

GBE101WX02J
2017-06-14

VERSION: <u>1.0</u>

Table of Contents

1 Record of Revision	3
2 General Specifications	4
3 Pin Definition	5
4 Absolute Maximum Ratings	6
5 Electrical Characteristics	8
6 Optical Characteristics	15
7 Environmental / Reliability Tests	17
8 Mechanical Drawing	17
9 Packing	18
10 Precautions For Use of LCD modules	19

1. Record of Revision

Rev	Issued Date	Description	
1.0	2017/06/14	First Release.	

2 General Specifications

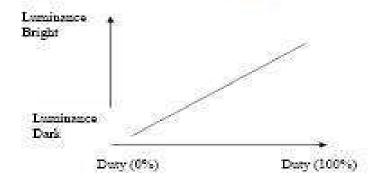
	Feature	Spec
	Size	10.1 inch
	Resolution	1280(horizontal)*800(Vertical)
	Interface	LVDS
	Connect type	Connector
	Color Depth	16.7M
Characteristics	Technology type	a-Si
Characteristics	Display Spec. Pixel pitch (mm)	-
	Pixel Configuration	R.G.BVertical Stripe
	Display Mode	Normally Black
	Driver IC	TBD
	Surface Treatment	HC
	Viewing Direction	ALL
	LCM (W x H x D) (mm)	229.46*149.3*2.5
	Active Area(mm)	216.96X135.6
Mechanical	With /Without TSP	Without TSP
	Weight (g)	TBD
	LED Numbers	45LEDs (3*15)

Note 1: Viewing direction is following the data which measured by optics equipment.

Note 2: Requirements on Environmental Protection: RoHS

Note 3: LCM weight tolerance: +/- 5%

3 Pin definition


No.	Symbol	Description	Remark
1	Vcom	Common Voltage	
2,3	VDD	Power Supply	
4	NC	No connection	
5	NC	Receive for BIST	BIST function enable
6	NC	No connection	
7	GND	Ground	
8	Rxin0-	-LVDS Differential Data Input	
9	Rxin0+	+LVDS Differential Data Input	R0~R5, G0
10	GND	Ground	
11	Rxin1-	-LVDS Differential Data Input	
12	Rxin1+	+LVDS Differential Data Input	G1~G5, B0, B1
13	GND	Ground	
14	Rxin2-	-LVDS Differential Data Input	
15	Rxin2+	+LVDS Differential Data Input	B2~B5, HS, VS, DE
16	GND	Ground	
17	RxCLK-	-LVDS Differential Clock Input	
18	RxCLK+	+LVDS Differential Clock Input	
19	GND	Ground	
20	Rxin3-	-LVDS Differential Data Input	
21	Rxin3+	+LVDS Differential Data Input	R6, R7, G6, G7, B6, B7
22	GND	Ground	
23, 24	NC	No connection	
25	GND	Ground	
26~28	NC	No connection	
29	AVDD	Analog Power Supply	
30	GND	Ground	
31, 32	LED-	LED Cathode	
33, 34	NC	No connection	
35	VGL	TFT Gate Off Voltage	
36, 37	NC	No connection	
38	VGH	TFT Gate On Voltage	
39, 40	LED+	LED Anode	

I: Input, O: output, P: Power

Note1: The setting of CABC function are as follows.

Pin	Enable	Disable
CABC EN	High Voltage	Low Voltage or open

Note2: LED_PWM is used to adjust backlight brightness.

4 Absolute Maximum Ratings

ltem	Symbol	Min.	Max.	Unit	Conditions
Digital Supply Voltage	DVDD	-0.5	5	٧	
Supply VLED Voltage	AVDD	-0.5	15	٧	
Gate On Voltage	VGH	-0.3	40	٧	Ta=25°C
Gate Off Voltage	VGL	-20	0.3	٧	
Gate On-Gate Off Voltage	VGH-VGL	12	40	٧	

