
N a t i o n a l S e m i c o n d u c t o r C o r p o r a t i o n

N a t i o n a l S e m i c o n d u c t o r C o n f i d e n t i a l

National Semiconductor Ethernet PHYTER
®

Software Development Guide

Revision 1.96

June 11, 2009

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

ii

Revision History

Release Date Who Revisions

1.00 03-31-06 Drex C. Dixon Initial release for DP83848 & DP83849

1.10 05-04-07 Drex C. Dixon Added support for DP83640 device

1.20 09-03-07 Drex C. Dixon Added section on 1588 clock tuning. Added section

showing a simple 1588 configuration example.

1.30 11-09-07 Drex C. Dixon

Devin Seely

Added PTPEnable function.

Added OAIBegin/EndMultiCriticalSection functions.

Clarified multi-threaded support.

Added details to hardware overview sections.

1.40 11-16-07 Devin Seely Added details to PHY Control Management

Interface section.

1.41 12-18-07 Devin Seely Added detail to Sec 4.1.3.4.

Corrected Table 4.1-2.

1.50 02-22-08 Devin Seely Removed Sections ALP for PHYTER, Ethernet

PHYTER Python Library and Active X Interfaces,

replaced phy with PHY, updated sections 3.1.2,

3.1.3,

1.60 05-14-08 Devin Seely Added/modified text in Sec. 3.1.2.3, corrected title

of Sec. 4.8.1

1.7 06-11-08 Devin Seely Added detail to Sec. 3.1.4.6

1.71 08-14-08 Todd Roberts Updated IsPhyStatusFrame and

GetNextPhyMessage to match code. Clarify

PTPSetPhyStatusFrameConfig

1.80 08-26-08 Todd Roberts Update based on testing of API and updates based

on actual code implementation.

1.81 09-05-08 Todd Roberts Updated section 4 to improve user understanding

of the library.

1.90 09-23-08 Todd Roberts Additional updates after PTP operation test

development.

1.91 09-30-08 Devin Seely Corrections to Table 3.1-1 and Section 3.1.7

1.92 10-02-08 Todd Roberts Corrections to sections 4.4.4.1, 4.4.5.1, 4.4.5.2,

and 4.4.7.1 to clarify what adjustments made to

timestamp values.

1.93 10-31-08 Todd Roberts Updated PTPSetEventConfig and

PTPSetTransmitConfig sections.

1.94 03-26-09 Ben Buchanan

1.95 05-29-09 Patrick O’Farrell Corrected PTPClockStepAdjustment to indicate

necessary caller adjustment.

1.96 06-11-09 Patrick O’Farrell Add notes to section 3.1.2.1 and section 3.1.3.3

clarifying recommended BYTE0_MASK and

BYTE0_DATA settings for PTPv2.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

iii

1 Introduction 2

1.1 OVERVIEW OF AVAILABLE TOOLS ..2
1.1.1 Analog LaunchPAD (ALP) ..2
1.1.2 Ethernet PHYTER “C” Library (EPL) ..3
1.1.3 Ethernet PHYTER Python Library...3
1.1.4 ActiveX Interfaces ..3

2 Device Management Interfaces 4

2.1 MDIO...4
2.2 MII PHY CONTROL MANAGEMENT INTERFACE ...4

2.2.1 Command Structure ...4
2.2.2 PHY Control Frame Format..5
2.2.3 Enabling PHY Control Frames..5
2.2.4 PHY Control Frame Interrupts..5
2.2.5 Control Frame Buffer ..6

3 DP83640 PHYTER High Precision for IEEE 1588 7

3.1 HARDWARE FUNCTIONAL OVERVIEW...7
3.1.1 IEEE 1588 Clock ...8
3.1.2 IEEE 1588 Transmit Packet Parser and Timestamp unit ..11
3.1.3 IEEE 1588 Receive Packet Parser and Timestamp Unit ...13
3.1.4 IEEE 1588 Triggers...16
3.1.5 IEEE 1588 Event Timestamping ..19
3.1.6 PTP Interrupts ...20
3.1.7 IEEE 1588 Output Clock Signal ..21
3.1.8 Packet-based Event and Timestamp Delivery..22
3.1.9 PTP Reference Clock Modes ...28
3.1.10 PTP Reset...28
3.1.11 Synchronous Ethernet Relation to PTP operation...29

3.2 1588 HARDWARE CONFIGURATION ..30
3.3 1588 CLOCK SYNCHRONIZATION TECHNIQUES...31

3.3.1 Step Adjustment with Rate Control ..31

4 Ethernet PHYTER “C” Library (EPL) 33

4.1 FUNCTIONAL OVERVIEW ..33
4.1.1 Device Support...33
4.1.2 Initialization / Deinitialization...33
4.1.3 Device Setup / Enumeration ..33
4.1.4 Device Identification / Capabilities ...33
4.1.5 Number of extended register pages..33
4.1.6 Device Reset...33
4.1.7 Read / Write Device Registers ...33
4.1.8 Set Loopback Mode..34
4.1.9 Multiple Interface, Device, and Port aware and capable..34
4.1.10 Management Interface Error Checking ...34
4.1.11 Cable Status ...34
4.1.12 Link Quality ...34
4.1.13 Link Status ...35
4.1.14 Link Configuration...35
4.1.15 TDR Functions...35

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

iv

4.1.16 MII Port Configuration..35
4.1.17 BIST Tx Start/Stop/Status...35
4.1.18 IEEE 1588..36
4.1.19 Operating System Abstraction Interface (OAI)..36
4.1.20 Demonstration and Test Code ...36
4.1.21 Python Interface Layer and Example Script ..36

4.2 EPL ARCHITECTURE AND DESIGN OVERVIEW ..37
4.2.1 High Level Design Goals...37
4.2.2 EPL Code Structure ...39
4.2.3 The EPL Build Environment ..43
4.2.4 Customizing and Porting EPL ...44

4.3 EPL CORE FUNCTION REFERENCE..45
4.3.1 General APIs ...45
4.3.2 Link Related APIs ..60
4.3.3 BIST Related APIs ...65
4.3.4 Cable & Link Quality Related APIs ...69

4.4 IEEE 1588 FUNCTION REFERENCE ...87
4.4.1 IEEE 1588 Configuration APIs ...87
4.4.2 IEEE 1588 Clock APIs...108
4.4.3 IEEE 1588 Check For Events API...113
4.4.4 IEEE 1588 Transmit Frame Timestamp APIs..114
4.4.5 IEEE 1588 Receive Frame Timestamp APIs..115
4.4.6 IEEE 1588 Trigger APIs..118
4.4.7 IEEE 1588 Event Timestamp APIs ..122
4.4.8 IEEE 1588 Interrupts...124
4.4.9 Miscellaneous APIs..124
4.4.10 PHY Status Frame Processing APIs ..125

4.5 OS ABSTRACTION INTERFACE (OAI)..128
4.5.1 OAIInitialize ..129
4.5.2 OAIAlloc ..130
4.5.3 OAIFree ...131
4.5.4 OAICreateMutex..132
4.5.5 OAIReleaseMutex ..133
4.5.6 OAIBeginRegCriticalSection ...134
4.5.7 OAIEndRegCriticalSection..135
4.5.8 OAIBeginMultiCriticalSection...136
4.5.9 OAIEndMultiCriticalSection..137
4.5.10 OAIManagementError...138

4.6 INTERFACE FUNCTION REFERENCE...139
4.6.1 ALP 100/Opal Kelly Interface Related Functions ...139
4.6.2 Cypress USB Related Functions ..150
4.6.3 LPT Related Functions ..154

5 Test, Example, and Demonstration Code 158

5.1 EPLTESTAPP..158
5.1.1 Overview..158
5.1.2 Operational Details ...158
5.1.3 Command Line Parameters ...160

5.2 EPLTEST.PY ...161
5.2.1 Overview..161

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

v

5.2.2 Operational Details ...161
5.3 PTPTESTAPP..162

5.3.1 Overview..162
5.3.2 Running The Application ...162
5.3.3 Hardware Requirements ..162
5.3.4 Command Line Parameters ...163
5.3.5 Run Time Keystrokes ...164
5.3.6 Scanning For Devices..164
5.3.7 PTP Initialization and Startup...164
5.3.8 RunTimeOpts ...165
5.3.9 Callbacks ...168
5.3.10 PTP Stack Operation ...170

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

vi

List of Tables
Table 2.2-1 – Command Format... 5
Table 2.2-2 – PHY Control Frame Format .. 5
Table 3.1-1 – Transmit One-Step Operation... 12
Table 3.1-2 – Receive Timestamp Insertion ... 16
Table 3.1-3 – Layer2 Ethernet Format for PHY Status Frames .. 23
Table 3.1-4 – UDP/IPv4 Ethernet Format for PHY Status Frames ... 24
Table 3.1-5 – Status Frame Payload... 25
Table 3.1-6 – Transmit Timestamp Status Message (length = 5 16-bit words) .. 25
Table 3.1-7 – Receive Timestamp Status Message (length = 7 16-bit words) ... 26
Table 3.1-8 – Trigger Status Message (length = 2 16-bit words) .. 26
Table 3.1-9 – Event Timestamp Status Message (length = variable) ... 27
Table 3.1-10 – Status Frame Error Status Message (length = 1 16-bit word) .. 27
Table 3.1-11 – PCF Read Data Status Message (length = 2 16-bit words) .. 27
Table 4.3-1 – EPL_DEV_INFO ... 48
Table 4.3-2 – EPL_DEVICE_CAPA_ENUM.. 49
Table 4.3-3 – EPL_MIICFG_ENUM .. 52
Table 4.3-4 – EPL_LINK_STS .. 61
Table 4.3-5 – EPL_LINK_CFG.. 63
Table 4.3-6 – EPL_MDIX_ENUM.. 63
Table 4.3-7 – EPL_CABLE_STS_ENUM.. 73
Table 4.3-8 – TDR_RUN_RESULTS .. 75
Table 4.3-9 – TDR_RUN_REQUEST ... 83
Table 4.3-10 – DSP_LINK_QUALITY_GET.. 85
Table 4.3-11 – DSP_LINK_QUALITY_SET .. 86
Table 4.4-1 – TRIGGER_CFG_OPTIONS.. 92
Table 4.4-2 – TX_CFG_OPTIONS.. 95
Table 4.4-3 – STS_CFG_OPTIONS ... 97
Table 4.4-4 – RX_CFG_OPTIONS ... 100
Table 4.4-5 – RX_CFG_ITEMS .. 101
Table 4.4-6 – CLOCK_CFG_OPTIONS.. 105
Table 4.4-7 – PHYMSG_MESSAGE_TYPE_ENUM... 126

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

2

1 Introduction

The National Semiconductor Ethernet PHYTER
®
 software development guide is provided to enable

customers to easily integrate the DP83848, DP83849 and DP83640 products into their applications and

systems. This document describes the software tools and collateral available with the PHYTER family of

products. It also details specific libraries and interfaces that can be used to access the powerful hardware

capabilities and performance features of each product.

1.1 Overview of Available Tools

A number of tools have been developed to aid in PHYTER silicon feature demonstration, system

integration and troubleshooting. This section provides a brief overview of each software tool.

1.1.1 Analog LaunchPAD (ALP)

National has developed a powerful, feature-rich FPGA based platform for demonstrating National’s silicon

products. It is called the Analog LaunchPAD (ALP). In its initial release the platform uses a Xilinx Spartan

3E device with four general purpose expansion headers. Silicon products from National are provided on

small demonstration boards that then plug into one or more ALP expansion headers. A mock-up of the

ALP baseboard is shown below.

Figure 1 – ALP Baseboard

As a lower cost alternative, ALP “Nano” boards are available that provide management interface access to

the PHYTER over a parallel port or USB connection. These adapters do not contain an FPGA.

A GUI application called the ALP Framework (ALPF) provides the user interface needed to interact with

the various silicon demonstration boards. An example screen shot of the application is shown below.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

3

Figure 2 – ALP Framework Application

1.1.2 Ethernet PHYTER “C” Library (EPL)

A platform independent device software “C” library is available that simplifies PHYTER integration with any

target software platform. The library eliminates, in most cases, the need to directly interact with device

registers, although direct register access is provided.

The documentation for EPL is provided in Chapter 4.

1.1.3 Ethernet PHYTER Python Library

As part of ALP for PHYTER, a device library is provided that allows one to interact with a PHYTER device

using the popular and simple “Python” dynamic scripting language. This is typically used for device feature

demonstration and troubleshooting.

1.1.4 ActiveX Interfaces

All of the methods provided by the ALP PHYTER Python Library are exposed through Windows ActiveX.

This allows one to use many popular tools, such as Visual Basic for Applications (VBA), Excel, Agilent’s

VEEPro and National Instrument’s LabView to interact with any PHYTER device. In fact, any ActiveX

enabled environment can successfully interact with an attached PHYTER device.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

4

2 Device Management Interfaces

Control, status and data access to all PHYTER products is register based and occurs through a device

management interface. Depending on the PHYTER device model, up to two hardware management

interfaces are supported. The first is the standard IEEE MDIO protocol and the second is exclusive to

National and provides high-speed access through the device’s MII interface.

2.1 MDIO

For all PHYTER devices, registers can be accessed using standard IEEE MDIO, which is a simple two-

wire bit banging protocol. The PHYTER device abstraction software libraries provide support for using

MDIO for device access.

2.2 MII PHY Control Management Interface

The PHYTER High Precision (DP83640) supports a packet-based control mechanism for use in situations

where the Serial Management Interface (MDIO) is not available or does not provide enough throughput.

Application software may build a packet, called a PHY Control Frame (PCF), to be passed to the PHY

through the MAC Transmit Data interface. The PHY will intercept these packets and use them to assert

writes to Management Registers as if they occurred via the usual Management Interface. Multiple register

writes may be incorporated in a single frame.

A PCF may also be used to read a register. The read value will be returned in a PHY Status Frame (PSF).

Only a single read may be outstanding at a time, therefore only one read should be included in a PCF

request packet.

PCFs can be used to generate registers writes without any additional configuration if the device is properly

strapped to accept them. PCF_EN/GPIO2 should be pulled high to enable PCFs by default. However

PSFs must be properly configured before PCFs can be used to generate register reads.

The provided device abstraction software libraries support using PCF’s for device access, however the

library must have access to environment dependent MAC frame transmit and frame receive de-

multiplexing subsystems.

2.2.1 Command Structure

Each PCF Command is equivalent to a Management access over the Serial Management Interface. As

such, the Read or Write Command is similar in format, although it is extended to eliminate the need to

change pages. The format for each 32-bit command is as follows:

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

5

Field Bit Location Description

Command Type 31:30 Set to 01 for Write
Set to 10 for Read

PHY Address 29:25 Set to PHY Address or to 0x1F (broadcast)

Page Select 24:21 Register Page Select

Register Address 20:16 Register Address

Write Data 15:0 Write Data

Table 2.2-1 – Command Format

The command packets need to be created in network order (e.g. the MSB first). A command of all 0s

indicates no action and is used to terminate a list of commands.

The PHY Address field should be set to the PHY Address of the device, or to a broadcast value of 0x1F.

The device can be programmed to ignore the broadcast address by setting the PCF_BC_DIS bit in the

PCFCR.

2.2.2 PHY Control Frame Format

Field Length Value Description

Preamble 7 bytes 0x55 Ethernet preamble

SFD 1 byte 0x5D Ethernet Start-of-Frame Delimiter

Destination Address 6 bytes 0x08 0x00 0x17
0x0B 0x6B 0x0F
or
0x08 0x00 0x17
0x00 0x00 0x00

Destination Address. Uses a National
Semiconductor assigned Mac address.
Multicast versions of the addresses are also
allowed. Address is configured by the
PCF_DA_SEL bit in the PCFCR register.

Header (Optional) Optional information to allow embedding
within any type of packet

Start Field 6 bytes 0x5F, 0x50,
0x48, 0x59,
0x43, 0x46

Start Field is used to detect the beginning of
a Write Command Sequence. The value is
ASCII encoding of the string ’_PHYCF’.

PCF Commands N * 4 bytes Individual commands, each 4 bytes in length.

Termination Field 4 bytes 0x00

Pad (Optional) 0x00 Pad to 60 bytes for Destination Address
through Pad.

CRC 4 bytes Ethernet Frame Check Sequence

Table 2.2-2 – PHY Control Frame Format

The Preamble, SFD, and CRC fields are usually generated by the Mac layer.

2.2.3 Enabling PHY Control Frames

PHY Control Frames can be enabled through the PCF_Enable bit in the PHY Control Frames

Configuration

Register (PCFCR). PHY Control Frames can also be enabled by using the PCF_EN strap option.

2.2.4 PHY Control Frame Interrupts

The PHY Control Frame function may be programmed to interrupt the system on either of two conditions:

completion of a PHY Control Frame, or on a PHY Control Frame error.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

6

The PHY Control Frame interrupts may be enabled by setting the PCF_INT_CTL bits in the PCFCR

Register. Setting either of these bits will enable control of the PCF Interrupt through bit 0 of the MISR

register. Interrupt status will be available at bit 8 at of the MISR. Note that this replaces the Receive Error

Counter half-full Interrupt (RHF_INT) and causes the RFH_INT to be combined with the False Carrier

Counter half-full Interrupt (FHF_INT).

The cause of the PCF Interrupt may be determined by checking the PCF_STS_OK and PCF_STS_ERR

bits in the PCFCR register. Reading the PCFCR register is necessary to rearm the PCF interrupt.

A PCF_STS_ERR interrupt indicates an error was detected on a PHY Control Frame. Any writes in the

control frame may have been completed, but may not have completed accurately. Error conditions may

include any of the following:

• CRC Error for the frame

• Lack of Termination field

• Unknown command type

If an unknown command type is detected, any subsequent commands in the PHY Control Frame will be

ignored.

2.2.5 Control Frame Buffer

Since the PHY must parse a portion of the Control Frame, it will normally send a portion of the frame to

the wire while the frame is being parsed. If a Control Frame is detected, the PHY will truncate the frame

immediately following the Destination Address. In most Ethernet environments this will be seen as a

collision fragment and ignored by receiving Mac layers.

In certain non-standard implementations (such as protocols that rely on isochronous control of the

medium), the truncated frame could cause issues. In this case, the PHY can be programmed to buffer up

to 15 bytes of each packet. This allows the PHY to determine if the packet is a Control Frame before

sending any of the packet on the wire. The size of the Control Frame Buffer is configurable through the

PCF_BUF field in the PCFCR Register. Enabling the packet buffering will add delay in the transmit packet

propagation through the PHY.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

7

3 DP83640 PHYTER High Precision for IEEE 1588

This chapter provides an overview of the 1588 related features available with the DP83640 PHYTER High

Precision device, information on device configuration and concludes with tips and techniques that can be

used to synchronize a slave clock with a 1588 master.

A separate section in the Ethernet PHYTER “C” Library (EPL) chapter provides documentation for the

1588 related software library calls that support these features. One should first become familiar with the

hardware functionality presented here prior to reviewing and using the EPL software library functions.

3.1 Hardware Functional Overview

The PHYTER High Precision provides advanced and flexible support for IEEE 1588 for use in a highly

accurate IEEE 1588 system. It provides a 1588 digital clock implementation, IEEE 1588 Transmit and

Receive packet parsing and Start-of-Frame detection, Transmit and Receive Timestamp units, trigger

generation, event timestamp unit and a Pulse-Per-Second (PPS) generator.

Figure 3 – PHYTER High Precision Hardware Block Diagram

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

8

3.1.1 IEEE 1588 Clock

The IEEE 1588 clock has the following features:

� Frequency scalable - Frequency (clock rate) may be adjusted to match the frequency of the

master.

� Adjustable by add/subtract - The clock may be adjusted in a step fashion to jump to match the

master clock.

� Directly read/writable - Initial setting of the clock may require a direct write of a time value.

� Temporary Frequency control - Allows time correction by running at a modified frequency for a

period of time.

� 8 ns resolution (running at 125 MHz).

3.1.1.1 Controlling the IEEE 1588 Clock

The PHY provides features for controlling the clock operation in Slave mode. The clock value can be

updated to match the Master clock in several ways. In addition, the clock can be programmed to adjust its

frequency to compensate for drift.

The clock consists of several fields:

� Seconds: 32-bit field

� Nanoseconds: 30-bit field (maximum value is 10
9
 ns)

� Fractional Nanoseconds: Units of 2
-32
 ns.

The clock does not support negative time values. If negative time is required in the system, software will

have to make conversions from the PHY clock time to actual time.

The clock also does not support the upper 16-bits of the seconds field as defined by the specification

(version 2 specifies a 48-bit seconds field). If this value is required to be greater than 0, it will have to be

handled by software. Since a rollover of the second’s field will only occur every 136 years, this should not

be a significant burden to software.

3.1.1.2 Updating the Clock time value

Several mechanisms can be used to update the PHY’s IEEE 1588 clock, based on the results of the

synchronization protocol.

Step adjustment - A step adjustment value in nanoseconds may be added to the current value. Note that

the adjustment value can be positive or negative.

Time set - A direct set of the time value can be done by setting a new time value.

Rate adjustment - The clock can be programmed to operate at an adjusted frequency value by

programming a rate adjustment value. The rate adjustment allows for correction on the order of 2
-32
 ns per

reference clock cycle. The frequency adjustment will allow the clock to correct the offset over time,

avoiding any potential side-effects caused by a step adjustment in the time value.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

9

Temporary Rate adjustment - The clock can be programmed to operate at a temporary adjusted

frequency value by programming a rate adjustment value and duration. The rate adjustment allows for

correction on the order of 2
-32
 ns per reference clock cycle. The frequency adjustment will allow the clock

to correct the offset over time, avoiding any potential side-effects caused by a step adjustment in the time

value.

The method used to update the clock value may depend on the difference in the values. For example, at

the initial synchronization attempt, the clocks may be very far apart, and therefore require a Step

adjustment or a direct Time set. Later, when clocks are very close in value, the Temporary Rate

adjustment method may be the best option.

3.1.1.2.1 Setting Time via PTP Time Data Regiser

Setting time through the PTP Time Data Register involves writing all four time fields to the PTP_TDR and

then issuing a PTP_Load_Clk command through the PTP Control Register. The Time value may also be

read using the PTP_TDR register by first setting the PTP_Rd_Clk command in the PTP Control Register

and then reading all four time fields. In each case, the order of fields is the same.

For example, to set the time:

Write Clock_time_ns[15:0] to PTP_TDR

Write Clock_time_ns[31:16] to PTP_TDR

Write Clock_time_sec[15:0] to PTP_TDR

Write Clock_time_sec[31:16] to PTP_TDR

Write to PTP_CTL with the PTP_Load_Clk bit set

To read the time:

Write to PTP_CTL with the PTP_Rd_Clk bit set

Read Clock_time_ns[15:0] from PTP_TDR

Read Clock_time_ns[31:16] from PTP_TDR

Read Clock_time_sec[15:0] from PTP_TDR

Read Clock_time_sec[31:16] from PTP_TDR

3.1.1.2.2 Clock Rate Control

The PTP Rate control registers allow setting two different Rate values, a Normal Rate and a Temporary

Rate. The Temporary Rate allows the 1588 Clock to operate at a modified rate for a programmed amount

of time (as controlled by the PTP Temporary Rate Duration Registers). The Normal Rate will be selected if

a Temporary Rate is not currently active.

When setting a rate, the PTP_TMP_RATE bit in the PTP Rate High Register (PTP_RATEH) indicates the

rate is to be temporary. The Temporary Rate will be applied to the clock for the duration set in the

PTP_TRD registers. Following completion of the time duration set in PTP_TRD the rate will revert back to

the Normal Rate. Note that the Normal Rate may be changed, through the PTP Rate registers, while a

Temporary Rate is active. This will have no effect on the Temporary Rate, but the new Normal Rate will be

used when the Temporary Rate Duration completes.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

10

3.1.1.2.3 Making Time Corrections using the PTP Time Data Register

Making time adjustments to the PTP Clock through the PTP Time Data Register is similar to setting a time

value. The process involves writing all four time fields to the PTP_TDR and then issuing a PTP_Step_Clk

command through the PTP Control Register.

To add time using the Step Clock function, the value should be positive. To subtract, both seconds and

nanoseconds fields should be 32-bit 2’s complement representations. The addition process is a pipelined

process that takes two clock cycles at 8 ns each at the default clock rate. When adjusting the clock, the

value added should include 16 ns to compensate for the 2-cycle addition. For example, to adjust the clock

by +100 ns, the actual value added should be 116 ns. To subtract 100 ns, the actual value subtracted

should be 84 ns.

When adding or subtracting using the Step Clock function, the nanosecond value should be less than 109

in magnitude.

For example, to add/subtract the time:

Write Clock_time_ns[15:0] to PTP_TDR

Write Clock_time_ns[31:16] to PTP_TDR

Write Clock_time_sec[15:0] to PTP_TDR

Write Clock_time_sec[31:16] to PTP_TDR

Write to PTP_CTL with the PTP_Step_Clk bit set

3.1.1.2.4 Making Time Corrections by Setting a Temporary Rate

The PTP Rate control registers allow setting two different Rate values, a Normal Rate and a Temporary

Rate. The Temporary Rate allows the 1588 Clock to operate at a modified rate for a programmed amount

of time (as controlled by the PTP Temporary Rate Duration Registers). The Normal Rate will be selected if

a Temporary Rate is not currently active.

When setting a rate, the PTP_TMP_RATE bit in the PTP Rate High Register (PTP_RATEH) indicates the

rate is to be temporary. The Temporary Rate will be applied to the clock for the duration set in the

PTP_TRD registers. Following completion of the time duration set in PTP_TRD the rate will revert back to

the Normal Rate. Note that the Normal Rate may be changed, through the PTP Rate registers, while a

Temporary Rate is active. This will have no effect on the Temporary Rate, but the new Normal Rate will be

used when the Temporary Rate Duration completes.

To adjust the time value using the Rate control registers, software uses the 1588 protocol to determine the

time correction required. The time correction may be spread over multiple clock cycles by programming a

Temporary Rate value. To determine the rate setting, software should compute the rate difference as the

time correction divided by the time duration in number of 8 ns clock cycles. This value should be multiplied

by 2
32
 to convert to the correct units. This rate difference should then be added to the current PTP Rate

setting to provide the Temporary Rate.

The Temporary Rate value is a 26-bit value plus a sign bit, providing a range of -(2
26
-1) to +(2

26
-1) in units

of 2
-32
 ns/cycle. Since each reference clock cycle is 8 ns, this allows for a rate adjustment maximum of

approximately +/-1950 ppm.

The Temporary Rate duration is a 26-bit value providing a duration of up to 536 ms.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

11

Example:

Conditions:

Current Rate = +10 ppm, which gives PTP_Rate = 343597 (2
-32
 ns/cycle)

Time_Error = 20 ns, gives Time_Corr = -20 ns

Assume the correction will be done over 10 ms, gives

Temp_Rate_duration = 10 ms/8 ns = 1,250,000

Calculation:

Temp_Rate_delta = (Time_Corr/Temp_Rate_duration) * 2
32

= (-20/1250000) * 2
32
 = -68719

Temp_Rate = Current_Rate + Temp_Rate_delta = 343597 + -68719 = 274878

To set the Temporary Rate:

1. Write Temp_Rate_duration[25:16] to PTP Temporary Rate Duration High Register (PTP_TRDH)

2. Write Temp_Rate_duration[15:0] to PTP Temporary Rate Duration Low Register (PTP_TRDL)

3. Write Temp_Rate[25:16] to PTP Rate High Register (PTP_RATEH) with PTP_TMP_RATE bit set to 1.

4. Write Temp_Rate[15:0] to PTP Rate Low Register (PTP_RATEL)

The Temporary Rate will automatically start following the write to the PTP_RATEL register. When the

Temporary Rate Duration has expired, the clock rate will revert to the normal PTP Rate. The Temporary

Rate Duration registers do not need to be reprogrammed for each setting of the Temporary Rate if the

duration is to remain unchanged.

3.1.2 IEEE 1588 Transmit Packet Parser and Timestamp unit

The IEEE 1588 transmit parser monitors transmit packet data to detect IEEE 1588 Version1 and Version2

Event messages. Upon detection of a PTP Event Message, the device will capture the transmit timestamp

and provide the timestamp value to software through the PTP Transmit Timestamp Register (PTP_TXTS).

Since software knows the order of packet transmission, only the timestamp is recorded (there is no need
to record sequence number or other information). The device can buffer four timestamps. Software should
make an adjustment to the transmit timestamp to account for delay from the timestamp point to the wire.
The recommended adjustment varies for modes of operation as follows:

• 100Base-TX: 0 ns
• 100Base-FX: 0 ns + transmit latency for fiber transceiver
• 10Base-T: 95 ns

The PTP Status Register (PTP_STS) indicates a transmit timestamp is available to software. After reading
the transmit timestamp, software may recheck the PTP_STS register to see if another timestamp is ready.

An interrupt may be generated, if enabled, upon a Transmit Timestamp Ready.

3.1.2.1 Transmit Timestamp Configuration

Transmit Timestamp operations are controlled through the PTP Transmit Configuration Registers
(PTP_TXCFG0, and PTP_TXCFG1). The Transmit Timestamp unit may be programmed to detect PTP
messages encoded in three main types of packets: UDP/IPv4, UDP/IPv6, and Layer2 Ethernet. The
device also directly supports detection of IEEE 1588 messages based on both Version 1 and Version 2 of

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

12

the specification. To allow compatibility with future versions, a version field may be programmed to accept
any version of the standard.

