
SCANSTA101 STA Master
Design Guide	

2010	 Revision 1.0	

Developing a System with Embedded
IEEE 1149.1 Boundary-Scan Self-Test

national.com/scan

2

Table of Contents

Acknowledgements... 4
A Word about the Automatic Test Pattern Generator Tools... 5
1.	 Introduction and Scope... 6

1.1.	 About this Design Guide.. 6
1.2.	 An Engineer’s Historical Perspective.. 6
1.3.	 Purpose of this Design Guide... 7

2.	 A Brief Introduction to Boundary Scan.. 8
2.1.	 National’s Boundary Scan Family.. 8
2.2.	 The IEEE 1149.1 Standard.. 8
2.3.	 Boundary Scan Basics.. 9
2.3.1.	 Elements of the IEEE 1149.1 Test Access Port (TAP).. 9
2.3.2.	 Architecture of the IEEE 1149.1 TAP.. 9
2.3.3.	 Use of the IEEE 1149.1 TAP.. 12
2.4.	 Summary and Conclusions.. 13

3.	 Test System Description... 14
3.1.	 The SCANSTAEVK Demonstration Kit... 14
3.1.1.	 PCI-1149.1/101 SCANSTA101 PC Card... 14
3.1.2.	 SCANSTAEVK Demonstration Kit Backplane... 14
3.1.3.	 SCANSTA111 Intermediate Board... 15
3.1.4.	 Target SerDes Board.. 17
3.1.5.	 Demonstration Kit Summary... 19
3.2.	 Test Development and Deployment Software... 19
3.2.1.	 Automatic Test Pattern Generation... 19
3.2.2.	 Conversion to EVF2 Format... 20
3.2.3.	 Embedded Platform Software... 20
3.2.4.	 ScanVec... 21
3.3.	 Summary... 21

4.	 Hardware Design Considerations for Built-In Self-Test... 22
4.1.	 System Function and Built-In Self-Test.. 22
4.1.1.	 Selection of JTAG-Enabled Devices.. 22
4.1.2.	 Selection of JTAG Support Devices.. 22
4.1.3.	 Delivery of the Test Vectors.. 23
4.1.4.	 TAP Connections... 23
4.1.4.1.	 Single JTAG TAP over the Backplane... 23
4.1.4.2.	 Multiple JTAG TAPs over the Backplane... 24
4.1.4.3.	 Parallel-Port Communication over the Backplane... 25
4.2.	 Test Implementation... 27
4.2.1.	 Place and Route the JTAG Support Devices... 27
4.2.2.	 Connect the Parallel Processor Interface of the SCANSTA101 STA Master(s).. 27
4.2.3.	 Connect the TAP... 28
4.2.4.	 Asynchronous Reset TRST*.. 28
4.2.5.	 Test Clock (TCK).. 28

3national.com/scan

Table of Contents

4.2.6.	 Test Mode Select (TMS).. 28
4.2.7.	 Test Data In (TDI) and Test Data Out (TDO)... 29
4.3.	 Summary... 30

5.	 Development of a Boundary Scan Test Pattern.. 31
5.1.	 ATPG Tool Selection... 31
5.2.	 Producing the Netlist... 31
5.3.	 Entering the Netlist into the ATPG Tool... 32
5.4.	 Adding Information to the Netlist... 33
5.4.1.	 Power and Ground Nets.. 33
5.4.2.	 Resistors... 33
5.4.3.	 Transparent Devices.. 34
5.4.4.	 Adding BSDL Models... 34
5.4.5.	 Modifying the Connections in the Netlist... 36
5.5.	 Generation of the Boundary Scan Test and SVF File... 37
5.5.1.	 Boundary Scan Test Strategy... 37
5.5.2.	 Serial Vector Format... 37
5.6.	 Generation of an EVF2 File using EVF Workbench... 39

6.	 Embedded Vector Delivery Software... 41
6.1.	 Development of the System Controller Software... 41
6.1.1.	 National Semiconductor Code... 41
6.1.2.	 Interface to the EVF2 File and Error Handling... 42
6.1.2.1.	EVF2 File Read Function.. 42
6.1.2.2.	Error Handler... 43
6.1.2.3.	Fail Handler.. 43
6.1.2.4.	Register Trace Handler.. 43
6.1.2.5.	Debug Handler.. 43
6.1.2.6.	Polling Handler.. 43
6.1.2.7.	Timeout Value.. 44
6.1.2.8.	User Pointer Arguments.. 44
6.2.	 Interface to the SCANSTA101 Master Registers.. 45

7.	 Dissecting the Built-In Self-Test... 46
7.1.	 The SVF File... 46
7.2.	 The EVF2 File.. 53

8.	 Putting It All Together.. 61
8.1.	 Demonstration of the Built-In Self-Test.. 63
8.2.	 Summary and Conclusions.. 63

9.	 Sample Files.. 65
9.1.	 BSDL Files.. 65
9.2.	 SVF File... 68
9.3.	 EVF2 File... 70

10.	References	.. 75

4

Acknowledgements

Permission to use screen capture images and listings was provided by
Corelis, JTAG Technologies, and Flynn Systems Corporation. Engineers
from these companies also provided valuable assistance and consulting
in the development of the material presented in this design guide. Their
help is gratefully acknowledged.

5national.com/scan

A Word about the Automatic Test Pattern Generator Tools

This design guide focuses on built-in self-test. The Joint Test
Action Group (JTAG) Test Access Port (TAP) can be used for
much more than built-in self-test, but this is beyond the scope of
this design guide. For the built-in self-test example in this design
guide, Automatic Test Pattern Generator (ATPG) tools from three
vendors were used. The three tools were JTAG Technologies
ProVision, Flynn Systems onTAP, and Corelis ScanExpress TPG.

Each ATPG tool vendor supplies test hardware designed to
work with that vendor’s ATPG tool. All three vendors provide
their ATPG tools as part of a complete test system. These test
systems are useful for manufacturing test, engineering debug,
and any other areas where the JTAG TAP finds application
beyond built-in self-test.

The procedures for using these tools described in this design
guide focus on the use of the tools to produce ’static‘ Serial
Vector Format (SVF) files. These files are generated prior to
system deployment using an ATPG tool, which is external to the
system to be tested. The files are then used for built-in self-test
on multiple units of the system to be tested. This procedure
generally produces limited diagnostic information. Extensive
diagnostic information requires a more dynamic approach.
All of the ATPG tool/test hardware systems are designed to
enable extensive diagnostics by performing dynamic, flexible,
and powerful board tests using the JTAG TAP. These diagnostic
tests can be tailored by the ATPG systems “on the fly” to zero in
on a detected fault and diagnose it. For most applications, the
use of these tools for manufacturing test provides capabilities
beyond those that can be reasonably implemented in a built-in
self-test.

The design guide focuses on the use of these tools to produce
’static‘ SVF files for deployment on embedded test hardware for
the purposes of built-in self-test. All of these tools can be used
for and perform equally well for this purpose. The selection of
an ATPG tool is a matter of personal preference and company
history. Nothing in this design guide is intended to, or should
be interpreted to suggest that one or the other of these tools
is preferred for built-in self-test. They can all perform the job
described in this design guide, and they can all do much more.

Discussion of the capabilities and merits of the various tools is
beyond the scope of this design guide. For further information
on the ATPG tools and the associated test systems, it is
suggested that the reader contact the various tool vendors.

6

1. Introduction and Scope

1.1. About this Design Guide
This design guide provides a roadmap for implementing IEEE
1149.1 boundary scan functionality on a printed circuit board.
The guide is divided into several major chapters:

• Introduction and Scope – This chapter provides a brief
historical introduction to boundary scan techniques and
describes the purpose and scope of the design guide itself.

