |
| 106 | 6A | # 3 Padding with "Blank" character                   | 00 | 00000000 |
| 107 | 6B | # 3 Padding with "Blank" character                   | 00 | 00000000 |
| 108 | 6C | Detailed timing description # 4                      | 00 | 00000000 |
| 109 | 6D | # 4 Flag                                             | 00 | 00000000 |
| 110 | 6E | # 4 Reserved                                         | 00 | 00000000 |
| 111 | 6F | # 4 ASCII string Model Name                          | FE | 11111110 |
| 112 | 70 | # 4 Flag                                             | 00 | 00000000 |
| 113 | 71 | # 4 1st character of name ("P")                      | 50 | 01010000 |
| 114 | 72 | # 4 2nd character of name ("1")                      | 31 | 00110001 |
| 115 | 73 | # 4 3rd character of name ("3")                      | 37 | 00110111 |
| 116 | 74 | # 4 4th character of name ("0")                      | 33 | 00110011 |
| 117 | 75 | # 4 5th character of name ("Z")                      | 5A | 01011010 |
| 118 | 76 | # 4 6th character of name ("F")                      | 5A | 01011010 |
| 119 | 77 | # 4 7th character of name ("Z")                      | 5A | 01011010 |
| 120 | 78 | # 4 8th character of name ("")                       | 2D | 00101101 |
| 121 | 79 | # 4 9th character of name ("B")                      | 42 | 01000010 |
| 122 | 7A | # 4 10th character of name ("H")                     | 5A | 01011010 |
| 123 | 7B | # 4 11th character of name ("2")                     | 31 | 00110001 |
| 124 | 7C | # 4 New line character indicates end of ASCII string | 0A | 00001010 |
| 125 | 7D | # 4 Padding with "Blank" character                   | 20 | 00100000 |
| 126 | 7E | Extension flag                                       | 01 | 00000001 |
| 127 | 7F | Checksum                                             | 11 | 00010001 |

## PRODUCT SPECIFICATION

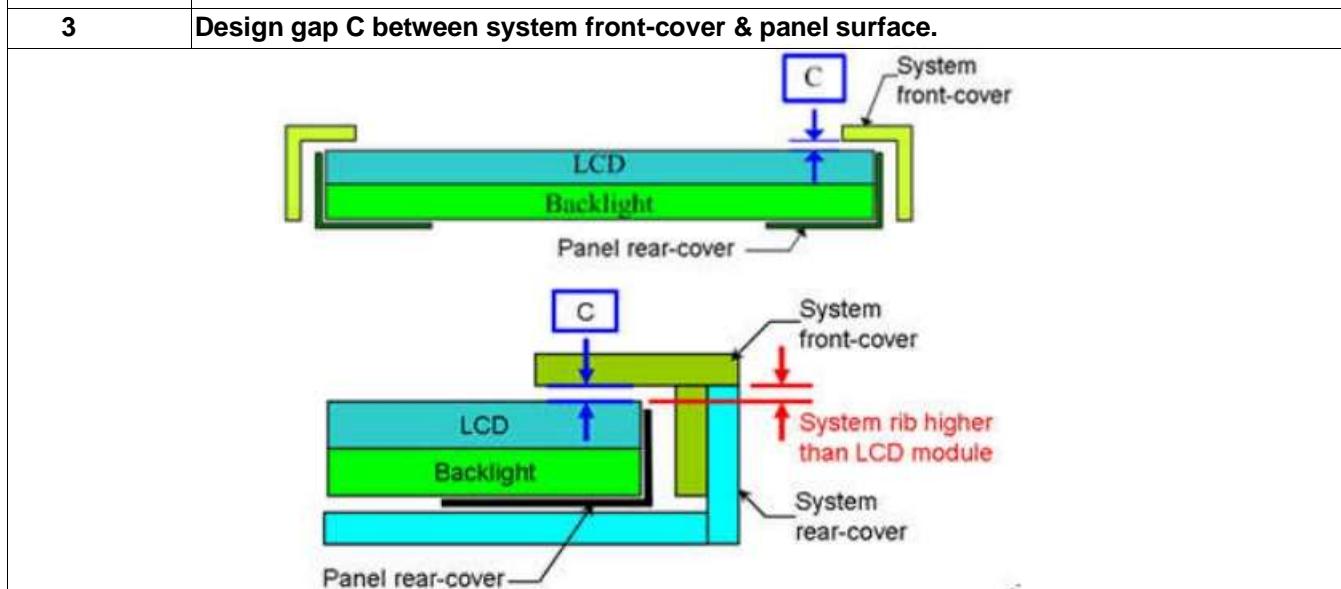
## Appendix. OUTLINE DRAWING


The copyright belongs to InnoLux. Any unauthorized use is prohibited.