For UDP/IP operation, the Transmit Timestamp unit may be programmed to detect the four IANA

assigned multicast IP destination addresses for IEEE 1588 (224.0.1.129, 224.0.1.130, 224.0.1.131,

224.0.1.132), as well as the defined IP destination address for the Peer Delay Mechanism (224.0.0.117).

In most cases, the Transmit Timestamp Unit does not need to filter on IP destination addresses, since any

outgoing PTP Event message should be timestamped. The Transmit Timestamp Unit can be configured

to filter on IP addresses or it can be configured to capture timestamps for PTP Event messages

independent of the IP destination address.

To better distinguish between message types, the Timestamp unit may be configured to filter on the first

octet of the PTP message. In Version 2, this allows filtering based on the transportSpecific and

MessageType fields, and can be used to determine Event messages from General messages. Filtering on

the first octet of the PTP message is enabled by setting mask and data values through the PTP_TXCFG1

Register.

For PTPv2, to generate timestamps for PTP Event messages only, the BYTE0_MASK and BYTE0_DATA

fields are typically set to 0xF8 and 0x00 respectively.

3.1.2.2 One-Step Operation

In some cases, the Transmitter can be set to operate in a One-Step mode. For Sync Messages, a One-
Step device can automatically insert Timestamp information in the outgoing packet. This eliminates the
need for software to read the Timestamp and send a Follow_Up Message. The timestamp will not include
the delay from the timestamp point to the wire. For IEEE 1588 version 2, the timestamp corrections may
be included in the correctionField of the PTP Sync message (see IEEE 1588 Transmit Packet Parser and
Timestamp Unit section for correction values).

Since the hardware does not keep the upper 16-bits of the clock, software must insert the upper 16-bits of

the seconds value into the outgoing packet. The remainder of the timestamp (32-bits of seconds, 32-bits

of nanoseconds) must be set to 0. Hardware will insert these fields of the timestamp, and correct the CRC

for the packet. If requested for transport over UDP, the hardware will also correct the UDP checksum by

modifying the last two octets of the UDP data. For IPv6, the extra 2 octets are required by the

specification. For IPv4, the extra 2 octets are optional, but must be included by software for the algorithm

to work correctly.

The following table indicates the method of insertion:

Message Type Condition Handling

V1 sync Insert timestamp in originTimestamp field. UDP
checksum field must be 0.

V2 IPv4/UDP Sync CHK_1STEP = 0 Insert timestamp in originTimestamp field. UDP
checksum field must be 0.

V2 IPv4/UDP Sync CHK_1STEP = 1 Insert timestamp in originTimestamp field. Modify 2-
byte field following Sync message to fix UDP
checksum (software must set this field to 0).

V2 IPv6/UDP Sync CHK_1STEP = 1
(required for IPv6)

Insert timestamp in originTimestamp field. Modify 2-
byte field following Sync message to fix UDP
checksum (software must set this field to 0).

V2 Layer2 Sync Insert timestamp in originTimestamp field.

Table 3.1-1 – Transmit One-Step Operation

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

13

3.1.2.3 Delay_Req Timestamp Insertion

For slave only operation, the device may be programmed to return Delay_Req timestamps in incoming

Delay_Resp messages. In this mode, it is expected that only Delay_Req messages will require transmit

timestamps. The most recent transmit timestamp will be inserted into any incoming Delay_Resp message.

Software must still verify that the incoming Delay_Resp message is in response to the most recently sent

Delay_Req message. Since all timestamps will be returned in Delay_Resp messages, no timestamps will

need to be transferred through the management interface.

To enable Delay_Req timestamp insertion, set the DR_INSERT bit in the PTP_TXCFG register. In

addition, the receive logic must also be programmed for timestamp insertion. The timestamp will be

inserted at the same offsets as programmed for receive timestamp operation. See Section 3.1.3.4

Receive Timestamp Insertion for a description of the receive operation.

Enabling Delay_Req timestamp insertion modifies operation of the Transmit Timestamp Unit and is not

compatible with other transmit timestamp operations. This feature should be disabled when the device

transitions from Slave to Master operation. This mode should also not be used when using the Peer

Delay mechanism. When disabling Delay_Req timestamp operation, it is possible for the device to

indicate a transmit timestamp is available. Software should flush any transmit timestamps using the

PTP_STS and PTP_TXTS registers.

3.1.3 IEEE 1588 Receive Packet Parser and Timestamp Unit

The IEEE 1588 receive parser monitors receive packet data to detect IEEE 1588 Version1 and Version2
Event messages. Upon detection of a PTP Event message, the device will capture the receive timestamp
and provide the Timestamp value to software. In addition to the Timestamp, the device will record the 16-
bit SequenceId, the 4-bit messageType field, and generate a 12-bit hash value for octets 20-29 of the PTP
event message. The device will also indicate a timestamp is available by setting a bit in the PTP Status
Register. The device can buffer four timestamps. Software should make an adjustment to the receive
timestamp to account for delay from the wire to the timestamp point. The recommended adjustment varies
for modes of operation as follows:

• 100Base-TX: 215 ns
• 100Base-FX: 120 ns + receive latency for fiber transceiver
• 10Base-T: 300 ns

The RXTS_RDY bit in the PTP Status Register (PTP_STS) indicates a receive timestamp is available to
software. After reading the receive timestamp, software may recheck the PTP_STS register to see if
another timestamp is ready.

An interrupt will be generated, if enabled, upon a Receive Timestamp Ready.

3.1.3.1 Reported messageType

For each Timestamp captured, the Timestamp unit will record the messageType. For version 1 of the

IEEE 1588 specification the Timestamp unit will return the lower four bits of the control field (octet 32 in

the message). Otherwise, the Timestamp unit will record the version 2 messageType field which is the

least significant bits of the first octet in the PTP message.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

14

3.1.3.2 Source Identification Hash Value

For each Timestamp captured, the Timestamp unit will also record a 12-bit hash value on octets 20-29 of

the PTP event message. For version 1 of the IEEE 1588 specification, this corresponds to the

messageType, sourceCommunicationTechnology, sourceUuid, and sourcePortId fields. For version 2 of

the IEEE 1588 specification, this corresponds to the 10-octet sourcePortIdentity field. The combination of

hash value and sequenceId, allows software to correctly match a Timestamp with the correct receive

event message.

The hash algorithm used is the CRC function as defined in section 3.2.8 the IEEE 802.3 specification.

The Timestamp unit returns the 12 most significant bits as the CRC computation (the resultant bits are not

complemented as done in the 802.3 CRC generation).

To minimize unnecessary timestamp capture, the device may be configured to filter based on the source

identification hash value. This value may be programmed by writing to the PTP_RXHASH register. If the

source hash value for the incoming PTP event message does not match the programmed hash value,

then the message will not be timestamped.

3.1.3.3 Receive Timestamp Configuration

Receive timestamp operations are controlled through the PTP Receive Configuration Registers

(PTP_RXCFG0, PTP_RXCFG1, PTP_RXCFG2, and PTP_RXCFG3). The Receive Timestamp unit may

be programmed to detect PTP messages encoded in three main types of packets: UDP/IPv4, UDP/IPv6.

and Layer2 Ethernet.

The device also directly supports detection of IEEE 1588 messages based on both Version 1 and Version

2 of the specification. To allow compatibility with future versions, a version field may be programmed to

Timestamp messages using any version of the standard.

For UDP/IP operation, the Receive Timestamp unit may be configured to detect each of the four IANA

assigned multicast IP destination addresses for IEEE 1588 (224.0.1.129, 224.0.1.130, 224.0.1.131,

224.0.1.132), as well as the defined IP destination address for the Peer Delay Mechanism (224.0.0.117).

The Timestamp unit may also be configured to generate a Timestamp if the IP destination address

matches a user-programmed IP address. In IPv4, the full 32-bit address will be matched. In IPv6, the first

16-bits and last 16-bits will be matched.

To better distinguish between message types, the Timestamp unit may be configured to filter on the first

octet of the PTP message. In Version 2, this allows filtering based on the transportSpecific and

MessageType fields.

The Receive Timestamp Unit can also filter on the domainNumber field in the version 2 PTP message. If

Domain Field matching is enabled, the domainNumber field must match exactly the user-programmed

value in order for a timestamp to be generated for the packet.

An additional control allows the Receive Timestamp Unit to generate a timestamp for PTP messages with

the Alternate_Master flag set, otherwise messages with the Alternate_Master flag will not be timestamped.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

15

For PTPv2, to generate timestamps for PTP Event messages only, the BYTE0_MASK and BYTE0_DATA

fields are typically set to 0xF8 and 0x00 respectively.

3.1.3.4 Receive Timestamp Insertion

The IEEE 1588 Receive Timestamp unit can deliver the timestamp to software by inserting the timestamp

in the received packet. This allows for a simple method to deliver the packet to software without having to

be concerned with how to match the timestamp to the correct packet. This eliminates the need to provide

software with the sequenceId, messageType, and source information. In addition, it eliminates the need to

read the Receive Timestamp through the Management Interface.

Receive timestamp insertion is enabled by setting the TS_INSERT bit in the PTP Receive Configuration

Register 3 (PTP_RXCFG3). In addition, the TS_APPEND bit will force timestamps to always be appended

to the Receive PTP message for Layer2 Ethernet frames. If TS_APPEND is not set, timestamps will be

placed in programmable locations within the message. It is recommended that Reserved fields in the

version 1 and version 2 specification should be used, since these fields are required to be transmitted on

the network as 0. Fields for seconds and nanoseconds should be programmed using the

RXTS_SEC_OFF and RXTS_NS_OFF fields of the PTP_RXCFG4 register.

In all cases, the Ethernet CRC will be checked and regenerated. For IPv6, the UDP checksum will be

corrected by modifying the last 2 bytes of UDP data, which follow the PTP message. If incoming IPv4

packets contain an additional 2 bytes of UDP data following the PTP message, software may enable

modification of the last 2 bytes. Otherwise, the UDP checksum will be cleared to 0 by the device and any

UDP checksum failure will be propagated as a CRC failure.

Some of the filtering capabilities are ignored for timestamp insertion. These fields include the source

identification hash, domain match, and alternate master flag. If a timestamp is not desired, these

messages should be discarded by software anyway.

The length of the seconds field is programmable from 0 to 4 bytes using the TS_SEC_EN and

TS_SEC_LEN fields of the PTP_RXCFG4 register. For most applications, one byte should be plenty to

determine the actual received time (based on rate of message reception and Timestamps from outgoing

messages). If programmed to 0 bytes, the least significant seconds bit will be available in bit 30 of the

nanoseconds field.

Bit 31 of the nanoseconds field is used to indicate that a time correction has been completed prior to the

capture of this timestamp. This flag will be asserted when either a clock step adjustment or a temporary

rate correction has been completed. Software can use this to determine if the timestamp includes the

latest time correction. Note: For Revision A1 engineering samples, bit 31 was used to indicate bit 1 of the

seconds field if the length of the seconds field was programmed to 0 bytes.

The following table indicates the preferred method of attachment.

Message Type Condition Handling

V1 Sync

V1 Delay_Req

TS_APPEND = 0 Place 8-bit seconds field in 1st Reserved byte (byte
33). Place nanoseconds field in 4-byte Reserved
field (bytes 36-39). Zero out UDP checksum. On
UDP checksum failure, force CRC failure.

V2 IPv4/UDP Sync

V2 IPv4/UDP Delay_Req

TS_APPEND = 0 Place 8-bit seconds field in 1st Reserved byte (byte

5). Place nanoseconds field in 4-byte Reserved

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

16

V2 IPv4/UDP PDelay_Req

V2 IPv4/UDP PDelay_Resp

field (bytes 16-19). Zero out UDP checksum. On

UDP checksum failure, force CRC failure.

V2 IPv6/UDP Sync

V2 IPv6/UDP Delay_Req

V2 IPv6/UDP PDelay_Req

V2 IPv6/UDP PDelay_Resp

TS_APPEND = 0 Place 8-bit seconds field in 1st Reserved byte (byte

5). Place nanoseconds field in 4-byte Reserved

field (bytes 16-19). Modify last 2 bytes of UDP data

to correct checksum. UDP checksum failure will be

propagated as a UDP checksum failure.

V2 Layer2 Sync

V2 Layer2 Delay_Req

V2 Layer2 PDelay_Req

V2 Layer2 PDelay_Resp

TS_APPEND = 0 Place 8-bit seconds field in 1st Reserved byte (byte

5). Place nanoseconds field in 4-byte Reserved

field (bytes 16-19). Zero out UDP checksum. On

UDP checksum failure, force CRC failure.

V2 Layer2 Sync

V2 Layer2 Delay_Req

V2 Layer2 PDelay_Req

V2 Layer2 PDelay_Resp

TS_APPEND = 1 Append to end of packet. Offset for nanoseconds

should be set to 0. Offset for seconds should be

set to 0. Seconds field will be appended following

nanoseconds field. The extended packet length

with be equal to 4 bytes plus the size of the

seconds field.

Table 3.1-2 – Receive Timestamp Insertion

3.1.4 IEEE 1588 Triggers

The device can be programmed to generate a trigger signal on an output pin based on the IEEE 1588 time

value. The trigger can be programmed to generate a one-time rising or falling edge, a single pulse of

programmable width, or a periodic signal. The device supports up to 8 trigger signals which can be output

on any of the GPIO signal pins.

The triggers are configured through the PTP Trigger Configuration Registers. For each trigger, the

following configuration options are available:

� Single/Periodic control - Indicates whether trigger will generate a single edge/pulse or a periodic

signal

� Pulse/Edge control - Indicates if trigger is a pulse or single edge

� Trigger-if-late control - allows immediate trigger if start time is earlier than current clock time

(available only for Triggers 0 and 1). Note: This capability is not implemented correctly in revision

A1 engineering samples of the DP83640.

� Notify - generate status on Trigger completion or on a trigger error (set too late)

� Toggle mode - toggle from current state (ignore Initial state setting)

� GPIO pin Select - indicates which I/O pin is used for the trigger output signal

The trigger time and width settings are controlled through the PTP Control and Time Data registers.

Trigger control information consists of:

� Start Time (32-bit seconds, 30-bit nanoseconds)

� Initial state - Indicates initial state of signal to be set when trigger is armed (0 will cause a signal

rise at trigger time, 1 will cause a signal fall at trigger time). This control is ignored in Toggle

mode.

� Wait for Rollover - Indicates that the device should not arm the trigger until after the seconds field

of the clock time has rolled over from 0xFFFF_FFFF to 0.

� Pulsewidth (2-bit seconds, 30-bit nanoseconds)

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

17

� Pulsewidth2 (2-bit seconds, 30-bit nanoseconds for Periodic Pulse) or (16-bit seconds for Periodic

Edge)

For Triggers 0 and 1, in a Single or Periodic Pulse type signal, a second Pulsewidth value controls the 2
nd

pulse width (period is Pulsewidth + Pulsewidth2). For Edge type signals, Pulsewidth2 is interpreted as 16-

bit seconds field and Pulsewidth1 is a 30-bit nanoseconds field. For all other triggers, the high and low

pulse widths are the same (period is twice Pulsewidth).

3.1.4.1 Initializing a Trigger

To initialize a trigger, the trigger configuration should be set using the appropriate PTP Trigger

Configuration Register. This allows for setting of parameters that probably do not need to change if the

trigger is to be rearmed at a later time.

Arming a trigger consists of the following steps:

1. Set the Trig_Load bit in the PTP Control Register (PTP_CTL) along with the Trig_Sel setting for

the trigger. This will disable the trigger if it was previously enabled.

2. Write to PTP_TDR: Start_time_ns[15:0]

3. Write to PTP_TDR: Initial state, Wait for Rollover, Start_time_ns[29:16]

4. Write to PTP_TDR: Start_time_sec[15:0]

5. Write to PTP_TDR: Start_time_sec[31:16]

6. Write to PTP_TDR: Pulsewidth[15:0]

7. Write to PTP_TDR: Pulsewidth[31:16]

8. Write to PTP_TDR: Pulsewidth2[15:0] (for Triggers 0 and 1 only)

9. Write to PTP_TDR: Pulsewidth2[31:16] (for Triggers 0 and 1 only)

10. Set the Trig_En bit in the PTP_CTL register along with the Trig_Sel setting for the trigger

If fields are not changing from previous settings, the latter writes to the PTP_TDR register may be

skipped. Step 10 is not necessary if all appropriate fields are written.

3.1.4.2 Reading Trigger Control information

Reading the trigger control settings is similar to the process for writing these values:

1. Set the Trig_Read bit in the PTP Control Register (PTP_CTL) along with the Trig_Sel setting for

the trigger.

2. Read fields from PTP_TDR in same order as written above.

Note that for periodic signals, the time value being read back is the next programmed trigger time rather

than the start trigger time (these may or may not be the same value). This capability is essentially for

diagnostic purposes only as there should be no need to read back the trigger control setting in normal

operation. Care should be taken as the next trigger time may change during the read process. To ensure

the time value is stable, the trigger should be disabled prior to initiating the read process.

3.1.4.3 Multiple Trigger assignment

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

18

The device supports assigning multiple triggers to the same GPIO pin. This allows for generating multiple

similar events on the same I/O signal using multiple trigger controls. The trigger signals are OR’ed

together to form a combined signal. The simplest combination is to combine two or more positive pulse

triggers on a single I/O.

3.1.4.4 Trigger Notification and Interrupts

Each trigger may be programmed to generate status on completion or on an error. This function is

enabled by setting the Trigger Notify control (TRIGn_NOTIFY) in the associated PTP Trigger

Configuration Register (PTP_TRIGn).

If notification is enabled, when the trigger completes, the Trigger Ready bit will be set in the PTP Status

Register. In addition, a Done bit is set in the PTP Trigger Status Register. If the trigger detects an error

due to being armed late, it will also set the Trigger Late indication. For a periodic signal, if the Trigger-if-

late control is set, no Notification will be generated. If the Trigger-if-late is not set, the trigger will set both

the Done and Late indications.

If trigger interrupts are enabled in the PTP Status Register, an interrupt will be generated upon completion

of the trigger.

3.1.4.5 Trigger Special Conditions

The IEEE 1588 specification calls for a 48-bit seconds field. Since the internal IEEE 1588 clock

implements only a 32-bit seconds field, software must keep track of the upper 16-bits of the seconds field.

Note that the 32-bit seconds field will rollover approximately every 136 years. The rollover occurs at 2
32

seconds (4.294967296 * 10
9
 ns). There are several exceptions to trigger handling when the clock

approaches the rollover condition:

1. When programming a trigger time that will be after the rollover, software should set the “Wait For

Rollover” control when programming the trigger. This is bit 30 of the second write to PTP_TDR.

2. Software should not set a trigger time within one reference clock period prior to the rollover point,

otherwise the trigger may not occur. Instead, software should program a trigger time of 0 and set

the “Wait For Rollover” control bit. Alternatively, software may program a trigger time greater than

one reference clock period prior to the rollover time.

3. Similarly, a periodic signal may stop if it results in a trigger time within one reference clock period

prior to the rollover point.

4. Software should avoid making a step time adjustment that may cause the clock to step forward or

backwards across the maximum value. Doing this could cause invalid trigger operation.

Adjustments using the Temporary Rate function will not cause any issues with trigger operation.

3.1.4.6 IEEE 1588 Pulse Per Second Output

The device can be programmed to output a Pulse-Per-Second (PPS) signal using the trigger functions. If

a 50% duty cycle is acceptable, then any of the triggers may be used. If the PPS signal requires any other

duty cycle (for example 200 ms high time) then Trigger0 or Trigger1 must be used.

To configure the trigger, software should enable a periodic trigger using the PTP Trigger Configuration

Register (PTP_TRIG). For example, to configure Trigger0 to use GPIO2, write 0xC201 to the PTP_TRIG

register. Software should then initialize the trigger as described above with the appropriate start time and

pulse width information to allow the trigger to begin at a second boundary in the future.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

19

If a large adjustment to the PTP time is made, the PPS trigger may need to be rearmed to avoid a long

period of inactivity or a period of rapid pulsing. For a large positive change in time (greater than one

second), the trigger should be rearmed to trigger at a second boundary relative to the new time, prior to

making the time adjustment. For a large negative change, the trigger should be disabled prior to making

the time adjustment, and then rearmed after making the time adjustment.

3.1.5 IEEE 1588 Event Timestamping

The device can be programmed to timestamp an event by monitoring an input signal. The event can be

monitored for rising edge, falling edge, or either. The Event Timestamp Unit can monitor up to eight

events which can be set to any of the the GPIO signal pins. PTP event timestamps are stored in a queue

which allows storage of up to eight timestamps.

When an event timestamp is available, the device will set the EVENT_RDY bit in the PTP Status Register.

The PTP Event Status Register (PTP_ESTS) provides detailed information on the next available event

timestamp, including information on the event number, rise/fall direction, and indication of events missed

due to overflow of the devices Event queue.

If more than one event occurs at the same time, the MULT_EVNT bit will be set in the PTP_ESTS

register. In this case, an extended status value will be available on the first read of the PTP_EDATA

register. The extended status value indicates each of the event monitors and rise/fall directions that

occurred to generate the timestamp capture. The timestamp values are provided for software through the

PTP Event Data Register (PTP_EDATA).

Event timestamp values should be adjusted by 3*reference clock period + 11 ns = +35 ns to compensate
for input path and synchronization delays.

3.1.5.1 Enabling Event Monitoring

The Event Timestamp Unit is configured through the PTP Event Configuration Register (PTP_EVNT).

Each of the eight event monitors may be individually programmed through this register. Enabling an event

monitor is done by setting the EVNT_SEL field to the appropriate event, setting the EVNT_WR bit to 1,

setting the EVNT_GPIO field to select the appropriate GPIO, and setting the EVNT_RISE and/or

EVNT_FALL enables to 1.

The current state of the GPIO pin may cause an immediate timestamp capture if the enables are set at

the same time as the GPIO selection field. For example, if GPIO3 currently is currently at a logic high state

when the event monitor is set to that GPIO, the event monitor will see a rising edge. To avoid this,

software may program the GPIO selection prior to setting the EVNT_RISE enable.

For example, to enable event monitor 2 to monitor GPIO3 for rising edge detection:

1. Write 0x0305 to PTP_EVNT to select GPIO3 for event monitor 2.

2. Write 0x4305 to PTP_EVNT to enable event rise detection on GPIO3.

3.1.5.2 Single Event Capture

Each event monitor may be placed in a single-event capture mode. In this mode, the event monitor will

capture a single event timestamp. The EVNT_RISE and EVNT_FALL enable bits will be cleared upon the

event capture. Single-event capture mode may be enabled by setting the EVNT_SINGLE bit in the

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

20

PTP_EVNT register. Note: This capability is not available in revision A1 engineering samples of the

DP83640.

3.1.5.3 Reading Event Timestamps

The process for reading event timestamps is as follows:

1. Read PTP_ESTS to determine if an event timestamp is available.

2. Read from PTP_EDATA: Extended Event Status[15:0] (available only if PTP_ESTS:MULT_EVNT

is set to 1)

3. Read from PTP_EDATA: Timestamp_ns[15:0]

4. Read from PTP_EDATA: Timestamp_ns[29:16] (upper 2 bits are always 0)

5. Read from PTP_EDATA: Timestamp_sec[15:0]

6. Read from PTP_EDATA: Timestamp_sec[31:16]

7. Repeat Steps 1-6 until PTP_ESTS = 0

If desired, software may skip reading all or a portion of the timestamp based on the value of the

PTP_ESTS:EVNT_TS_LEN field. For example, if the current event timestamp has the same value of

seconds as the previous event timestamp, the the EVNT_TS_LEN field will be set to one. This indicates

that two fields (both Timestamp_ns fields) contain values that have changed. The seconds values do not

need to be read since software can hold those values from the previous event.

3.1.5.4 Event Interrupts

If event interrupts are enabled in the PTP Status Register, an interrupt will be generated upon detection of

the event.

3.1.6 PTP Interrupts

The PTP module may interrupt the system using the PWRDN_INTN pin on the device, shared with other

interrupts from the PHY. As an alternative, the device may be programmed to use a GPIO pin to generate

PTP interrupts separate from other PHY interrupts.

3.1.6.1 Using the Shared Interrupt Pin

To use the PWRDN_INTN pin, software must program the MII Interrupt Control Register (MICR) to select

the PTP interrupt. Setting the PTP_INT_SEL bit in the MICR will allow PTP interrupts based on the setting

of the mask bit at the MII Interrupt Status Register bit 3 (MISR[3]). The PTP interrupt status will be

available at MISR[11]. Software also must configure which PTP functions may generate interrupts using

the interrupt enables in the PTP Status Register (PTP_STS).

Once enabled, interrupt handling is as follows:

1. Read MISR to determine if PTP interrupt has occurred

2. Read PTP_STS to determine which PTP function has generated an interrupt

3. Process Trigger, Event, or Timestamp as indicated by PTP_STS

4. Repeat steps 2 and 3 until PTP_STS[11:8] = 0

Note that the PTP interrupt will not be rearmed until a read of PTP_STS returns 0 in the upper octet.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

21

3.1.6.2 Interrupts using a GPIO pin

To use a GPIO pin for interrupts, software must program the PTP_INTCTL register with the GPIO pin to

use for interrupts. The interrupt will be an active low signal, implemented as an Open-Drain function (drive

low, pulled high via an external pullup resistor). Software also must configure which PTP functions may

generate interrupts using the interrupt enables in the PTP Status Register (PTP_STS). This mechanism

provides slightly simpler handling of PTP interrupts since there is no need to check the MISR for

interrupts.

Once enabled, interrupt handling is as follows:

1. Read PTP_STS to determine which PTP function has generated an interrupt

2. Process trigger, event, or timestamp as indicated by PTP_STS

3. Repeat steps 1 and 2 until PTP_STS[11:8] = 0

Note that the PTP interrupt will not be cleared until a read of PTP_STS returns 0 in the upper octet.

Software may temporarily disable interrupt signaling by clearing the interrupt enable bits in the PTP_STS

register to 0.

3.1.7 IEEE 1588 Output Clock Signal

The DP83640 generates controls for providing a synchronized clock signal for use by external devices.

The output clock signal can be any frequency which is divisible by N from 250 MHz, where N is in the

range of 2 to 255. This provides nominal frequencies from 125 MHz down to 980.4 kHz. The output clock

signal is frequency accurate to the 1588 clock time of the device. In addition, if clock time adjustments are

made using the Temporary Rate capabilities, then all time adjustments will be tracked by the output clock

signal as well. Note that any step adjustment in the 1588 clock time will not be accurately represented on

the 1588 clock output signal.

The 250 MHz clock source may be selected from either the internal FCO or PGM. The FCO offers

reduced jitter in the output clock, while the PGM offers a wider range of frequency correction in the output

clock.

The output clock cannot be used when the PTP logic is using an external reference clock. Note also that

the sub-nanosecond step size must be adjusted to correspond to the programmed reference clock period

of the PTP logic.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

22

Example Configuration of the Output Clock:

Conditions:

Nominal Output Clock Frequency = 10 MHz (divide-by-25)

250 MHz Clock Source

1. Write 0x8019 to PTP_COC

This enables the clock output using a divide-by-25 (0x19) from the 250 MHz FCO clock.

The maximum sub-nanosecond step size that the output clock can track using the FCO is 0x1555556,

which corresponds to +/- 651 ppm assuming a nominal 125 MHz PTP reference clock. Using the PGM,

the maximum sub-nanosecond step size that the output clock can track is 0x3FFFFFF, which

corresponds to +/- 1953 ppm.

3.1.8 Packet-based Event and Timestamp Delivery

The IEEE 1588 core implements a packet-based status mechanism that allows the PHY to queue up

events and pass them to the microcontroller through the receive data interface. The packet, called a PHY

Status Frame, may be used to provide IEEE 1588 status for transmit packet timestamps, receive packet

timestamps, event timestamps, and trigger conditions. In addition the device can generate status

messages indicating packet buffering errors and to return data read using the PHY Control Frame register

access mechanism.

Each PHY Status Frame may include multiple status messages. The packet will be framed such that it will

look like a form of IEEE 1588 frame to ensure that it will get to the 1588 Software stack. The PHY will

provide buffering of any incoming packet to allow the status packet to be passed to the MAC.

Programmable inter-frame gap and preamble length allow the PHY to recover lost bandwidth in the case

of heavy receive traffic.

In a PHY Status Frame, status messages are not provided in a chronological order. Instead, they are

provided in the following order of priority:

1. PHY Control Frame Read Data

2. Packet Buffer Error

3. Transmit Timestamp

4. Receive Timestamp

5. Trigger Status

6. Event Timestamp

Each of the message types may be individually enabled, allowing options on which functions may be

delivered in a PHY Status Frame.

The packet format may be configured to look like a Layer 2 Ethernet frame or a UDP/IPv4 frame.

3.1.8.1 Layer2 Ethernet Format for PHY Status Frames

The Layer2 Ethernet status frame appears as a standard IEEE 1588 frame encapsulated directly in an

Ethernet frame. The format is as follows:

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

23

Field Length Value Description

MAC Destination

Address

6 octets 0x01 0x1B 0x19

0x00 0x00 0x00

Uses the IEEE 1588 defined destination MAC

address for transport over Ethernet.