5 Electrical Characteristics

5.1 Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Digital Power Supply Voltage	VDD	3.0	3.3	3.6	V	
Digital Power Supply Voltage	VDDA	8.0	8.2	8.4	٧	
Gate On Power Supply Voltage	VGH	18	19	20	V	
Gate Off Power Supply Voltage	VGL	-9	-8	-7	٧	
Common Power Supply Voltage	VCOM	3.0	3.2	3.4	٧	
Item	Symbol	Min	Тур	Max	Unit	condition
Gate on power current	IVGH		0.6		mA	VGH =19
Gate off power current	IVGL	9	0.4		mA	VGL=-8
Digital power current	IVCC		18		mA	VCC =3.2
Analog power current	IAVDD		34		mA	AVDD =8.2

5.2 BACKLIGHT CHARACTERISTICS

Item	Symbol	MIN	TYP	MAX	Unit	Remark
LED current	I _F		300		mA	
Power Consumption					mW	
LED Voltage	V _F	-	9.6		V	Note 1
LED Life Time	W _{BL}	30000	-	-	Hr	Note 2,3

5.3 LVDS Receiver

5.1 Signal Electrical Characteristics for LVDS Receiver

The built-in LVDS receiver is compatible with (ANSI/TIA/TIA-644) standard.

Table 6 LVDS Receiver Electrical Characteristics

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions
LVDS Input High Threshold	Vth	1928	. 51	+100	mV	Vcmlvds=1.2V
LVDS Input Low Threshold	Vtl	-100	(E)	31	mV	Vcmlyds=1.2V
Magnitude Differential Input Voltage	Vidi	100	Æ	600	mV	50
Common Mode Voltage	Vem	1.0	1.2	1.4	V	50
Common Mode Voltage Offset	△Vem	1129	. 3	50	mV	51

Note:

- A. Input signals shall be low or Hi-Z state when VDD is
- B. All electrical characteristics for LVDS signal are defined the interface connector of LCD.

Note: All values are at VDD=3.3V, Ta=25 degree C.

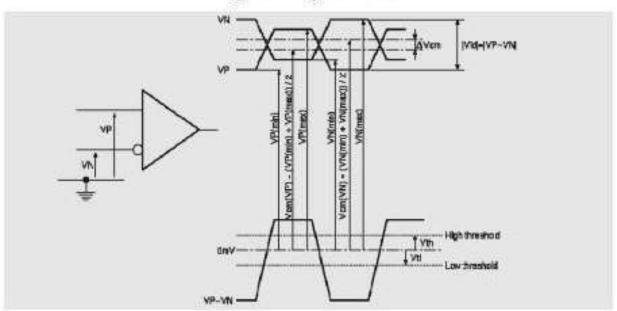
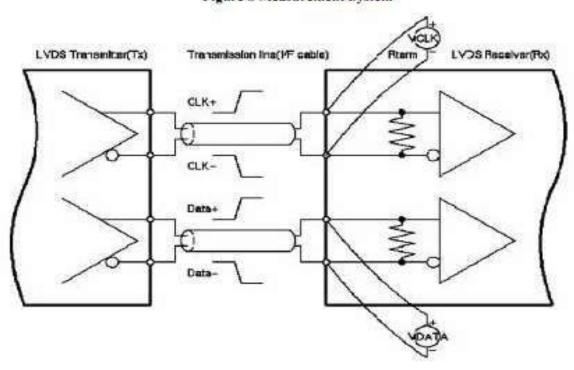


Figure 7 Voltage Definitions



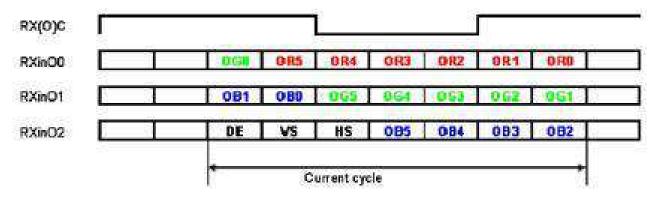


Figure 8 Measurement System

5.2 LVDS Receiver Internal Circuit

Figure 10 LVDS Receiver Internal Circuit shows the internal block diagram of the LVDS receiver. This LCD module equips termination resistors for LVDS link.