## PRODUCT SPECIFICATION

## Appendix. SYSTEM COVER DESIGN GUIDANCE


Ver.7

|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.         | <b>Permanent deformation of system cover after reliability test</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Definition | <p>System cover including front and rear cover may deform during reliability test. Permanent deformation of system front and rear cover after reliability test should not interfere with panel. Because it may cause issues such as pooling, abnormal display, white spot, and also cell crack.</p> <p>Note: If the interference can not be avoided, please feel free to contact INX FAE Engineer for collaboration design. We can help to verify and pass risk assessment for customer reference.</p>                                                                                                                                         |
| 1.         | <b>Design gap A between panel &amp; any components on system rear-cover</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Definition | <p>Gap between panel's maximum thickness boundary &amp; system's inner surface components such as wire, cable, extrusion is needed for preventing from backpack or pogo test fail. Because zero gap or interference may cause stress concentration. Issues such as pooling, abnormal display, white spot, and cell crack may occur.</p> <p>Maximum flatness of panel and system rear-cover should be taken into account for gap design.</p> <p>Note: If the interference can not be avoided, please feel free to contact INX FAE Engineer for collaboration design. We can help to verify and pass risk assessment for customer reference.</p> |
| 2          | <b>Design gap B1 &amp; B2 between panel &amp; protrusions</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

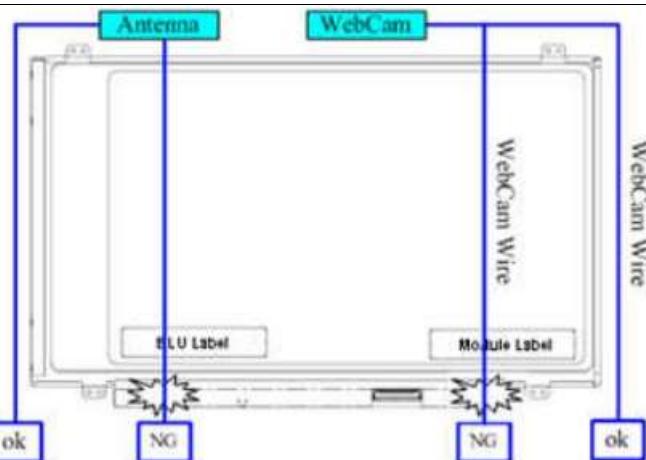
## PRODUCT SPECIFICATION




|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Definition | Gap between panel & protrusions is needed to prevent shock test failure. Because protrusions with small gap may hit panel during the test. Issue such as cell crack, abnormal display may occur. The gap should be large enough to absorb the maximum displacement during the test. Note: If the interference can not be avoided, please feel free to contact INX FAE Engineer for collaboration design. We can help to verify and pass risk assessment for customer reference. |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|