MAC Source Address 6 octets 0x08 0x00 0x17

0x0B 0x6B 0x0F

Uses a National Semiconductor assigned MAC

address. Optionally may be configured to other

preset values through the PSF_CFG0 register.

EtherType field 2 octets 0x88 0xF7 EtherType value for IEEE 1588.

Status Frame

Payload

8 - 114

octets

 Status Frame Payload.

Pad 0 - 38

octets

0x00 Pad to minimum Ethernet frame size (if

necessary).

Table 3.1-3 – Layer2 Ethernet Format for PHY Status Frames

3.1.8.2 UDP/IPv4 Ethernet Format for PHY Status Frames

The UDP/IPv4 Ethernet status frame appears as a standard IEEE 1588 frame encapsulated in a

UDP/IPv4 packet. The format is as follows:

Field Length Value Description

MAC Destination

Address

6 octets 0x01 0x00 0x5E

0x00 0x01 0x81

Uses the IEEE 1588 defined destination MAC

address for transport over UDP/IPv4.

MAC Source Address 6 octets 0x08 0x00 0x17

0x0B 0x6B 0x0F

Uses a National Semiconductor assigned MAC

address. Optionally may be configured to other

preset values through the PSF_CFG0 register.

EtherType field 2 octets 0x88 0x00 IPv4 EtherType value.

IPv4 Version/IHL 1 octet 0x45 Version and IHL fields of IP Header. The

Header Length is set to the minimum size of 5.

TOS 1 octet 0x00 Type of Service field of IP Header

Total Length 2 octets 0x2E or 0x3E IP Total Length field. The setting of this field is

dependent on whether an packet is arriving

from the Physical layer. If no packet is arriving,

the longer length will be used. If a packet is

arriving, the shorter length will be used.

Identification 2 octets incrementing Identification field of the IP Header. This field

will increment from 0 starting with the first

status packet sent by the device.

Flags/Fragment

Offset

2 octets 0x00 Flags and Fragment Offset fields of IP Header

Time to Live 1 octet 0x01 Time to Live field of IP Header

Protocol 1 octet 0x11 Protocol field of IP Header. This field will be set

to indicate the IP payload is UDP.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

24

Header Checksum 2 octets IP Header checksum field. To assist in

generating the checksum, software must

program the PSF_CFG4 register with a ones-

complement sum of all fixed fields of the IP

Header. The device will add values for the

Identification and Total Length fields.

Source Address 4 octets programmable Source Address field of IP Header. This may be

programmed through the PSF_CFG2 and

PSF_CFG3 registers.

Destination Address 4 octets 0xE0 0x00 0x01

0x81

 For

224.0.1.129

Destination Address field of IP Header. This

field uses the assigned multicast address for

IEEE 1588 default domain.

UDP Source Port 2 octets 0x01 0x3F UDP Source Port. Assigned to the UDP port

value of 319 for IEEE 1588.

UDP Destination Port 2 octets 0x01 0x3F UDP Destination Port. Assigned to the UDP

port value of 319 for IEEE 1588.

UDP Length 2 octets 0x1A or 0x2A UDP Length field. The setting of this field is

dependent on whether a packet is arriving from

the Physical layer. If no packet is arriving, the

longer length will be used. If a packet is

arriving, the shorter length will be used.

UDP Checksum 2 octets 0x00 UDP checksum field. Set to 0 to indicate no

checksum has been generated.

Status Frame

Payload

8 – 34

octets

 Status Frame Payload.

Pad 0 – 38

octets

0x00 Pad to minimum Ethernet frame size (if

necessary).

Table 3.1-4 – UDP/IPv4 Ethernet Format for PHY Status Frames

3.1.8.3 PHY Status Frame Payload

Independent of the format of the packet used, the basic payload of a PHY Status Frame will be the same.

The first two octets replace the equivalent values in the IEEE 1588 header, and are programmable to

allow easy differentiation from standard 1588 messages. The remaining portion of the payload is

dedicated to status information and has no relation to standard 1588 message format.

Field Length Value Description

transportSpecific

messageType

1 octet Programmable Configurable fields to allow differentiation from

standard IEEE 1588 frames. This field is

programmable through the PSF_CFG1 register.

versionPTP 1 octet Programmable Configurable field to allow differentiation from

standard IEEE 1588 frames. This field is

programmable through the PSF_CFG1 register.

Status Message List 1-7 words

each

 Status message list. Length of each status

message is dependent on the type of status.

Termination Field 4 octets 0x00 The termination field of all 0s indicates the end

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

25

of the list of status messages.

Table 3.1-5 – Status Frame Payload

3.1.8.4 Status Messages

Each status message includes a 16-bit Status Type field followed by up to seven 16-bit data fields. The

length of the message is dependent on the type. The Status Type field has the following bit definitions:

• Status Type [15:11] : Type Value

• Status Type [11:0] : Extended Status

In most cases, the Status Data fields are equivalent to the order in which data will be returned on data

reads. For example, the Transmit Timestamp message will return data in the same order that it would be

read from the PTP_TXTS register.

The following are definitions for the six different status messages.

Field Length Value Description

Status Type 1 word 0x1000 Status Type field. Type Value is 1. Extended

Status is not used.

Timestamp_ns[15:0] 1 word This field contains the least significant 16-bits

of the transmit timestamp nanoseconds field.

Overflow_cnt[1:0],

Timestamp_ns[29:16]

1 word This field contains the most significant 14-bits

of the transmit timestamp nanoseconds field.

The Overflow_cnt value indicates if timestamps

were dropped due to an overflow of the

transmit timestamp queue. The overflow

counter will stick at a value of three if additional

timestamps were missed.

Timestamp_sec[15:0] 1 word This field contains the least significant 16-bits

of the transmit timestamp seconds field.

Timestamp_sec[31:16

]

1 word This field contains the most significant 16-bits

of the transmit timestamp seconds field.

Table 3.1-6 – Transmit Timestamp Status Message (length = 5 16-bit words)

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

26

Field Length Value Description

Status Type 1 word 0x2000 Status Type field. Type Value is 2. Extended

Status is not used.

Timestamp_ns[15:0] 1 word This field contains the least significant 16-bits

of the receive timestamp nanoseconds field.

Overflow_cnt[1:0],

Timestamp_ns[29:16]

1 word This field contains the most significant 14-bits

of the receive timestamp nanoseconds field.

The Overflow_cnt value indicates if timestamps

were dropped due to an overflow of the receive

timestamp queue. The overflow counter will

stick at a value of three if additional

timestamps were missed.

Timestamp_sec[15:0] 1 word This field contains the least significant 16-bits

of the receive timestamp seconds field.

Timestamp_sec[31:16] 1 word This field contains the most significant 16-bits

of the receive timestamp seconds field.

sequenceId[15:0] 1 word This field contains the sequenceId field from

the PTP message.

messageType[3:0],

source_hash[11:0]

1 word This field contains the 4-bit messageType field

from the PTP message. The source_hash

value is 12-bit Source Identification has value

over the sourcePortIdentity fields of the PTP

message.

Table 3.1-7 – Receive Timestamp Status Message (length = 7 16-bit words)

Field Length Value Description

Status Type 1 word 0x3000 Status Type field. Type Value is 3. Extended

Status is not used.

Trigger Status[15:0] 1 word This field contains the trigger status value as

defined in the PTP_TSTS register.

Table 3.1-8 – Trigger Status Message (length = 2 16-bit words)

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

27

Field Length Value Description

Status Type 1 word 0x4xxx Status Type field. Type Value is 4. Extended

Status provides the Event Status as defined in

the PTP_ESTS register bits [11:0].

Extended Event

Status[15:0]

1 word OPTIONAL: This field contains the extended

status as defined in the PTP_EDATA register.

This field is available if the Event Status

indicates detection of multiple events.

Timestamp_ns[15:0] 1 word This field contains the least significant 16-bits

of the event timestamp nanoseconds field.

Timestamp_ns[29:16] 1 word OPTIONAL: This field contains the most

significant 14-bits of the event timestamp

nanoseconds field. The upper two bits will

always be 0. This field is available if the Event

Status indicates an event timestamp length of

2 or more (EVNT_TS_LEN >= 1).

Timestamp_sec[15:0] 1 word OPTIONAL: This field contains the least

significant 16-bits of the event timestamp

seconds field. This field is available if the Event

Status indicates an event timestamp length of

3 or more (EVNT_TS_LEN >= 2).

Timestamp_sec[31:16

]

1 word OPTIONAL: This field contains the most

significant 16-bits of the event timestamp

seconds field. This field is available if the Event

Status indicates an event timestamp length of

4 (EVNT_TS_LEN = 3).

Table 3.1-9 – Event Timestamp Status Message (length = variable)

Field Length Value Description

Status Type 1 word 0x5xxx Status Type field. Type Value is 5. Extended

Status provides an error indication:

[0] Packet Buffer data overflow error

[1] Packet counter overflow.

Table 3.1-10 – Status Frame Error Status Message (length = 1 16-bit word)

Field Length Value Description

Status Type 1 word 0x6000 Status Type field. Type Value is 6. Extended

Status includes the following fields for the PHY

Control Frame register read:

[4:0] Register Address

[7:5] Page Select

Read Data[15:0] 1 word This field contains the 16-bit data value read

from the register by the PHY Control Frame.

Table 3.1-11 – PCF Read Data Status Message (length = 2 16-bit words)

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

28

3.1.8.5 PHY Status Frames, RMII, and half-duplex operation

Because PHY Status Frames generate traffic across the MII/RMII that do not relate to traffic on the wire,

the CRS_DV signaling does not operate as defined in the RMII specification. In full-duplex mode, the PHY

Status Frame function will generate CRS directly from RX_DV. In half-duplex mode, the PHY will pass

CRS directly from the receiver to the internal RMII translation function. Thus CRS_DV may not be

asserted correctly in half-duplex mode.

For MII operation, PHY Status Frames should work with half-duplex mode operation since CRS will be

asserted when the receiver is active, rather than when the Receive MII interface is active.

3.1.9 PTP Reference Clock Modes

The IEEE 1588 PTP logic operates on a nominal 125 MHz reference clock generated by an internal PGM.

However, options are available to use a divided-down version of the PGM clock to reduce power

consumption at the expense of precision, or to use an external reference clock of up to 125 MHz in the

event the 1588 clock is tracked externally.

The PTP_CLKSRC register contains two fields:

• Clock Source (PTP_CLKSRC[15:14]) - selects internal 125 MHz PGM reference (default), divided

down PGM reference clock (divide values are 2-15), or external reference clock.

• Clock Period (PTP_CLKSRC[6:0]) - Configures the period, in nanoseconds, of the PTP reference

clock. This field will not accept values less than 8 ns. If the divided-down PGM reference clock is

used, this field will be interpreted as a multiple of 8, so bits 2:0 will be ignored. If the external

reference clock is used, this field is the integer nanosecond period of the external clock.

Example Using Divided-Down PGM Reference Clock:

Conditions:

Desired Reference Clock Frequency = 25 MHz (divide-by-5)

Reference Clock Source = PGM

1. Write 0x4048 to PTP_CLKSRC

This configures the reference clock with a 40 ns period sourced from the internal PGM.

Example Using External Reference Clock:

Conditions:

Desired Reference Clock Frequency = 10 MHz (10 ns period)

Reference Clock Source = External

1. Write 0x8064 to PTP_CLKSRC

This configures the reference clock with a 100 ns period sourced from external PTP reference clock input.

3.1.10 PTP Reset

The entire PTP function, including the 1588 Clock, associated logic, and PTP register space (with two

exceptions), can be reset via the PTP_CTL:PTP_RESET bit. The PTP_COC and PTP_CLKSRC registers

are not reset in order to preserve the nominal operation of the Clock Output. Note: For revision A1

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

29

engineering samples of the DP83640, only the clock and associated logic are reset. Most of the PTP

register space was not reset.

3.1.11 Synchronous Ethernet Relation to PTP operation

If the device is configured for 100Mb/s Synchronous Ethernet operation, the entire core including the PTP

logic will run synchronous to the recovered 25 MHz Receive Clock (assuming the PGM is the PTP

reference clock source). This mode of operation allows the PTP logic to be frequency locked to its

partner’s transmit clock which significantly reduces clock offset in a slave device.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

30

3.2 1588 Hardware Configuration

There are numerous configuration options related to the 1588 features available with the DP83640. Many

of the defaults are adequate for normal 1588 operation thus simplifying the steps needed by software to

initialize the part. This section shows an example of some minimal steps needed to setup 1588 operation

using the EPL configuration functions.

// Enable 1588 clock, set start time, set rate to 0

PTPEnable(portHandle, FALSE);
PTPClockSetRateAdjustment(portHandle, 0, FALSE, FALSE);
PTPClockSet(portHandle, 1, 0);
PTPSetClockConfig(portHandle, CLKOPT_CLK_OUT_EN, 0x0A, 0x00, 8);
PTPEnable(portHandle, TRUE);

// Configure Trigger 0 for PPS – only perform if using PPS

PTPEnableTriggers(portHandle, FALSE);
PTPSetTriggerConfig(portHandle, 0, TRGOPT_PERIODIC|TRGOPT_NOTIFY_EN, 1);
PTPArmTrigger(portHandle, 0, 2, 0, FALSE, FALSE, 500000000, 0);

// Disable Transmit and Receive Timestamp

PTPSetTransmitConfig(portHandle, 0, 0, 0, 0);
memset(&rxCfgItems, 0, sizeof(RX_CFG_ITEMS));
PTPSetReceiveConfig(portHandle, 0, &rxCfgItems);

// Flush Transmit and Receive Timestamps

while ((events = PTPCheckForEvents(portHandle)))
{
 if (events & PTPEVT_TRANSMIT_TIMESTAMP_BIT)
 PTPGetTransmitTimestamp(portHandle, &numSecs, &numNanoSecs, &overflowCount);
 else if (events & PTPEVT_RECEIVE_TIMESTAMP_BIT)
 PTPGetReceiveTimestamp(portHandle, &numSecs, &numNanoSecs, &overflowCount, &seqId,
&msgType, &hashValue);
}

// Enable Transmit Timestamp operation

PTPSetTransmitConfig(portHandle, TXOPT_IP1588_EN|TXOPT_IPV4_EN|TXOPT_TS_EN,
 1, 0xFF, 0x00);

// Enable Receive Timestamp operation

rxCfgItems.ptpVersion = 0x01;
rxCfgItems.ptpFirstByteMask = 0xFF;
rxCfgItems.ptpFirstByteData = 0x00;
rxCfgItems.ipAddrData = 0;
rxCfgItems.tsMinIFG = 0x0C;
rxCfgItems.srcIdHash = 0;
rxCfgItems.ptpDomain = 0;
rxCfgItems.tsSecLen = 0;
rxCfgItems.rxTsNanoSecOffset = 0;
rxCfgItems.rxTsSecondsOffset = 0;

rxCfgOpts = RXOPT_IP1588_EN0|RXOPT_IP1588_EN1|RXOPT_IP1588_EN2|
 RXOPT_RX_IPV4_EN|RXOPT_RX_TS_EN|RXOPT_ACC_UDP;
if (ptpStackCfg->slaveOnly)
 rxCfgOpts |= RXOPT_RX_SLAVE;

PTPSetReceiveConfig(portHandle, rxCfgOpts, &rxCfgItems);

For additional details of configuration refer to the PTPTestApp in sections 4 and 5 of this document. The

complete initialization sequence can be found in the PTPTestApp.cpp (refer to ConfigurePTP() and

StartPTP() functions) which contains all the setup for calling into the library and in ptpControl.c (see the

PTPInitHardware() function) in the library itself.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

31

3.3 1588 Clock Synchronization Techniques

A primary design challenge in developing a highly accurate 1588 slave clock is in correctly adjusting a

slave’s local clock to closely track a 1588 master’s clock with the desired accuracy. The DP83640 offers a

number of unique and powerful hardware assists that aid in meeting this challenge.

There are numerous clock correction algorithms that can be devised for this purpose. The best approach

is determined by the desired clock accuracy, stability and overall system design characteristics. This

section describes an algorithm developed by National that was used for internal device validation as well

as device demonstration purposes. This can be used as a starting point, if desired, to develop a custom

algorithm that meets the requirements of a customer’s overall 1588 solution.

This algorithm is implemented in the IEEE 1588 open source protocol stack (PTPd) that is provided by

National. This stack has been modified to make use of the DP83640 1588 related features and

implements the algorithm described below.

When a slave first starts and has selected a best master to synchronize with, its local clock is typically very

different then the master’s clock. The first part of the algorithm is to set the local slave clock equal to the

master’s clock value. The master’s clock value is obtained from a received sync or follow up message,

depending on the 1588 configuration. This adjusts the clock to be fairly close to the master’s clock. The

EPL function “PTPClockSet” is used to explicitly set the slave’s local clock value.

The slave clock is subsequently tuned closer to the master’s clock using step adjustments to the local

clock. This usually occurs for the next two or three received sync/follow-up messages and usually gets the

slave clock to within a few microseconds of the master’s clock. The EPL function

“PTPClockStepAdjustment” is used to apply step adjustments to the local slave clock.

After the previous steps, the following algorithm can be used to keep the local slave clock very close to the

master’s clock. Accuracy better then 20ns is possible using these techniques assuming no quickly

changing frequency skew occurs due to the clock itself or environment factors such as quickly changing

clock temperature. Even better accuracy can be achieved by using Synchronous Ethernet mode. In

synchronous mode a slave device uses a clock that is derived from the receive data stream sent by the

master device.

The “Master to Slave Delay”, “Slave to Master Delay”, “One Way Delay” and “Offset from Master” values

are calculated as specified in the IEEE 1588 specification and are not detailed in this document.

As part of the 1588 specification the “One Way Delay” (OWD) value is used to determine the “Offset from

Master” (ERROFF) value. In these algorithms the OWD is calculated each sync/follow-up cycle and a

history of these values is kept of length Nowd.

3.3.1 Step Adjustment with Rate Control

This algorithm uses a step adjustment to the local slave clock every sync cycle. A sync cycle occurs when

a slave receives a sync message from the master (one-step operation) or after receiving a follow-up

message from the master (two-step operation). Although this keeps the clock to within a few

microseconds (us) of the master clock a changing rate adjustment to the local clock is used to fine tune

the clock’s frequency.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

32

The primary disadvantage of this approach is that a step adjustment may be negative, such that the local

slave clock value may step back in time. This approach should NOT be used in applications that may be

sensitive to this.

A rate adjustment, either positive or negative, is applied to the clock every device clock period (8ns). The

appropriate rate adjustment value (RAV) is determined by calculating the difference in actual clock

frequencies between the slave and master clocks.

A rate adjustment value (RAV) is calculated each sync cycle. A history of RAV’s is kept of length Nrav.

Every Nrav sync cycles these values are averaged together to form a single rate adjustment value, known

as an average rate adjustment value (ARAV).

A history of average rate adjustment values (ARAV) is kept of length Narav. Every Nrav sync cycles the

ARAV history values are averaged together to form a single value, known as the average of average rate

adjustment values (AARAV).

The determined AARAV value is then applied to the device’s local clock. This is accomplished using the

EPL “PTPClockSetRateAdjustment” function and is applied as a non-temporary adjustment. The RAV

history is then cleared and the algorithm repeats itself.

If during any sync cycle the “Offset from Master”, or error offset, becomes too large, the entire algorithm is

started over, thus starting where the clock is explicitly set to the master’s clock value. This includes

clearing all RAV and ARAV history values. The algorithm makes use of a sync count variable that counts

the number of sync cycles initiated by the master. If the algorithm is restarted the sync count is set to 0.

For additional details refer to the PTPd source code (servo.c) where additional tuning refinements have

been made. In particular the use of temporary rate adjustments and CLKOUT phase alignment has been

implemented. This section will be updated in the future to document the current algorithms that have been

developed.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

33

4 Ethernet PHYTER “C” Library (EPL)

The Ethernet PHYTER Library (EPL) is a software library provided by National Semiconductor that can

simplify and speed development of support software for National’s line of PHYTER
®
 Ethernet Physical

Layer devices. EPL is easily adapted to various target computing environments and is modular so that

only the functionality that is actually used needs to be included in a final product. It aids in device

identification, configuration, operational control, event handling and diagnostics.

Use of EPL in a target environment is completely optional and may simply be used as a pseudo code

reference when developing custom PHY support software.

4.1 Functional Overview

EPL has been designed to provide the following functionality:

4.1.1 Device Support

The devices lists below are presently supported. The EPL software model will be used to support future

Ethernet PHYTER devices from National.

� DP83848

� DP83849

� DP83640

4.1.2 Initialization / Deinitialization

EPL initialization and deinitialization functions are provided that must be called once by higher level

software upon system initialization and deinitialization, respectively.

4.1.3 Device Setup / Enumeration

A method is provided that allows higher layers to enumerate the devices available on a specified interface

bus.

4.1.4 Device Identification / Capabilities

EPL provides a function that identifies a device as well as providing device capability information. This

information can be used by upper level software to know if particular functionality is available on a device,

in a device independent fashion.

4.1.5 Number of extended register pages

The number of extended register pages defined and available is device specific. A function is provided

that returns the number of extended register pages available on a particular device.

4.1.6 Device Reset

EPL provides a function that soft resets a particular device.

4.1.7 Read / Write Device Registers

EPL provides device port register read and write functions for both MDIO and MII management interfaces.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

34

4.1.8 Set Loopback Mode

EPL provides a function that configures a port’s loopback mode.

4.1.9 Multiple Interface, Device, and Port aware and capable

EPL supports multiple interfaces to communicate with devices. Both MDIO and MII packet based (if

hardware support is available) are supported. It can support multiple devices on each interface. In

addition it supports devices that contain more then one PHY port (e.g. DP83849). A function is provided

that returns the number of ports for a particular device.

4.1.10 Management Interface Error Checking

EPL leverages a error detection feature available with the DP83640 device to validate register read/write

operations through either MDIO or the MII packet based register access mechanisms. This feature is

transparent to higher layer software, except for an OAI function that will be called by EPL to signal that

data corruption has occurred through the management interface. This would normally indicate a serious

system error.

4.1.11 Cable Status

EPL provides an API to obtain the following cable status information. Only a subset of this information is

available on the DP83848.

� Polarity

� Cable Swapped

� Cable Length Estimate

� Frequency Offset

� Jitter (Variance)

� Receiver Signal to Noise Ratio (SNR)

� Set SNR Sample Time

4.1.12 Link Quality

With the DP83640 and DP83849 devices, the following DSP parameters can be queried. Threshold trigger

values can be set as well as the ability to query for a trigger condition.

� DEQ C1

� DAGC

� DBLW

� FREQ

� FC

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

35

4.1.13 Link Status

The following general link status information is available:

� Up or Down

� Speed

� Duplex

� Polarity

� Auto MDIX

� MDI Crossed

� Auto-negotiation Enabled/Disabled

� PoE Device Present

� Idle Errors

� Low Power Mode

� Local / Remote Capabilities (PAUSE, best speed & duplex)

4.1.14 Link Configuration

EPL provides a method to configure a port’s link parameters. The following information can be set:

� Forced or Auto-negotiation

� Duplex

� Speed

� Auto-MDIX

� Energy Detect

4.1.15 TDR Functions

The following TDR functionality are provided when the device is a DP83640 or DP83849.

� Cable Status (terminated, shorted, open, cross shorted, etc.)

� Cable Length for Tx/Rx pairs

� Obtain Oscilloscope trace of TDR pulses

4.1.16 MII Port Configuration

EPL provides functions to get/set the device’s MII configuration. This only applies to the DP83849 dual-

port device. The following configurations are supported:

� Normal (straight through)

� Full Port Swap

� Extender/Media Converter

� Broadcast Tx MII Port A

� Broadcast Tx MII Port B

� Mirror Rx Channel A

� Mirror Rx Channel B

� Disable Port A

� Disable Port B

4.1.17 BIST Tx Start/Stop/Status

EPL provides functions to start and stop BIST testing and also obtain BIST status information.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

36

4.1.18 IEEE 1588

Refer to the previous DP83640 PHYTER High Precision IEEE 1588 Hardware Features section for details

related to the IEEE 1588 capabilities.

4.1.18.1 IEEE 1588 Configuration

The library provides functions that can be called to configure the DP83640 PHTYER device for IEEE1588

operation.

4.1.18.2 IEEE 1588 v1 Protocol

The library contains functions that can be used to implement and control the DP83640 PHTYER device

according to the IEEE 1588 v1 Protocol.

4.1.19 Operating System Abstraction Interface (OAI)

A set of OS primitive functions are defined that provide an abstraction for EPL from the underlying OS and

processor environment. This interface is referred to as the OS Abstraction Interface (OAI). This interface

includes memory management and other OS specific operations. An OS abstraction implementation is

provided for the Windows XP OS platform.

4.1.20 Demonstration and Test Code

A sample Windows console application is provided with the EPL development kit. This not only provides a

test bench for EPL but can aid a developer in understanding how the various EPL functions operate and

how to interpret results, etc.

4.1.21 Python Interface Layer and Example Script

The EPL library contains wrapper code that enables the use of the library from Python. Together with the

provided Python code this provides for quick and easy prototyping of the library functionality.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

37

4.2 EPL Architecture and Design Overview

This section provides an overview of the EPL design and details of its implementation.

4.2.1 High Level Design Goals

The following design goals helped shape the implementation of the library:

4.2.1.1 Modular

The EPL software is structured so that it is straightforward to include only the functional areas that are

actually in use by higher layer software components. Each main functional area is implemented in its own

source file. Cross source file dependencies are minimized.

4.2.1.2 Portability

EPL was designed from the ground up to be as portable as possible. While EPL has only been verified

operational on a Windows based platform, it has been designed to ease the porting effort to other

environments by separating the OS specific functionality into a separate module.

4.2.1.3 Mutual Exclusion

All EPL functions are reentrant and support multi-threaded environments. This assumption relies on the

correct implementation of the OAIBeginMultiCriticalSection and OAIEndMultiCriticalSection OAI functions.

Also, EPL functions, except Initialization, Enumeration and Deinitialization, are reentrant if each distinct

thread is interacting with different devices on different management interfaces.

4.2.1.4 No “C” library dependencies

To maximize portability, EPL does NOT use any external “C” libraries. No floating point arithmetic is used,

thus eliminating dependencies on floating point libraries.

4.2.1.5 Include File Guidelines

A single include file is provided with EPL for use by higher layer software and EPL itself. This file includes

a few other files and together provides all the prototypes, data type definitions and general definitions

necessary for interfacing to the EPL. All client modules of EPL should include epl.h.

#include <epl.h> // Base EPL definitions (required)

The epl.h include file includes a number of other files for each of the various modules. Access to each of

those files from the build environment is necessary to build the library and test application(s). This

represents a compromise between having a huge all-in-one header file and having a modular code base

where items can be added and removed as needed. Since EPL is intended to be modified and

customized for a specific implementation this is an acceptable compromise. If a single include file is

needed for a particular use it can easily be created by combining the necessary individual files into a

custom epl.h for that specific platform.

A platform.h file is provided that defines the platform specific definitions that EPL depends on. This file

may be customized for a target environment, if needed.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

38

4.2.1.6 Well Known Data Types

The following data types are defined and must be customized for each environment, as needed. They are

defined in epl_types.h file and can be modified as needed for a particular environment.

// Note: On platforms where the natural integer size is less then 32-bits

// in size (eg 16-bit platforms), NS_UINT and NS_SINT must be defined as a

// data type no less than 32-bits in size.

typedef void NS_VOID;

typedef unsigned int NS_UINT; // unsigned variable sized

typedef int NS_SINT; // signed variable sized

typedef unsigned char NS_UINT8; // unsigned 8-bit fixed

typedef char NS_SINT8; // signed 8-bit fixed

typedef unsigned short int NS_UINT16; // unsigned 16-bit fixed

typedef short int NS_SINT16; // signed 16-bit fixed

typedef unsigned long int NS_UINT32; // unsigned 32-bit fixed

typedef long int NS_SINT32; // signed 32-bit fixed

typedef unsigned char NS_CHAR;

typedef NS_UINT NS_BOOL; // TRUE or FALSE

4.2.1.7 Standardized Status Return Codes

All EPL functions returning a status back to the caller will be of type NS_STATUS, which is as defined

below. The return codes applicable to a function are noted in the API description man-page.

typedef enum

{

 NS_STATUS_SUCCESS, // The request operation completed successfully

 NS_STATUS_FAILURE, // The operation failed

 NS_STATUS_INVALID_PARM, // An invalid parameter was detected

 NS_STATUS_RESOURCES, // Failed to allocate resources required

 NS_STATUS_NOT_SUPPORTED, // Operation not supported

 NS_STATUS_ABORTED, // Operation was interrupted before completion

 NS_STATUS_HARDWARE_FAILURE // Unexpected hardware error encountered

} NS_STATUS;

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

39

4.2.2 EPL Code Structure

The EPL code is split into the following directory structure:

├───core
├───docs
├───interface
│ ├───ALP_OK
│ ├───CyUSB
│ └───LPT
├───protocol
│ └───PTP
│ └───PTPStack
│ └───dep
├───OS
│ └───Windows
│ ├───EPLTestApp
│ │ ├───Debug
│ │ └───Release
│ ├───PTPTestApp
│ │ ├───Debug
│ │ └───Release
│ └───phyter1588
│ ├───Debug
│ └───Release
└───tools
 ├───python
 │ ├───EPLTest
 │ └───testscripts
 └───swig
 └───Lib
 ├───python
 ├───std
 ├───typemaps
 └───xml

4.2.2.1 core

This directory contains files that implement the core EPL functionality. The majority of the externally

visible functions are implemented in this directory. Specific files include:

• epl.h – The main header file

• epl_regs.h – This defines all of the devices specific registers

• epl_types.h – This defines the standard datatypes that are used throughout the library

• epl_core.c/.h – These files define and implement the core library functions

• epl_link.c/.h – These files define and implement the link related functions

• epl_bist.c/.h – These files define and implement the BIST related functions

• epl_miiconfig.c/.h – These files define and implement the MII configuration related functions

• epl_quality.c/.h – These files define and implement the link quality related functions

• epl_tdr.c/.h – These files define and implement the TDR related functions

• swig_help.h – This file provides some definitions to help in the generation of the Python interface

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

40

4.2.2.2 docs

This directory contains documentation files related to the library.