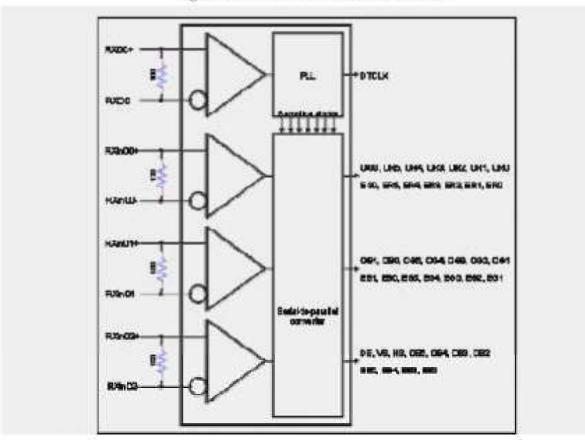


Figure 10 LVDS Receiver Internal Circuit

5.4. Interface Timings

Timing Characteristics

Signal	Item	Symbol	Min	Type	Max	Unit
DOLK	Frequency	1/TC	60	65	70	MHz
DCLK	Cycle	Tc	16.66	15.38	14.3	ns
	Horizontal Period	THd	1280	1280	1280	Tc
	The Second Control	TH	1310	1330	1560	Tc
DE	Horizontal Cycle	TH_time	19,5	20.46	21,83	ns
	Vertical Period	TVd	800	800	800	To
	Vertical Cycle	TV	200	812	30	Tc

Figure 11 Timing Characteristics

36		64	100	25.00	CESTION ATTOCK About
37	3	19	25	65,00	65MHz Main clock
38		.00	0	1280	Hor Active = 1280
39	8 1	32	50	50	Hor Slanking = 50
3A		- 50	80		4 bits of Hor. Active + 4 bits of Hor. Blanking
38		20	32	800	Ver Active = 768
3C		0C	12	12	Ver Blanking = 12
30		30	48		4 bits of Ver. Active + 4 bits of Ver. Blanking
3E	Detailed timing/monitor	0A	10	10	Hor Sync Offset = 10
3F	descriptor #1	20	32	32	H Sync Pulse Width # 32
40	1	36	54	3	V sync Offset = 3 line
41		00	0	- 6	V Sync Pulse width : 6 line
42	36 90	D9	217	217	Horizontal Image Size = 217 mm (Low 8 bits)
43		88	136	136	Vertical Image Size = 136 mm (Low 8 bits)
44		00	0	+ 77	4 bits of Hor Image Size + 4 bits of Ver Image Size
45	13	00	0	0	Hor Border (pixels)
46		00	0	0	Vertical Sorder (Lines)
47	15	19	25	i i	Refer to right table

Note: TES is data enable signal setup time.

5.5 Power Consumption

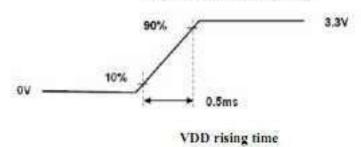

Input power specifications are as follows.

Table 8 Power Consumption

Symbol	Parameter	Min.	Typ.	Max.	Units	Condition
VDD	Logic/LCD Drive Voltage	3.0	3.3	3.6	V	
IDD	VDD Current		160	250	mA	All black pattern, 60Hz
PDD	VDD Power	25	0.50		W	\$
Irush	Rush Current		·*:	TBD	A	Note1
VDDrp	Allowable Logic/LCD Drive Ripple Voltage	2 3		300	[mVp-p]	ž.

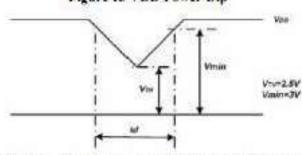
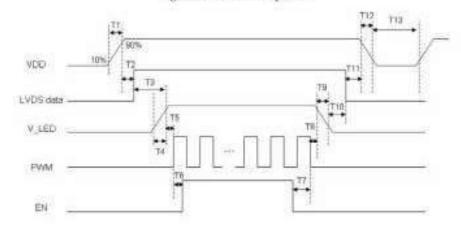

Note: 1. Measure Condition

Figure 12 VDD rising time

2.VDD Power Dip Condition

Figure 13 VDD Power Dip



If VTH < VDD ≤ Vmin, then td ≤ 10ms; when the voltage return to normal our panel must revive automatically.