• A Brief Introduction to Boundary Scan – National’s SCANSTA
family of boundary scan support devices is introduced in this
chapter. This chapter also provides a high-level summary of
IEEE 1149.1 operations.

• Test System Description – This chapter describes the system
used as an example in the guide. The system includes
hardware and software. It is meant to model, in a simplified
way, an operational system that might include IEEE 1149.1
built-in self-test.

• Hardware Design Considerations for Built-In Self-Test – The
hardware design considerations involved in implementing
built-in self-test using the IEEE 1149.1 TAP are described. The
conclusion of this chapter is that IEEE 1149.1 operation is very
easy to implement from a hardware standpoint.

• Development of a Boundary Scan Test Pattern – This chapter
describes the steps involved in using commercially-available
Automatic Test Pattern Generator (ATPG) software to generate
IEEE 1149.1 boundary scan test patterns for built-in self-test.

• Embedded Vector Delivery Software – The embedded
vector delivery software to be implemented on the system
controller is outlined in this chapter. The software provided
by National Semiconductor for embedded vector delivery is
straightforward to implement and flexible.

• Dissecting the Built-In Self-Test – This chapter takes a closer
look at the mechanics of the IEEE 1149.1 operation. The
“behind-the-scenes” look at boundary scan included in this
chapter is meant to provide deeper insight into how boundary
scan works.

• Putting It All Together – All of the design considerations
presented earlier are summarized. In this chapter, an example
of a boundary scan built-in self-test in operation is presented.

• Sample Files – The sample file listings provide complete
listings of the data files required for the IEEE 1149.1 built-in
self-test development and deployment.

• References – This section provides references used in the text
and additional information.

Note: Active low signals are designated in this design guide by
a trailing asterisk. For example, the active low asynchronous
reset line is designated TRST*. Other conventions commonly
used for this type of signal are an overbar, which is used in
some of the figures in this design guide, and a trailing slash.

1.2. An Engineer’s Historical Perspective
In the early days of printed circuit (PC) board design and
development, PC boards were simple enough to be layed out by
hand. 1/8 inch tape and pre-cut pad shapes were used to lay out
boards with through-hole devices at 2x or 4x scale on sheets of
Mylar. By the standards of the time, this process of cutting tape
and placing pads with a #11 X-acto knife was state of the art.

Then, over the next twenty years, devices went from through-
hole to surface mount, and then to advanced chip-scale
packages and ball-grid arrays. PC boards went from one or two
layers to fifteen, twenty, or more. Contact pitches got smaller
as did the pads on the board. It became difficult even to touch
a scope probe to a pad on a device for testing because the pad
was smaller than the probe tip – often much smaller. On many
traces the pads were underneath the device, or on an interior
layer that wasn’t accessible.

PC boards became denser and their functions became more
sophisticated. Engineers could and did design much more
functionality into much less space. Twenty boards with twenty
integrated circuits each were replaced by one much smaller
board with ten integrated circuits of greater functionality
and higher cost. Testing these highly-integrated boards was
more critical, because of the relatively higher cost of the
sophisticated boards, and more difficult because of their small
geometries and buried circuitry. PC board testing was a problem
waiting for a creative solution.

The creative solution came about in the form of the IEEE
1149.1 boundary scan test standard1, also known as JTAG
(for Joint Test Action Group, the working group that originally
formulated it). The standard is a set of design rules for
integrated circuits (principally digital integrated circuits at first
but now, increasingly, other integrated circuits as well) which
is designed to facilitate board-level testing. The standard does
this by specifying an auxiliary test port on each integrated
circuit called the Test Access Port or TAP and protocols to
address and use it. Through the TAP, many, most, or even all of
the pins of an integrated circuit are accessible for testing. If a
pin on a device is supposed to be connected by a board trace
to a pin on another device, and if both pins are accessible for
testing through the TAP, then the connection between them
can be tested. And if many, or most, or all of the connections

7national.com/scan

on the board can be tested then many board failures can
be detected, diagnosed, and perhaps even repaired early in
the manufacturing process where test and debug are less
expensive.

Since the JTAG standard was first formulated, new applications
for it have proliferated. For example, JTAG is now widely
used for in-system programming of programmable devices
as described by IEEE Standard 15322. JTAG is also used to
provide built-in self-test capability for modern high-density PC
boards. To assist in the deployment of these systems, National
Semiconductor has developed a family of JTAG support devices.
These include the SCANSTA101 JTAG System Test Access (STA)
master3, the SCANSTA1114 and SCANSTA1125 JTAG Scan Bridge
multiplexers, and the SCANSTA476 analog voltage monitor6.
These devices solve system problems that are difficult to attack
by any other means.

1.3. Purpose of this Design Guide
Development of a useful boundary scan test is the classic
journey of 1000 miles that begins with a single step. This design
guide describes how to take that first step – and how to take the
next several steps as well.

This design guide describes a case study: a simple board
designed specifically to demonstrate boundary scan test. The
design guide describes the board features enabling boundary
scan test. As the board is described it will become apparent
that, from a hardware perspective, the addition of boundary
scan test to the board requires very little additional engineering
beyond that required for the board’s base functionality.

The design guide also describes the use of commercially-
available Automatic Test Pattern Generator (ATPG) tools to
develop test patterns for the demonstration board. The look and
feel of each tool is unique, but the use models for all of them are
very similar – similar enough so that a detailed demonstration
with one tool will also be instructive to users of other tools.

Once the test patterns have been generated, the design guide
will take the reader behind the scenes to describe what the test
patterns are really meant to accomplish. The design guide will
also take the reader through the process of converting the test
pattern output to a form useful for deployment in an on-board
test application, and will show how to convert it back into a
human-readable form to gain further insight into what the built-
in test will really do when it is deployed.

Finally, the design guide will describe one method of deploying
the test pattern to the board, with the aim of providing a useful
guide to the system engineer developing a similar built-in test
for an operational board or system. It will describe how the test
is conducted and what both success and (artificially-induced)
failure look like. The design guide will conclude with some
useful general conclusions and some suggestions on how to
follow the example described here.

This design guide was written from the perspective of what a
system designer would do in developing a boundary scan self-test.
The objective was to show the reader what steps are required and
where the pitfalls are so that the reader can avoid these when he/
she develops a boundary scan-based board self-test.

8

2. A Brief Introduction to Boundary Scan

2.1. National’s Boundary Scan Family
National manufactures a family of digital integrated circuits
targeted at board- and system-level applications using the IEEE
1149.1 system test access port, also known as boundary scan.
These devices include:
• SCANSTA101 Low-Voltage IEEE 1149.1 System Test Access

(STA) Master
• SCANSTA111 Three-Port Addressable Multidrop IEEE 1149.1

JTAG Multiplexer
• SCANSTA112 Seven-Port Addressable Multidrop IEEE 1149.1

JTAG Multiplexer
• SCANSTA476 Eight-Input IEEE 1149.1 Analog Voltage Monitor

These devices enhance the functionality and ease-of-
use of the IEEE 1149.1 system test access port. National’s
SCANSTA101 low-voltage IEEE 1149.1 STA master, for example,
enables in-system IEEE 1149.1 boundary scan and in-system
programming for programmable devices. Its primary function
is to present to an on-board or external controller a simplified
parallel interface to the serial IEEE 1149.1 boundary scan chain.
The SCANSTA101 STA master is supported by National software
that simplifies the interface to the on-board microcontroller and to
the design tools that generate the boundary scan test vectors.