4.2.2.3 interface

This directory contains code related to the hardware interfaces that are used to communicate with the

device(s). The code in this directory is not normally called from outside the library. Only the core read

and write routines call into the interface layer. This allows the library to be used in a consistent manner

regardless of the underlying hardware. Currently code for the following interfaces is provided:

4.2.2.3.1 ALP_OK

This directory contains the necessary source and binary files to interface with the ALP 100 board using the

Opal Kelly Front Panel interface. The okMAC.c/.h files provide the wrapper for EPL to communicate

through the okFrontPanel.dll interface.

4.2.2.3.2 CyUSB

This directory contains the necessary source and binary files to interface with the ALP Nano board using

the Cypress USB interface. Since the hardware only supports the MDIO interface the only functionality

provided through this interface is what is available using PHY register reads and writes. The

ifCyUSB.cpp/.h files provide the wrapper for EPL to communicate through the CyAPI.lib interface.

4.2.2.3.3 LPT

This directory contains the necessary source for implementing an MDIO bit banging interface on an LPT

port. Depending on the OS environment the use of this code requires additional driver support in order to

be able to access the LPT port directly. The use of this interface is discouraged and provided only as

an example of what could be done if other options are not available.

4.2.2.4 protocol

This directory contains code to support and implement specific protocols from within EPL. Currently only

the IEEE 1588 Precision Time Protocol (PTP) v1 is supported. This directory contains the following

directories:

4.2.2.4.1 PTP

This directory contains all things PTP. At this level only 2 sets of files exist to form the bridge between

EPL and PTP:

• epl_1588.c/.h – These files implement the externally visible 1588 functions provided by the library

• ptpControl.c/.h – These file define and implement the structures and functions necessary to

interface with the PTPStack

• PTPStack – This is a complete PTP v1 stack. See below for additional detail.

4.2.2.4.2 PTPStack (and subdirectories)

This directory contains a full PTP v1 stack. It was derived from an open source project found at:

http://sourceforge.net/projects/ptpd/ The code has been tweaked to operate as part of the EPL binary.

NOTE: The inclusion of this stack is for demonstration and evaluation purposes only. There is no

guarantee that the functionality provided is complete or accurate.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

41

4.2.2.5 OS

This directory contains code to support and implement specific operating systems. Currently the only

supported OS is Windows. This directory contains the following directories:

4.2.2.5.1 Windows

This directory contains the version of the oai.c/.h that implements Windows specific operations that are

necessary for EPL to operate correctly. This is also the directory work the final binaries for a specific

implementation are created. The following directories are found here:

4.2.2.5.1.1 phyter1588

This directory contains the project files necessary to build the library deliverable _epl.dll. For details on

the project build see The EPL Build Environment section below. In addition the build project files there

are some source files that exist at this level:

• nscphyter1588.cpp – This file implements the Windows dll initialization code.

• platform.h – This file defines some platform specific structures and data that are used to shape

the operation of the library

• epl.i/buildpython.cmd – These files are used by SWIG to generate the Python interface for the

library

• epl.py/epl_wrap.c – These files are generated by SWIG and make up the Python interface

• nscphyter1588.sln/.vcproj – These files are the Visual Studio project files used to make the

library

4.2.2.5.1.2 EPLTestApp

This directory contains the source and project files necessary to build a Windows console application that

can be used to exercise and test the library. Refer to section 5 for additional detail about this example.

NOTE: The test is intended to exercise the API only. They do not necessarily indicate

recommended values or sequences that would be used in a production system.

4.2.2.5.1.3 PTPTestApp

This directory contains the source and project files necessary to build a Windows console application that

can be used to exercise and test the PTP operations of the library. Refer to section 5 for additional detail

about this example. NOTE: The test is intended to provide a complete working example of the

setup and operation of the PTP functionality. It does not necessarily indicate recommended

values or sequences that would be used in a production system for optimal performance.

4.2.2.6 tools

This directory contains tools used to create and or test the library:

4.2.2.6.1 python\EPLTest

This directory contains a test script that can be used from Python to exercise/test the library. It roughly

follows the functionality available in the EPLTestApp. NOTE: The test scripts are intended to exercise

the API only. They do not necessarily indicate recommended values or sequences that would be

used in a production system.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

42

4.2.2.6.2 python\testscripts

This directory contains test scripts that can be used from Python to exercise/test the library. NOTE: The

test scripts are intended to exercise the API only. They do not necessarily indicate recommended

values or sequences that would be used in a production system.

4.2.2.6.3 swig

This directory and its subdirectories contain the SWIG tool that is used to generate the Python interface

for the library.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

43

4.2.3 The EPL Build Environment

Currently the library and associated programs are built using the following tools:

4.2.3.1 Windows

The following tools are used to build the Windows based tools:

• Microsoft Visual Studio 2005

Microsoft Visual Studio Microsoft Visual Studio 2005

Version 8.0.50727.42 (RTM.050727-4200)

Microsoft .NET Framework

Version 2.0.50727 SP1

• SWIG (Simple Wrapper Interface Generator)

SWIG Version 1.3.31

Compiled with g++ [i686-pc-mingw32]

Please see http://www.swig.org for reporting bugs and further information

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

44

4.2.4 Customizing and Porting EPL

As noted earlier it is expected that EPL will not be used exactly as is in a real system. The following

provides an overview of how and where most of the modifications may be needed:

4.2.4.1 _epl.dll Build Changes

The most common modification would be to modify the build to add or remove files based on the specific

needs of the platform. For example, most real world systems will probably not include hardware that is

compatible with the ALP 100/Opal Kelly interface so that code could be excluded from the build. See

below for more on creating a new interface module below. You may also want to customize some of the

compiler flags based on your specific needs

4.2.4.2 Platform Specific Changes

One of the most common locations to change is platform.h level. This file is at the project level and

combines information specific to the current implementation. The OAI_DEV_HANDLE_STRUCTURE

contains specific members that may or may not be needed in any particular design. If you are

implementing a new interface or OS you’d want to add supporting data members here.

4.2.4.3 New Interface Support

As noted above it is very likely that you will need to create a new interface module that supports your

specific hardware. To do this you can start by copying one of the existing modules to a new directory and

filling in each of the functions with code that works for your specific hardware.

4.2.4.4 New OS Support

Since the only OS that is currently supported is Windows, it is likely that a new OS implementation will

need to be created. To do this you’d start by copying the Windows directory over to a new directory under

the OS branch. Then each of the files will need to be modified to implement the proper behavior for the

new target OS. This includes the following major components:

• oai.c/.h – Each of the operations needs to be created to work correctly in the new environment

• nscphter1588.cpp – This a Windows DLL specific piece of code so it will need to be replaced

with a new file that matches the target OS.

• build tools – It is likely that the new OS doesn’t support Visual Studio so the build system will

need to be created to compile and build a proper binary for the target OS

• Other – While every attempt has been made to removed OS specific operations/functionality from

the rest of the code it is likely that you will need to make specific tweaks in order to produce

working code.

4.2.4.5 Processor/Target Specific Changes

EPL has been developed and tested primarily on an x86 system. While there is very little code that is x86

specific, there are several areas to watch out for if you attempt to port the code to a different architecture:

• Data type sizes – Need to make sure that the basic data types defined in epl_types.h result in

variables that are big enough to hold the expected data.

• Endianness – x86 is a little endian architecture where the data that is larger than a 8 bits is stored

in memory with the least significant byte first. Other platforms are big endian where the most

significant byte is stored first. Care must be taken if implementing this code on a big endian

platform to ensure that all data is properly handled.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

45

4.3 EPL Core Function Reference

This section provides a reference for the EPL core functionality

4.3.1 General APIs

4.3.1.1 EPLInitialize

Called to initialize the EPL library.

NS_STATUS

 EPLInitialize(

void);

Parameters

None

Return Value

NS_STATUS_SUCCESS

EPL initialization was successful.

NS_STATUS_FAILURE

EPL initialization failed, usually due to a memory allocation failure.

Comments

This function must be called prior to calling any other EPL functions. It initializes EPL’s internal

state. EPLDeinitialize should be called after all interaction with EPL has finished.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

46

4.3.1.2 EPLDeinitialize

Called to de-initialize the EPL library.

void

 EPLDeinitialize(

void);

Parameters

None

Return Value

None

Comments

This function must be called after all interaction with EPL has finished. This function will free any

memory that the library allocated during operation. The application is responsible for calling

OAIFree() to free up any memory that it allocates using the OAIAlloc().

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

47

4.3.1.3 EPLEnumDevice

Enumerate a PHYTER device on the specified MDIO bus and returns a deviceHandle object.

PEPL_DEV_HANDLE

 EPLEnumDevice(

IN OAI_DEV_HANDLE oaiDevHandle,

IN NS_UINT deviceMdioAddress,

IN EPL_ENUM_TYPE enumType);

Parameters

oaiDevHandle

Handle that represents the MDIO bus that the error occurred on. The definition of this is

completely up to higher layer software.

deviceMdioAddress

Specifies the device address on the MDIO bus to try and enumerate. To enumerate all

devices, start by calling this function with an address of 0, and continue to increment the

value up to the maximum MDIO address (typically 31). The increment amount should be the

number of ports the device contains.

enumType

This EPL_ENUM_TYPE (defined in platform.h) indicates the type of access functions will be

used during the enumeration for register accesses. Options are:

• EPL_ENUM_MDIO_BIT_BANG – This will cause the OAIMdioReadBit function will be

used.

• EPL_ENUM_DIRECT – This will cause the OAIDirReadReg function will be used.

• EPL_ENUM_CYUSB_MDIO – This will use the ifCyUSB_ReadMDIO function.

Return Value

Returns NULL if no device was found at the specified MDIO device address, otherwise an opaque

handle is returned representing the device (deviceHandle). This handle can then be used in other

EPL functions to query and interact with the device.

Comments

This function will only match devices that contain National’s OUI value. The device can contain

any device ID. A device can contain one or more ports. To interact with a port you must use the

EPLEnumPort function to obtain the necessary port objects.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

48

4.3.1.4 EPLGetDeviceInfo

Returns descriptive information about the specified device.

PEPL_DEV_INFO

 EPLGetDeviceInfo(

IN PEPL_DEV_HANDLE deviceHandle);

Parameters

deviceHandle

Handle that represents the device. This is obtained using the EPLEnumDevice function.

Return Value

A pointer to a EPL_DEV_INFO structure (see below).

Comments

Field Name Data Type Description

deviceType EPL_DEVICE_TYPE_ENUM Refer to the definition

EPL_DEVICE_TYPE_ENUM for a list of

defined device types.

numOfPorts NS_UINT The number of PHY Ethernet ports on

this device.

deviceModelNum NS_UINT The device’s silicon model number.

deviceRevision NS_UINT The devices’ silicon revision number.

numExtRegisterPages NS_UINT The number of extended register pages

supported by the device.

Table 4.3-1 – EPL_DEV_INFO

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

49

4.3.1.5 EPLIsDeviceCapable

Returns whether or not the specified device implements a particular feature.

NS_BOOL

 EPLIsDeviceCapable(

IN PEPL_DEV_HANDLE deviceHandle,

IN EPL_DEVICE_CAPA_ENUM capability);

Parameters

deviceHandle

Handle that represents the device. This is obtained using the EPLEnumDevice function.

Capability

One of the defined values in EPL_DEVICE_CAPA_ENUM (see below).

Return Value

TRUE if the device supports the specified feature, FALSE otherwise.

Comments

This function provides a method to write run-time selected device specific code.

Table 4.3-2 – EPL_DEVICE_CAPA_ENUM

Capability Description

EPL_CAPA_NONE Device doesn’t support any features.

EPL_CAPA_TDR Device supports TDR features.

EPL_CAPA_LINK_QUALITY Device supports Link Quality features.

EPL_CAPA_MII_PORT_CFG Device supports MII port configuration feature.

EPL_CAPA_MII_REG_ACCESS Device supports PHY Control Frame (PCF) register read/write

feature.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

50

4.3.1.6 EPLResetDevice

Resets the device.

void

 EPLResetDevice(

IN PEPL_DEV_HANDLE deviceHandle);

Parameters

deviceHandle

Handle that represents the device. This is obtained using the EPLEnumDevice function.

Return Value

None

Comments

For multi-port devices this will cause the device as well as all of its ports to be reset. For single

port devices this has the same affect as calling the ResetPort() method. This method does NOT

return until the reset operation has completed (approximately 1.2ms).

NOTE: If the PHY Control and Status Frames are used to access the PHY registers calling

this function will reset the device configuration and destroy the PHY Status Frame

configuration. This will cause PHY register reads to stop working. It is recommended that

if a device reset is needed that the entire library be shutdown by calling EPLDeinitialize()

and restarted by calling EPLInitialize() to ensure that everything is shutdown cleanly and

reconfigured properly.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

51

4.3.1.7 EPLSetMgmtInterfaceConfig

Used to configure EPL to use PHY Control Frames (PCF) or MDIO to read and write PHY registers.

void

 EPLSetMgmtInterfaceConfig (

IN PEPL_PORT_HANDLE portHandle,

IN NS_BOOL usePhyControlFrames);

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

usePhyControlFrames

Set to TRUE to configure EPL to use the PCF mechanism for PHY register reads and writes.

Set to FALSE to use MDIO (default).

Return Value

None

Comments

None

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

52

4.3.1.8 EPLGetMiiConfig

Returns the current MII configuration.

EPL_MIICFG_ENUM

 EPLGetMiiConfig(

IN PEPL_DEV_HANDLE deviceHandle);

Parameters

deviceHandle

Handle that represents the device. This is obtained using the EPLEnumDevice function.

Return Value

A value from EPLMII_CFG_ENUM (see below).

Comments

On devices supporting the EPL_CAPA_MII_PORT_CFG feature this method returns the device's

current MII port mapping configuration. If the device configuration is undefined,

MIIPCFG_UNKNOWN will be returned.

MIIPCFG_UNKNOWN The MII configuration is set to a non-standard mode.

MIIPCFG_NORMAL Normal mode. Port A and B are configured for straight

through operation.

MIIPCFG_PORT_SWAP Ports A and B are swapped.

MIIPCFG_EXT_MEDIA_CONVERTER Repeater mode. Rx from Port A is connected to Port B Tx and

PortB’s Rx is connect to Port A’s Tx.

MIIPCFG_BROADCAST_TX_PORT_A Port A Tx is sent on Port A and Port B Tx channels.

MIIPCFG_BROADCAST_TX_PORT_B Port B Tx is sent on Port A and Port B Tx channels.

MIIPCFG_MIRROR_RX_CHANNEL_A Port A’s Rx channel feeds both Port A and B’s Rx MII.

MIIPCFG_MIRROR_RX_CHANNEL_B Port B’s Rx channel feeds both Port A and B’s Rx MII.

MIIPCFG_DISABLE_PORT_A Port A is disabled.

MIIPCFG_DISABLE_PORT_B Port B is disabled.

Table 4.3-3 – EPL_MIICFG_ENUM

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

53

4.3.1.9 EPLSetMiiConfig

Configures the device’s MII configuration.

void

 EPLSetMiiConfig(

IN PEPL_DEV_HANDLE deviceHandle,

IN EPL_MIICFG_ENUM miiPortConfig);

Parameters

deviceHandle

Handle that represents the device. This is obtained using the EPLEnumDevice function.

miiPortConfig

One of the values defined in EPL_MIICFG_ENUM (see EPLGetMiiPortConfig). This

parameter should NOT be set to MIIPCFG_UNKNOWN.

Return Value

None

Comments

On devices supporting the EPL_CAPA_MII_PORT_CFG feature this method sets the device's MII

port mapping configuration.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

54

4.3.1.10 EPLEnumPort

Enumerate a device’s ports.

PEPL_PORT_HANDLE

 EPLEnumPort(

IN PEPL_DEV_HANDLE deviceHandle,

IN NS_UINT portIndex);

Parameters

deviceHandle

Handle that represents the device. This is obtained using the EPLEnumDevice function.

portIndex

Specifies the enumeration port index. To enumerate all ports on a device, start by calling this

function with an index of 0, and continue to increment the value up to the number of ports the

devices has, minus one. The number of ports can be obtained by calling

EPLGetDeviceInfo().

Return Value

Returns NULL if the specified portIndex is invalid, otherwise an opaque handle is returned

representing the port (portHandle). This handle can then be used in other EPL functions to query

and interact with a particular port on a device.

Comments

None

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

55

4.3.1.11 EPLGetDeviceHandle

Given a port handle, returns the associated (parent) device handle.

PEPL_DEV_HANDLE

 EPLGetDeviceHandle(

IN PEPL_PORT_HANDLE portHandle);

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

Return Value

Returns the device handle that is associated (parent) of the specified port.

Comments

None

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

56

4.3.1.12 EPLReadReg

Reads the contents of the specified port register.

NS_UINT

 EPLReadReg(

IN PEPL_PORT_HANDLE portHandle,

IN NS_UINT registerIndex);

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

registerIndex

Index of the register to read. Bits 7:5 select the register page (000-pg0, 001-pg1, 010-pg3,

011-pg4, etc.).

Return Value

Value read from the register.

Comments

Refer to the datasheet and epl_regs.h file for register definitions.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

57

4.3.1.13 EPLWriteReg

Writes a value to the specified port register.

void

 EPLWriteReg(

IN PEPL_PORT_HANDLE portHandle,

IN NS_UINT registerIndex,

IN NS_UINT value);

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

registerIndex

Index of the register to write. Bits 7:5 select the register page (000-pg0, 001-pg1, 010-pg3,

011-pg4, etc.).

value

The value to write to the register (0x0000 – 0xFFFF).

Return Value

None

Comments

Refer to the datasheet and epl_regs.h file for register definitions.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

58

4.3.1.14 EPLGetPortMdioAddress

Returns a port’s MDIO bus address.

NS_UINT

 EPLGetPortMdioAddress(

IN PEPL_PORT_HANDLE portHandle);

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

Return Value

Returns a port’s MDIO bus address.

Comments

None

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

59

4.3.1.15 EPLSetPortPowerMode

Controls the power to a specified port.

void

 EPLSetPortPowerMode(

IN PEPL_PORT_HANDLE portHandle,

IN NS_BOOL powerOn);

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

powerOn

Set to TRUE to enable power to the port, FALSE to disable power.

Return Value

None

Comments

If the port is powered down, the device is still accessible through the management interface, i.e.

this library (registers).

NOTE: If the PHY Control and Status Frames are used to access the PHY registers calling

this function will power down the device and destroy the PHY Status Frame configuration.

This will cause PHY register reads to stop working. It is not recommended that this

function be used in this case except for the situation where the device is no longer

needed. If the device is needed after it is powered down the entire library should be

shutdown by calling EPLDeinitialize() and restarted by calling EPLInitialize() to ensure that

everything is shutdown cleanly and reconfigured properly.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

60

4.3.2 Link Related APIs

4.3.2.1 EPLIsLinkUp

Returns whether or not a valid link exists on the specified port.

NS_BOOL

 EPLIsLinkUp (

IN PEPL_PORT_HANDLE portHandle);

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

Return Value

TRUE if a valid link exists on the specified port, FALSE otherwise.

Comments

None

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

61

4.3.2.2 EPLGetLinkStatus

Returns detailed information regarding the port’s link status.

void

 EPLGetLinkStatus (

IN PEPL_PORT_HANDLE portHandle,

IN OUT PEPL_LINK_STS linkStatusStruct);

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

linkStatusStruct

Pointer to a caller supplied EPL_LINK_STS (see below) structure that is filled out on return.

Return Value

The fields in the passed in linkStatusStruct will be set accordingly on return.

Comments

Field Name Data Type Description

linkup NS_BOOL Set to TRUE if link is currently established, FALSE otherwise.

autoNegEnabled NS_BOOL Set to TRUE if auto-negotiation is enabled, FALSE otherwise.

autoNegCompleted NS_BOOL Set to TRUE if the auto-negotiation process has completed,

FALSE if auto-negotiation is in progress or NOT enabled.

speed NS_UINT 10 or 100 representing 10 Mbps or 100 Mbps respectively.

duplex NS_BOOL Set to TRUE if link is in full-duplex mode, FALSE if it’s in half-

duplex mode.

mdixStatus NS_BOOL Set to TRUE if pairs are swapped, FALSE otherwise.

autoMdixEnabled NS_BOOL Set to TRUE if the auto-MDIX feature is enabled, FALSE if its

disabled.

polarity NS_BOOL Set to TRUE if an inverted pair polarity was detected, FALSE

otherwise.

energyDetectPower NS_BOOL Set to TRUE if the energy detect indicates a power up state,

FALSE indicates the port is in low-power mode.

Table 4.3-4 – EPL_LINK_STS

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

62

4.3.2.3 EPLSetLinkConfig

Configures the port’s link settings.

void

 EPLSetLinkConfig (

IN PEPL_PORT_HANDLE portHandle,

IN PEPL_LINK_CFG linkConfigStruct);

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

linkConfigStruct

Pointer to a caller supplied EPL_LINK_CFG (see below) structure that specifies link

configuration parameters.

Return Value

None

Comments

This function does NOT wait for link establishment to complete (e.g. auto-negotiation).

Field Name Data Type Description

autoNegEnable NS_BOOL Set to TRUE if auto-negotiation should be

enabled, FALSE otherwise (forced mode).

In forced mode, the link will be set to the

specified speed and duplex configuration. If

auto-negotiation mode is enabled, the speed

and duplex settings define the best /

maximum capabilities of the local PHY.

Speed NS_UINT 10 or 100 representing 10 Mbps or 100

Mbps respectively.

Duplex NS_BOOL Set to TRUE for full-duplex mode, FALSE

for half-duplex mode.

pause NS_BOOL Set to TRUE to advertise to the link partner

that this port supports PAUSE, FALSE

otherwise.

autoMdix EPL_MDIX_ENUM Set to one of the values defined in

EPL_MDIX_ENUM.

energyDetect NS_BOOL Set to TRUE to enable the port’s energy

detect feature, FALSE to disable it.

energyDetectErrCountThresh NS_UINT Threshold to determine the number of

energy detect error events that will cause the

device to take action. Default is 1. Range is

1 – 15.

energyDetectDataCountThresh NS_UINT Threshold to determine the number of

energy detect data events that will cause the

device to take action. Default is 1. Range is

1 – 15.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

63

Table 4.3-5 – EPL_LINK_CFG

MDIX_AUTO Automatic MDIX mode.

MDIX_FORCE_NORMAL Forces MDIX pairs normal (no swap).

MDIX_FORCE_SWAP Forces MDIX pairs swapped.

Table 4.3-6 – EPL_MDIX_ENUM

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

64

4.3.2.4 EPLRestartAutoNeg

Restarts auto-negotiation.

void

 EPLRestartAutoNeg (

IN PEPL_PORT_HANDLE portHandle);

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

Return Value

None

Comments

This function does NOT wait for auto-negotiation to finish.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

65

4.3.3 BIST Related APIs

4.3.3.1 EPLSetLoopbackMode

Enables or disables port loopback mode.

void

 EPLSetLoopbackMode (

IN PEPL_PORT_HANDLE portHandle,

IN NS_BOOL enableLoopback);

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

enableLoopback

Set to TRUE to enable port loopback, FALSE otherwise.

Return Value

None

Comments

None

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

66

4.3.3.2 EPLBistStartTxTest

Starts Transmit Built-in Self Test (BIST).

void

 EPLBistStartTxTest (

IN PEPL_PORT_HANDLE portHandle,

IN NS_BOOL psr15Flag);

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

psr15Flag

Set to TRUE to use 15-bit pseudo random data, FALSE to use 9-bit pseudo random data.

Return Value

None

Comments

NOTE: If the PHY Control and Status Frames are used to access the PHY registers calling

this function will prevent access to the registers. It is not recommended that this function

be used in this case as there is no way to read the status after it has been started.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

67

4.3.3.3 EPLBistStopTxTest

Halts a previously started BIST test.

void

 EPLBistStopTxTest (

IN PEPL_PORT_HANDLE portHandle);

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

Return Value

None

Comments

None

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

68

4.3.3.4 EPLBistGetStatus

Returns BIST status information.

void

 EPLBistGetStatus (

IN PEPL_PORT_HANDLE portHandle,

IN OUT NS_BOOL *bistActiveFlag,

IN OUT NS_UINT *errDataNibbleCount,

IN OUT NS_BOOL *receiveDataDetectedFlag);

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

bistActiveFlag

Pointer to a Boolean variable that will be set on return to TRUE if transmit BIST is currently

enabled, FALSE otherwise.

errDataNibbleCount

Pointer to a NS_UINT variable that will be set on return to the number of errored data nibbles

dectected so far.

receiveDataDetectedFlag

Set to TRUE on return if receive BIST traffic has been detected, FALSE otherwise. Only

available on the DP83640 device.

Return Value

bistActiveFlag and errDataNibbleCount are set on return.

Comments

None

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

69

4.3.4 Cable & Link Quality Related APIs

4.3.4.1 EPLGetCableStatus

Returns various cable status values.

NS_STATUS

 EPLGetCableStatus (

IN PEPL_PORT_HANDLE portHandle,

IN NS_UINT sampleTime,

IN OUT NS_UINT *cableLength,

IN OUT NS_SINT *freqOffsetValue,

IN OUT NS_SINT *freqControlValue,

IN OUT NS_UINT *varianceValue);

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

sampleTime

Defines the length of time in milliseconds that the hardware will sample SNR / variance data.

Valid values are: 2, 4, 6 or 8.

cableLength

Pointer to a NS_UINT variable that will be set on return to the estimated length of the cable in

meters.

freqOffsetValue

Frequency offset value (see data sheet for details). To obtain frequency offset in ppm you

must multiply this value by 5.1562. (Signed value).

freqControlValue

Frequency control value (see data sheet for details). To obtain frequency control in ppm you

must multiply this value by 5.1562. (Signed value).

varianceValue

This is the raw variance value obtained from the hardware after sampling for the indicated

length of time (sampleTime). It can be used to calculate an SNR value that indicates the

quality of the link.

Return Value

NS_STATUS_SUCCESS

Function was successfully executed.

NS_STATUS_FAILURE

Link NOT established or link is NOT at 100 Mbps.

Comments

The device must have the EPL_CAPA_TDR capability to use this function. A call to

EPLIsDeviceCapable() can be used to determine if this operation is supported.

EPLInitTDR() and EPLDeinitTDR() should NOT be called when using this function.

A valid 100 Mbps link must be established before calling this function.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

70

The freqOffsetValue and freqControlValue values can be used to calculate jitter in ppm. To do this

you must first multiply the returned frequency offset and control values by 5.1562, then take the

abs function of the difference between frequency control and frequency offset (e.g. abs(

freqControl – freqOffset)).

The SNR can be calculated from the returned varianceValue using the following formula:

varData = (288.0 * ((1024 * 1024 * sampleTime) / 8.0)) / float(varianceValue)

rxSNR = 10.0 * math.log10(varData)

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

71

4.3.4.2 EPLGetTDRPulseShape

This procedure uses the TDR feature to obtain an oscilloscope trace of the TDR pulse on the wire.

NS_STATUS

 EPLGetTDRPulseShape (

IN PEPL_PORT_HANDLE portHandle,

IN NS_BOOL useTxChannel,

IN NS_BOOL use50nsPulse,

IN OUT NS_SINT8 *positivePulseResults,

IN OUT NS_SINT8 *negativePulseResults);

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

useTxChannel

If TRUE a trace will be obtained for the Tx cable pair, if FALSE the trace will be for the Rx

cable pair.

use50nsPulse

If TRUE a 50ns electrical pulse will be used to obtain the trace. If FALSE an 8ns pulse will be

used. The negativePulseResults buffer can be NULL when using the 50ns option because

the device does NOT support sending a negative 50ns pulse.

positivePulseResults

This must be at least a 256 byte array that will have its contents set with the sample data that

describes the TDR pulse trace that was obtained by sending positive TDR pulses. The

values can range from -32 to +32 and represent the relative power level measured at each

sampling point. The value at index 0 in the array represents time 0, index 1 at time 8ns, up to

index 255 that represents 2.040us.

negativePulseResults

This must be at least a 256 byte array that will have its contents set with the sample data that

describes the TDR pulse trace that was obtained by sending negative TDR pulses. The

values can range from -32 to +32 and represent the relative power level measured at each

sampling point. The value at index 0 in the array represents time 0, index 1 at time 8ns, up to

index 255 that represents 2.040us. This array will NOT be set if use50nsPulse is TRUE.

Return Value

NS_STATUS_SUCCESS

Function was successfully executed.

Comments

The device must have the EPL_CAPA_TDR capability to use this function. A call to

EPLIsDeviceCapable() can be used to determine if this operation is supported.