5.6 Power ON/OFF Sequence

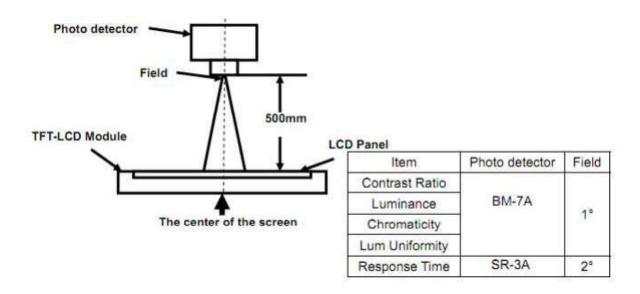
VDD power, interface signals, and lamp on/off sequence are shown in Figure 12.Signals shall be Hi-Z state or low level when VDD is off.

Figure 12 Power Sequence

Table 9 Power Sequencing Requirements

Parameter	Symbol	Unit	min	typ	max
VDD Rise Time	TI	ms	0.5	. 2	10
VDD Good to Signal Valid	T2	ms	30		90
Signal Valid to Backlight On	T3	ms	200	- 77	10000
Backlight Power On Time	T4	ms	0.5)) (
Backlight VDD Good to System PWM On	T5	ms	10	178	-
System PWM ON to Backlight Enable ON(If Have)	T6	ms	10	170	-
Backlight Enable Off to System PWM Off(If Have)	17	ms	0		-
System PWM Off to B/L Power Disable	T8	ms	10	170	-
Backlight Power Off Time	Т9	ms	(71)	10	30
Backlight Off to Signal Disable	T10	ms	200	170	-
Signal Disable to Power Down	T11	ms	0	170	50
VDD Fall Time	T12	ms	3 1 11	10	30
Power Off	T13	ms	500	104	200

6 Optical Characteristics


Items		Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
Viewing angles		θ_{T}			80	-		
		θ_{B}	Center		80	-	Dograd	Note2
		θ_{L}	CR≥10		80	-	Degree.	Notez
		θ_{R}			80	-		
Contrast Ratio		CR	Θ =0		600		-	Note1,
		CK	0 -0	-	600	_		Note3
Response Time		T _{ON}	25°C	Ī	6	8	ms	Note1,
		T _{OFF}		ı	20	28		Note4
Chromaticity	White	X _W		ı	_	-	-	Note1,
Chromaticity	VVIIILE	Y _W		-	-	-	-	Note5
Uniformity		, U		-	75	-	%	Note1,
								Note6
Luminance				700	800		nits	Note1,
		L		700	000		11115	Note7

Test Conditions:

- 1. IF= 20mA (one channel), the ambient temperature is 25°C
- 2. The test systems refer to Note 1 and Note 2.

Note 1: Definition of optical measurement system.

The optical characteristics should be measured in dark room. After 5 minutes operation, the optical properties are measured at the center point of the LCD screen. All input terminals LCD panel must be ground when measuring the center area of the panel.

Note 2: Definition of viewing angle range and measurement system. viewing angle is measured at the center point of the LCD by CONOSCOPE(ergo-80).

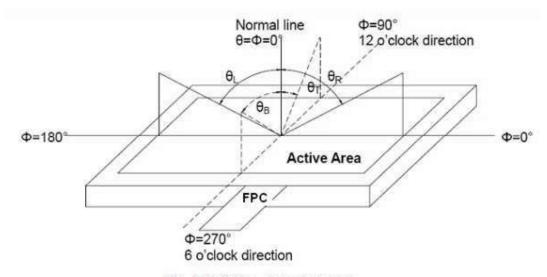
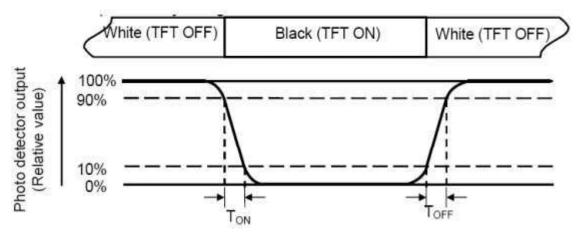


Fig. 1 Definition of viewing angle


Note 3: Definition of contrast ratio

Contrast ratio (CR) = Luminance measured when LCD is on the "White" state

Luminance measured when LCD is on the "Black" state

Note 4: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (TON) is the time between photo detector output intensity changed from 90% to 10%. And fall time (TOFF) is the time between photo detector output intensity changed from 10% to 90%.