National’s boundary scan support software includes:
• EVF Workbench which provides a graphical user interface for

converting Serial Vector Format (SVF) files to Embedded Vector
Format 2 (EVF2) files

• SVF2EVF which is the SVF to EVF2 compiler
• EVF2 vector delivery -- the suite of embedded functions that

drive the SCANSTA101 STA master from the EVF2 file

National’s SCANSTA111 and SCANSTA112 addressable
multidrop IEEE 1149.1 STA multiplexers enable simplification
of system designs by breaking long boundary scan chains
into multiple, shorter chains. This capability is supported in
Automatic Test Pattern Generator (ATPG) software from several
major software vendors. These devices enable faster, easier-to-
implement, and more robust in-system test access.

National’s SCANSTA476 eight-input IEEE 1149.1 analog voltage
monitor extends the digital IEEE 1149.1 into the analog domain.
The SCANSTA476 monitor enables the monitoring of analog
voltages for in-system test using protocols similar to those of
the standard IEEE 1149.1 system test access port.

2.2. The IEEE 1149.1 Standard
The system Test Access Port (TAP) was defined in IEEE
Standard 1149.1-19901 7. As the name indicates, this standard
was ratified in 1990, nearly two decades ago as of this writing.
This standard and its subsequent updates defined a set of
design rules, mostly meant to apply to integrated circuits, which
were intended to facilitate board-level tests. Dense, multi-layer
printed circuit boards with surface-mounted components, often
on both sides, were becoming increasingly common. This made
it difficult to ensure that a conventional board tester would
be able to access all the required test points. The standard
provides a remarkably ingenious solution to this problem. The
cost of the ingenuity of the solution is that its implementation
may be complex. This design guide describes how National’s
devices can be used to implement a boundary scan-based built-
in self-test quickly and easily. These devices, and the software
that supports them, are designed to reduce the complexity of
the IEEE 1149.1 interface.

This design guide focuses on the IEEE 1149.1 system test access
port and National’s family of devices that support it. The design
guide provides a roadmap for system designers implementing
in-system boundary scan with National’s IEEE 1149.1 support
(SCAN) devices. It answers basic questions including:

“What can National’s SCAN devices do for me?”
– Section 2.3.3. Use of the IEEE 1149.1 TAP

“How do National’s SCAN devices work?”
– Section 3.1.1. PCI-1149.1/101 SCANSTA101 PC Card
– Section 3.1.3. SCANSTA111 Intermediate Board

“How do I implement National’s SCAN devices in my board
design?”
–Chapter 4. Hardware Design Considerations for Built-In
 Self-Test

 “How do I generate the test vectors National’s SCAN devices
will use?”
–Chapter 5. Development of a Boundary Scan Test Pattern

“How do I convert the output of my Automatic Test Pattern
Generator program to a format the National SCAN devices
understand?”
– Section 5.6. Generation of an EVF2 File Using EVF
Workbench

9national.com/scan

“How can I deliver the test vectors to the SCANSTA101
master in my system?”
– Chapter 6. Embedded Vector Delivery Software

“What is really going on ‘under the hood’ in the boundary
scan process?”
– Chapter 7. Dissecting the Built-In Self-Test

“What should I expect if my board is working correctly?
What if it has a manufacturing defect?”
– Section 8.1. Demonstration of the Built-In Self-Test

This design guide is intended for engineers designing new
systems with National’s SCAN devices and for engineers
supporting systems that already include National’s SCAN
devices. The information contained herein will enable system
designers to more easily utilize National’s SCAN devices in
their designs, leading to improved ease-of-use, acceleration of
design cycles, improved manufacturability, and superior system
designs.

2.3. Boundary Scan Basics
The history of and motivation for boundary scan testing
techniques is a fascinating subject, and is well worth an
investment of several hours of research. The references in
Chapter 10 include excellent treatments of these subjects. They
are recommended reading for anyone contemplating the use of
JTAG.

This design guide, however, begins with the assumption that
the reader has already made the decision to use the IEEE 1149.1
TAP for in-system boundary scan testing or programming of
programmable logic devices. In this section a generic example
system is described and demonstrated, along with where
and how boundary scan can be applied. Following is a brief
description of the IEEE 1149.1 TAP and what it can do.

2.3.1. Elements of the IEEE 1149.1 Test Access Port (TAP)

From a conceptual standpoint, the IEEE 1149.1 TAP consists of
several functional units:

1.	 Four (or five) pins on each digital device in the system
implementing the IEEE 1149.1 TAP. These pins form the
test access port and they are separate from, and may not
be shared with, any other functions of the device. The
four required pins are Test Clock (TCK), Test Mode Select
(TMS), Test Data In (TDI) and Test Data Out (TDO). The
optional pin is an asynchronous, active low Test Reset
(TRST*).

2.	 Digital circuitry which forms the TAP controller on each
device implementing the IEEE 1149.1 TAP. The TAP
controller is a finite state machine with functionality fully
described in the standard.

3.	 An instruction register for the TAP on each device
implementing the IEEE 1149.1 TAP. Conceptually, this
register controls the behavior of the other registers in the
device which are associated with the IEEE 1149.1 TAP.

4.	 A one-bit bypass shift register which can be inserted (by
using the instruction register) between the TDI and TDO
pins.

5.	 Boundary register cells between each pin of the device
and the internal logic connected to the pin. These
devices form a boundary register which can be inserted
(by using the instruction register) between the TDI and
TDO pins. This is the key element of the IEEE 1149.1
standard.

6.	 Other registers and control logic, some required and
some optional.

The boundary register cells provide an alternate way to control
all the outputs of the device as seen from the device pins. They
also provide a way to monitor all the inputs of the device as
seen from the device pins. This is like having the ability to probe
every line connected to every device (or at least every device
that implements the IEEE 1149.1 TAP) in the system. Clearly this
is an extremely powerful test capability.

But this is not all that the TAP provides. The boundary register
cells can also control the inputs of the device as seen from its
core logic, and they can also monitor the outputs of the device
as seen from its core logic. This provides both the ability to test
any device implementing the IEEE 1149.1 TAP, and the ability
to control the inputs of any device independent of the other
circuitry on the board.

Finally, the standard for the TAP provides extensibility. It permits
device manufacturers to use the IEEE 1149.1 TAP for other
purposes. One common use for the IEEE 1149.1 TAP is in-system
programming of programmable devices.

2.3.2 Architecture of the IEEE 1149.1 TAP

Seen from the viewpoint of the TDI and TDO pins, the IEEE
1149.1 TAP is a one-bit serial port. Data is clocked in to the
TAP one bit at a time and clocked out one bit at a time. What
happens between the TDI and TDO pins is controlled by an
additional single control bit, the Test Mode Select (TMS).
These three pins, along with the Test Clock (TCK), can be
used to provide a remarkable range of behavior. The trick is

10

A Brief Introduction to Boundary Scan

to determine what sequence of bits on the two input pins will
produce the desired behavior in the system and what sequence
of bits to look for on the output pin to determine the results
of the desired test. Fortunately this problem is amenable to a
significant degree of automation.

Most modern digital devices are designed using software
tools that provide additional levels of abstraction between the
desired behavior (often described using a hardware description
language such as VHDL or Verilog) and the digital circuitry
required to implement it (gates, flip-flops, latches, multiplexers,
etc., usually many of them connected in a complex fashion).
Similarly, the IEEE 1149.1 TAP was conceived with the intent
to rely on software tools to generate the required digital
sequences to produce the desired behavior in the system.
This simplifies the job of the system designer since he or she
does not need to take the design down to the lowest level of
operation (long sequences of bits). Nonetheless, understanding
this lowest level of operation will help the system designer use
National’s SCAN devices effectively.