EPLInitTDR() and EPLDeinitTDR() should NOT be called when using this function.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

72

An example of how the data can be used to graph the pulse is shown below:

NOTE: Since the data is only sampled every 8ns, the shape of the curve is only an approximation of the

actual signal. That is, some data may not be captured.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

73

4.3.4.3 EPLGetTDRCableInfo

Attempts to determine the length and status of the specified channel on this port.

NS_STATUS

 EPLGetTDRCableInfo(

IN PEPL_PORT_HANDLE portHandle,

IN NS_BOOL useTxChannel,

IN OUT EPL_CABLE_STS_ENUM *cableStatus,

IN OUT NS_UINT *rawCableLength);

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

useTxChannel

If TRUE information will be obtained for the Tx cable pair, if FALSE the information will be for

the Rx cable pair.

cableStatus

Set on return to a value that indicates the status of the selected wire pair (see enum

definitions below).

rawCableLength

Set on return to a raw value indicating the approximate length of the cable or distance to

fault. If the cableStatus indicates that the cable is properly terminated then this value is NOT

valid. This value must be post processed to obtain the length in meters (see Comments

below for formula).

Return Value

NS_STATUS_SUCCESS – If determination was successful.

NS_STATUS_RESOURCES – If memory allocation failure or if call to EPLGatherTDRInfo() fails.

Comments

The device must have the EPL_CAPA_TDR capability to use this function. A call to

EPLIsDeviceCapable() can be used to determine if this operation is supported.

EPLInitTDR() and EPLDeinitTDR() should NOT be called when using this function.

To calculate the length of the cable or distance to a fault you can use the following formula:

 length = rawCableLength / TDR_CABLE_VELOCITY / 2

where TDR_CABLE_VELOCITY is defined as 4.64. The length value will be in meters.

CABLE_STS_TERMINATED Indicates that the wire pair is properly terminated with a link

partner. rawCableLength is NOT valid in this case.

CABLE_STS_OPEN The cable pair is open, not connected or shorted.

CABLE_STS_SHORT The cable pair is shorted together.

CABLE_STS_CROSS_SHORTED The cable pair is shorted with the other cable pair.

CABLE_STS_UNKNOWN The function was unable to determine the cable status.

Table 4.3-7 – EPL_CABLE_STS_ENUM

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

74

4.3.4.4 EPLGatherTDRInfo

General purpose routine that runs all useful TDR test configurations and returns the results.

NS_BOOL

 EPLGatherTDRInfo(

IN PEPL_PORT_HANDLE portHandle,

IN NS_BOOL useTxChannel,

IN NS_BOOL useTxReflectChannel,

IN NS_UINT thresholdAdjustConstant,

IN NS_BOOL stopAfterSuccess,

IN OUT NS_UINT *baseline,

IN OUT PTDR_RUN_RESULTS posResultsArrayNoInvert,

IN OUT PTDR_RUN_RESULTS negResultsArrayNoInvert,

IN OUT PTDR_RUN_RESULTS posResultsArrayInvert,

IN OUT PTDR_RUN_RESULTS negResultsArrayInvert);

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

useTxChannel

Specifies the send channel. Set to TRUE to use Tx channel, FALSE for the Rx channel.

useTxReflectChannel

Specifies the reflect channel. Set to TRUE to use Tx channel, FALSE for the Rx channel.

thresholdAdjustConstant

Defines the integer value that will be added to and substracted from the baseline line levels

to determine appropriate transmit and receive thresholds.

stopAfterSuccess

If set to TRUE all configurations are run until a successful reflection (both pos and neg) is

obtained, or a pos reflection is obtained using the 10Mbps block. Timings are increased from

lowest to highest. If set to FALSE all possible configurations are run with all possible timings.

baseline

Set on return to the quiescent baseline measurement of the wire pair. If NULL this

parameter will be ignored.

posResultsArrayNoInvert[10]

negResultsArrayNoInvert[8]

posResultsArrayInvert[8]

negResultsArrayInvert[8]

These are arrays of TDR_RUN_RESULTS structures. These will be set on return with the

results of running 8 TDR pulses from 8ns to 64ns (8ns step), followed by one 50ns and one

100ns pulse result (posResults only). If both pos and neg thresholds are met or the 50ns or

100ns threshold is reached and stopAfterSuccess is set to TRUE, any entries that were not

run will be set 0. Invert means that a inverse polarity reflection will be tested for. The 50ns

and 100ns positive only pulse results are not present in the negative polarity and inverted test

results. Entries that were not run will be NULL'ed out.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

75

Return Value

TRUE if both a positive and negative pulse of the same length met their thresholds. TRUE is also

returned if a positive 50ns or 100ns pulse reaches its threshold. FALSE is returned if thresholds

were not met.

Comments

General purpose routine that runs all useful TDR test configurations and returns the results. This

can also used to obtain a complete characteristic dump of all TDR tests determine and

troubleshoot TDR behavior.

The device must have the EPL_CAPA_TDR capability to use this function. A call to

EPLIsDeviceCapable() can be used to determine if this operation is supported.

EPLInitTDR() and EPLDeinitTDR() should NOT be called when using this function.

Field Name Data Type Description

thresholdMet NS_BOOL Specifies whether or not the TDR threshold valuewas met

during the sample window.

thresholdTime NS_UINT Specifies the time for the first signal that met the TDR

threshold. This value is only valid if TDRThresholdMet is set

to True. The value is in ns units. If the threshold was NOT

met, this value will be 0.

peakValue NS_UINT The peak value measured during the TDR sample window.

0x31 – 0x3F are positive threshold values. 0x00 – 0x30 are

negative threshold values with 0x30 indicating -1 and so on.

peakTime NS_UINT Specifies the time when the first occurrence of the peak value

was detected in ns units.

peakLengthRaw NS_UINT A raw calculated cable length based on the TDR peak time.

adjustedPeakLengthRaw NS_UINT A calculated cable length based on the TDR peak time. This

value has the length of the pulse subtracted off the value and

gives a more accurate length value when using the peak

value for the length.

Table 4.3-8 – TDR_RUN_RESULTS

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

76

4.3.4.5 EPLInitTDR

This procedure must be called prior to using most lower-level measurement TDR functions.

NS_UINT

 EPLInitTDR(

IN PEPL_PORT_HANDLE portHandle);

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

Return Value

Saved link status (must be passed to EPLDeinitTDR()).

Comments

This must be called prior to using most lower-level measurement TDR functions. This method

initializes the TDR engine for subsequent calls to the EPLRunTDR(), EPLShortTDRPulseRun(),

EPLLongTDRPulseRun() or EPLMeasureTDRBaseline() methods. EPLDeinitTDR() must be

called after all calls have been made to the TDR measurement methods.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

77

4.3.4.6 EPLDeinitTDR

This procedure must be called after all desired calls have been made to most low-level TDR

measurement functions.

void

 EPLDeinitTDR(

IN PEPL_PORT_HANDLE portHandle,

IN NS_UINT savedLinkStatus)

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

savedLinkStatus

Value that was returned by EPLInitTDR() function.

Return Value

Nothing

Comments

This must be called after all desired calls have been made to most low-level TDR measurement

functions. This method restores the PHY to the previous link settings.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

78

4.3.4.7 EPLMeasureTDRBaseline

This measures the baseline signal level for the specified channel.

NS_UINT

 EPLMeasureTDRBaseline(

IN PEPL_PORT_HANDLE portHandle,

NS_BOOL useTxChannel);

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

useTxChannel

Set to TRUE to measure the baseline for the Tx channel, set to FALSE to measure the Rx

channel.

Return Value

Baseline level

Comments

This measures the baseline signal level for the specified channel. This can be used to determine

appropriate threshold values by using the baseline values as a mid point.

The device must have the EPL_CAPA_TDR capability to use this function. A call to

EPLIsDeviceCapable() can be used to determine if this operation is supported.

EPLInitTDR() and EPLDeinitTDR() must be called when using this function.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

79

4.3.4.8 EPLShortTDRPulseRun

This runs through all useful combinations of TDR operations on the specified channel using the chip's

100Mb 8ns pulse generator.

NS_BOOL

 EPLShortTDRPulseRun(

IN PEPL_PORT_HANDLE portHandle,

IN NS_BOOL useTxChannel,

IN NS_BOOL useTxReflectChannel,

IN NS_UINT posThreshold,

IN NS_UINT negThreshold,

IN NS_BOOL noninvertedThreshold,

IN NS_BOOL stopAfterSuccess,

IN OUT PTDR_RUN_RESULTS posResultsArray,

IN OUT PTDR_RUN_RESULTS negResultsArray)

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

useTxChannel

Specifies the send channel. Set to TRUE to use Tx channel, FALSE for the Rx channel.

useTxReflectChannel

Specifies the reflect channel. Set to TRUE to use Tx channel, FALSE for the Rx channel.

posThreshold : Integer (0x21 - 0x3F)

Specifies the positive threshold value used when listening for a return TDR pulse.

negThreshold : Integer (0x00 - 0x20)

Specifies the negative threshold value used when listening for a return TDR pulse.

noninvertedThreshold

Specifies whether or not an non-inverted polarity threshold and peak detection should be

used. For example if set to FALSE, after sending a positive(+) TDR pulse, the chip would be

set to detect a negative(-) return pulse. Set to FALSE to detect a channel that is electrically

shorted.

stopAfterSuccess

Specifies whether measurements should stop after a successful threshold condition occurs.

If FALSE, all possible timing configurations are run.

posResultsArray

Array of 8 TDR_RUN_RESULTS structures. These will be set on return with the results of

running 8 TDR pulses from time 1 to time 8. These represent the results of positive polarity

pulses. If both pos and neg thresholds are met and stopAfterSuccess is set to TRUE, any

entries that were not run will be set 0.

negResultsArray

Array of 8 TDR_RUN_RESULTS structures. These will be set on return with the results of

running 8 TDR pulses from time 1 to time 8. These represent the results of negative polarity

pulses.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

80

Return Value

TRUE if both positive and negative thresholds were met using the same length of TDR pulse,

FALSE otherwise. The positiveResultArray and negativeResultsArray array structures will

hold the TDR pulse results.

Comments

This runs through all useful combinations of TDR operations on the specified channel using the

chip's 100Mb 8ns pulse generator. The positive and negative threshold values can be specified.

The device must have the EPL_CAPA_TDR capability to use this function. A call to

EPLIsDeviceCapable() can be used to determine if this operation is supported.

EPLInitTDR() and EPLDeinitTDR() must be called when using this function.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

81

4.3.4.9 EPLLongTDRPulseRun

This runs through all useful combinations of TDR operations on the specified channel using the chip's

10Mb 50ns pulse generator.

NS_BOOL

 EPLLongTDRPulseRun(

IN PEPL_PORT_HANDLE portHandle,

IN NS_BOOL useTxChannel,

IN NS_BOOL useTxReflectChannel,

IN NS_UINT threshold,

IN NS_BOOL stopAfterSuccess,

IN OUT PTDR_RUN_RESULTS resultsArray)

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

useTxChannel

Specifies the send channel. Set to TRUE to use Tx channel, FALSE for the Rx channel.

useTxReflectChannel

Specifies the reflect channel. Set to TRUE to use Tx channel, FALSE for the Rx channel.

threshold : Integer (0x21 - 0x3F)

Specifies the positive threshold value used when listening for a return TDR pulse.

stopAfterSuccess

Specifies whether measurements should stop after a successful threshold condition occurs.

If FALSE, all possible timing configurations are run.

resultsArray

Array of 2 TDR_RUN_RESULTS structures. These will be set on return with the results of

running 2 TDR pulses, 50ns and 100ns.

Return Value

TRUE if the specified threshold was met.The resultsArray structure will hold the TDR pulse

results, the first structure will have the results for the 50ns pulse, the second structure will have

the results for the 100ns pulse.

Comments

This runs through all useful combinations of TDR operations on the specified channel using the

chip's 10Mb 50ns pulse generator. The positive threshold value can be specified.

The device must have the EPL_CAPA_TDR capability to use this function. A call to

EPLIsDeviceCapable() can be used to determine if this operation is supported.

EPLInitTDR() and EPLDeinitTDR() must be called when using this function.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

82

4.3.4.10 EPLRunTDR

This low-level function initiates a TDR operation and gathers the results of the operation.

NS_STATUS

 EPLRunTDR(

IN PEPL_PORT_HANDLE portHandle,

IN PTDR_RUN_REQUEST tdrParms,

IN OUT PTDR_RUN_RESULTS tdrResults)

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

tdrParms

Pointer to a TDR_RUN_REQUEST structure that defines the parameters that will be used for

the TDR operation.

tdrResults

Pointer to a TDR_RUN_RESULTS structure that will be set on return with the results of the

TDR operation.

Return Value

NS_STATUS_SUCCESS

Function was successfully executed.

Comments

This low-level function initiates a TDR operation and gathers the results of the operation. The

request structure defines the parameters of the operation.

The device must have the EPL_CAPA_TDR capability to use this function. A call to

EPLIsDeviceCapable() can be used to determine if this operation is supported.

EPLInitTDR() and EPLDeinitTDR() must be called when using this function.

Field Name Data Type Description

sendPairTx NS_BOOL Defines which pair of wires the TDR pulse should be sent on.

Send TDR pulse on Tx pair if TRUE, send on Rx pair if

FALSE.

reflectPairTx NS_BOOL Defines which pair of wires to use to listen for a reflection.

Listen for reflection on Tx pair if TRUE, listen on Rx pair if

FALSE.

Use100MbTx NS_BOOL Specifies which Tx engine to use. If set to True the 100 MB

transmit engine will be used. If False, the 10 MB engine will be

used to send the TDR pulse.

txPulseTime NS_UINT

(0x00 - 0x07)

Specifies the TDR pulse length. If txUse100Mb is set to True

this value is in 8ns units. If txUse100Mb is False this specifies

the length in 50ns units, with a max of 2 (100ns).

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

83

detectPosThreshold NS_BOOL Specifies the polarity of the TDR pulse to detect. If set to

TRUE the receive circuitry will detect a positive polarity

reflection. If set to FALSE a negative polarity pulse will be

detected. This parameter should always be set to TRUE when

txUse100Mb is set to FALSE.

rxDiscrimStartTime NS_UINT

(0x00 - 0xFF)

Specifies the amount of time in 8ns units to wait prior to

attempting detection of a reflection.

rxDiscrimStopTime NS_UINT

(0x00 - 0xFF)

Specifies the amount of time in 8ns units to wait before closing

the window of reflection detection. This value must be greater

then or equal to rxDiscrimStartTime.

rxThreshold NS_UINT

(0x00 - 0x3F)

Specifies the relative threshold that has to be met prior to a

reflection being detected.

If txUse100Mb is set TRUE then this value specifies either a

positive or negative threshold with 0x20 being the midpoint.

0x00 - 0x1F are negative thresholds. 0x20 - 0x3F are positive

thresholds.

Only a positive value should be used when the txUse100Mb is

set to FALSE. The threshold should be set according to the

expected reflection pulse polarity as specified in the

pulsePolarityPos parameter

Table 4.3-9 – TDR_RUN_REQUEST

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

84

4.3.4.11 EPLDspGetLinkQualityInfo

This returns the current status of the device's DSP link quality parameters and settings.

void

 EPLDspGetLinkQualityInfo(

IN PEPL_PORT_HANDLE portHandle,

IN OUT PDSP_LINK_QUALITY_GET linkQualityStruct);

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

linkQualityStruct

Pointer to a link quality get structure that will be filled out on return.

Return Value

None

Comments

The device must have the EPL_CAPA_LINK_QUALITY capability to use this function. A call to

EPLIsDeviceCapable() can be used to determine if this is supported.

Field Name Data Type Description

linkQualityEnabled NS_BOOL Set to TRUE if the DSP Link Quality feature is enabled, FALSE

otherwise.

freqCtrlHighWarn NS_BOOL Indicates if the frequency control high threshold was reached.

freqCtrlLowWarn NS_BOOL Indicates if the frequency control low threshold was reached.

freqOffHighWarn NS_BOOL Indicates if the frequency offset high threshold was reached.

freqOffLowWarn NS_BOOL Indicates if the frequency offset low threshold was reached.

dblwHighWarn NS_BOOL Indicates if the DBLW high threshold was reached.

dblwLowWarn NS_BOOL Indicates if the DBLW low zthreshold was reached.

dagcHighWarn NS_BOOL Indicates if the DAGC high threshold was reached.

dagcLowWarn NS_BOOL Indicates if the DAGC low threshold was reached.

c1HighWarn NS_BOOL Indicates if the C1 high threshold was reached.

c1LowWarn NS_BOOL Indicates if the C1 low threshold was reached.

freqCtrlLowThresh NS_SINT Currently configured frequency control low threshold.

freqCtrlHighThresh NS_SINT Currently configured frequency control high threshold.

freqOffLowThresh NS_SINT Currently configured frequency offset low threshold.

freqOffHighThresh NS_SINT Currently configured frequency offset high threshold.

dblwLowThresh NS_SINT Currently configured DBLW low threshold.

dblwHighThresh NS_SINT Currently configured DBLW high threshold.

dagcLowThresh NS_UINT Currently configured DAGC low threshold.

dagcHighThresh NS_UINT Currently configured DAGC high threshold.

c1LowThresh NS_SINT Currently configured C1 low threshold.

c1HighThresh NS_SINT Currently configured C1 high threshold.

freqCtrlSample NS_SINT Sampled frequency control parameter value.

freqOffSample NS_SINT Sampled frequency offset parameter value.

dblwCtrlSample NS_SINT Sampled DBLW parameter value.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

85

dagcCtrlSample NS_UINT Sampled DAGC parameter value.

c1CtrlSample NS_SINT Sampled C1 parameter value.

restartOnC1 NS_BOOL Allow auto restart on C1 threshold violation.

restartOnDAGC NS_BOOL Allow auto restart on DAGC threshold violation.

restartOnDBLW NS_BOOL Allow auto restart on DBLW threshold violation.

restartOnFreq NS_BOOL Allow auto restart on Freq threshold violation.

restartOnFC NS_BOOL Allow auto restart on FC threshold violation.

restartOnVar NS_BOOL Allow auto restart on Variance threshold violation.

dropLinkStatus NS_BOOL Set bit 8 in PCSR to allow PHY to indicate a dropped link if a

threshold violation occurs.

varianceEnable NS_BOOL Set to TRUE to enable variance data capture

varianceSampleTime NS_UINT8 Duration of variance sampling. 2, 4, 6, or 8ns

varianceWarn NS_BOOL Indicates if the SNR Variance threshold was reached. DP83640

device only.

varianceHighThresh NS_UINT SNR Variance high threshold. Valid values are from 0 – 2304.

DP83640 device only.

varianceSample NS_UINT Sampled variance value. DP83640 device only.

Table 4.3-10 – DSP_LINK_QUALITY_GET

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

86

4.3.4.12 EPLDspSetLinkQualityConfig

This returns the current status of the device's DSP link quality parameters and settings.

void

 EPLDspSetLinkQualityConfig(

IN PEPL_PORT_HANDLE portHandle,

IN PDSP_LINK_QUALITY_SET linkQualityStruct);

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

linkQualityStruct

Pointer to a link quality set structure holding the desired link quality settings.

Return Value

None

Comments

The device must have the EPL_CAPA_LINK_QUALITY capability to use this function. A call to

EPLIsDeviceCapable() can be used to determine if this is supported.

Field Name Data Type Description

linkQualityEnabled NS_BOOL Set to TRUE if the DSP Link Quality feature should be enabled,

FALSE otherwise.

freqCtrlLowThresh NS_SINT Frequency control low threshold (min=-128, max=+127).

freqCtrlHighThresh NS_SINT Frequency control high threshold (min=-128, max=+127).

freqOffLowThresh NS_SINT Frequency offset low threshold (min=-128, max=+127).

freqOffHighThresh NS_SINT Frequency offset high threshold (min=-128, max=+127).

dblwLowThresh NS_SINT DBLW low threshold (min=-128, max=+127).

dblwHighThresh NS_SINT DBLW high threshold (min=-128, max=+127).

dagcLowThresh NS_UINT DAGC low threshold (min=0, max=+255).

dagcHighThresh NS_UINT DAGC high threshold (min=0, max=+255).

c1LowThresh NS_SINT C1 low threshold (min=-128, max=+127).

c1HighThresh NS_SINT C1 high threshold (min=-128, max=+127).

restartOnC1 NS_BOOL Allow auto restart on C1 threshold violation.

restartOnDAGC NS_BOOL Allow auto restart on DAGC threshold violation.

restartOnDBLW NS_BOOL Allow auto restart on DBLW threshold violation.

restartOnFreq NS_BOOL Allow auto restart on Freq threshold violation.

restartOnFC NS_BOOL Allow auto restart on FC threshold violation.

restartOnVar NS_BOOL Allow auto restart on Variance threshold violation.

dropLinkStatus NS_BOOL Set bit 8 in PCSR to allow PHY to indicate a dropped link if a

threshold violation occurs.

varianceEnable NS_BOOL Set to TRUE to enable variance data capture

varianceSampleTime NS_UINT8 Duration of variance sampling. 2, 4, 6, or 8ns

varianceHighThresh NS_UINT SNR Variance high threshold. Valid values are from 0 – 2304.

DP83640 device only.

Table 4.3-11 – DSP_LINK_QUALITY_SET

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

87

4.4 IEEE 1588 Function Reference

4.4.1 IEEE 1588 Configuration APIs

This section describes the configuration and setup API functions related to the IEEE 1588 features in the

DP83640 device. These are used during initialization to setup the device for the desired operational

behavior.

Most of the calls defined here are not normally called directly by an application. Most are used internally

by the library to get everything configured based on the input parameters defined in RunTimeOpts (see

details below in section 5) and in the operation of a PTP stack. The can be very helpful and necessary if

you are writing or modifying a PTP stack.

4.4.1.1 PTPEnable

Enables or disables the PHY’s PTP 1588 clock.

void

 PTPEnable (

IN PEPL_PORT_HANDLE portHandle,

IN NS_BOOL enableFlag);

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

enableFlag

Set to TRUE to enable the PHY’s PTP 1588 clock. Set to FALSE to disable it.

Return Value

None

Comments

This must be called during initialization to enable the 1588 hardware features.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

88

4.4.1.2 PTPThreadC

Starts the initialization process and runs the PTP protocol.

void

 PTPThreadC (

IN PEPL_PORT_HANDLE portHandle,

IN void *guiObj,

IN void *stdioCallback,

IN void *statusUpdateCallback,

IN RunTimeOpts *ptpStackCfg);

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

guiObj

This is a generic pointer to that can be used to communicate between the application and the

library. Currently this is not used by the C interface.

stdioCallback

This is a pointer to a function that performs output for the library. The library will call this

function to display various operational and debug messages. This has no impact on the

operation of the stack it is provided as a means to pass status information to the application

layer if desired. This can be disabled by passing in a NULL value.

statusUpdateCallback

This is a pointer to a function that performs status update for the library. The library will call

this function to provide operational information to the application. This has no impact on the

operation of the stack it is provided as a means to pass status information to the application

layer if desired. This can be disabled by passing in a NULL value.

ptpStackCfg

This is a pointer to a structure of configuration items that control the operation of the stack.

For details of the various parameters see the PTPTestApp source code and discussion

below in section 5.

Return Value

None

Comments

This is the main entry point to the operation of the PTP protocol stack. As its name indicates it is

intended to be run as a separate thread from the application. This call will not return until

PTPKillThread() is called. At that time the thread should be stopped.

stdioCallback is a pointer to a function in the application that is accessible from the thread that

calls this function. It should be compatible with the following prototype.
void printMsg(int msgType, char *msgString)
// Display message from stack
// Input: msgType - Type of message provided
// 0 - Debug Message (verbose)
// 1 - Debug Message (normal)
// 2 - Nofication Message

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

89

// 3 - Error Message
// msgString – The message string

The callback msgType parameter can be used filter messages as needed. Most messages

currently in the library are type 1 for normal debug. NOTE: this function should not perform

too much work. If possible it should simply place the messages in a queue to be

processed by a different thread otherwise significant delays can be introduced into the

stack.

statusUpdateCallback is a pointer to a function that performs status update for the library. The

library will call this function to provide operational information to the application.. It should be

compatible with the following prototype.
void ptpStatusUpdate(NS_UINT8 stsType, void *stsData)
// Display message from stack
// Input: stsType - Type of status provided
// STS_PSF_DATA (1) –PHY Status Frame Data
// STS_OFFSET_DATA (2) – Offset data
// stsData – pointer to actual data

The basic operation of this callback should be as follows:

 switch(stsType) {

 case STS_PSF_DATA:

 {

 PHYMSG_MESSAGE_TYPE_ENUM msgType;

 PHYMSG_MESSAGE phyMsg;

 NS_UINT8 *nxtMsg;

 // Normally we'd call IsPhyStatusFrame() using a raw packet but

 // since we got here we already know that the data is the 1st

 // of potentially several PSFs so we just process it.

 nxtMsg = (NS_UINT8 *)stsData;

 while(nxtMsg) {

 nxtMsg = GetNextPhyMessage(devPort, nxtMsg, &msgType, &phyMsg);

 if(!nxtMsg || !bPSF) {

 continue;

 }

 switch(msgType) {

 case PHYMSG_STATUS_TX:

 case PHYMSG_STATUS_RX:

 case PHYMSG_STATUS_TRIGGER:

 case PHYMSG_STATUS_EVENT:

 case PHYMSG_STATUS_ERROR:

 case PHYMSG_STATUS_REG_READ:

 default:

 // do something with the PSFs

 break;

 }

 } // while(nxtMsg)

 }

 break;

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

90

 case STS_OFFSET_DATA:

 {

 STS_OFFSET_DATA_STRUCT *stsODS = (STS_OFFSET_DATA_STRUCT *)stsData;

 if(bSTSUpdate) {

 printf("ptpStatusUpdate %d.%d %d.%d %d.%d %d.%d\n",

 stsODS->offset_from_master.seconds,

 stsODS->offset_from_master.nanoseconds,

 stsODS->master_to_slave_delay.seconds,

 stsODS->master_to_slave_delay.nanoseconds,

 stsODS->slave_to_master_delay.seconds,

 stsODS->slave_to_master_delay.nanoseconds,

 stsODS->oneWayAvg.seconds,

 stsODS->oneWayAvg.nanoseconds);

 }

 }

 break;

 default:

 break;

 } // switch(stsType)

The operation of this function is designed to support functionality similar to what is available in the

ALP Framework demo. If this functionality is used at all it is expected that both the library and the

operation of the procedure will be modified to meet the desired needs of the system.

NOTE: this function should not perform too much work. If possible it should simply place

the messages/data in a queue to be processed by the application in an application thread.

For additional details about this call and the callbacks see the PTPTestApp source code and the

discussion below in section 5.

There is a Python version of this call (PTPThread()) that operates exactly the same with the

exception that the pointers and callbacks are PyObjects and are managed using the Python library

calls.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

91

4.4.1.3 PTPKillThread

Call from outside the PTPThread to signal that a shutdown request

void

 PTPKillThread (

IN PEPL_PORT_HANDLE portHandle);

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

Return Value

None

Comments

When this is called it simply sets the killThread flag to signal to the protocol that is should

shutdown. This will cause the PTPThreadC() function to return back to the calling function and

allow the application to shutdown properly.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

92

4.4.1.4 PTPSetTriggerConfig

Configures the operational behavior of an individual trigger.

void

 PTPSetTriggerConfig (

IN PEPL_PORT_HANDLE portHandle,

IN NS_UINT trigger,

IN NS_UINT triggerBehavior,

IN NS_UINT gpioConnection);

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

trigger

The trigger to configure, 0 – 7.

triggerBehavior

A bitmap of configuration options. Zero or more of the bits defined in the

TRIGGER_CFG_OPTIONS bit table below OR’ed together.

gpioConnection

The GPIO pin the trigger should be connected to. A value of 0 – 12. If 0 is specified no GPIO

pin connection is made.

Return Value

None

Comments

Cfg Bit Name Description

TRGOPT_PULSE Causes the Trigger to generate a Pulse rather than a single rising or

falling edge.

TRGOPT_PERIODIC Causes the Trigger to generate a periodic signal. If not set, the Trigger will

generate a single Pulse or Edge depending on the Trigger Control

settings.

TRGOPT_TRG_IF_LATE Allow an immediate Trigger in the event the Trigger is programmed to a

time value which is less than the current time. This provides a mechanism

for generating an immediate trigger or to immediately begin generating a

periodic signal. For a periodic signal, no notification will be generated if

this bit is set and a Late Trigger occurs.

TRGOPT_NOTIFY_EN Enables Trigger status to be reported on completion of a Trigger or on an

error detection due to late trigger. If Trigger interrupts are enabled, the

notification will also result in an interrupt being generated.

TRGOPT_TOGGLE_EN Puts the trigger into toggle mode. In toggle mode, the initial value will be

ignored and the trigger output will be toggled at the trigger time.

Table 4.4-1 – TRIGGER_CFG_OPTIONS

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

93

4.4.1.5 PTPSetEventConfig

Configures the operational behavior of an individual event.

void

 PTPSetEventConfig (

IN PEPL_PORT_HANDLE portHandle,

IN NS_UINT event,

IN NS_BOOL eventRiseFlag,

IN NS_BOOL eventFallFlag,

IN NS_BOOL eventSingle,

IN NS_UINT gpioConnection);

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

event

The event to configure, 0 – 7.

eventRiseFlag

If set to TRUE, enables detection of rising edge on Event input.

eventFallFlag

If set to TRUE, enables detection of falling edge on Event input.

eventSingle

If set to TRUE, enables single event capture operation.

gpioConnection

The GPIO pin the event should be connected to. A value of 0 – 12. If 0 is specified no GPIO

pin connection is made.