Note 5: Definition of color chromaticity (CIE1931)

Color coordinates measured at center point of LCD.

Note 6: Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (Refer Fig. 2). Every measuring point is placed at the center of each measuring area.

Luminance Uniformity (U) = Lmin/Lmax X100%

L-----Active area length W----- Active area width

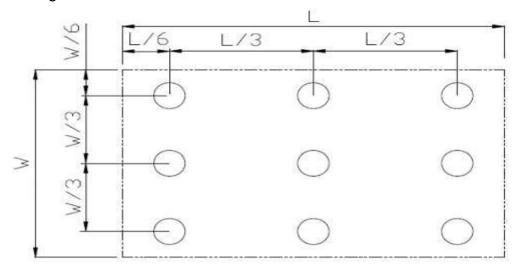


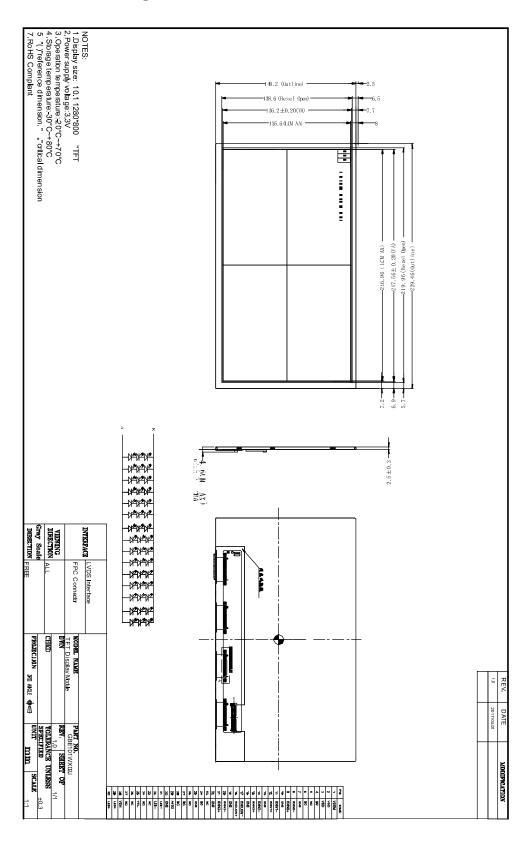
Fig. 2 Definition of uniformity

Lmax: The measured maximum luminance of all measurement position.

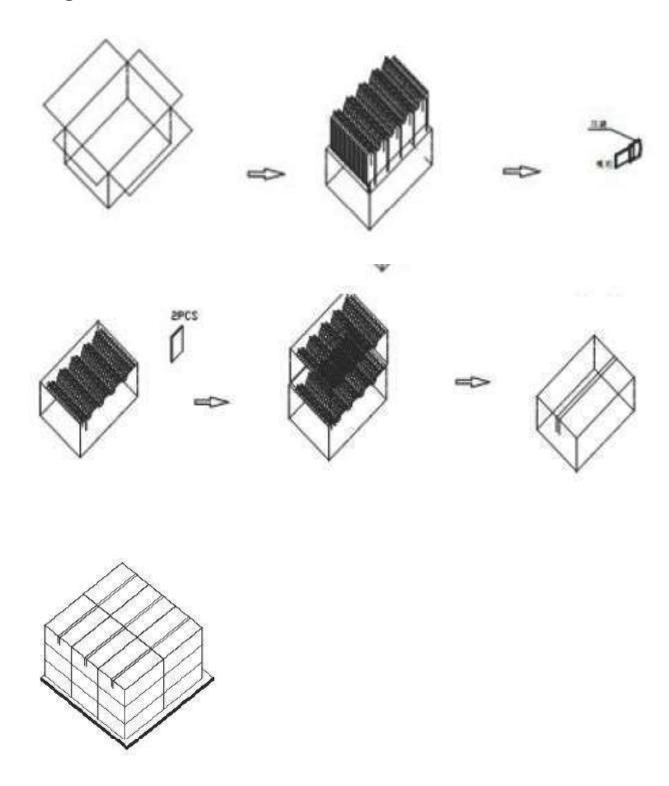
Lmin: The measured minimum luminance of all measurement position.