A conceptual design of the IEEE 1149.1 TAP is shown in Figure
2-1. The cloud labeled “Logic” represents all the internal
logic of the device. The port labeled “Input” represents
one of the input pins of the device and the port labeled
“Output” represents one of the output pins. The flip-flops and
multiplexers between the pins of the device and the internal
logic represent a conceptual description of one cell in the
boundary register.

Each cell in the boundary register holds one bit. The input to
each cell can be driven by (1) an output from the previous cell or
(2) for an input pin, the input to the device at the pin, or (3) for
an output pin, the output from the device’s internal logic. When
the output of one cell drives the input to the next, the boundary
register looks like a shift register. The contents of the boundary
register can be unloaded in a parallel operation into the internal
logic inputs to the device or into the output pins of the device.
This arrangement provides a powerful mechanism for test
access.

As seen in the figure, there are other registers that can be
connected between TDI and TDO. The boundary register is
made up of all the boundary cells, and it can be connected to
the operational parts of the circuitry. Other registers such as
the instruction register, the ID register, and the bypass register
are not directly connected to the operational circuitry. The IEEE
1149.1 standard specifies that the TAP controller determines
which register is connected between TDI and TDO and what
data it shifts in and out of the TAP. The TAP controller is
implemented as a 16-state finite state machine. A state diagram
of the TAP controller is shown in Figure 2-2.

The labels on the state transition arrows are the values asserted
on the TMS line by a JTAG controller such as National’s
SCANSTA101 STA master. To understand the operation of the
TAP controller, what happens when the TMS line is held high
for five clock cycles (this is called a “five high TMS reset”)
should be considered. Start from any state in the state diagram

TAP Controller

Instruction Register

ID Register
ByPass Register

Boundary Register

TCK

TRST
TMS

TDI

TDO

Logic Input

0

1

0

1 Output

Figure 2-1. Architecture of the IEEE 1149.1 Test Access Port (TAP)

11national.com/scan

and follow five transitions with the TMS line held high. The
intermediate states through which the TAP controller state
machine passes depend upon where it starts, but after five
transitions with the TMS line held high the state machine will
always be in the Test-Logic-Reset (TLR) state, and it will stay
there as long as the TMS line is held high.

There are four “stable” states in the above diagram. These
are states in which the TAP controller can remain for as many
successive TCK cycles as desired by holding the TMS line at a
given value. In these “stable” states, the only operations that
occur in the TAP are operations that have been previously set
up and activated. These states are Test-Logic-Reset, Run-Test/
Idle, Pause-Data-Register (Pause-DR), and Pause-Instruction-
Register (Pause-IR). If the TAP controller is in any other state,
it will either transition to a different state or it will shift data into
the data or instruction register on the next TCK rising edge.

The Shift-Instruction-Register and Shift-Data-Register states
are stable in a sense, in that the state machine can remain in
these states as long as the TMS line is held low. When the
TAP controller is in one of these states however, it is actively

loading some register and the overall condition of the system
is changing. For this reason, these states are not considered
“stable” in the same sense that the four states previously
described are considered stable.

Up to now only the TAP controller for a single device in the
system implementing the IEEE 1149.1 TAP has been considered.
For the case where there is only one boundary scan chain (i.e.,
where National’s SCANSTA111 multiplexer or SCANSTA112
multiplexer is not used in the scan chain, or where these
devices are used, but the multiple scan chains are all tied
together), the TAP controllers for all the devices move from one
state to the next in unison. If all the TAP controllers start out in
the same state, they all remain in the same state. So it is really
only necessary to consider a single TAP controller state for the
entire scan chain.

With this state transition mechanism and the ability to shift data
in and out of various shift registers, the IEEE 1149.1 TAP can
produce a wide variety of complex behaviors. This provides a
very powerful mechanism for in-system testing, programming,
and diagnosis.

Figure 2-2. State Diagram of the IEEE 1149.1 TAP Controller

Test-Logic-Reset

TMS=1

Run-Test/Idle

TMS=0

TMS=0

Select-DR-ScanTMS=1 Select-IR-ScanTMS=1

TMS=1

Capture-DR

TMS=0

Shift-DR

TMS=0

Exit1-DR

TMS=1

TMS=0

TMS=1

Pause-DR

TMS=0

TMS=0

Exit2-DR

Update-DR

TMS=1

TMS=1

TMS=1

TMS=0

TMS=1

TMS=0

Capture-IR

TMS=0

Shift-IR

TMS=0

Exit1-IR

TMS=1

TMS=0

TMS=1

Pause-IR

TMS=0

TMS=0

Exit2-IR

Update-IR

TMS=1

TMS=1

TMS=1

TMS=0

TMS=1

TMS=0

Image caption

12

A Brief Introduction to Boundary Scan

Use of the IEEE 1149.1 TAP consists, in essence, of driving
the TMS and TDI lines with the correct bit sequences to
accomplish the desired functions, and monitoring the TDO line
for the desired responses. These three lines and the test clock
essentially comprise the IEEE 1149.1 boundary scan standard.

2.3.3. Use of the IEEE 1149.1 TAP

Given the simplicity of the architecture of the IEEE 1149.1 TAP,
the question arises: What is its utility in a system? The answer
is illustrated in the digital system example in Figure 2-3. The
figure shows several devices implementing the IEEE 1149.1
TAP interconnected in an operational system. The desired
functionality of the system is embodied in the interconnections
between the input and output pins of the various devices. Even
though the IEEE 1149.1 TAP pins are connected between the
devices on the board, these connections could all, in principle,
be removed without affecting the desired functionality of
the system. This is a key point. The IEEE 1149.1 TAP is meant
to function independently of what the system is otherwise
designed to do.

The example of Figure 2-3 is deliberately left generic and
shown not to be greatly complex. Conceptually, however, a
considerably more complex system could be represented in the
same way as the system of Figure 2-3. Consider the connections
labeled A and B in Figure 2-3. These connections might be
traces on a printed circuit board, vias, wires, connectors,
cables, or some combination of all of these.

Suppose these two connections were shorted together because
of some manufacturing defect in a particular unit. In this case,
it is very likely that the unit would not work correctly, at least
some of the time. Obviously the manufacturer of the system
would prefer to identify and repair or discard the defective unit
before it was shipped to a customer. This becomes even more
critical as the system becomes more complex and, probably,
more expensive. But it also becomes more difficult.

In a complex system, functional testing may not identify the
problem with a faulty unit. Complex systems exhibit complex
behaviors. (Simple systems can too, but complex systems
almost always do. A complex system that exhibits simple
behavior is likely to be replaced by a simpler system.) Testing a
complex system to identify a manufacturing defect like the one
described above by observing its normal functionality would
require exercising enough of its complex behavior to ensure that
some anomalous observation would occur should there be a
manufacturing defect in the system. This becomes progressively
more difficult, expensive, and time-consuming as the behavior
of the system becomes progressively more complex. In addition,
even if the presence of a given defect could be detected by
observing some anomalous behavior in the system’s normal
functional environment, it is unlikely that the exact location
and nature of the defect could be identified in this way. Many
defects might produce the same anomalous observed behavior.
As the system becomes more complex, just putting it through its
normal operational paces becomes a less satisfactory method
of testing and diagnosing faults.