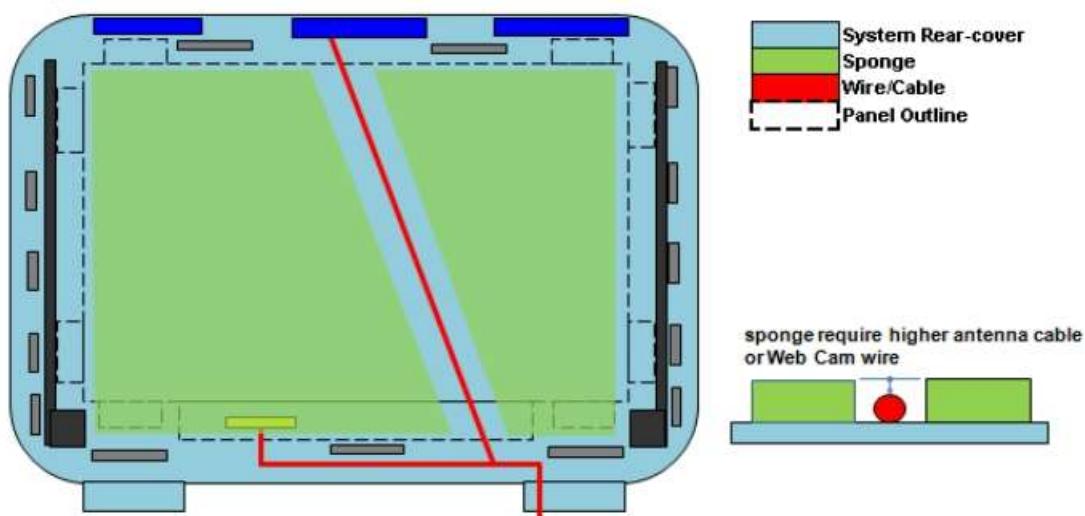
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Definition | Gap between system front-cover & panel surface is needed to prevent pooling or glass broken. Zero gap or interference such as burr and warpage from mold frame may cause pooling issue near system font-cover opening edge. This phenomenon is obvious during swing test, hinge test, knock test, or during pooling inspection procedure. To remain sufficient gap, design with system rib higher than maximum panel thickness is recommended. Note: If the interference can not be avoided, please feel free to contact INX FAE Engineer for collaboration design. We can help to verify and pass risk assessment for customer reference. |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|


## 4 Design gap D1 &amp; D2 between system front-cover &amp; PCB Assembly.

## PRODUCT SPECIFICATION



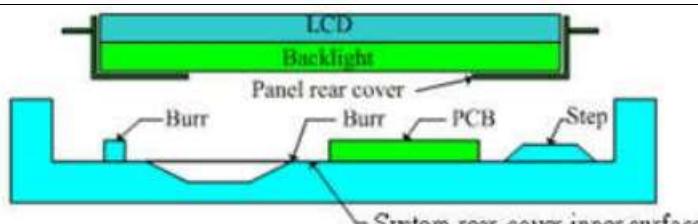
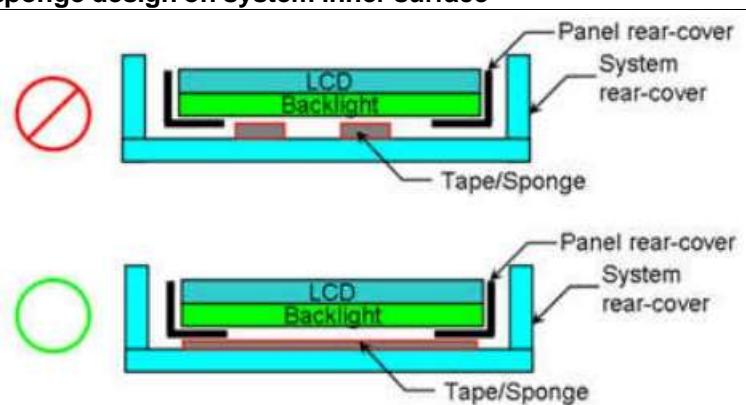
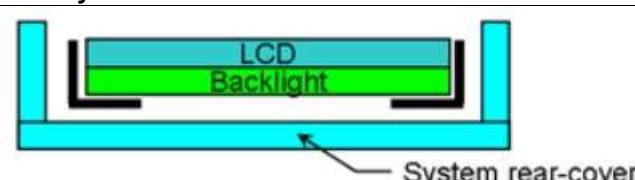
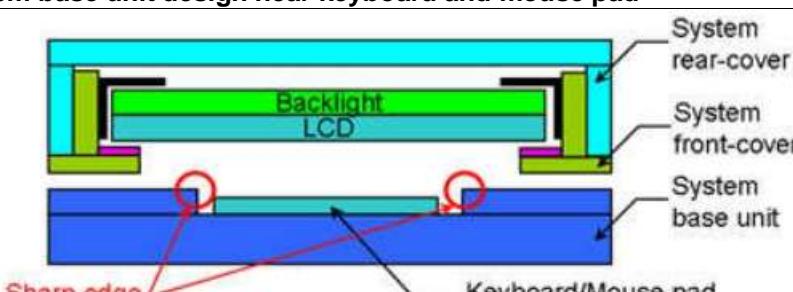
Definition Same as point 2 and 3, but focus on PCBA side.


