PCIe Simulation Using WEBENCH Interface Designer Fast and accurate Multi-Gbps Simulations

December 2016

Lee Sledjeski - SDS High Speed Datapath

Configure the Simulation Components

- Transmit
 - Utilize Tx FIR
 - Emulate PCIe settings

- Channel
 - Set "Insertion Loss at Nyquist" to define channel attenuation
- Alternate Method for Channel
 - Import your own S4P file to use in the simulation
- Receiver
 - Utilize TI CTLE to emulate PCIe Rx

Equalizer Theory

Common Terminology: Nyquist Frequency (GHz) = ½ Data Rate (Gbps)

Equalizer goals:

- Remove loss variations over frequency (ISI, Dj). Similar amplitude for higher-frequency signals and lower-frequency signals or make the loss *equal* over frequencies, hence "equalizer"
- ✓ Work with link training algorithms by remaining a linear function.

PCIe Linear Equalization Example

- Using Linear Equalization to compensate for channel losses and pass analog waveform information
 - -Linear Equalization
 - Equalization (Link or Backchannel) Training
 - -WEBENCH configuration
 - -Simulation Results

Linear Equalization Theory

Link Equalization Training

- Many popular serial interfaces use this type of handshake
 - PCIe (8 Gbps), 10G-KR (10 Gbps), SAS (12 Gbps)
 - Uses Rx EQ to tune the attached Tx FIR coefficients

PCle - Transmit Equalization

PCI Express Transmit Preset Ratios

		PCIe Stand	ard	WEBENCH Generic_TX Settings			
	Preset Number	Pre-cursor (dB)	De-emphasis (dB)	Pre (%)	Pst1 (%)	Swing (mV)	
Gen 1	P4	0.0	0.0	0.0	0.0	1000	
	P1	0.0	-3.5	0.0	-16.6	1000	
	P0	0.0	-6.0	0.0	-25.0	1000	
	P9	3.5	0.0	-16.6	0.0	1000	
Gen 3	P8	3.5	-3.5	-12.5	-12.5	1000	
	P7	3.5	-6.0	-10.0	-20.0	1000	
•	P5	1.9	0.0	-10.0	0.0	1000	
	P6	2.5	0.0	-12.5	0.0	1000	
	P3	0.0	-2.5	0.0	-12.5	1000	
	P2	0.0	-4.4	0.0	-20.0	1000	
	P10	0.0	-9.5	0.0	-33.0	1000	

Simulation Setup with DS80PCI810

- Configure Channel 1
 - 14 dB loss
 - CPU Package + Trace
- Configure Channel 2
 - 6.5 dB loss
- Models
 - Tx set to Preset 7
 - SigCon set as shown
 - Rx set to 6 dB gain

╘┯═

Simulation Setup with DS80PCI810

SlewTi

Pre Pst1 Pst2 Swing

- Configure Channel 1
 - 14 dB loss
 - CPU Package + Trace
- Configure Channel 2
 - 6.5 dB loss
- Models
 - Tx set to Preset 1
 - SigCon set as shown
 - Rx set to 6 dB gain

	Тх		Channel	SC_IN	OUT_PT1	sc_ou	Channel	RX_IN	OUT.	_PT2
	TX Generic_TX Model: Generic_	_TX	<u>Channel 1</u> Loss= 14 dB@ 4.000 GHz Reflection : low	L	<u>SC</u> DS80PC1810 RX Model: inear_EQ_12G_rx TX Model: inear_EQ_12G_tx		<u>Channel 2</u> Loss= 6.5 dB@ 4.000 GHz Reflection : Iow	D	RX S100BR111 odel: RX_IN	
me	Transmitter P Part Name: C Generic_TX 0 -10	Seneric_TX Output v					EQ_Level Limit	Receive Part Nam RX_IN Inpu Model Pa	e: DS100BR11 t 0 0 rrameter Forma	1 ▼ ▼ at
0 1000				Mid-Channel Signal Conditioner Parameters						
				Part Name: DS80PCI810						
	Model Parameter Format		Linear_EQ_1	Linear_EQ_12G_rx Inp ▼			Linear_EQ_12G_tx	Ou 🛛		
			BST		2] '	VOD	6		
		Model Parame	Model Parameter Format			Model Parameter Format				
										12

╘┯═

╘┯═

Extra Information PCIe Simulation - Lab Correlation

PCIe Preset 7: Lab vs. WEBENCH Simulation

• Repurposed 25G TI Retimer IP as Tx generator to run at 8 Gbps

PCIe Preset 7: Driving 14" of Trace

Lab Measurement

- Test Channel: PCIe Breakout + Short Calibration Channel
- Nominal Attenuation: -12 dB @ 4 GHz

PCIe Preset 7: Driving 24" of Trace

Lab Measurement

WEBENCH Simulation

- Test Channel: PCIe Breakout + Long Calibration Channel
- Nominal Attenuation: -20 dB @ 4 GHz
- The open eye at 14" has collapsed due to the increased channel loss.

Simulation Window with DS80PCI810

- Configure input channel
 - 20 dB loss
 - Hit "Apply"
- Configure output channel
 - 1 dB loss
 - Hit "Apply"
- Device configuration
 - Set BST to 3
 - Set VOD to 4
 - Hit "Apply"

Effect of adding DS80PCI810 Linear Equalization

Simulation -12 dB Without PCI810 Simulation -20 dB With PCI810

- DS80PCI810 Settings:
 - -EQ = 11'b (Model Level 3 of 4)
 - VOD = 011'b (Model Level 4 of 8)
- Equalized waveform retains analog characteristics
 - Required for equalization link training algorithms

8 dB Reach Extension!!!

Effect of adding DS80PCI810 Linear Equalization

Lab Measurement 14" Without PCI810

Lab Measurement 24" With PCI810

- DS80PCI810 Settings:
 - -EQ = 11'b (Model Level 3 of 4)
 - VOD = 011'b (Model Level 4 of 8)
 - VOD_DB = 000'b (Model Level 1 minimum)

10" Reach Extension!!!