Figure 2-3. Simplified Example of a Boundary Scan-Enabled System

System Controller

SCANSTA101
Scan Master

SCANSTA11X
Scan Bridge

JTAG-Enabled
Device

JTAG-Enabled
Device

Other JTAG-Enabled
Devices

JTAG-Enabled
Device

TDO_SM
TDI_SM
TMS_SM
TCK_SM

TRST_SM

TD
O

_LS
P

TM
S

_LS
P

TC
K

_LS
P

TR
S

T_LS
P

TDOTDO

TMS_LSP
TCK_LSP

TRST_LSP

TDO

Operational
Connections

A B

Board Defect

JTAG-Enabled
Device

TDO TDO

TDO

TDI_LSP

Other JTAG-Enabled
Devices

Parallel Interface

13national.com/scan

What is really required to identify a manufacturing defect like
that previously described is the ability to impose various signals
at the driving nodes of connections A and B and to observe the
signals received at the receiving nodes of those connections. If
there is a defect in the connection, the received signal will be
different from the driven signal. Also, if it is known which nodes
were being driven and where the signals were being received,
then it is also clear exactly which paths to examine in order to
locate the defect.

This is what the IEEE 1149.1 TAP can do.

In principle, using the IEEE 1149.1 TAP, all of the driving boundary
cells in the entire design (the ones that implement IEEE 1149.1
TAP, anyway) can be connected into a single, large shift register,
and a desired data pattern can be shifted into that shift register.
All of the receiving boundary cells can be connected in the
same way into a large shift register (in practice, it’s the same
shift register for input and output boundary cells). The boundary
cells can then be used to drive the desired data pattern onto the
connections on the board and to receive the resulting pattern
from the connections on the board. Then the received data can
be shifted out of the receiving boundary cells and compared to
the data that is expected.

If this is done for several different data patterns it is possible,
in principle, to identify and isolate a large percentage of the
possible faults in a system. Even in realistic, complex systems,
fault coverage (the probability of identifying a defect this way)
can be computed a-priori, and can approach 100%. If the system
has device pins that are bidirectional (input and output), the pins
can be exercised in both modes using different data patterns.

Problems can be diagnosed in the internal functionality of
devices on the board by driving their input pins and observing
their output pins using the boundary cells. Semiconductor
devices are often tested this way in manufacturing. A device
that implements the IEEE 1149.1 TAP can be tested after it has
been installed in its target system application.

Programmable logic devices in the system also can be
programmed using the IEEE 1149.1 TAP. The IEEE 1149.1 TAP
provides a secondary I/O port to these devices and the IEEE
1149.1 standard is written to permit extensions of the standard
to applications such as in-system programming.

All of this IEEE 1149.1 functionality can be implemented in
the system itself, enabling self-test, health monitoring, and
in-system programming updates. When this capability is
integrated into the system itself, it requires a control mechanism

of some sort and enough memory to store the required test
patterns and expected data for comparison.

This is the application for which the SCANSTA101 STA master
was designed and it is the subject of the present design guide. This
will be described in more detail in the remainder of this guide.

2.4. Summary and Conclusions
As described in this introductory chapter, the IEEE 1149.1 TAP
provides an independent mechanism for accessing the inputs
and outputs of a device (at its “boundary”). In this way it
enables precise and extensive testing for manufacturing defects
in a system. It also permits extensive testing of individual
devices either in a system or in isolation, as in a manufacturing
test. It also permits in-system programming of programmable
devices. These capabilities may be utilized by external
equipment such as test systems or device programmers, or by
devices within the system itself.

So far all the descriptions of the operation of the IEEE 1149.1
TAP have described low-level functionality; namely, functionality
at the level of sequences of bits. This is analogous to the
machine code that describes a computer program at the lowest
level. The memory containing a computer program really just
contains a sequence of bits. The meaning in the bit sequences
is expressed when the computer retrieves them from memory
and applies them to its (complex) internal structure.

Human beings could monitor and examine the bit sequences
applied to the TDI and TMS pins of an IEEE 1149.1 TAP in order
to understand the functions being performed by the TAP just as
they might examine the bit sequences that make up a computer
program. Extracting meaning from these bit sequences would
be a difficult proposition in the general case. So one would do
what human beings usually do in such cases – look for patterns
and abstract common features from the low-level description
represented by the bit sequences. This abstraction is inherent in
the architecture of National’s family of SCAN devices. How that
abstraction is accomplished will be examined in this design guide.

Image caption

14

3. Test System Description

3.1. The SCANSTAEVK Demonstration Kit
National’s family of boundary scan support devices provides a
valuable built-in self-test capability for system implementations.
National has developed a demonstration kit to help system
designers evaluate the capability provided by this family of
products.

The demonstration kit includes a target board with two National
boundary scan-enabled devices, a serializer and a deserializer,
with relatively simple connections between them. It also
includes a backplane with multiple JTAG port connections to
accommodate multiple target boards and a set of intermediate
boards for introducing the SCANSTA111 and SCANSTA112 JTAG
multiplexers between the backplane and the target board. A
PC-resident board with the SCANSTA101 STA master device
for driving the JTAG ports completes the demonstration kit.
In conjunction with the supplied, PC-based, vector delivery
software, this demonstration kit can serve as a simplified model
of a boundary scan-enabled operational system.

3.1.1. PCI-1149.1/101 SCANSTA101 PC Card

In an operational system implementing built-in self-test, a
system controller would deploy test vectors to the boundary
scan chain (or chains) by communicating, using simple parallel
protocols, with one or more SCANSTA101 STA master devices.
In the demonstration kit, the role of the system controller is
emulated by a personal computer (PC). That the performance
and characteristics of the PC are not important for the
demonstration is one of the features that the demonstration kit
is meant to illustrate.

On the internal PCI bus of the PC in the demonstration system,
which is running Windows, a Corelis PCI-1149.1/101 boundary
scan controller is installed. A photograph of this device is
shown in Figure 3-1. There are two National SCANSTA101 STA
master devices on the PCI-1149.1/101.

The PC and the PCI-1149.1/101 boundary scan controller emulate
the system controller and the SCANSTA101 STA master device
in an operational system, but clearly an operational system
would require much more limited capability to provide the built-
in self-test function. The PC-based emulation subsystem used
with the demonstration kit includes a GUI-driven vector delivery
and evaluation software tool which communicates with the PCI-
1149.1/101 using a low-level driver library supplied by Corelis.
The driver library primarily provides simple functionality for
reading and writing registers in the SCANSTA101 devices, just
as it would be implemented in an operational system.

In an operational system, the system controller would, when
commanded to perform a system self-test, communicate with
the in-system SCANSTA101 STA master. In such a system,
all the system controller would be required to do is perform
a sequence of register reads and writes via a 16-bit parallel
data bus and an associated 5-bit register address bus to the
SCANSTA101 STA master device. The sequence of register
reads and writes would be stored on board in a compact binary
format called Embedded Vector Format 2 (EVF2). An embedded
software function, provided by National in source code form,
would provide the interface between the EVF2 format and the
SCANSTA101 STA master device. As will be demonstrated in
this design guide, the PC and the PCI-1149.1/101 boundary scan
controller emulate this functionality in an instructive manner.

Figure 3-1. The Corelis PCI-1149.1/101 JTAG Controller Card with Multiple
National SCANSTA101 STA Master Devices

National Semiconductor
SCANSTA101 System
Test Access Masters

3.1.2. SCANSTAEVK Demonstration Kit Backplane

An operational system might include a backplane designed to
provide connections between the various functional boards
in the system. In such an operational system, the system
controller, and perhaps the SCANSTA101 STA master device,
might be located on a master board and might test the other
boards in the system by communicating with them over the
backplane. Such a backplane would have multiple connections
for various functional boards, and each such connection would
include lines for the JTAG TAP. The SCANSTAEVK backplane
emulates this functionality.