**5 Interference examination of antenna cable and WebCam wire**

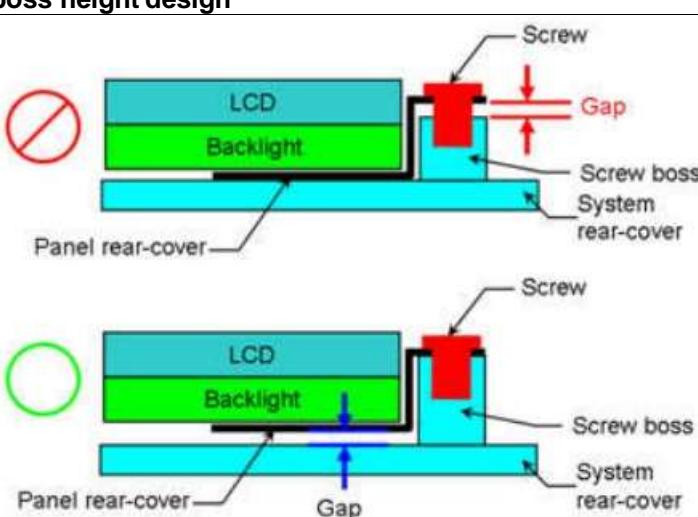
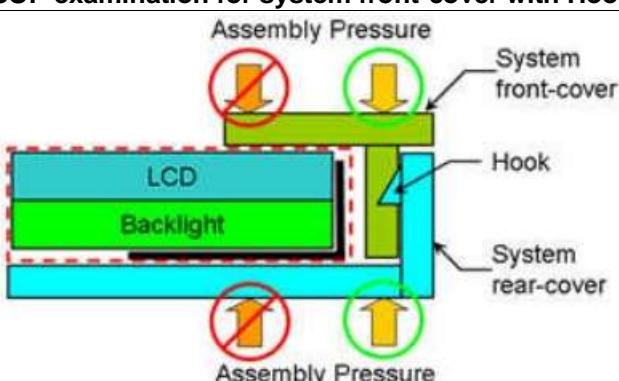
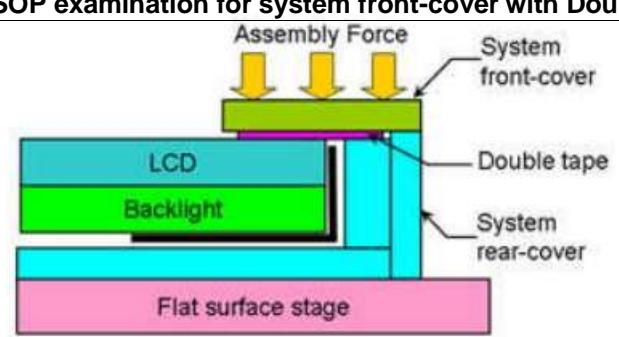


Definition Antenna cable or WebCam wire should not overlap with panel outline. Because issue such as abnormal display & white spot after backpack test, hinge test, twist test or pogo test may occur.

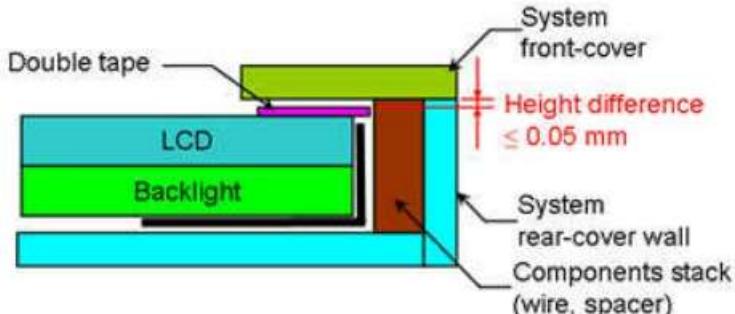
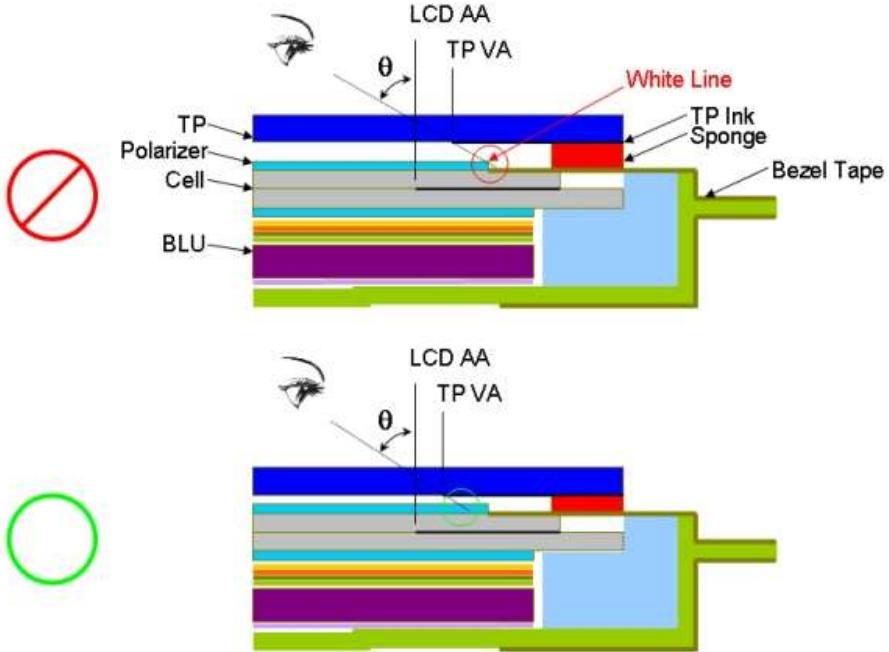
Note: If the interference can not be avoided, please feel free to contact INX FAE Engineer for collaboration design. We can help to verify and pass risk assessment for customer reference.





