LMH1981 Video Sync Separator Features and Benefits

- Supports major analog video standards
 - NTSC, PAL, 480I/P, 576I/P, 720P, 1080I/P
 - Auto format detection
- Low HSYNC output jitter
 - Helps to meet 3G-SDI Output Timing Jitter spec and/or relax PLL loop bandwidth
- 50% sync slicing of 0.5 to 2 VPP inputs
 - Supports improper video input termination
- Low HSYNC propagation delay variation
 - Reduces PLL clock phase drift
- -40 to +85°C operation
- 3.3 to 5V supply voltage

Applications

- Broadcast/Pro Video Equipment
- Genlock Circuits
- Video Capture and Editing
- Set-Top Boxes (STB) & Digital Video Recorders (DVR)
- HDTV/DTV Systems
- TV/Video Displays

Pinout and Test Circuit

Low component count, small TSSOP package \rightarrow Easy application

LMH1981 Design Tips

 Use the <u>HSYNC leading edge</u> for the PLL's reference edge

- Use an input <u>low-pass filter</u> to prevent chroma-triggered output glitches for NTSC/PAL
 - Don't exceed 50% sync slice level

- Select a proper input coupling capacitor (Cin) value and type
 - E.g. Panasonic ECHU/ECPU series

Glitches on Outputs Due to Improper Sync Slicing on Large Chroma Signal

NTSC 100% Red Field

NTSC 100% Red Field

Normal HSync

HSync with Glitches

<u>Use a low-pass filter to prevent glitches due to large chroma signal</u> <u>near the sync tip.</u>

Chroma Filter

- Attenuates large chroma amplitudes and noise
 - Prevents Output Glitches!
- Switch-controlled LPF

OWER**WISE**®

- For ED/HD video inputs, the transistor turns off to disable the LPF
- Logic circuit should <u>latch</u> 3rd MSB* of VFOUT data to hold switch state over field
- Can be implemented in FPGA or discrete logic

Format	VFOUT[3]*	Filter
NTSC/PAL	1 (high)	ON
ED/HD	0 (low)	OFF

Chroma Filter: Component Values

- <u>Rule of Thumb</u>: Ensure min. chroma level at V_{IN} (pin 4) is above 50% sync level to prevent glitch.
- R_s & C_F determine filter cutoff frequency (f_{co})
- f_{co} depend on chroma attenuation needed:
 - Subcarrier Frequency
 - Chroma Level
 - Chroma Amplitude and Luma Component
- Output prop. delay increases as f_{co} decreases

Chroma Filter: Design Example

- What values for R_S & C_F ensure no output glitches for this worstcase test signal?
- Need Chroma_{PP} < Sync_{PP}: $A = 20 \log_{10}(286mV / 857mV)$ $= -9.6dB @ f_{SC} = 3.58MHz$
- RC LPF gain equation: A = 20 log₁₀[sqrt(1+(f_{sc}/f_{co})²)]⁻¹
- Solve for f_{CO}:
 f_{CO} = 1.26 MHz = 1 / 2πR_SC_F
- $R_s=240\Omega \& C_F=560pF$ give $f_{co}=1.18MHz$, or -10dB @ f_{sc} .

NTSC <u>No Setup</u> (f_{SC} = 3.58MHz)

C_{IN} Value Selection

- Depends on Output Coupling Type of Video Source
- DC-coupled video source:
 - Large value (1 4.7 uF) will optimize HSync jitter.
 - Smaller values will:
 - Reduce start-up time.
 - Offset video-dependent "jitter" due to Source DAC nonlinearity.
 - Increase rejection of Source AC hum.
- AC-coupled source with C_{OUT} ≥ 220uF:
 - Small value (1 31 nF) <u>must</u> be used.
 - Otherwise, missing sync pulses occur w/ APL changes, ie: alternating W-B fields.