15national.com/scan

A photograph of the SCANSTAEVK backplane is shown in
Figure 3-2. A schematic of the backplane is shown in Figure 3-3.
This backplane is intended to demonstrate JTAG functionality.
Accordingly, only the JTAG TAP lines are carried across the
backplane, through the target card connectors, and to the target
cards. In an operational system, signals associated with the
primary function of the system would also be transported across
the backplane and through the target card connectors. The
SCANSTAEVK backplane, however, provides a realistic platform
for testing the JTAG functionality. It is a key point of the IEEE
1149.1 JTAG standard that the TAP implemented in a device is
independent of the primary function of the device. A backplane
that does nothing but transport TAP signals is a reasonable
vehicle for the development of a boundary scan built-in test
application.

Figure 3-2. SCANSTAEVK Demonstration System Backplane with Three
Target Card Connectors and Multiple JTAG Controller Ports

As can be seen in the schematic of Figure 3-3, there are
multiple TAP interface connectors on the board for TAPs labeled
A0, A1, A2, and B0. The Serializer/Deserializer (SerDes) target
boards have multiple TAP connections which can be configured
by jumpers on the board. When these target boards are used
with a JTAG multiplexer card, such as the one carrying the
SCANSTA111 multiplexer, the active JTAG port on the target
card is selected through the multiplexer. When a multiplexer
is not used, all the scan ports on the target card can still be
exercised by using different TAP interface connectors.

Associated with the A0 and A1 TAPs are signals labeled, for
example, A0_FLASH* and A0_RDY/BSY*. These are auxiliary
signals passed through the multiplexer when it is used. They are
intended as general-purpose I/Os, each associated with either a
single local scan port from the multiplexer or with the backplane
TAP connector. These I/Os are not used in the SCANSTAEVK
demonstration system described in this design guide.

3.1.3. SCANSTA111 Intermediate Board

Inserted between the backplane connector and the target board
in the demonstration system is an intermediate card carrying a
SCANSTA111 Scan Bridge JTAG multiplexer. The card has a plug
that fits the backplane connector and a socket with the same
connection configuration as the backplane connector into which
one of the target boards may be inserted. The Scan Bridge card
intercepts the input A0 TAP from the backplane and routes it to
the SCANSTA111 multiplexer. The outputs of the multiplexer are
then routed to the A0, A1, and A2 TAP connections on the target
board connector.

Image caption

Figure 3-3. Backplane Schematic. Note: Only the JTAG Lines are Carried through the
Target Board Backplane Connectors J5, J6, and J7.

TAP Interfaces

Backplane Slot Connectors

16

Test System Description

A photograph of the intermediate Scan Bridge multiplexer card
is shown in Figure 3-4. A schematic of the card is shown in
Figure 3-5. On this card, J1 is the backplane connector. It makes
connection only to TAPs A0 and B0. TAP A0 is routed on the card
to the backplane master TAP of the SCANSTA111 multiplexer.
B0 is routed directly to the output connector J2 for use in cases
where it is desired to bypass the SCANSTA111 multiplexer.

Figure 3-4. Intermediate Scan Bridge Multiplexer Card. Note
the Address-Setting Switches on the Card and the Pass-Through

Connector Arrangement.

Target SerDes
Board Connector

Backplane
Connector

SCANSTA111

Address-Setting
Switches

The address of the SCANSTA111 multiplexer itself is set by
switches S1 and S2. Selection of the SCANSTA111 multiplexer
is accomplished by scanning an address matching the switch
settings into the SCANSTA111 multiplexer’s instruction register
via the JTAG TAP.

Scan ports A0, A1, and A2 on the output connector, J2, are
connected to the local scan port outputs of the SCANSTA111
multiplexer. The SCANSTA111 output port is selected by writing
to the registers of the SCANSTA111 multiplexer through its JTAG
master port, A0.

The selected local scan port of the SCANSTA111 multiplexer
is routed out to the target card through the output connector.
The connections on the output connector match those on the
backplane. The target card can be connected directly to the
backplane or to the output connector of the intermediate Scan
Bridge card with no effect on the TAP operation of the target
card. The software and the SCANSTA101 STA master must be
aware of the SCANSTA111 multiplexer in order to control it and
to account for the additional 1-bit delays it introduces in the TAP
signaling, but the target card does not need to be aware of the
presence of the SCANSTA111 multiplexer. As far as the target
card is concerned, the Scan Bridge card is transparent.

Figure 3-5. Schematic of the Intermediate Scan Bridge Multiplexer Card

17national.com/scan

3.1.4. Target SerDes Board

In the SCANSTAEVK demonstration system, the target SerDes
board models the board to be tested using a built-in self-test in
an operational system. The board includes National’s serializer/
deserializer pair, the SCAN921023/SCAN9212248, both of which
implement boundary scan. The SCAN921023 is an embedded
clock 10-bit Low-Voltage Differential Signaling (LVDS) serializer.
All of its digital inputs and outputs, including its primary
differential LVDS output, are equipped with boundary scan cells.
Similarly, the SCAN921224 is an embedded clock 10-bit LVDS
deserializer designed to work with the SCAN921023 serializer. It,
too, is equipped with boundary scan cells on all of its inputs and
outputs including its primary differential LVDS input.

A photograph of the target SerDes board is shown in Figure
3-6. The two-page schematic for the board is shown in Figure
3-7 and Figure 3-8. Reviewing the schematic will provide an
indication of what could, in principle, be tested on this board if
designing a built-in self-test.

Figure 3-6. Target SerDes Board. The SCAN921023 Serializer
and SCAN921224 Deserializer on this Board implement the JTAG

Boundary Scan TAP.

RJ-45 Jacks

SCAN921224SCAN921023

Figure 3-7. Target SerDes Board Schematic (Part 1). The Boundary Scan-Enabled
Devices are the SCAN921023 Serializer and the SCAN921224 Deserializer.

18

Test System Description

Figure 3-8. Target SerDes Board (Part 2). This Part shows the
Backplane Connector.

Figure 3-9. Complete Stackup for the SCANSTAEVK Demonstration
Platform. This Stackup includes the Backplane, the Intermediate

SCANSTA111 Multiplexer Board, and the SerDes Target Board. Note
the CAT-5 Cable connecting the Serializer and Deserializer on the

Target Board.

CAT-5 Cable Connecting Serializer and
Deserializer

Serializer/Deserializer
Target Board

SCANSTA111
Multiplexer Board

SCANSTAEVK
Backplane

First, the parallel digital inputs on the SCAN921023 serializer,
DIN0:DIN9, should be considered. If a data source isn’t
connected on connector J2, these inputs are all pulled up to +3V
through RN1, RN2, and RN3. So detecting static high-input levels
on these inputs to the SCAN921023 device should be possible,
and, if detection is unsuccessful, that will indicate a fault in one
of the resistor arrays or in one of the input lines. It is possible to
introduce a fault deliberately by changing the setting of S5, and
it should be possible to detect that deliberately-introduced fault.

Both the SCAN921023 serializer and the SCAN921224
deserializer have three inputs tied to static high levels by
switches S2 and S3. The inputs are a PWRDN* input, an enable
input, and a rising/falling edge clock selection input. All three
are held high in normal operation, so it should be possible to
detect static high levels on these input pins. If the settings of
these switches are changed, it should be possible to detect the
fault that this introduces.

The Sync1 input of the SCAN921023 serializer is tied low through
a pull-down resistor unless a fault is introduced by depressing
momentary switch S1. If this switch is depressed, detection of
the fault should be possible.