**6 Interference examination of antenna cable and Web Cam wire**

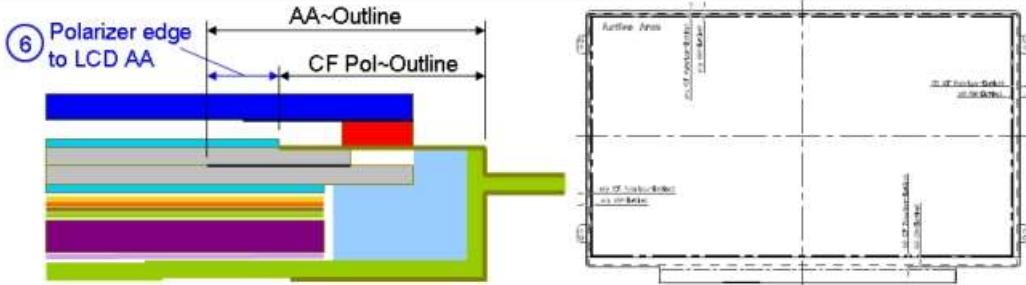
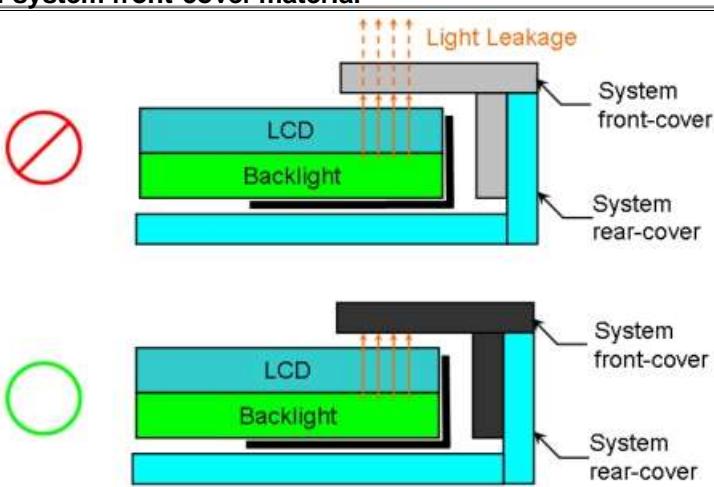





If the antenna cable or Web Cam wire must overlap with the panel outline, both sides of the antenna cable or Web Cam wire must have a sponge(Sponge material can not contain NH3) and sponge require higher antenna cable or Web Cam wire.( Antenna cable or Web Cam wire should not overlap with TCON,COF/FPC,Driver IC)