Return Value

None

Comments

None

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

94

4.4.1.6 PTPSetTransmitConfig

Configures the device’s 1588 transmit operation.

Void

 PTPSetTransmitConfig (

IN PEPL_PORT_HANDLE portHandle,

IN NS_UINT txConfigOptions,

IN NS_UINT ptpVersion,

IN NS_UINT ptpFirstByteMask,

IN NS_UINT ptpFirstByteData);

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

txConfigOptions

A bitmap of configuration options. Zero or more of the bits defined in the TX_CFG_OPTIONS

bit table below OR’ed together.

ptpVersion

Enable Timestamp capture for a specific version of the IEEE 1588 specification. This value

may be set to any value between 1 and 15 and allows support for future versions of the IEEE

1588 specification. A value of 0 will disable version checking (not recommended).

ptpFirstByteMask

Bit mask to be used for matching Byte0 of the PTP Message. A one in any bit enables

matching for the associated data bit. If no matching is required, all bits of the mask should be

set to 0.

ptpFirstByteData

Data to be used for matching Byte0 of the PTP Message. This parameter is ignored if

ptpFirstByteMask is 0x00.

Return Value

None

Comments

Cfg Bit Name Description

TXOPT_SYNC_1STEP Enable automatic insertion of timestamp into transmit Sync Messages.

Device will automatically parse message and insert the timestamp in the

correct location. UPD checksum and CRC fields will be regenerated.

TXOPT_DR_INSERT Enables insertion of the timestamp from transmitted Delay_Req

messages into inbound Delay_Resp messages. The most recent

timestamp will be used for any inbound Delay_Resp message. The

receive timestamp insertion logic must be enabled using the

PTPSetReceiveConfig call.

TXOPT_NTP_TS_EN Enables insertion of timestamp into NTP Packets.

TXOPT_IGNORE_2STEP If set the device will insert a timestamp independent of the setting of the

Two_Step flag, otherwise the device will not insert a timestamp if the

Two_Step bit is set in the flags field of the PTP header.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

95

TXOPT_CRC_1STEP If this set the device will send the One-Step frame with a valid CRC, even

if the incoming CRC is invalid, otherwise the device will force a CRC error

for One-Step operation if the incoming frame has a CRC

error.

TXOPT_CHK_1STEP Enables correction of the IPv4 UDP checksum for messages which

include insertion of the timestamp. The checksum is corrected by

modifying the last two bytes of the UDP data. The last two bytes must be

transmitted by the MAC as 0’s. This control will have no effect for

IPv6/UDP or Layer2 Ethernet messages.

TXOPT_IP1588_EN Enables filtering of UDP/IP Event messages using the IANA assigned IP

Destination addresses. If set, packets with IP Destination addresses which

do not match the IANA assigned addresses will not be timestamped. This

field affects operation for both IPv4 and IPv6. If not specified the IP

destination addresses will be ignored.

TXOPT_L2_EN Enables detection of IEEE 802.3/Ethernet encapsulated PTP event

messages.

TXOPT_IPV6_EN Enables detection of UDP/IPv6 encapsulated PTP event messages.

TXOPT_IPV4_EN Enables detection of UDP/IPv4 encapsulated PTP event messages.

TXOPT_TS_EN Enables Timestamp capture for Transmit.

Table 4.4-2 – TX_CFG_OPTIONS

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

96

4.4.1.7 PTPSetPhyStatusFrameConfig

Configures the device’s PHY Status Frame (PSF) operational configuration.

void

 PTPSetPhyStatusFrameConfig (

IN PEPL_PORT_HANDLE portHandle,

IN NS_UINT statusConfigOptions,

IN MAC_SRC_ADDRESS_ENUM srcAddrToUse,

IN NS_UINT minPreamble,

IN NS_UINT ptpReserved,

IN NS_UINT ptpVersion,

IN NS_UINT transportSpecific,

IN NS_UINT8 messageType,

IN NS_UINT32 sourceIpAddress);

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

statusConfigOptions

A bitmap of configuration options. Zero or more of the bits defined in the

STS_CFG_OPTIONS bit table below OR’ed together.

srcAddrToUse

Specifies the MAC source address to use in Phy Status Frames (PSF). Must be one of the

following values.

STS_SRC_ADDR_1 - [00 00 00 00 00 00]

STS_SRC_ADDR_2 - [08 00 17 0B 6B 0F]

STS_SRC_ADDR_3 - [08 00 17 00 00 00]

STS_SRC_ADDR_USE_MC - Use MAC multicast destination address

minPreamble

Determines the minimum number of preamble bytes required for sending PHY Status

Frames (PCF) on the MII interface. It is recommended that this be set to the smallest value

the MAC will tolerate.

ptpReserved

PTP v2 reserved field: This field contains the reserved 4-bit field (at offset 1) to be sent in

status packets from the PHY to the local MAC using the MII receive data interface.

ptpVersion

The PTP version number to set in the PTP version field of the status frame. Typically this is

set to a value of 0x02.

transportSpecific

The value to use for the transportSpecific field for status frames from the PHY to the local

MAC using the MII receive data interface. A value of 0x0F ensures the frame will not be

interpreted as a valid PTP message.

messageType

The value to use for the messageType field for status frames from the PHY to the local MAC

using the MII receive data interface. The default value of 0x0F ensures the frame will not be

interpreted as a valid PTP message.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

97

sourceIpAddress

4-byte source IP address to use in frames created by the PHY. The address is expected to

be in network order. 224.0.1.129 is E0.00.01.81 in hex and is encode as 0x810100E0.

Return Value

None

Comments

Cfg Bit Name Description

STSOPT_LITTLE_ENDIAN For each 16-bit field in a Status Message, the data will normally be

presented in network byte order (Most significant byte first). If this is set,

the byte data fields will be reversed so that the least significant byte is

first (little endian).

STSOPT_IPV4 If set, IPv4 frames will be used to deliver PHY Status Frames (PSF),

otherwise Layer2 Ethernet frames will be used.

STSOPT_PCFR_EN Enables frame based status delivery of PHY Control Frame Read

reponses.

STSOPT_ERR_EN Enables frame based status delivery of errors.

STSOPT_TXTS_EN Enables frame based status delivery of Transmit Timestamps.

STSOPT_RXTS_EN Enables frame based status delivery of Receive Timestamps.

STSOPT_TRIG_EN Enables frame based status delivery of Trigger Status.

STSOPT_EVENT_EN Enables frame based status delivery of Event Timestamps.

Table 4.4-3 – STS_CFG_OPTIONS

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

98

4.4.1.8 PTPSetReceiveConfig

Configures the device’s receive operation.

void

 PTPSetReceiveConfig (

IN PEPL_PORT_HANDLE portHandle,

IN NS_UINT rxConfigOptions,

IN RX_CFG_ITEMS *rxConfigItems);

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

rxConfigOptions

A bitmap of configuration options. Zero or more of the bits defined in the

RX_CFG_OPTIONS bit table below OR’ed together.

rxConfigItems

This structure of configuration values must be filled out prior to making this call. See the

RX_CFG_ITEMS structure definition below.

Return Value

None

Comments

Cfg Bit Name Description

RXOPT_DOMAIN_EN Domain Match Enable: If set to 1, the Receive Timestamp unit will

require the Domain field to match the value programmed in the

PTP_DOMAIN field of the PTP_RXCFG3 register. If set to 1, the

Receive Timestamp will ignore the PTP_DOMAIN field.

RXOPT_ALT_MAST_DIS Alternate Master Timestamp Disable: Disables Timestamp generation if

the Alternate_Master flag is set:

1 = Do not generate Timestamp if Alternate_Master = 1

0 = Ignore Alternate_Master flag

RXOPT_USER_IP_SEL IP Address data select: Selects portion of IP address accessible through

the PTP_RXCFG2 register:

0 = Most Significant Octets

1 = Least Significant Octets

RXOPT_USER_IP_EN Enable User-programmed IP address filter: Enable detection of UDP/IP

Event messages using a programmable IP addresses. The IP Address

is set using the PTP_RXCFG2 register.

RXOPT_RX_SLAVE Receive Slave Only: By default, the Receive Timestamp Unit will provide

Timestamps for event messages meeting other requirements. Setting

this bit to a 1 will prevent Delay_Req messages from being

Timestamped by requiring that the Control Field (offset 32 in the PTP

message) be set to a

value other than 1.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

99

RXOPT_IP1588_EN0

RXOPT_IP1588_EN1

RXOPT_IP1588_EN2

Enable IEEE 1588 defined IP address filters: Enable detection of

UDP/IP Event messages using the IANA assigned IP Destination

addresses. Zero or more of these options may be OR’ed together to

form the desired filter. This field affects operation for both IPv4 and

IPv6. A Timestamp is captured for the PTP message if the IP

destination address matches the following:

RXOPT_IP1588_EN0: Dest IP address = 224.0.1.129

RXOPT_IP1588_EN1: Dest IP address = 224.0.1.130-132

RXOPT_IP1588_EN2: Dest IP address = 224.0.0.107

RXOPT_RX_L2_EN Layer2 PTP Detection Enable: Enables detection of IEEE

802.3/Ethernet encapsulated PTP event messages.

RXOPT_RX_IPV6_EN IPv6 PTP Detection Enable: Enables detection of UDP/IPv6

encapsulated PTP event messages.

RXOPT_RX_IPV4_EN IPv4 PTP Detection Enable: Enables detection of UDP/IPv4

encapsulated PTP event messages.

RXOPT_SRC_ID_HASH_EN Enables source identification hash matching to determine if a receive

timestamp should be recorded for a particular incoming PTP frame. If

set, the RX_CFG_ITEMS.srcIdHash field must be set.

RXOPT_RX_TS_EN Receive Timestamp Enable: Enable Timestamp capture for Receive.

RXOPT_ACC_UDP Record Timestamp if UDP Checksum Error: By default, Timestamps will

be discarded for frames with UDP Checksum errors. If this bit is set,

then the Timestamp will be made available in the normal manner.

RXOPT_ACC_CRC Record Timestamp if CRC Error: By default, Timestamps will be

discarded for frames with CRC errors. If this bit is set, then the

Timestamp will be made available in the normal manner.

RXOPT_TS_APPEND Append Timestamp for L2: For Layer 2 encapsulated PTP messages, if

this bit is set, always append the Timestamp to end of the PTP

message rather than inserted in unused message fields. This bit will be

ignored if TS_INSERT is 0.

RXOPT_TS_INSERT Enable Timestamp Insertion: Enables Timestamp insertion into a frame

containing a PTP Event Message. If this bit is set, the Timestamp will

not be available through the PTP Receive Timestamp Register.

RXOPT_IPV4_UDP_MOD Enable IPV4 UDP modification: When timestamp insertion is enabled,

this bit controls how UDP checksums are handled for IPV4 PTP event

messages.

If set to a 0, the device will clear the UDP checksum. If a UDP

checksum error is detected the device will force a CRC error.

If set to a 1, the device will not clear the UDP checksum. Instead it will

generate a 2-byte value to correct the UDP checksum and append this

immediately following the PTP message. If an incoming UDP checksum

error is detected, the device will cause a UDP checksum error in the

modified field. This function should only be used if the incoming frames

contain two extra bytes of UDP data following the PTP message. This

should not be enabled for systems using version 1 of the IEEE 1588

specification.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

100

RXOPT_TS_SEC_EN Enable Timestamp Seconds: Setting this bit to a 1 enables inserting a

seconds field when Timestamp Insertion is enabled. If set to 0, only the

nanoseconds (with bits [31:30] containing bits [1:0] of the current

seconds timestamp value) portion of the Timestamp will be inserted in

the frame. This bit will be ignored if TS_INSERT is 0.

Table 4.4-4 – RX_CFG_OPTIONS

Field Name Data Type Description

ptpVersion NS_UINT Enable Timestamp capture for a specific version of the IEEE

1588 specification. This value may be set to any value between 1

and 15 and allows support for future versions of the IEEE 1588

specification. A value of 0 will disable version checking (not

recommended).

ptpFirstByteMask NS_UINT Bit mask to be used for matching Byte0 of the PTP Message. A

one in any bit enables matching for the associated data bit. If no

matching is required, all bits of the mask should be set to 0.

ptpFirstByteData NS_UINT Data to be used for matching Byte0 of the PTP Message. This

parameter is ignored if ptpFirstByteMask is 0x00.

ipAddrData NS_UINT32 Receive IP Address Data: 32-bits of the IP Address field.

tsMinIFG NS_UINT Minimum Inter-frame Gap: When a Timestamp is appended to a

PTP Message, the length of the frame may get extended. This

could reduce the Inter-frame Gap (IFG) between frames by as

much as 8 byte times (640ns at 100Mb).

This field sets a minimum on the IFG between frames in number

of byte times. If the IFG is set larger than the actual IFG,

preamble bytes of the subsequent frame will get dropped. This

value should be set to the lowest possible value that the attached

MAC can support.

srcIdHash NS_UINT This value defines the expected source identity hash value for

incoming PTP event messages. Only Bits 11 – 0 are significant.

This value is ignored if RXOPT_SRC_ID_HASH_EN NOT

specified in the rxConfigOptions bit map.

ptpDomain NS_UINT PTP Domain: Value of the PTP Message domainNumber field. If

PTP_RXCFG0:DOMAIN_EN is set to 1, the Receive Timestamp

unit will only capture a Timestamp if the domainNumber in the

receive PTP message matches the value in this field. If the

DOMAIN_EN bit is set to 0, the domainNumber field will be

ignored.

tsSecLen NS_UINT Inserted Timestamp Seconds Length: This field indicates the

length of the Seconds field to be inserted in the PTP message.

This field will be ignored if RXOPT_TS_INSERT is 0 or if

RXOPT_TS_SEC_EN is 0. The mapping is as follows:

0x00 : Least Significant Byte only of Seconds field

0x01 : Two Least Significant Bytes of Seconds field

0x02 : Three Least Significant Bytes of Seconds field

0x03 : All four Bytes of Seconds field

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

101

rxTsNanoSecOffset NS_UINT Receive Timestamp Nanoseconds offset: This field provides an

offset to the Nanoseconds field when inserting a Timestamp into

a received PTP message.

If RXOPT_TS_APPEND is set, the offset indicates an offset from

the end of the PTP message. If RXOPT_TS_APPEND is NOT

set, the offset indicates the byte offset from the beginning of the

PTP message. This field will be ignored if RXOPT_TS_INSERT

is not specified in the RX_CFG_OPTIONS.

rxTsSecondsOffset NS_UINT Receive Timestamp Seconds offset: This field provides an offset

to the Seconds field when inserting a Timestamp into a received

PTP message. If RXOPT_TS_APPEND is set, the offset

indicates an offset from the end of the inserted Nanoseconds

field. If RXOPT_TS_APPEND is NOT set, the offset indicates the

byte offset from the beginning of the PTP message. This field will

be ignored if RXOPT_TS_INSERT is not specified in the

RX_CFG_OPTIONS.

Table 4.4-5 – RX_CFG_ITEMS

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

102

4.4.1.9 PTPCalcSourceIdHash

Utility function that will calculate a 12-bit CRC-32 (IEEE 802.3, no complement) value used to program the

RX_CFG_ITEMS.srcIdHash field.

NS_UINT

 PTPCalcSourceIdHash (

IN NS_UINT8 *tenBytesData);

Parameters

tenBytesData

This is a pointer to the desired fixed values found in bytes 20 – 29 of the PTP event message

that receive source identification filtering should occur.

Return Value

Value representing the CRC-32 (IEEE 802.3, no complement) generated from the specified 10-

byte buffer.

Comments

This function would only be used if RXOPT_SRC_ID_HASH_EN was specified in a call to

PTPSetReceiveConfig.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

103

4.4.1.10 PTPSetTempRateDurationConfig

Configures the PTP Temporary Duration.

void

 PTPSetTempRateDurationConfig (

IN PEPL_PORT_HANDLE portHandle,

IN NS_UINT32 duration);

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

duration

PTP Temporary Rate Duration: This sets the duration for the Temporary Rate in number of

clock cycles. The actual Time duration is dependent on the value of the configured

Temporary Rate. This value has a range of up to 2^26 (26-bits may be defined).

Return Value

None

Comments

This value is remembered by the hardware, therefore the setting can be used for multiple

temporary clock adjustments, if the desired duration remains constant.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

104

4.4.1.11 PTPSetClockConfig

Configures the general PTP clock configuration options.

void

 PTPSetClockConfig (

IN PEPL_PORT_HANDLE portHandle,

IN NS_UINT clockConfigOptions,

IN NS_UINT ptpClockDivideByValue,

IN NS_UINT ptpClockSource,

IN NS_UINT ptpClockSourcePeriod);

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

clockConfigOptions

A bitmap of configuration options. Zero or more of the bits defined in the

CLOCK_CFG_OPTIONS bit table below OR’ed together.

ptpClockDivideByValue

PTP Clock Divide-by Value: This parameter defines the divide-by value for the output clock.

The output clock is divided from an internal 250MHz clock. Valid values range from 2 to 255

(0x02 to 0xFF), giving a nominal output frequency range of 125MHz down to 980.4kHz.

Divide-by values of 0 and 1 are not valid and will stop the output clock.

ptpClockSource

PTP Clock Source Select: Selects among three possible sources for the PTP reference

clock, one of the following values may be specified:

 0x00 - 125MHz from internal PGM (default)

 0x01 - Divide-by-N from 125MHz internal PGM

 0x02 - External reference clock

ptpClockSourcePeriod

PTP Clock Source Period: Configures the PTP clock source period in nanoseconds. Values

less than 8 are invalid. This parameter is used as follows by the different clock source

modes:

 0x00 – 125MHz - Ignored

0x01 – Divide-by-N - Bits 6:3 are used to divide the 125MHz PGM clock by a value

between 1 and 15. Bits 2:0 are ignored.

0x02 – External - Bits 6:0 indicate the nominal period in nanoseconds of the external

reference clock.

Return Value

None

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

105

Comments

Cfg Bit Name Description

CLKOPT_CLK_OUT_EN PTP Clock Output Enable: If set, enables PTP divide-by-N clock

output. If not specified, disables PTP divide-by-N clock output.

CLKOPT_CLK_OUT_SEL PTP Clock Output PGM Select: If set, selects the PGM as the root

clock for generating the divide-by-N output. If not specified,

selects the FCO as the root clock for generating the divide-by-N

output.

CLKOPT_CLK_OUT_SPEED_SEL PTP Clock Output I/O Speed Select: If set, enables faster rise/fall

time for the divide-by-N clock output pin. If not specified, enables

normal rise/fall time for the divide-by-N clock output pin.

Table 4.4-6 – CLOCK_CFG_OPTIONS

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

106

4.4.1.12 PTPSetGpioInterruptConfig

Configures the GPIO pin to be used for the PTP Interrupt function.

void

 PTPSetGpioInterruptConfig (

IN PEPL_PORT_HANDLE portHandle,

IN NS_UINT gpioInt);

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

gpioInt

Specifies the number of the GPIO to assign to the PTP Interrupt. This is a value from 1 – 12.

Specifying 0 disables interrupt / GPIO assignment.

Return Value

None

Comments

None

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

107

4.4.1.13 PTPSetMiscConfig

Sets various miscellaneous PTP configuration options.

void

 PTPSetMiscConfig (

IN PEPL_PORT_HANDLE portHandle,

IN NS_UINT ptpEtherType,

IN NS_UINT ptpOffset,

IN NS_UINT txSfdGpio,

IN NS_UINT rxSfdGpio);

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

ptpEtherType

This parameter defines the Ethernet Type field used to detect

PTP messages transported over Ethernet layer 2. Normally this would be set to 0xF788.

ptpOffset

This parameter defines the offset in bytes to the PTP Message from the preceding header.

For Layer2, this is the offset from the Ethernet Type Field. For IP/UDP, it is the offset from

the end of the UDP Header. Values are from 0x00 – 0xFF.

txSfdGpio,

Tx Start of Frame GPIO Select: This parameter specifies the GPIO output to which the Tx

SFD signal is assigned. Valid values are 0 (disabled) or 1-12.

rxSfdGpio

Rx Start of Frame GPIO Select: This parameter specifies the GPIO output to which the Rx

SFD signal is assigned. Valid values are 0 (disabled) or 1-12.

Return Value

None

Comments

None

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

108

4.4.2 IEEE 1588 Clock APIs

This section describes the API functions related to the IEEE 1588 clock features in the DP83640 device

that are typically used during run-time system operation. Refer to the IEEE 1588 Hardware overview

section of this document for details on the various methods of adjustment and setting the clock.

4.4.2.1 PTPClockReadCurrent

Returns a snapshot of the current IEEE 1588 clock value.

void

 PTPClockReadCurrent (

IN PEPL_PORT_HANDLE portHandle,

IN OUT NS_UINT32 *retNumberOfSeconds,

IN OUT NS_UINT32 *retNumberOfNanoSeconds);

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

retNumberOfSeconds

Will be set on return to the number of seconds comprising the IEEE 1588 hardware clock.

retNumberOfNanoSeconds

Will be set on return to the number of nanoseconds comprising the IEEE 1588 hardware

clock. This value cannot be larger then 1e9 (1 second).

Return Value

None

Comments

None

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

109

4.4.2.2 PTPClockStepAdjustment

A step adjustment value is added to the current IEEE 1588 hardware clock value. Note that the

adjustment value can be positive or negative.

void

 PTPClockStepAdjustment (

IN PEPL_PORT_HANDLE portHandle,

IN NS_UINT32 numberOfSeconds,

IN NS_UINT32 numberOfNanoSeconds,

IN NS_BOOL negativeAdj);

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

numberOfSeconds

The number of seconds to add to the current clock value. This should always be a positive

value, use the negativeAdj flag to indicate a negative overall value.

numberOfNanoSeconds

The number of nanoseconds to add to the current clock value. This should always be a

positive value, use the negativeAdj flag to indicate a negative overall value. This value must

NOT be larger then 1e9 (1 second).

negativeAdj

If TRUE, the numberOfSeconds and numberOfNanoSeconds values will be subtracted from

the current clock value, otherwise the values will be an added to the clock.

Return Value

None

Comments

This function does not account for the underlying time required within the hardware to make the

adjustment (2 clock periods = 16ns). The caller should add 16ns to the signed value of the

adjustment prior to determining whether the adjustment is positive or negative.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

110

4.4.2.3 PTPClockSet

Sets the IEEE 1588 hardware clock equal to the specified time value.

void

 PTPClockSet (

IN PEPL_PORT_HANDLE portHandle,

IN NS_UINT32 numberOfSeconds,

IN NS_UINT32 numberOfNanoSeconds);

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

numberOfSeconds

The number of seconds to set the current clock value too.

numberOfNanoSeconds

The number of nanoseconds to set the current clock value too. This value must NOT be

larger then 1e9 (1 second).

Return Value

None

Comments

None

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

111

4.4.2.4 PTPClockSetRateAdjustment

The clock can be programmed to operate at an adjusted frequency value by programming a rate

adjustment value. The rate adjustment allows for correction on the order of 2-32ns per reference clock

cycle. The frequency adjustment will allow the clock to correct the offset over time, avoiding any potential

side-effects caused by a step adjustment in the time value. The rate adjustment can be the normal

adjustment rate that will always be used, and a temporary rate adjustment can be specified that will only

occur for a preprogrammed amount of time.

void

 PTPClockSetRateAdjustment (

IN PEPL_PORT_HANDLE portHandle,

IN NS_UINT32 rateAdjValue,

IN NS_BOOL tempAdjFlag,

IN NS_BOOL adjDirectionFlag);

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

rateAdjValue

This 26-bit magnitude is the number of 2^-32 ns units that should be added to or subtracted

from the IEEE 1588 hardware clock per reference cycle (8ns).

tempAdjFlag

If set to TRUE the set rate will override any previously set normal adjustment value for the

amount of time specified using the PTPSetTempRateDurationConfig() function. If this is

FALSE, this function sets the normal clock adjustment time.

adjDirectionFlag

If set to TRUE, this will cause the PTP Clock to operate at a higher frequency than the

reference. The rateAdjValue value will be decremented from the clock on every cycle. If set

to FALSE, the rateAdjValue will be added to the clock on every cycle thus causing the IEEE

1588 hardware clock to operate at a slower frequency.

Return Value

None

Comments

This function allows setting two different rate adjustment values, a Normal Rate and a Temporary

Rate. The Temporary Rate allows the 1588 Clock to operate at a modified rate for a programmed

amount of time, as defined with PTPSetTempRateDurationConfig(). The Normal Rate will be

selected and used if a Temporary Rate is not currently active.

When setting a rate, the tempAdjFlag parameter indicates the rate is to be temporary. Following

completion of the time duration the rate will revert back to the Normal Rate. Note that the Normal

Rate may be changed while a Temporary Rate is active. This will have not effect on the

Temporary Rate, but the new Normal Rate will be used when the Temporary Rate Duration

completes.

To adjust the time value, software uses the 1588 protocol to determine the time correction

required. The time correction may be spread over multiple clock cycles by programming a

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

112

Temporary Rate value. To determine the rate setting, software should compute the rate difference

as the time correction divided by the time duration in number of 8ns clock cycles. This value

should be multiplied by 2^32 to convert to the correct units. This rate difference should then be

added to the current PTP Rate setting to provide the Temporary Rate.

The Temporary Rate value is a 26-bit value plus a sign bit (adjDirectionFlag), providing a range of

-(2^26-1) to +(2^26-1) in units of 2^-32ns/cycle. Since each reference clock cycle is 8ns, this

allows for a rate adjustment maximum of approximately +/-1950ppm.

The Temporary Rate duration is a 26-bit value providing a duration of up to 536ms.

Example:

Conditions:

Current Rate = +10 ppm, which gives PTP_Rate = 343597 (2^-32ns/cycle)

Time_Error = 20ns, gives Time_Corr = -20ns

Assume the correction will be done over 1ms, gives

Temp_Rate_duration = 1ms/8ns = 125,000

Calculation:

Temp_Rate_delta = (Time_Corr/Temp_Rate_duration) * 2^32

 = (-20/125000) * 2^32 = -687194

Temp_Rate = Current_Rate + Temp_Rate_delta = 343597 + -687194 = -343597

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

113

4.4.3 IEEE 1588 Check For Events API

This section defines an API function that must be used to determine if any hardware events are waiting for

processing.

4.4.3.1 PTPCheckForEvents

Checks to determine if any of the following hardware events are outstanding: Transmit timestamp, receive

timestamp, trigger done and event timestamp.

NS_UINT

 PTPCheckForEvents (

IN PEPL_PORT_HANDLE portHandle);

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

Return Value

A bit map of zero or more bits set indicating the types of events that are available from the

hardware. The defined bits are:

• PTPEVT_TRANSMIT_TIMESTAMP_BIT

• PTPEVT_RECEIVE_TIMESTAMP_BIT

• PTPEVT_EVENT_TIMESTAMP_BIT

• PTPEVT_TRIGGER_DONE_BIT

Comments

This must be called prior to retrieving individual events from the hardware. The bit map must be

used to determine which “Get” functions need to be called. The applicable “Get” functions are:

• PTPGetTransmitTimestamp

• PTPGetReceiveTimestamp

• PTPGetEvent

• PTPHasTriggerExpired

It is NOT necessary to call this function prior to calling PTPHasTriggerExpired, although this

function can be useful in a main polling loop to quickly determine if there is an expired trigger as

well as the other types of events with a single call.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

114

4.4.4 IEEE 1588 Transmit Frame Timestamp APIs

4.4.4.1 PTPGetTransmitTimestamp

Returns the next available transmit timestamp.

void

 PTPGetTransmitTimestamp (

IN PEPL_PORT_HANDLE portHandle,

IN OUT NS_UINT32 *retNumberOfSeconds,

IN OUT NS_UINT32 *retNumberOfNanoSeconds,

IN OUT NS_UINT *overflowCount);

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

retNumberOfSeconds

Will be set on return to the next transmit’s seconds timestamp value.

retNumberOfNanoSeconds

Will be set on return to the next transmit’s nanoseconds timestamp value. This value will

never be larger then 10^9 (1 second).

overflowCount

Will be set on return and indicates if timestamps were dropped due to an overflow of the

Transmit Timestamp queue. The overflow counter will stick at a value of three if more then

three timestamps were missed. Normally this value should be 0.

Return Value

Nothing

Comments

The caller must have previously called PTPCheckForEvents() and determined that the

PTPEVT_TRANSMIT_TIMESTAMP_BIT bit was set prior to invoking this function. This function

does NOT check to determine if an outstanding transmit event is available.

The hardware can queue up to four transmit timestamps. If more then four transmits occur without

first reading the transmit timeout, then the overflowCount will indicate (up to 3) the number of

timestamps that were dropped due to overflow.