The LOCK* output of the SCAN921224 deserializer can be
connected by jumper J17 to the Sync2 input of the SCAN921023
serializer. If this connection is made, then it should be possible
to drive this line from an output scan cell on the SCAN921224
deserializer and receive the signal driven at the SCAN921023
serializer. If the jumper is removed, a fault will be introduced
(if looking for the presence of the jumper) that should be
detectable.

Finally, a fault can be introduced in the connection between
the serializer and deserializer on the SerDes target board.
The SCAN921023 serializer has a differential LVDS output. The
SCAN921224 deserializer has a differential LVDS input. In an
operational system, the function of these two devices is to
provide a two-wire serial data path between distant points in
the system. Parallel data goes in to the SCAN921023 serializer
and comes out as serial data. The serial data is routed to the
SCAN921224 deserializer where it is recovered and output to the
receiving system as parallel data. A serializer/deserializer pair in
a system is used to reduce the number of connections needed
to transmit data between distant points in the system.

In normal operation the differential LVDS output of the
SCAN921023 serializer (DO+ and DO-) is connected through
a cable to the differential LVDS input of the SCAN921224
deserializer (RI+ and RI-). In the SCANSTAEVK demonstration

19national.com/scan

kit, this connection is made by means of a CAT-5 cable with
RJ-45 connectors.

The differential LVDS output and input pins on the SCAN921023
serializer and SCAN921224 deserializer are equipped with
differential boundary scan output and input cells, respectively.
If a test pattern is generated that tests this connection between
the two devices and then the cable is removed, detection of the
resulting fault should be possible.

3.1.5. Demonstration Kit Summary

If the SerDes target board of the SCANSTAEVK demonstration
kit is used to model an operational system board then it is
possible, by inspecting the schematic, to get an indication of
what elements of the board structure are possible to test. In
the case of this board, there is not much that can be tested -
some static inputs to the two boundary scan-enabled devices
and a couple of interconnects between them, including one
differential LVDS interconnect.

Even though this model is highly simplified in comparison to
any real operational board, it does capture many instructive
features of the boundary scan built-in self-test problem. It
also has the advantage that, since it is quite simple, it may be
possible to trace the development of the boundary scan test
procedures and thereby gain some insight into how these tests
are developed and how the test development software works.

The SCANSTAEVK demonstration kit includes the SCANSTA101
STA master JTAG controller and the SCANSTA111 Scan Bridge
multiplexer. Using the SCANSTAEVK demonstration kit as a
model for an operational system will allow better understanding
of the operation of these devices as well.

3.2. Test Development and Deployment Software
Designing and building the hardware to support built-in self
test, and hooking up the test access ports properly, is only the
first step in developing a built-in self-test. The SCANSTAEVK
demonstration kit described previously was designed by
National to illustrate the operation of National’s SCAN family of
devices. It should be noted, however, that if such a system were
designed from scratch, it would be necessary to know very
little about the boundary scan operation to take the design to
this point. All that was needed was to connect the TAP properly
between the boundary scan-enabled devices.

It would not have been necessary to know anything about the
boundary scan operation in order to use the SCANSTA111 Scan
Bridge multiplexer either. The design was simply a matter of

connecting the backplane TAP and one or more of the local
scan ports of the device properly. Also, it was not necessary to
know anything about the boundary scan operation to implement
the SCANSTA101 STA master either. It was only necessary that
the SCANSTA101 STA master was connected to the correct
address and data lines on the parallel processor interface side
and to the TAP on the serial scan interface side.

This is an important point. What this means is that the hardware
for a boundary scan-enabled system can be designed and
fabricated well before any details of the boundary scan
operation and the software required to implement it are
known. The interfaces to the boundary scan-enabled devices,
specified in IEEE 1149.1, and the interfaces to National’s family
of boundary scan support devices are all sufficiently well
described and specified so that the hardware design and the
software design can proceed almost independently; and the
hardware can proceed first, which is good, because it probably
takes longer to fabricate the hardware than to generate a first
cut at the software (although it probably takes longer in the
end to get the software fully debugged than it does to get the
hardware working).

In the modeling exercise, however, the point has been reached
where the software can no longer be ignored. The system
can, in principle, perform a built-in self-test. So the question
becomes: What is needed in order to implement this test?

3.2.1. Automatic Test Pattern Generation

All of the board faults have been described that could, in
principle, be detected using a boundary scan built-in self-test.
But how can these faults be detected in practice? What is
needed is to scan in an appropriate pattern of bits into the
boundary registers of the JTAG-enabled devices so that the
outputs are correctly set, capture the pattern of bits at the
inputs of these devices, and compare this to the expected data
pattern. Conceptually it will probably take more than one cycle
of setting the outputs and measuring the inputs to be sure
that all the kinds of faults are detected that should be possible
to detect. And this is a very simple board. How much more
complicated will the process become when it is used on a more
complex operational board?

The answer to these questions is an Automated Test Pattern
Generator (ATPG) software tool. These tools are made by
various manufacturers including Corelis, Flynn Systems, JTAG
Technologies, Asset Intertech, and others. The tools are all
different in their look and feel but all do the same job; namely,
they generate test patterns that can be applied to the JTAG

20

Test System Description

TAP to detect all or most of the faults that can, in principle, be
detected on a JTAG-enabled board.

An example of generating test patterns with these tools will be
discussed in Chapter 5, but for now it is sufficient to say that
the next step is to take a description of the board (a netlist),
descriptions of the boundary scan-enabled components on the
board (Boundary Scan Description Language or BSDL files),
and some additional information like jumper settings and cable
connections which are not on the netlist, and to use one of
these tools to generate a set of test vectors for the board.

The ultimate output of this process is a Serial Vector Format
(SVF) file, which describes the operations to be performed
by the TAP in a human-readable format. Once the SVF file is
created, the next step is to convert the SVF file to an Embedded
Vector Format 2 (EVF2) file which can be deployed to the
SCANSTA101 STA master.

The SVF file produced for the target SerDes board will be
discussed in some detail in Chapter 7. For now, however, it is
important to note that the first software-intensive step in the
process is to generate a SVF file using a third-party ATPG tool.

3.2.2. Conversion to EVF2 Format

A SVF file contains instructions like STATE, which directs the
TAP state machine to transition to a specified state, Scan Data
Register (SDR), which scans data into and out of the TAP, Scan
Instruction Register (SIR), which scans an instruction sequence
into and out of the TAP, and other similar instructions. These
are descriptive and complete, but the SCANSTA101 STA master
requires instructions interpreted as a sequence of register
reads and writes. This is the purpose of the EVF2 format.

The EVF2 format is a binary format consisting of data records
that describe what data is to be written to what register in the
SCANSTA101 STA master in order to accomplish each of the
test sequences described in a SVF file. The binary format means
that the EVF2 file consumes minimal storage in the embedded
system’s memory, an important feature for built-in self-test
applications. National provides source code to be embedded
in the system processor’s code (actually this is just one C
function) that interprets the EVF2 file records and sends out the
appropriate address and data bits to set up the SCANSTA101
STA master.

The conversion to EVF2 format is accomplished by a program
supplied by National called EVF Workbench. A screen shot of

the main window is shown in Figure 3-10. An example of using
the simple interface of EVF Workbench will be highlighted in
Chapter 5. For now, however, the next step after producing the
SVF file is to convert it to an EVF2 file using EVF Workbench.

Figure 3-10. Main Window of EVF Workbench

After the file is converted to EVF2 format, it is possible to
convert it to a human-readable representation of the EVF2
format. Normally this is neither required nor useful, but, in
this case, it will provide some additional insight into how the
SCANSTA101 STA master controls the self-test. A decompiled
EVF2 file will be examined in Chapter 7.