Note 7: Definition of Luminance:

Measure the luminance of white state at center point.


7 Environmental / Reliability Tests

No	Test Item	Condition	Remarks
_	High Temperature		Note 1
1	Operation	Ts= +70°C, 240hrs	IEC60068-2-2,
	·		GB2423. 2-89
2	Low Temperature	Ta= -20°C, 240hrs	Note 2 IEC60068-2-1
	Operation	74 25 0, 2 101110	GB2423.1-89
3	High Temperature	Ta= +80°C, 240hrs	IEC60068-2-2
	Storage	14- 100 €, 240113	GB2423. 2-89
4	Low Temperature	Ta= -30°C, 240hrs	IEC60068-2-1
_ 4	Storage	1a= -50 C, 2401115	GB/T2423.1-89
5	High Temperature &	Ta= +60°C, 90% RH max, 160 hours	IEC60068-2-3
5	Humidity Storage	1a- +00 C, 90 % KH max, 100 hours	GB/T2423.3-2006
	Thermal Shock (Non-operation)		Start with cold
		-30°C 30 min ∼ +80°C 30 min	temperature, end with
6			high temperature
		Change time: 5min, 30 Cycle	IEC60068-2-14,
			GB2423.22-87
		C=150pF, R=330 Ω, 5 points/panel	
7	Electro Static Discharge	Air:±8KV, 5 times; Contact: ±4KV, 5	IEC61000-4-2
'	(Operation)	times; (Environment: 15°C ~	GB/T17626.2-1998
		35°C, 30% ~ 60%, 86Kpa ~ 106Kpa)	
		Frequency range: 10~55Hz, Stroke:	
8	Vibration	1.mm Sweep: 10Hz~55Hz~10Hz	IEC60068-2-6
	(Non-operation)	2 hours for each direction of X .Y. Z.	GB/T2423.5-1995
		(package condition)	
	Charle (Non an anathre)	60G 6ms, ± X, ±Y , ± Z	IEC60068-2-27
9	Shock (Non-operation)	3 times for each direction	GB/T2423.5-1995
10	Deales as Duan Test	Height: 80 cm, 1 corner, 3 edges,	IEC60068-2-32
10	Package Drop Test	6 surfaces	GB/T2423.8-1995


Note: 1. T_S is the temperature of panel's surface.

2. Ta is the ambient temperature of sample.

8 Mechanical Drawing

9 Packing

10. Precautions for Use of LCD modules

10.1 Handling Precautions

- 10.1.1. The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.
- 10.1.2. If the display panel is damaged and the liquid crystal substance inside it leaks out, be sure not to get any in your mouth, if the substance comes into contact with your skin or clothes, promptly wash it off using soap and water.
- 10.1.3. Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- 10.1.4. The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.
- 10.1.5. If the display surface is contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If still not completely clear, moisten cloth with one of the following solvents:
 - Isopropyl alcohol
 - Ethyl alcohol

Solvents other than those mentioned above may damage the polarizer. Especially, do not use the following:

- Water
- Ketone
- Aromatic solvents
- 10.1.6. Do not attempt to disassemble the LCD Module.
- 10.1.7. If the logic circuit power is off, do not apply the input signals.
- 10.1.8. To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
- 10.1.8.1. Be sure to ground the body when handling the LCD Modules.
- 10.1.8.2. Tools required for assembly, such as soldering irons, must be properly ground.
- 10.1.8.3. To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.
- 10.1.8.4. The LCD Module is coated with a film to protect the display surface. Be care when peeling off this protective film since static electricity may be generated.

10.2 Storage Precautions

- 10.2.1. When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps.
- 10.2.2. The LCD modules should be stored under the storage temperature range if the LCD modules will be stored for a long time, the recommend condition is:

Temperature : 0° C \sim 40°C Relatively humidity: \leq 80%

10.2.3. The LCD modules should be stored in the room without acid, alkali and harmful gas.

10.3 Transportation Precautions

The LCD modules should be no falling and violent shocking during transportation, and also should avoid excessive press, water, damp and sunshine.