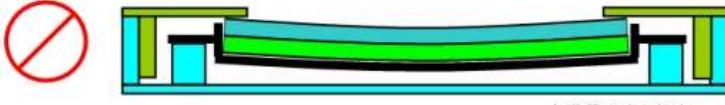
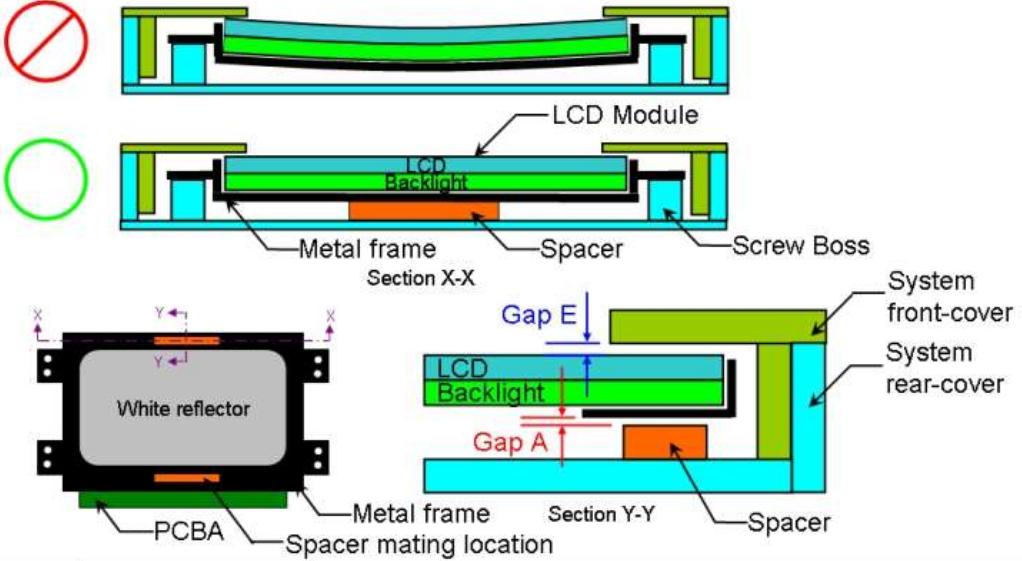
Note: If the interference can not be avoided, please feel free to contact INX FAE Engineer for collaboration design. We can help to verify and pass risk assessment for customer



## PRODUCT SPECIFICATION

|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | reference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7  | <b>System rear-cover inner surface examination</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    |  <p>Definition: Burr at logo edge, steps, protrusions or PCB board may cause stress concentration. White spot or glass broken issue may occur during reliability test.</p>                                                                                                                                                                                                                                                                                                                                                                           |
| 8  | <b>Tape/sponge design on system inner surface</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    |  <p>Definition: To prevent abnormal display &amp; white spot after scuffing test, hinge test, pogo test, backpack test, tape/sponge should be well covered under panel rear-cover. Because tape/sponge in separate location may act as pressure concentration location.</p>                                                                                                                                                                                                                                                                         |
| 9  | <b>Material used for system rear-cover</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    |  <p>Definition: System rear-cover material with high rigidity is needed to resist deformation during scuffing test, hinge test, pogo test, or backpack test. Abnormal display, white spot, pooling issue may occur if low rigidity material is used. Pooling issue may occur because screw's boss positioning for module's bracket are deformed during open-close test. Solid structure design of system rear-cover may also influence the rigidity of system rear-cover. The deformation of system rear-cover should not caused interference.</p> |
| 10 | <b>System base unit design near keyboard and mouse pad</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    |  <p>Definition: To prevent abnormal display &amp; white spot after scuffing test, hinge test, pogo test, backpack</p>                                                                                                                                                                                                                                                                                                                                                                                                                              |