This function does not adjust the timestamp to account for the delay to the wire. The caller should

make the necessary adjustment(s) as needed. The typical adjustment is to add the appropriate

default outbound latency delay value, either DEFAULT_OUTBOUND_LATENCY or

DEFAULT_OUTBOUND_LATENCY_10MB which can be found in constants.h, to the timestamp.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

115

4.4.5 IEEE 1588 Receive Frame Timestamp APIs

4.4.5.1 PTPGetReceiveTimestamp

Returns the next available receive timestamp from the device’s receive timestamp queue.

void

 PTPGetReceiveTimestamp (

IN PEPL_PORT_HANDLE portHandle,

IN OUT NS_UINT32 *retNumberOfSeconds,

IN OUT NS_UINT32 *retNumberOfNanoSeconds,

IN OUT NS_UINT *overflowCount,

IN OUT NS_UINT *sequenceId,

IN OUT NS_UINT8 *messageType,

IN OUT NS_UINT *hashValue);

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

retNumberOfSeconds

Will be set on return to the next receive’s seconds timestamp value.

retNumberOfNanoSeconds

Will be set on return to the next receive’s nanoseconds timestamp value. This value will

never be larger then 1e9 (1 second).

overflowCount

Will be set on return and indicates if timestamps were dropped due to an overflow of the

Transmit Timestamp queue. The overflow counter will stick at a value of three if more then

three timestamps were missed. Normally this value should be 0.

sequenceId

Will be set on return to the16-bit SequenceId field from the incoming PTP frame.

messageType

Will be set on return to the messageType field from the incoming PTP frame. For version 1

of the IEEE 1588 specification the Timestamp unit will return the lower four bits of the control

field (octet 32 in the message). Otherwise, the Timestamp unit will record the version 2

messageType field which is the least significant bits of the first octet in the PTP message.

hashValue

Will be set on return to a 12-bit hash value on octets 20-29 of the PTP event message. For

version 1 of the IEEE 1588 specification, this corresponds to the messageType,

sourceCommunicationTechnology, sourceUuid, and sourcePortId fields. For version 2 of the

IEEE 1588 specification, this corresponds to the 10-octet sourcePortIdentity field. The

combination of hash value and sequenceId, allows software to correctly match a Timestamp

with the correct receive event message.

The hash algorithm used is the CRC function as defined in section 3.2.8 the IEEE 802.3

specification. The Timestamp unit returns the 12 most significant bits as the CRC

computation (the resultant bits are not complemented as done in the 802.3 CRC generation).

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

116

To minimize unnecessary timestamp capture, the device may be configured to filter based on

the source identification hash value. This value may be programmed using the

PTPSetMiscConfig() call with relevance to the ptpRxHash parameter. If the source hash

value for the incoming PTP event message does not match the programmed hash value,

then the message will not be timestamped.

Return Value

Nothing

Comments

The caller must have previously called PTPCheckForEvents() and determined that the

PTPEVT_RECEIVE_TIMESTAMP_BIT bit was set prior to invoking this function. This function

does NOT check to determine if an outstanding receive event is available.

The hardware can queue up to four receive timestamps.

This function does not adjust the timestamp to account for the delay from the wire. The caller

should make the necessary adjustment(s) as needed. The typical adjustment is to subtract the

appropriate default inbound latency delay value, either DEFAULT_INBOUND_LATENCY or

DEFAULT_INBOUND_LATENCY_10MB which can be found in constants.h, from the timestamp.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

117

4.4.5.2 PTPGetTimestampFromFrame

Extracts the embedded receive timestamp from a received PTP frame.

void

 PTPGetTimestampFromFrame (

IN PEPL_PORT_HANDLE portHandle,

IN NS_UINT8 *receiveFrameData,

IN OUT NS_UINT32 *retNumberOfSeconds,

IN OUT NS_UINT32 *retNumberOfNanoSeconds);

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

receiveFrameData

Points to the start of the PTP header.

retNumberOfSeconds

Will be set on return to the next receive’s seconds timestamp value. The number of

significant bits of magnitude returned is determined by the RXOPT_TS_SEC_EN option bit

used during the call to PSPSetReceiveConfig().

retNumberOfNanoSeconds

Will be set on return to the next receive’s nanoseconds timestamp value. This value will

never be larger then 10^9 (1 second).

Return Value

Nothing

Comments

This function can be used when receive timestamp insertion has been enabled using the

PSPSetReceiveConfig() function with the RXOPT_TS_INSERT option set. It extracts the

embedded timestamp from the frame, either from the end of the frame if RXOPT_TS_APPEND is

enabled, or from the configured locations within the PTP frame itself.

If RXOPT_TS_APPEND is disabled, the relevant reserved fields are set to a value of 0.

This function does not adjust the timestamp to account for the delay from the wire. The caller

should make the necessary adjustment(s) as needed. The typical adjustment is to subtract the

appropriate default inbound latency delay value, either DEFAULT_INBOUND_LATENCY or

DEFAULT_INBOUND_LATENCY_10MB which can be found in constants.h, from the timestamp

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

118

4.4.6 IEEE 1588 Trigger APIs

The basic behavioral configuration of an individual trigger is set using the PTPSetTriggerConfig() function

and may be changed at a later time if desired. The following functions arm (initiate) a trigger, cancel a

trigger and check for a completed trigger event.

4.4.6.1 PTPArmTrigger

Establishes a trigger’s expiration time and trigger pulse width behavior.

void

 PTPArmTrigger (

IN PEPL_PORT_HANDLE portHandle,

IN NS_UINT trigger,

IN NS_UINT32 expireTimeSeconds,

IN NS_UINT32 expireTimeNanoSeconds,

IN NS_BOOL initialStateFlag,

IN NS_BOOL waitForRolloverFlag,

IN NS_UINT32 pulseWidth,

IN NS_UINT32 pulseWidth2);

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

trigger

The trigger to arm, 0 – 7.

expireTimeSeconds

The seconds portion of the desired expiration time relative to the IEEE 1588 hardware clock.

expireTimeNanoSeconds

The nanoseconds portion of the desired expiration time relative to the IEEE 1588 hardware

clock. This value may be not be larger then 2^30 (1 second).

initialStateFlag

Indicates initial state of signal to be set when trigger is armed (FALSE will cause a signal rise

at trigger time, TRUE will cause a signal fall at trigger time). This parameter is ignored in

toggle mode.

waitForRolloverFlag

If set to TRUE the device should not arm the trigger until after the seconds field of the clock

time has rolled over from 0xFFFF_FFFF to 0.

pulseWidth

Sets the 50% duty cycle time for triggers 2 – 7. Its format is bits [31:30] = seconds, [29:0] =

nanoseconds. For triggers 0 and 1 sets the width of the first part of the pulse, the width of the

second part of the pulse is set by the pulseWidth2 parameter.

pulseWidth2

Ignored for triggers 2 – 7. For Triggers 0 and 1, in a single or periodic pulse type signal, a

second pulse width value controls the 2
nd
 pulse width (period is pulseWidth + pulseWidth2).

Its format is bits [31:30] = seconds, [29:0] = nanoseconds.

For Edge type signals, pulseWidth2 is interpreted as a 16-bit seconds field and pulseWidth is

a 30-bit nanoseconds field.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

119

Return Value

 None

Comments

Once this function has been called, the trigger will be armed.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

120

4.4.6.2 PTPHasTriggerExpired

Determines if a particular trigger has occurred or if an error has occurred. An interrupt mechanism may

also be used to detect trigger expiration.

NS_STATUS

 PTPHasTriggerExpired (

IN PEPL_PORT_HANDLE portHandle,

IN NS_UINT trigger);

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

trigger

The trigger to check, 0 – 7.

Return Value

NS_STATUS_SUCCESS

The specified trigger has expired successfully.

NS_STATUS_FAILURE

The specified trigger has not yet expired.

NS_STATUS_INVALID_PARM

The specified trigger was armed late and expired. For a periodic signal, if the Trigger-if-late

control is set, this function will return NS_STATUS_SUCCESS. If the Trigger-if-late is not set,

this status return code will be returned.

Comments

It is NOT necessary to call PTPCheckForEvents() prior to invocation.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

121

4.4.6.3 PTPCancelTrigger

Cancels a previously schedule trigger event (if active).

void

 PTPCancelTrigger (

IN PEPL_PORT_HANDLE portHandle,

IN NS_UINT trigger);

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

trigger

The trigger to cancel, 0 – 7.

Return Value

None

Comments

It is possible that a trigger will expire before this function can cancel it, depending on how close

the expiration time is to the current IEEE 1588 time.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

122

4.4.7 IEEE 1588 Event Timestamp APIs

Provides a function to obtain information about an outstanding timestamped event. Events are configured

using the PTPSetEventConfig() function.

4.4.7.1 PTPGetEvent

Returns the next available asynchronous event timestamp.

NS_BOOL

 PTPGetEvent (

IN PEPL_PORT_HANDLE portHandle,

IN OUT NS_UINT *eventNum,

IN OUT NS_BOOL *riseFlag,

IN OUT NS_UINT32 *eventTimeSeconds,

IN OUT NS_UINT32 *eventTimeNanoSeconds,

IN OUT NS_UINT *eventsMissed);

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

eventNum

Set on return to the number of the event that occurred if an event was present, 0 – 7.

riseFlag

Set on return to TRUE if the event occurred on the rising edge, FALSE if it occurred on the

falling edge.

eventTimeSeconds

The seconds portion of the IEEE 1588 clock timestamp when this event occurred.

eventTimeNanoSeconds

The nanosecond portion of the IEEE 1588 clock timestamp when this even occurred. This

value will not be larger then 1e9 (1 second).

eventsMissed

Set on return to indicate the number of events that have been missed prior to this event due

to internal event queue overflow. The maximum value is 7.

Return Value

TRUE if an event was returned, FALSE otherwise.

Comments

The caller must have previously called PTPCheckForEvents() and determined that the

PTPEVT_EVET_TIMESTAMP_BIT bit was set prior to invoking this function. This function does

NOT check to determine if an outstanding event is available.

This function properly tracks and handles events that occur at the same exact time. It also adjusts

the timestamp values to compensate for input path and synchronization delays.

This function subtracts time from the event timestamp to account for the delay between the input

pin and edge detection. This value is defined by PIN_INPUT_DELAY found in epl_1588.h

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

123

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

124

4.4.8 IEEE 1588 Interrupts

EPL does not provide higher level functions for PHY device interrupt handling. Because interrupt handling

is highly environment specific it is necessary to interact directly with interrupt related registers from the

host’s PHY device driver. Refer to the device’s data sheet for information on how to use the Phy’s

numerous interrupt capabilities.

4.4.9 Miscellaneous APIs

4.4.9.1 MonitorGpioSignals

Provides a function to read the current status of the device’s GPIO signals.

NS_UINT

 MonitorGpioSignals (

IN PEPL_PORT_HANDLE portHandle);

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

Return Value

Returns bits [11:0] reflecting the current values on the 12 GPIOs. GPIO 12 is bit 11, etc.

Comments

None

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

125

4.4.10 PHY Status Frame Processing APIs

If enabled, the PHY can present various event and status information in the form of specially formatted

IEEE 1588 frames to the MAC. These are formatted so that they are ultimately passed to the host’s PTP

stack. This section provides a set of functions that can be used to determine if a frame is a PHY Status

Frame (PSF) and to provide de-multiplexing of the message’s information. This eliminates the need for

host software to parse incoming frames directly to detect a PSF and simplifies obtaining underlying PHY

message information.

4.4.10.1 IsPhyStatusFrame

Determines if the specified receive frame is a specially formatted IEEE 1588 PHY Status Frame (PSF).

EXPORT NS_UINT8 *

 IsPhyStatusFrame (

 IN PEPL_PORT_HANDLE portHandle,

 IN NS_UINT8 *frameBuffer,

 IN NS_UINT16 frameLength)

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

frameBuffer

Pointer to a byte array containing a pointer to the incoming IEEE 1588 frame. This should

point to the start of the Ethernet frame.

frameLength

The number of bytes pointed to by frameBuffer.

Return Value

If a valid message is found a pointer to the Phy message that should be processed will be

returned. Otherwise NULL will be returned.

Comments

This function used the previously configured values for the IEEE 1588 header transportSpecific,

messageType and versionPTP to determine if the frame is a PHY Status Frame. Refer to

PTPSetPhyStatusFrameConfig().

If the frame is a PSF message, the caller should use the GetNextPhyMessage() to obtain the

message’s information.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

126

4.4.10.2 GetNextPhyMessage

Returns information about the next PHY message contained in a list of one or more PHY message

structures.

EXPORT NS_UINT8 *

 GetNextPhyMessage (

 IN PEPL_PORT_HANDLE portHandle,

 IN OUT NS_UINT8 *msgLocation,

 IN OUT PHYMSG_MESSAGE_TYPE_ENUM *messageType,

 IN OUT PHYMSG_MESSAGE *phyMessageOut)

Parameters

portHandle

Handle that represents a port. This is obtained using the EPLEnumPort function.

msgLocation

Pointer to the PHY message to check/process. This is initially determined by calling

IsPhyStatusFrame(). The caller should treat this field opaquely.

messageType

Set on return to one of the PHYMSG_MESSAGE_TYPE_ENUM values indicating the type of

message structure returned in the message union buffer.

phyMessageOut

Caller allocated union/structure that will be filled out on return to contain the relevant

message information fields.

Return Value

Returns a pointer to the PHY message location to be checked/processed. Returns NULL if

there are no further messages to process.

Comments

Message Type Description

PHYMSG_STATUS_TX Transmit Timestamp Status Message

PHYMSG_STATUS_RX Receive Timestamp Status Message

PHYMSG_STATUS_TRIGGER Trigger Status Message

PHYMSG_STATUS_EVENT Event Timestamp Status Message

PHYMSG_STATUS_ERROR Error Status Message

PHYMSG_STATUS_REG_READ Register Read Results Message

Table 4.4-7 – PHYMSG_MESSAGE_TYPE_ENUM

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

127

The PHYMSG_MESSAGE structure consists of a union of the following structures. It is defined as follows:

typedef union PHYMSG_MESSAGE {

 struct {

 NS_UINT32 txTimestampSecs;

 NS_UINT32 txTimestampNanoSecs;

 NS_UINT8 txOverflowCount; // 2-bit value in 8-bit variable

 } TxStatus;

 struct {

 NS_UINT32 rxTimestampSecs;

 NS_UINT32 rxTimestampNanoSecs;

 NS_UINT8 rxOverflowCount; // 2-bits data in 8-bit variable

 NS_UINT16 sequenceId; // 16-bits

 NS_UINT8 messageType; // 4-bits data in 8 bit variable

 NS_UINT16 sourceHash; // 12-bit data in 16-bit variable

 } RxStatus;

 struct {

 NS_UINT16 triggerStatus; // Bits [11:0] indicating what

 } TriggerStatus; // triggers occurred (12 - 1 respectively).

 struct {

 NS_UINT16 ptpEstsRegBits; // 12-bits - See PTP_ESTS register defs

 NS_BOOL extendedEventStatusFlag; // 8-bits - TRUE if ext. info available

 NS_UINT16 extendedEventInfo; // See register definition for more info

 NS_UINT32 evtTimestampSecs;

 NS_UINT32 evtTimestampNanoSecs;

 } EventStatus;

 struct {

 NS_BOOL frameBufOverflowFlag; // 8-bits

 NS_BOOL frameCounterOverflowFlag; // 8-bits

 } ErrorStatus;

 struct {

 NS_UINT8 regIndex; // 5-bits data in 8-bit variable

 NS_UINT8 regPage; // 3-bits data in 8-bit variable

 NS_UINT16 readRegisterValue; // 16-bits

 } RegReadStatus;

} PHYMSG_MESSAGE;

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

128

4.5 OS Abstraction Interface (OAI)

This section defines the OAI functions that must be implemented for each target platform. The prototypes

and definitions for these functions are provided in the oai.h file. The OAI must provide the following

functions.

� OAIInitialize

� OAIAlloc

� OAIFree

� OAICreateMutex

� OAIReleaseMutex

� OAIBeginCriticalSection

� OAIEndCriticalSection

� OAIBeginRegCriticalSection

� OAIEndRegCriticalSection

� OAIBeginMultiCriticalSection

� OAIEndMultiCriticalSection

� OAIManagementError (DP83640 only)

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

129

4.5.1 OAIInitialize

Called by EPL to initialize the OAI module.

void

 OAIInitialize(

IN OAI_DEV_HANDLE oaiDevHandle);

Parameters

oaiDevHandle

Handle that represents the MDIO bus that the write operation should occur on. The definition

of this is completely up to higher layer software.

Return Value

Nothing

Comments

None

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

130

4.5.2 OAIAlloc

Provides basic memory allocation.

void *

 OAIAlloc(

IN sizeInBytes);

Parameters

sizeInBytes

Size of the memory block to allocate in bytes.

Return Value

Returns a pointer to the allocated memory block. If a failure occurred allocating the memory,

NULL is returned.

Comments

Memory allocated internally by the library will be freed automatically but it is up to the application

to free any memory that it allocates using this function.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

131

4.5.3 OAIFree

Frees a memory block allocated using the OAIAlloc function.

void

 OAIFree(

IN void *memPtr);

Parameters

memPtr

Pointer to the memory block to free.

Return Value

Nothing

Comments

None

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

132

4.5.4 OAICreateMutex

Creates a handle for a mutex object that can be used to provide mutual exclusion.

HANDLE

 OAICreateMutex(

void);

Parameters

None

Return Value

Returns a handle to a mutex object

Comments

This can be called to create additional mutex objects if needed.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

133

4.5.5 OAIReleaseMutex

Provides basic memory allocation.

void *

 OAIReleaseMutex(

IN HANDLE hMutex);

Parameters

hMutex

HANDLE to mutex object previously created.

Return Value

Nothing

Comments

None

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

134

4.5.6 OAIBeginRegCriticalSection

Provides mutual exclusion for a multi-step device access operation.

void

 OAIBeginRegCriticalSection(

IN OAI_DEV_HANDLE oaiDevHandle);

Parameters

oaiDevHandle

Handle that represents the MDIO bus that the write operation should occur on. The definition

of this is completely up to higher layer software.

Return Value

Nothing

Comments

This function uses the regularMutex member of the oaiDevHandle defined in platform.h

In a multi-threaded environment where multiple threads may access the EPL functions

simultaneously, this function must provide some type of lock that prevents multi-step register

access EPL APIs from being reentered.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

135

4.5.7 OAIEndRegCriticalSection

Releases a previously held lock that was obtained by a call to OAIBeginRegCriticalSection.

void

 OAIEndRegCriticalSection(

IN OAI_DEV_HANDLE oaiDevHandle);

Parameters

oaiDevHandle

Handle that represents the MDIO bus that the write operation should occur on. The definition

of this is completely up to higher layer software.

Return Value

Nothing

Comments

This function uses the regularMutex member of the oaiDevHandle defined in platform.h

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

136

4.5.8 OAIBeginMultiCriticalSection

Provides mutual exclusion for a multi-step device access operation.

void

 OAIBeginMultiCriticalSection(

IN OAI_DEV_HANDLE oaiDevHandle);

Parameters

oaiDevHandle

Handle that represents the MDIO bus that the write operation should occur on. The definition

of this is completely up to higher layer software.

Return Value

Nothing

Comments

This function uses the multiOpMutex member of the oaiDevHandle defined in platform.h

In a multi-threaded environment where multiple threads may access the EPL functions

simultaneously, this function must provide some type of lock that prevents multi-step register

access EPL APIs from being reentered.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

137

4.5.9 OAIEndMultiCriticalSection

Releases a previously held lock that was obtained by a call to OAIBeginMultiCriticalSection.

void

 OAIEndMultiCriticalSection(

IN OAI_DEV_HANDLE oaiDevHandle);

Parameters

oaiDevHandle

Handle that represents the MDIO bus that the write operation should occur on. The definition

of this is completely up to higher layer software.

Return Value

Nothing

Comments

This function uses the multiOpMutex member of the oaiDevHandle defined in platform.h

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

138

4.5.10 OAIManagementError

EPL calls this function if a data integrity error is detected over the management information interface.

void

 OAIManagementError (

IN OAI_DEV_HANDLE oaiDevHandle);

Parameters

oaiDevHandle

Handle that represents the MDIO bus that the error occurred on. The definition of this is

completely up to higher layer software.

Return Value

Nothing

Comments

If a checksum mismatch between host software’s checksum tally and the hardware’s checksum

tally for register reads and writes, this function is called. It indicates that one or more bits read

from or written to the PHY were corrupted. This would normally indicate a serious system error

and should be dealt with by the host environment as necessary.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

139

4.6 Interface Function Reference

4.6.1 ALP 100/Opal Kelly Interface Related Functions

This provides the necessary functions to communicate with the ALP 100 board using the Opal Kelly Front

Panel interface. The okMAC.c/.h files provide the wrapper for EPL to communicate through the

okFrontPanel.dll interface.

4.6.1.1 MACInitialize

Called to initialize the interface and prepare it for operation.

NS_STATUS

 MACInitialize(

IN OAI_DEV_HANDLE oaiDevHandle);

Parameters

oaiDevHandle

Handle that represents the MDIO bus that the write operation should occur on. The definition

of this is completely up to higher layer software.

Return Value

NS_STATUS_SUCCESS

Function was successfully executed.

NS_STATUS_FAILURE

Function was not able to initialize the interface. This usually means that a device was not

found.

Comments

This call is not usually called directly. It is typically called from the EPLEnumDevice() function if it

hasn’t already been initialized.

The input to this call is an OAI_DEV_HANDLE. The connector member of that structure is used

to define which connector on the ALP board to look for a PHY device. NS_STATUS_FAILURE

will be returned if a device isn’t found.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

140

4.6.1.2 MACDeInitialize

This is called to shutdown ALP 100 / Opal Kelly Interface

void

 MACDeInitialize(

IN OAI_DEV_HANDLE oaiDevHandle);

Parameters

oaiDevHandle

Handle that represents the MDIO bus that the write operation should occur on. The definition

of this is completely up to higher layer software.

Return Value

Nothing

Comments

This call is not usually called directly. It is typically called from the EPLDeInitialize() function as

part of the overall EPL shutdown process.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

141

4.6.1.3 MACSendPacket

This is called to send a packet of data through the ALP 100 / Opal Kelly Interface.

void

 MACSendPacket(

IN PEPL_PORT_HANDLE eplPortHandle,

IN NS_UINT8 *txBuf,

IN NS_UINT length);

Parameters

eplPortHandle

Handle to the port to send the data.

txBuf

Pointer to the packet of data to send.

length

Length of the data packet to be sent.

Return Value

Nothing

Comments

This is called to send a packet of data through the ALP 100 FPGA’s MAC. It calculates and sets

the IP & UDP checksum fields.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

142

4.6.1.4 MACSendPacketNoUpdChecksum

This is called to send a packet of data through the ALP 100 / Opal Kelly Interface without updating the

UDP checksum field.

void

 MACSendPacketNoUdpChecksum(

IN PEPL_PORT_HANDLE eplPortHandle,

IN NS_UINT8 *txBuf,

IN NS_UINT length);

Parameters

eplPortHandle

Handle to the port to send the data.

txBuf

Pointer to the packet of data to send.

length

Length of the data packet to be sent.

Return Value

Nothing

Comments

This is called to send a packet of data through the ALP 100 FPGA’s MAC. This is the same as

MACSendPacket() except it only calculates and sets the IP checksum field.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

143

4.6.1.5 MACFlushReceiveFifos

This is called to send flush out all the receive data.

void

 MACFlushReceiveFifos(

IN PEPL_PORT_HANDLE eplPortHandle);

Parameters

eplPortHandle

Handle to the port to send the data.

Return Value

Nothing

Comments

This procedure effectively flushes out all receive data by calling MACReceivePacket() until there is

no data left.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

144

4.6.1.6 MACReceivePacket

This is called to check for any data on the interface

NS_UINT

 MACReceivePacket(

IN PEPL_PORT_HANDLE eplPortHandle

IN NS_UINT8 *rxBuf,

IN NS_UINT length);

Parameters

eplPortHandle

Handle to the port to send the data.

rxBuf

Pointer to a buffer that will be filled in if any data is available

length

Length of the data packet to be sent.

Return Value

TRUE if data is available

FALSE if no data is available

Comments

None

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

145

4.6.1.7 MACReadReg

This is called read a PHY register using the FPGA MDIO interface.

NS_UINT

 MACReadReg(

IN NS_UINT mdioAddr,

IN OAI_DEV_HANDLE oaiDevHandle,

IN NS_UINT regIndex);

Parameters

mdioAddr

MDIO address to use for the transaction.

oaiDevHandle

Handle that represents the MDIO bus that the write operation should occur on. The definition

of this is completely up to higher layer software.

regIndex

Index of the register to read. Bits 7:5 select the register page (000-pg0, 001-pg1, 010-pg3,

011-pg4, etc.).

Return Value

TRUE if data is available

FALSE if no data is available

Comments

Issues a direct register read operation. Host software must implement this function as a

synchronous operation.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

146

4.6.1.8 MACWriteReg

This is called write a PHY register using the FPGA MDIO interface.

void

 MACWriteReg(

IN NS_UINT mdioAddr,

IN OAI_DEV_HANDLE oaiDevHandle,

IN NS_UINT regIndex,

IN NS_UINT value);

Parameters

mdioAddr

MDIO address to use for the transaction.

oaiDevHandle

Handle that represents the MDIO bus that the write operation should occur on. The definition

of this is completely up to higher layer software.

regIndex

Index of the register to read. Bits 7:5 select the register page (000-pg0, 001-pg1, 010-pg3,

011-pg4, etc.).

value

The value to write.

Return Value

Nothing

Comments

None

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

147

4.6.1.9 MacMIIReadReg

Issues a read request PHY control operation through the environment’s MAC interface.

NS_UINT

 MacMIIReadReg (

IN NS_UINT mdioAddr,

IN OAI_DEV_HANDLE oaiDevHandle,

IN NS_UINT8 *readRegRequestPacket,

IN NS_UINT length);

Parameters

mdioAddr

MDIO address to use for the transaction.

oaiDevHandle

Handle that represents the MDIO bus that the write operation should occur on. The definition

of this is completely up to higher layer software.

readRegRequestPacket

Fully formatted packet buffer containing a register read PHY Control Frame (PCF).

length

Specifies the length of the readReqRequestPacket buffer in bytes.

Return Value

Returns the value read from the register.

Comments

Host software must implement this function as a synchronous operation. This function is only

required if the system is supposed to implement PHY Control Frames.

The hardware only supports a single outstanding read request so there should only be 1 PCF in

the request and length should be 4.

NOTE: The PCF request packets need to be formatted in network order. For example, if

the 32-bit value is 0x42001122 the packet would be created as follows:

 *request + 0 = 0x42

 *request + 1 = 0x00

 *request + 2 = 0x11

 *request + 3 = 0x22

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

148

4.6.1.10 MacMIIWriteReg

Issues a write operation PHY control operation through the environment’s MAC interface.

void

 MacMIIWriteReg (

IN NS_UINT mdioAddr,

IN OAI_DEV_HANDLE oaiDevHandle,

IN NS_UINT8 *writeRegRequestPacket,

IN NS_UINT length);

Parameters

mdioAddr

MDIO address to use for the transaction.

oaiDevHandle

Handle that represents the MDIO bus that the write operation should occur on. The definition

of this is completely up to higher layer software.

writeRegRequestPacket

Fully formatted packet buffer containing a register write PHY Control Frame (PCF). This

frame may contain more then one register write request.

length

Specifies the length of the writeReqRequestPacket buffer in bytes.

Return Value

Nothing

Comments

Host software must implement this function as a synchronous operation. This function is only

required if the system is supposed to implement PHY Control Frames.

The hardware supports multiple write requests so any number of PCFs can be concatentated

together and the length should be a multiple of 4 (i.e. 4 times the number of PCFs in the request.)

NOTE: The PCF request packets need to be formatted in network order. For example, if

the 32-bit value is 0x42001122 the packet would be created as follows:

 *request + 0 = 0x42

 *request + 1 = 0x00

 *request + 2 = 0x11

 *request + 3 = 0x22

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

149

4.6.1.11 SetDuplex

This procedure is called to set the FPGA’s MAC interface duplex mode.

void

 SetDuplex(

IN PEPL_PORT_HANDLE portHandle,

IN NS_BOOL halfDuplex);

Parameters

eplPortHandle

Handle to the port to configure

halfDuplex

Set to TRUE to enable half duplex or FALSE to enable full duplex.

Return Value

Nothing

Comments

None

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

150

4.6.2 Cypress USB Related Functions

This provides the necessary functions to communicate with the ALP Nano board using the Cypress USB

interface. Since the hardware only supports the MDIO interface the only functionality provided through this

interface is what is available using PHY register reads and writes. The ifCyUSB.cpp/.h files provide the

wrapper for EPL to communicate through the CyAPI.lib interface.

4.6.2.1 ifCyUSB_Init

Called to initialize the interface and prepare it for operation.

NS_STATUS

 ifCyUSB_Init(

IN OAI_DEV_HANDLE oaiDevHandle);

Parameters

oaiDevHandle

Handle that represents the MDIO bus that the write operation should occur on. The definition

of this is completely up to higher layer software.

Return Value

NS_STATUS_SUCCESS

Function was successfully executed.

NS_STATUS_FAILURE

Function was not able to initialize the interface. This usually means that a device was not

found.

Comments

This call is not usually called directly. It is typically called from the EPLEnumDevice() function if it

hasn’t already been initialized.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

151

4.6.2.2 ifCyUSB_DeInit

This is called to shutdown interface.

void

 ifCyUSB_DeInit(

IN OAI_DEV_HANDLE oaiDevHandle);

Parameters

oaiDevHandle

Handle that represents the MDIO bus that the write operation should occur on. The definition

of this is completely up to higher layer software.

Return Value

Nothing

Comments

This call is not usually called directly. It is typically called from the EPLDeInitialize() function as

part of the overall EPL shutdown process.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

152

4.6.2.3 ifCyUSB_ReadMDIO

This is called read a PHY register using MDIO off of the Cypress USB device.

NS_UINT

 ifCyUSB_ReadMDIO(

IN PEPL_PORT_HANDLE portHandle

IN NS_UINT regIndex);

Parameters

portHandle

Handle to the port to send the data.

regIndex

Index of the register to read. Bits 7:5 select the register page (000-pg0, 001-pg1, 010-pg3,

011-pg4, etc.).

Return Value

TRUE if data is available

FALSE if no data is available

Comments

Issues a register read operation through the Cypress USB interface. Host software must

implement this function as a synchronous operation.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

153

4.6.2.4 ifCyUSB_WriteMDIO

This is called write a PHY register using MDIO off of the Cypress USB device.

void

 ifCyUSB_WriteMDIO(

IN PEPL_PORT_HANDLE portHandle

IN NS_UINT regIndex

IN NS_UINT value);

Parameters

portHandle

Handle to the port to send the data.

regIndex

Index of the register to read. Bits 7:5 select the register page (000-pg0, 001-pg1, 010-pg3,

011-pg4, etc.).

value

The value to write.

Return Value

Nothing

Comments

None

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

154

4.6.3 LPT Related Functions

This provides the necessary functions for implementing an MDIO bit banging interface on an LPT port.

Depending on the OS environment the use of this code requires additional driver support in order to be

able to access the LPT port directly. The use of this interface is discouraged and provided only as

an example of what could be done if other options are not available.

4.6.3.1 ifLPTReadReg

This is called read a PHY register using MDIO off of the LPT interface

NS_UINT

 ifLPTReadReg(

IN PEPL_PORT_HANDLE portHandle

IN NS_UINT regIndex);

Parameters

portHandle

Handle to the port to send the data.

regIndex

Index of the register to read. Bits 7:5 select the register page (000-pg0, 001-pg1, 010-pg3,

011-pg4, etc.).

Return Value

TRUE if data is available

FALSE if no data is available

Comments

Issues a register read operation through the LPT interface. Host software must implement this

function as a synchronous operation.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

155

4.6.3.2 ifLPTWriteReg

This is called write a PHY register using MDIO off of the LPT interface

void

 ifLPTWriteReg(

IN PEPL_PORT_HANDLE portHandle

IN NS_UINT regIndex

IN NS_UINT value);

Parameters

portHandle

Handle to the port to send the data.

regIndex

Index of the register to read. Bits 7:5 select the register page (000-pg0, 001-pg1, 010-pg3,

011-pg4, etc.).

value

The value to write.

Return Value

Nothing

Comments

None

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

156

4.6.3.3 ifLPTMdioReadBit

Reads one bit from the MDIO bus.

NS_BOOL

 ifLPTMdioReadBit(

IN OAI_DEV_HANDLE oaiDevHandle);

Parameters

oaiDevHandle

Handle that represents the MDIO bus that the read operation should occur on.

Return Value

TRUE if bit was asserted(1), FALSE otherwise (0).

Comments

This function must assert MDC, read the MDIO state, then de-assert MDC. In general there is a

maximum MDIO clocking frequency of 25 MHz (40ns clock). If the environment could possibly

allow MDIO clocking faster then this, this function should include a delay of at least 40ns so that

the max. clocking frequency is not violated.

Normally this function isn’t accessed directly. The higher level ifLPTReadReg() procedure

would be used to initiate a complete read sequence using this function.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

157

4.6.3.4 ifLPTMdioWriteBit

Writes one bit on the MDIO bus.

void

 ifLPTMdioWriteBit(

IN OAI_DEV_HANDLE oaiDevHandle,

IN NS_BOOL bit);

Parameters

oaiDevHandle

Handle that represents the MDIO bus that the write operation should occur on. The definition

of this is completely up to higher layer software.

bit

TRUE if a 1 should be written on the MDIO line, FALSE if a 0 should be written.

Return Value

Nothing

Comments

This function must assert MDC, drive the MDIO input line as specified, then de-assert MDC. In

general there is a maximum MDIO clocking frequency of 25 MHz (40ns clock). If the environment

could possibly allow MDIO clocking faster then this, this function should include a delay of at least

40ns so that the max. clocking frequency is not violated.

Normally this function isn’t accessed directly. The higher level ifLPTWriteReg() procedure

would be used to initiate a complete write sequence using this function.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

158

5 Test, Example, and Demonstration Code

The library contains several examples applications and scripts that provide some hints and direction for

how the library is intended to be used. This section provides an overview of those examples.

NOTE: The applications are intended to provide complete working examples of the setup and

operation of the library and stack functionality. While an attempt has been made to make

reasonable choices, the values or sequences used are not necessarily what would be used in a

production system for optimal performance.

5.1 EPLTestApp

5.1.1 Overview

EPLTestApp is a simple application that is designed to demonstrate the usage of the EPL core

functionality. All of the major functions are executed to show how to setup for the calls and how to parse

the results. As noted above a normal production system would probably not use the calls in this order or

in this way.

The application provides an example of you to scan for PHY devices using the library. Once a device is

found the RunTests() procedure is called to run all of the tests on the device.

5.1.2 Operational Details

This section provides highlights of how the application works.

5.1.2.1 EPL Initialize/Deinitialize

The library much be initialized before any other operations and deinitialized before leaving the application.

The EPLInitialize() call provides the opportunity to get the library setup for operations. The

EPLDeinitialize() function performs necessary cleanup operations like freeing memory that was allocated

for library structures. It does NOT free memory allocated by the application using the OAIAlloc() function.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

159

5.1.2.2 Scanning For Devices

This application shows an example of how to scan for devices. The library and example are built to

support the ALP/Opal Kelly board so the process is specific to that environment. To support that interface

the library is setup to support 3 levels (board, connector, and MDIO Address) of scanning. For other

hardware solutions the library can be expanded by adding another interface type and either using the

existing levels or changing the OAI_DEV_HANDLE_STRUCT to include members that are relevant for

that interface.

The basic scan process is as follows:
 #define MAX_BOARD 2
 #define MAX_CONNECTOR 4
 #define MAX_MDIO_ADDR 31
 for(nBrd=nBoard; nBrd < MAX_BOARD; nBrd++) {
 for(nConn=nConnector; nConn < MAX_CONNECTOR; nConn++) {
 for(nMDIO=nMDIOAddr; nMDIO < MAX_MDIO_ADDR; nMDIO++) {
 // Initialize structure for search
 memset(oaiDH, 0x00, sizeof(OAI_DEV_HANDLE_STRUCT));
 oaiDH->pcfDefault = bPCF;
 oaiDH->board = nBrd;
 oaiDH->connector = nConn;
 // Look for devices using the current enumeration type
 devHandle = EPLEnumDevice(oaiDH, nMDIO, iType);
 if (devHandle){ // Did we get something back?
 // Got a device, find out more
 devInfo = EPLGetDeviceInfo(devHandle);
 if(devInfo){ // Did we get valid info back?
 // Got info parse it out and run the tests
 if(devInfo->numOfPorts == 0) {
 printf("ERROR: No ports on device b:%d c:%d a:%d\n",
 nBrd+1, nConn+1, nMDIO);
 continue;
 } // if(devInfo->numOfPorts == NULL)
 RunTests(devHandle);
 // Move onto next device
 nMDIO += devInfo->numOfPorts;
 } // if(devInfo)
 } // if(defHandle)
 } // for(nMDIO...)
 } // for(nConn...)

 } // for(nBrd)

In the example above oaiDH is a pointer to a OAI_DEV_HANDLE_STRUCT and is used to tell hold

information used by the library in communicating with the device. As noted above in a real world solution

the structure will probably be modified as needed by a newly created interface module.

oaiDH->pcfDefault is used by the application to signal to the library if PHY Control Frames (PCFs) and

PHY Status Frames (PSFs) should be used exclusively to access PHY registers. This is necessary where

the device is not connected to an MDIO level interface. The device must be properly strapped (GPIO2

pulled high) in order for it to recognize PCFs for write operations. Once writes are successful, PSFs can

be configured to allow read response to be generated by the part. NOTE: Care must be taken when

using certain EPL calls such as EPLResetDevice(). Once the device is reset it will no longer

support register reads using the PCFs/PSFs until it is reconfigured.

5.1.2.3 Running Tests

Once a valid device is found the RunTests() function is called to make all of the calls into the library. It is

pretty straight forward and provides examples of how to setup for the calls and how to parse the results.

See the actual code for details. The code calls all the major functions of the library and can be expanded

or stripped down to perform any specific test or task.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

160

5.1.3 Command Line Parameters

EPLTestApp is setup to take some command line parameters. The actual parameters can be obtained by

running the application with a -?:

*** EPL Test Application v1.90 Build: 1

EPLTestApp [-H | -? | -V | -S | -D bb cc aa]

Commands:

 -H or -h or -? Display this help

 -V or -v Verbose Mode where

 -S or -s Scan only (don't run tests)

 -D bb cc aa Device where:

 bb is the board number

 cc is the connector number

 aa is the address number

-V – Verbose mode adds calls to the TDR Oscope functions.

-S – Scan only mode will scan through board, connector, and MDIO Address to identify what devices are

available but will not actually call RunTests() for each device.

-D – Device option that allows you to specify a specific board, connector, and MDIO Address to try and

test.

If –D or –S options aren’t specified the program will iterate through all board, connector, and MDIO

Addresses from 0 to MAX_BOARD, MAX_CONNECTOR, and MAX_MDIO_ADDR as defined in the code.

It will then call RunTests() for each device found.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

161

5.2 EPLTest.py

5.2.1 Overview

EPLTest.py is a simple test script that is designed to demonstrate the usage of the EPL core functionality

from Python. It roughly follows the sequence in EPLTestApp. The main purpose is to show how the

library can be used from Python as some of the calls are slightly different. All of the major functions are

executed to show how to setup for the calls and how to parse the results. As noted above a normal

production system would probably not use the calls in this order or in this way.

5.2.2 Operational Details

The script is designed to be called from a command prompt that has a “PATH” that includes the Python

executables. A sample command file (testit.cmd) is provided that contains the following to run the script:

@setlocal

@set PATH=c:\Program Files\python24

@set PYTHONPATH=.\

@python EPLTest.py %1 %2 %3 %4 %5

@endlocal

While the command file allows for passing parameters into the script the script currently isn’t setup to do

anything with parameters.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

162

5.3 PTPTestApp

5.3.1 Overview

PTPTestApp is a simple application that is designed to demonstrate the usage of the PTP functionality

provided by the library. The main goal of the program is to provide an example of how to get the PTP

stack configured and operational. Since most of the PTP functions are called internally by the init and

PTP stack they are not called by directly by PTPTestApp. The functionality provided by PTPTestApp is

designed to be similar to what is available in the ALP Framework Demo application. As noted above a

normal production system would probably not use the calls in this order or in this way.

The application is kept as simple as possible to show the operation of the system. In order to keep it

simple it doesn’t create a graphical interface and doesn’t use threads. Due to the simplistic nature there

are some limitations and restrictions on how it can be run. For example, because it doesn’t use formal

threading techniques the master and slave operations must be run in separate command line sessions.

This provides a good balance of simple design and demonstration of functionality. See below for more

details on running the application.

5.3.2 Running The Application

The application is a simple Windows console application. In order to run 2 sessions for a master and a

slave it is necessary to run each in a separate command window. Using command line parameters you

can specify which device (board, connector, and MDIO address) to use and whether it should be a master

or a slave. See the Command Line Parameters section below for details.

Each application connects to the EPL.DLL and receives a separate data space. So even though there is

only one version of the DLL loaded to each application it appears as a separate version. There is code in

the DLL that allow it to share data between all the applications connected to it but it isn’t used at the

moment. The main reason it isn’t used is because there are issues with the Opal Kelly (OK) DLL. The

OK DLL doesn’t allow multiple instances (HANDLES) to communicate with the same board. While shared

memory allows EPL to use the same OK DLL handle it still doesn’t work because the second instance of

the application is a separate Windows process and Windows enforce protect that prevents the second

application for accessing data owned by the first. This could all be overcome if the application was setup

with to start separate threads for master and slave that would be owned by the master process similar to

the way the ALP Framework does. However as explained earlier that would add an extra layer of

complexity to the application and wouldn’t enhance its ability to demonstrate how to configure and start the

stack. See below for the hardware configuration that is necessary to run the application.

Once the hardware requirements are met the application can operate as a master or a slave and can

interact with other sessions of the application or with the ALP Framework Application.

5.3.3 Hardware Requirements

In order to run the application as both a master and a slave it is necessary to have 2 separate ALP boards

and DP83640 modules. This allows each application to have access to the separate device using

separate instances/handles to the OK DLL. Each board should be configured to allow MDIO access from

the FPGA “MAC“ (both jumpers on J22 set for PMDIO_MII) and GPIO2 should be pulled high for

PCF/PSF operations.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

163

5.3.4 Command Line Parameters

The application is setup to take some command line parameters. The actual parameters can be obtained

by running the application with a -?:

*** PTP Test Application v1.90 Build: 1

PTPTestApp [-H | -? | -V | -F | -MM | -MS | -D bb cc aa | -T[nnnnn]]

Commands:

 -H or -h or -? Display this help

 -V or -v Verbose Mode where

 -F or -f Find all devices

 -MM or -mm Mode Master (Default)

 -MS or -ms Mode Slave

 -D bb cc aa Device where:

 bb is the board number

 cc is the connector number

 aa is the address number

 -T[nnnnn] Update Time where nnnnn is the interval in ms. 1000 is default

-V – Enables verbose mode and displays all messages coming into the stdioCallback function.

-F – Causes the program to scan for devices without actually initializing them.

-MM – Sets operation for MASTER MODE

-MS – Sets operation for SLAVE MODE

-D bb cc aa – Allows you to specify a specific device by board, connector, and address

-T[nnnn] – Tells the program to periodically make calls to PTPReadCurrentTime() and display the local

time from the device. NOTE: the time update operation is very simple and relies on messages coming

through the stdioCallback interface to work. Therefore, if no messages are being sent from the PTP

Stack the time update won’t happen.

Typical parameters for setting up a MASTER on the 1
st
 board connector 2 and MDIO address 1 are as

follows:

PTPTestApp –d 1 2 1 –v –mm –T1000

Typical parameters for setting up a SLAVE on the 2
nd
 board connector 4 and MDIO address 1 are as

follows:

PTPTestApp –d 2 4 1 –v –ms –T1000

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

164

5.3.5 Run Time Keystrokes

The application as a very simple keystroke handler built in that can control the application while it is

running. NOTE: the time update operation is very simple and relies on messages coming through the

stdioCallback interface to work. Therefore, if no messages are being sent from the PTP Stack the time

update won’t happen. The following keys are supported:

<ESC> - This will cause the application to call PTPKillThread() which will signal to the PTP Stack that it

should shutdown so the earlier call to PTPThreadC() will return and the application will exit.

<R> - This will cause the application to call PTPSetClock(0, 0) which will set the local time to 0.

<Shift><R> - This will call PTPKillThread() which will return from PTPThreadC() but instead of exiting it

will reconfigure and restart the stack by calling configurePTP() and startPTP(). This is essentially the

same as the Reset button in the ALP Framework GUI.

<T> - This will toggle on or off the update/display of the local time periodically.

<V> - This will toggle on or off the display of messages in the stdioCallback. This can be used to turn

on/off the stream of message coming from the PTP Stack.

<P> - This will toggle on or off the display of PSF messages in the statusUpdateCallback function.

<S> - This will toggle on or off display of offset statistics in the statusUpdateCallback function.

5.3.6 Scanning For Devices

The process of scanning for devices is essentially the same as EPLTestApp. For additional details refer

to the section above and the actual PTPTestApp source code.

5.3.7 PTP Initialization and Startup

After scanning for the device and initializing the communication path to the device the application calls

configurePTP() to initializes the data structures necessary to properly configure the PTP Stack.

The main structure that is used by the stack is the RunTimeOpts structure. See the RunTimeOpts section

below for a summary of the various structure members.

Once the structure is filled a call to startPTP() is made. Currently startPTP()simply calls PTPThreadC() in

the library to start up the stack. startPTP() could be expanded to create and initialize a separate thread for

the stack.

PTPThreadC() calls PTPInitHardware() to configure the stack using many of the PTP calls documented

above to finish the device configuration. Once the device is configured it calls protocol() which is the PTP

stacks main loop. It remains in this loop until PTPKillThread() is called to signal a shutdown.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

165

5.3.8 RunTimeOpts

The RunTimeOpts structure is the main structure that is used to configure and control the operation of the

PTP stack. Some of the members are used for configuration while others are used to in the internal

operation. This section documents what they are intended for. Use the source to determine exact usage

and implementation:

• Boolean revA1SiliconFlag; - This is used internally to apply bug fixes for A1 silicon. It is
automatically detected and doesn’t need to be initialized by the application.

• Integer16 syncInterval; - This defines the interval between sync messages. This should be set
the same for master and slave.

• Octet subdomainName[PTP_SUBDOMAIN_NAME_LENGTH]; - This is used to define the PTP
subdomain that the device lives on. Default value is “_DFLT” with alternates of “_ALT1”, “_ALT2”,

“_ALT3” as defined in constants.h

• Octet clockIdentifier[PTP_CODE_STRING_LENGTH]; -This defines the PTP clock identifier.

Default value is defined by IDENTIFIER_DFLT with others defined in constant.h.

• UInteger32 clockVariance; - This is the PTP clock variance. Default is defined by

DEFAULT_CLOCK_VARIANCE in constants.h

• UInteger8 clockStratum; - This is the PTP clock stratum and defaults to

DEFAULT_CLOCK_STRATUM defined in constant.h

• Boolean clockPreferred; - True or false value to specify whether or not this is the preferred
clock. This value is used in the BMC algorithm.

• Integer16 currentUtcOffset; - This is used to track the UTC Offset. Default is 0 as defined by

DEFAULT_UTC_OFFSET in constants.h

• UInteger16 epochNumber; - Used by the stack internally to track number times the clock as
been reset.

• Octet ifaceName[IFACE_NAME_LENGTH]; - Optional field used to define the interface.

• Boolean noResetClock; - This field is not really used in the stack. Default is FALSE as defined

by DEFAULT_NO_RESET_CLOCK in constants.h

• Boolean noAdjust; - This is used by initClock() to determine if the clock frequency needs to be
adjusted. This is not used in the Windows implementation of the stack. Set to FALSE.

• Boolean displayStats; - Use by protocol to determine if a debug message should be generated
to show stack statistics. Called every time a state change is made.

• Boolean csvStats; - Used to tweak operation of displayStats procedure.

• Octet directAddress[NET_ADDRESS_LENGTH]; - This is used by the Linux variant to set the
socket address. This is not used in the Windows implementation.

• Integer16 ap; - This is used internally in the operation of the stack. Default value is defined by

DEFAULT_AP in constants.h

• Integer16 ai; - This is used internally in the operation of the stack. Default value is defined by

DEFAULT_AI in constants.h

• Integer16 s; - This is used internally in the operation of the stack. Default value is defined by

DEFAULT_DELAY_S in constants.h

• TimeInternal inboundLatency; - This is the inbound latency. The default is defined by

DEFAULT_INBOUND_LATENCY in constants.h

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

166

• TimeInternal outboundLatency; - This is the outbound latency. The default is defined by

DEFAULT_OUTBOUND_LATENCY in constants.h

• Integer16 max_foreign_records; - This defines the number of foreign masters. Default is

defined by DEFUALT_MAX_FOREIGN_RECORDS in constants.h

• Boolean slaveOnly; - This is used to force the stack into slave only mode.

• Boolean probe; - This is used by the stack during startup to determine if it should probe for
clocks. This is not utilized in the Windows implementation.

• UInteger8 probe_management_key; - Used in the probe process. Not used in the Windows
implementation.

• UInteger16 probe_record_key; - Used in the probe process. Not used in the Windows
implementation.

• Boolean halfEpoch; - Used internally, not initialized in the Windows implementation.

• Octet destMACAddress[NET_ADDRESS_LENGTH]; - This is the default destination MAC
address that is used to send PTP messages. Default is: 10:00:5E:00:01:81

• Octet localMACAddress[NET_ADDRESS_LENGTH]; - This is the default source MAC address
that is used to send PTP messages. Default is 08:00:17:00:00:01 All device need to have unique
addresses.

• Boolean udpChksumEnable; - This is a flag that determines if the send routine will generate a
checksum on the UDP portion of the packet.

• Octet srcIPAddress[4]; - This is the IP address used to send messages. Each device must have
a unique number.

• void *eplPortHandle; - This is the handle to the EPL port object that is used to by the stack to
use the library to operate on the port.

• OAI_DEV_HANDLE_STRUCT *oaiHandle; - This is a pointer to the
OAI_DEV_HANDLE_STRUCT for the port/device. It is usd to communicate with the library.

• Boolean forceBMCFlag; - This is a flag that can be used to avoid the BMC operation and force a
clock to become the master.

• Boolean useOneStepFlag; - This is a flag that is used by the stack to configure and operate in
one-step mode. Current the stack only supports a master operating in one step mode. Slaves
should be configured to not be in one step mode.

• Boolean useTempRateFlag; - Flag used to enable/disable the use of temporary rate
adjustments as part of the slave tuning algorithm. Temporary rate adjustment offers the most
accurate time correction results. This must be enabled when the synchronized CLKOUT feature
is enabled. Default is TRUE

• NS_UINT tempRateLength; - This is the amount of time in microseconds to apply a temporary
rate adjustment to the slave hardware clock. The default is 10000. The max value is 536870.

• Boolean limiterEnable; - This enables the offset limiter. Useful with variable delay links.
Default is TRUE

• NS_UINT limiterThresh; - Error offset threshold where limiting will be applied. Default is 150

• NS_UINT limiterThreshMax; - Error offset threshold where result will be discarded. Default is
250.

• NS_UINT limiterGoodThresh; - Offsets less than this will be considered good tuning results and
will be counted. Default is 100.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

167

• NS_UINT limiterLimitMultiplier; Percent of over limit offset to use in offset correction. Default
is 25.

• TimeInternal syncAdjustValue; - This is the value added to all sync transmit timestamps.
Contains seconds and nanoseconds. Can be positive or negative. Default is 0.

• TimeInternal delayReqAdjustValue; - This is the value added to all delay request receive
timestamps. Contains seconds and nanoseconds. Can be positive or negative. Default is 0.

• int numRateSamples; - Number of offset rate correction measurements that will be averaged
together to perform an actual rate adjustment to the PHY device. This is also the number of
syncs between hardware clock rate adjustments. Minimum is 2 and maximum is 64. Default is 4.

• int numRateAvgs; - This is the number of average rate correction that will be averaged together
from the next hardware clock rate adjustment. Minimum is 2 and maximum is 64. Default is 2.

• int numOneWayAvgSamples; - This is the number of instantaneous one way delay
measurements that will be averaged together to form the average oen way delay value. Minimum
is 2 and maximum is 64. Default is 8.

• Boolean syncEthMode; - This enables the use of synchronous ethernet mode. This mode
provides the most accurate time synchronization. This mode of operation is only functional when
the link speed is 100Mb.

• Boolean phaseAlignClkoutFlag; - This enabled phase aligning the CLKOUT signal with the
master’s CLKOUT signal. The slave must be configured to use temporary rate adjustments.

• Boolean clkOutEnableFlag; - This enables the PHY device’s CLKOUT signal.

• NS_UINT clkOutDivide; - This sets the PTP Clock divide-by value. This is the divide-by value
for the output clock. The output clock is divided from the internal 250Mhz clock. Valid range is
from 2 to 255. giving a nominal output frequency range from 125Mhz down to 980.4kHz. Divide-
by values of 0 and 1 are not valid and will stop the output clock.

• Boolean clkOutSpeed; - This enables faster PTP clock output I/O rise/fall time for the divide by
N clock output pin.

• Boolean clkOutSource; - This defines the CLKOUT source. Defined as boolean in stack but is
really an int typedef so multiple values are used. 0 is FCO – Link loss loses phase alignment, 1 is
FCO at 100Mbps only, and 2 is PGM. The 250Mhz clock source may be selected from either the
internal FCO or PGM. The FCO offers reduced jitter in the output clock, while the PGM offers a
wider range of frequency correction in the output clock.

• Boolean ppsEnableFlag; - This enables the pulse per second (PPS) output on the configured
GPIO.

• NS_UINT ppsStartTime; - This specifics the PPS start time in seconds.

• Boolean ppsRiseOrFallFlag; - This specifies whether the PPS signal is rising or falling edge.

• NS_UINT ppsGpio; -This specifies the GPIO that will be used for the PPS signal. Valid values
are 1-12. Default is 1.

• NS_UINT clkOutPeriod; - This is calculated by PTPInitHardware to be clkOutDivide * 4.

• Boolean haveLoopbackedSend; - This is an internal flag used to process messages.

• NS_UINT lastSendLength; - This is an internal flag used to process messages.

• Octet txBuff[2048]; - This is an internal flag used to process messages.

• Octet rxBuff[2048]; - This is an internal flag used to process messages.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

168

5.3.9 Callbacks

PTPThreadC() is designed to accept pointers to 2 functions. These pointers are designed to provide the

application with visibility into the operation of the stack for debug and monitoring of state. The following

callbacks are defined:

5.3.9.1 stdioCallback

This is a pointer to a function in the application that is accessible from the thread that calls this function. It

should be compatible with the following prototype.

void printMsg(int msgType, char *msgString)

// Display message from stack

// Input: msgType - Type of message provided

// 0 - Debug Message (verbose)

// 1 - Debug Message (normal)

// 2 - Nofication Message

// 3 - Error Message

// msgString – The message string

The callback msgType parameter can be used filter messages as needed. Most messages currently in

the library are type 1 for normal debug.

NOTE: this function should not perform too much work. If possible it should simply place the

messages in a queue to be processed by a different thread otherwise significant delays can be

introduced into the stack.

5.3.9.2 statusUpdateCallback

This is a pointer to a function that performs status update for the library. The library will call this function

to provide operational information to the application.. It should be compatible with the following prototype.

void ptpStatusUpdate(NS_UINT8 stsType, void *stsData)

// Display message from stack

// Input: stsType - Type of status provided

// STS_PSF_DATA (1) –PHY Status Frame Data

// STS_OFFSET_DATA (2) – Offset data

// stsData – pointer to actual data

The basic operation of this callback should be as follows:

 switch(stsType) {

 case STS_PSF_DATA:

 {

 PHYMSG_MESSAGE_TYPE_ENUM msgType;

 PHYMSG_MESSAGE phyMsg;

 NS_UINT8 *nxtMsg;

 // Normally we'd call IsPhyStatusFrame() using a raw packet but

 // since we got here we already know that the data is the 1st

 // of potentially several PSFs so we just process it.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

169

 nxtMsg = (NS_UINT8 *)stsData;

 while(nxtMsg) {

 nxtMsg = GetNextPhyMessage(devPort, nxtMsg, &msgType, &phyMsg);

 if(!nxtMsg || !bPSF) {

 continue;

 }

 switch(msgType) {

 case PHYMSG_STATUS_TX:

 case PHYMSG_STATUS_RX:

 case PHYMSG_STATUS_TRIGGER:

 case PHYMSG_STATUS_EVENT:

 case PHYMSG_STATUS_ERROR:

 case PHYMSG_STATUS_REG_READ:

 default:

 // do something with the PSFs

 break;

 }

 } // while(nxtMsg)

 }

 break;

 case STS_OFFSET_DATA:

 {

 STS_OFFSET_DATA_STRUCT *stsODS = (STS_OFFSET_DATA_STRUCT *)stsData;

 if(bSTSUpdate) {

 printf("ptpStatusUpdate %d.%d %d.%d %d.%d %d.%d\n",

 stsODS->offset_from_master.seconds,

 stsODS->offset_from_master.nanoseconds,

 stsODS->master_to_slave_delay.seconds,

 stsODS->master_to_slave_delay.nanoseconds,

 stsODS->slave_to_master_delay.seconds,

 stsODS->slave_to_master_delay.nanoseconds,

 stsODS->oneWayAvg.seconds,

 stsODS->oneWayAvg.nanoseconds);

 }

 }

 break;

 default:

 break;

 } // switch(stsType)

The operation of this function is designed to support functionality similar to what is available in the ALP

Framework demo. If this functionality is used at all it is expected that both the library and the operation of

the procedure will be modified to meet the desired needs of the system.

NOTE: this function should not perform too much work. If possible it should simply place the

messages/data in a queue to be processed by the application in an application thread.

N a t i o n a l S e m i c o n d u c t o r

N a t i o n a l S e m i c o n d u c t o r

170

5.3.10 PTP Stack Operation

As noted above the library contains an implementation of a PTP stack. It was derived from an open

source project found at: http://sourceforge.net/projects/ptpd/ The code has been tweaked to operate as

part of the EPL binary.

The application provides initialization of the stack and can display messages/updates from the stack but

doesn’t have any significant runtime control over the operation of the stack. Once the stack is running it

pretty much runs automatically. Tweaking and tuning of the stack is outside the scope of this document.

NOTE: The inclusion of this stack is for demonstration and evaluation purposes only. There is no

guarantee that the functionality provided is complete or accurate. No claims are made as to the

level of precision provided by this particular implementation.