## PRODUCT SPECIFICATION

|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | test, sharp edge design in keyboard surface may damage panel during the test. We suggest to use slope edge design, or to reduce the thickness difference of keyboard/mouse pad from the nearby surface.                                                                                                                                                                                                                                                                                                                                                                   |
| 11         | <b>Screw boss height design</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            |  <p>The diagram illustrates two configurations of screw boss height. The top configuration, marked with a red circle and a 'no' symbol, shows a screw being fastened into a screw boss that is positioned higher than the panel rear-cover. This creates a gap between the screw and the cover. The bottom configuration, marked with a green circle, shows a screw being fastened into a screw boss that is at the same height as the panel rear-cover, resulting in no gap.</p>       |
| Definition | Screw boss height should be designed with respect to the height of bracket bottom surface to panel bottom surface + flatness change of panel itself. Because gap will exist between screw boss and bracket, if the screw boss height is smaller. As result while fastening screw, bracket will deformed and pooling issue may occur.                                                                                                                                                                                                                                      |
| 12         | <b>Assembly SOP examination for system front-cover with Hook design</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            |  <p>The diagram shows the assembly of a system front-cover onto a panel. The front-cover is held in place by a 'Hook' that fits into a slot in the panel. 'Assembly Pressure' is applied to the front-cover. Red circles with a 'no' symbol indicate incorrect assembly pressure application, such as pressing directly on the panel or the hook area. Green circles with a checkmark indicate correct assembly pressure application, such as applying pressure to the hook area.</p> |
| Definition | To prevent panel crack during system front-cover assembly process with hook design, it is not recommended to press panel or any location that related directly to the panel.                                                                                                                                                                                                                                                                                                                                                                                              |
| 13         | <b>Assembly SOP examination for system front-cover with Double tape design</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            |  <p>The diagram shows the assembly of a system front-cover onto a panel using 'Double tape'. The front-cover is held in place by the tape. 'Assembly Force' is applied to the front-cover. Red circles with a 'no' symbol indicate incorrect assembly force application, such as pressing directly on the panel or the tape area. Green circles with a checkmark indicate correct assembly force application, such as applying force to the tape area.</p>                            |
| Definition | To prevent panel crack during system front-cover assembly process with double tape design, it is only allowed to give slight pressure (MAX 3 Kgf/50mm <sup>2</sup> ) with large contact area. This can help to distribute the stress and prevent stress concentration. We also suggest putting the system on a flat surface stage to prevent unequal stress distribution during the                                                                                                                                                                                       |



## PRODUCT SPECIFICATION

|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |                          |   |                       |   |                           |   |                                |   |                                        |   |                                                 |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------|---|-----------------------|---|---------------------------|---|--------------------------------|---|----------------------------------------|---|-------------------------------------------------|
|            | assembly.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |                          |   |                       |   |                           |   |                                |   |                                        |   |                                                 |
| 14         | <b>System front-cover assembly reference with Double tape design</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |                          |   |                       |   |                           |   |                                |   |                                        |   |                                                 |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |                          |   |                       |   |                           |   |                                |   |                                        |   |                                                 |
| Definition | To prevent system front-cover peeling at double tape contact area, Height difference between system front-cover assembly reference such as wall or components stack (wire, spacer) and double tape top surface must be less than 0.05mm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |                          |   |                       |   |                           |   |                                |   |                                        |   |                                                 |
| 15         | <b>Touch Application : TP and LCD Module Combination for White Line Prevention</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |                          |   |                       |   |                           |   |                                |   |                                        |   |                                                 |
|            |  <p><b>Parameter consideration for White Line Issue :</b></p> <table border="1"> <tr> <td>1</td><td>TP VA to LCD AA distance</td></tr> <tr> <td>2</td><td>TP Assembly tolerance</td></tr> <tr> <td>3</td><td>TP Ink Printing tolerance</td></tr> <tr> <td>4</td><td>Sponge thickness and tolerance</td></tr> <tr> <td>5</td><td>Inspection/Viewing Angle specification</td></tr> <tr> <td>6</td><td>Polarizer edge to LCD AA distance and tolerance</td></tr> </table> <p>Polarizer edge to LCD AA distance can be derived by "AA~Outline" – "CF Pol~Outline" with respect to INX 2D Outline Drawing on each side.</p> | 1 | TP VA to LCD AA distance | 2 | TP Assembly tolerance | 3 | TP Ink Printing tolerance | 4 | Sponge thickness and tolerance | 5 | Inspection/Viewing Angle specification | 6 | Polarizer edge to LCD AA distance and tolerance |
| 1          | TP VA to LCD AA distance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |                          |   |                       |   |                           |   |                                |   |                                        |   |                                                 |
| 2          | TP Assembly tolerance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |                          |   |                       |   |                           |   |                                |   |                                        |   |                                                 |
| 3          | TP Ink Printing tolerance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |                          |   |                       |   |                           |   |                                |   |                                        |   |                                                 |
| 4          | Sponge thickness and tolerance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |                          |   |                       |   |                           |   |                                |   |                                        |   |                                                 |
| 5          | Inspection/Viewing Angle specification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |                          |   |                       |   |                           |   |                                |   |                                        |   |                                                 |
| 6          | Polarizer edge to LCD AA distance and tolerance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |                          |   |                       |   |                           |   |                                |   |                                        |   |                                                 |

## PRODUCT SPECIFICATION

|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Definition | <p>For using in Touch Application: to prevent White Line appears between TP and LCD module combination, the maximum inspection angle location must not fall onto LCD polarizer edge, otherwise light line near edge of polarizer will be appear.</p> <p>Parameters such as TP VA to LCD AA distance, TP assembly tolerance, TP Ink printing tolerance, Sponge thickness and tolerance, and Maximum Inspection/Viewing Angle, must be considered with respect to LCD module's Polarizer edge location and tolerance. This consideration must be taken at all four edges separately.</p> <p>The goal is to find parameters combination that allow maximum inspection angle falls inside polarizer black margin area.</p> <p>Note: Information for Polarizer edge location and its tolerance can be derived from INX 2D Outline Drawing ("AA ~Outline" - "CF Pol~Outline").</p> <p>Note: Please feel free to contact INX FAE Engineer. By providing value of parameters above on each side, we can help to verify and pass the white line risk assessment for customer reference.</p> |
| 16         | <p><b>Color of system front-cover material</b></p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Definition | <p>To prevent light leakage is seen at system front-cover due to material transparency, we suggest using dark color material (black) for system front-cover design.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 17         | <p><b>Inspection spec of gap E between system front-cover to LCD module surface</b></p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

## PRODUCT SPECIFICATION

|                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <p>Definition</p>                                                                 | <p>To maintain gap E (gap of system front-cover to LCD module) in its inspection spec, especially at location with maximum LCD deformation (center of LCD length), we recommend adding spacer with design gap A smaller or equal to gap E. The allowable spacer mating location is on module metal frame outside LCD Active-Area. Note: If the interference can not be avoided, please feel free to contact INX FAE Engineer for collaboration design. We can help to verify and pass risk assessment for customer reference.</p> |

## PRODUCT SPECIFICATION

## Appendix. LCD MODULE HANDLING MANUAL

|                  |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                          |                    |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Purpose          | <ul style="list-style-type: none"> <li>This SOP is prepared to prevent panel dysfunction possibility through incorrect handling procedure.</li> <li>This manual provides guide in unpacking and handling steps.</li> <li>Any person which may contact / related with panel, should follow guide stated in this manual to prevent panel loss.</li> </ul> |                                                                                                                                                                          |                    |
| 1. Unpacking     |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                          |                    |
|                  | Open carton                                                                                                                                                                                                                                                                                                                                             | Remove EPE Cushion                                                                                                                                                       |                    |
|                  |                                                                                                   |   |                    |
| 2. Panel Lifting | Open plastic bag                                                                                                                                                                                                                                                                                                                                        | Cut Adhesive Tape                                                                                                                                                        | Remove EPE Cushion |

## PRODUCT SPECIFICATION

Remove PET Cover



Remove PE Foam



Handle with care  
(see next page)



Finger Slot

Use slots at both sides for finger insertion.  
Handle panel upward with care.

## 3. Do and Don't

## Do :

- Handle with both hands.
- Handle panel at left and right edge.



## Don't :

- Lifting with one hand.



- Handle at PCBA side.



## PRODUCT SPECIFICATION

Don't :

- Stack panels.



- Press panel.



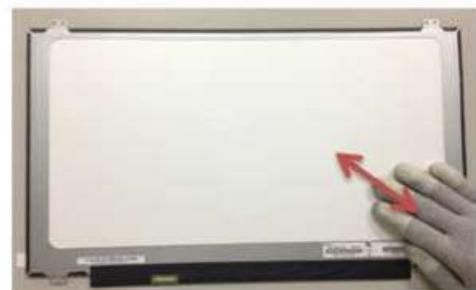
Don't :

- Put foreign stuff onto panel



- Put foreign stuff under panel




Don't :

- Paste any material unto white reflector sheet



Don't :

- Pull / Push white reflector sheet



## PRODUCT SPECIFICATION

Don't :

- Hold at panel corner.



Don't :

- Twist panel.



Do :

- Hold panel at top edge while inserting connector.



Don't :

- Press white reflector sheet while inserting connector.



## PRODUCT SPECIFICATION

**Do :**

- Remove panel protector film starts from pull tape

**Don't :**

- Remove panel protector film From film another side.

**Don't :**

- Touch or Press PCBA Area.