3.2.3. Embedded Platform Software

Once these operations are complete, an EVF2 file is produced
that details the register reads and writes required for the
SCANSTA101 STA master to perform the desired built-in self-
test. There must be some system processing power somewhere
(a system controller, a DSP engine, a FPGA, or something else)
that can drive the address and data lines of the SCANSTA101
STA master to perform the desired built-in self-test.

For systems with an embedded controller programmed in C
or C++, National provides a function library that implements a
simple Application Programming Interface (API) for delivery
of the EVF2 file. It consists of a single user-called function and
some additional glue functions to implement it. Following is the
function’s argument list.

21national.com/scan

Most of the arguments to this function are function pointers to
user-supplied, application-specific functions that handle the
low-level operations of reading from memory and writing to the
parallel address and data buses. This source code is added to
the embedded processor code. When this function is called,
at the appropriate time, it uses the passed function pointers
to deliver the EVF2 file to the parallel port connected to the
SCANSTA101 STA master.

In the demonstration system, this function is implemented
in the PC software that controls the PCI-1149.1/101 card
with the SCANSTA101 STA master on it. This implementation
will be discussed in Chapter 6 and some analogies will be
drawn between this implementation and a typical embedded
application.

3.2.4. ScanVec

ScanVec is the PC application that reads an EVF2 file (from disk)
and delivers the vector information to the SCANSTA101 STA
master on the Corelis PCI-1149.1/101 card. This is the equivalent,
for the purposes of this design guide, of the embedded software
in an operational system. This is the program that reads and
writes the correct SCANSTA101 STA master registers to perform
the built-in self-test. In Chapter 8, the use of ScanVec will
be described along with what it looks like when the self-test
completes successfully and when it detects a fault.

The designer of a system with boundary scan-based built-in
self-test might use ScanVec as a debugging tool in the early
stages of development. It must be emphasized, however, that
the functions performed by ScanVec in this demonstration
system would be performed by an embedded controller in an
operational system which implements boundary scan-based
self-test.

3.3. Summary
The SCANSTAEVK demonstration kit and the associated
software is meant to model, in a simplified way, an operational
system implementing boundary scan-based built-in self-test.
All of the elements required are present. There is a model of
the application board which is to test itself, the target SerDes
board. There is a Scan Bridge multiplexer such as might be used
to isolate the scan chains in the target application. There is a
SCANSTA101 STA master JTAG controller which performs the
low-level JTAG TAP port manipulations to carry out the built-in
self-test. And there is a system backplane over which the test
vectors are delivered, just as there might be in an operational
system.

The test patterns are generated by ATPG software just as they
would be for an operational system. The test pattern output is
converted to EVF2 format just as it would be for an operational
system. And, just as in an operational system, a system
controller delivers the EVF2 file to the SCANSTA101 STA master
over parallel address and data buses by reading and writing the
appropriate registers and memory locations.

Producing and deploying test vectors for built-in self-test of
this simplified system should provide valuable insight into the
process required to do the same thing in an operational system.
The following sections of this design guide will describe the
process of designing and implementing a built-in self-test and
dissect the results in some detail. The intent is to provide a
deeper understanding of the boundary scan development and
deployment process.

int EVF2VectorDelivery(int (*pfGetData)(void *,void *,void *,size_t,size_t),
 int (*pfErrorHndlr)(const char *,void *,void *),
 int (*pfFailHndlr)(unsigned long,void *,void *),
 int (*pfUserExecHndlr)(const char *,const char *[],void *,void *),
 void (*pfRegTraceHndlr)(void *,void *,unsigned short,unsigned long,			
			 unsigned long),
 void (*pfDebugHndlr)(void *,void *,unsigned long,unsigned long,unsigned long,
 unsigned long,unsigned long),
 void (*pfPollingHndlr)(void *,void *,unsigned long),
 unsigned long dwTimeoutMs,
 unsigned long dwLatencyMs,
 void *pvUser1,void *pvUser2)

22

4. Hardware Design Considerations for Built-In Self-Test

The SCANSTAEVK demonstration kit used as a test platform for
this work was designed several years ago as a demonstration
vehicle for National’s family of JTAG support devices. The
primary focus of the present effort was to develop and deploy
a test vector sequence for use on this hardware in the same
way that a system designer would for an operational system.
Still, it is instructive to examine some of the considerations
involved in the hardware design required for built-in self-test.
The SCANSTAEVK demonstration kit will be treated as if it were
designed today from scratch.

4.1. System Function and Built-In Self-Test
Built-in self-test is clearly always an adjunct to the primary
function of a board or subsystem. So the first step in designing a
board which will include built-in self-test is to design the board
to perform its primary function. The IEEE 1149.1 boundary scan
test standard is focused on providing test capability without
compromising the primary function of the board or subsystem
under test. Ideally, at the beginning of the design cycle, it should
not be necessary for the system designer to consider built-in
self-test at all.

National’s family of boundary scan support devices was
designed with this philosophy in mind. It is almost possible to
add boundary scan support at the very end of the schematic
design process, just before going to board layout. As a practical
matter, of course, some consideration must be given to
boundary scan earlier in the design process.

4.1.1. Selection of JTAG-Enabled Devices

It is obvious, though worth stating, that boundary scan is
primarily capable of testing interconnects between devices
that are equipped with the IEEE 1149.1 TAP. Testing of other
interconnects is possible with boundary scan, but the test
sequence becomes more complicated. Some ATPG tools can
generate automatic test sequences for memory devices and for
simple combinatorial logic. But the first requirement in designing
a board for built-in self-test is to choose devices, to the extent
possible, that are equipped with the IEEE 1149.1 TAP.

National has implemented the IEEE 1149.1 TAP on many devices,
and the serializer/deserializer pair on the SCANSTAEVK SerDes
target board are a good example. The SCAN921023 serializer
and SCAN921224 deserializer are designed for boundary scan
testing with input boundary scan cells on all of the CMOS digital
inputs and output boundary scan cells on all of the CMOS digital
outputs. In addition, these devices have differential boundary
scan cells on their primary LVDS inputs and outputs. They also
have built-in self-test modes that transmit known data patterns

from the serializer to the deserializer to test the primary LVDS
link at operational speed. This is an extension to the standard
boundary scan tests. If this sort of at-speed test is desired, it
must be added explicitly to the system test vectors.

The SCANSTAEVK SerDes target board is an ideal candidate
for built-in self-test in this sense because all of the integrated
circuits on the board (admittedly, there are only two of them) are
equipped with the IEEE 1149.1 TAP.

4.1.2. Selection of JTAG Support Devices

In order to implement board built-in self-test using National’s
family of JTAG support devices, a few preliminary system-level
decisions must be made.

First is the location of the SCANSTA101 STA master. For many
applications, locating this device at a single primary location
on the backplane (on the system controller board, for example)
will work fine. The limitation of this approach is that a single
SCANSTA101 STA master can only drive one set of test vectors
at a time. Even if a Scan Bridge multiplexer is located on the
same card as the SCANSTA101 STA master, providing multiple
JTAG scan chains on the backplane, either only one of the
scan chains will be active at a time or all the scan chains will
be doing the same thing. For systems where it is important
that built-in self-test be performed as fast as possible, it may
be preferable to locate a SCANSTA101 STA master on each
board in the system. Once these devices are set up by the
system controller, they can perform the required self-tests
autonomously and report the results back to the system
controller. This allows testing of the entire system in the fastest
possible manner.

Once the decision has been made regarding how many STA
masters to use and where to locate them, board space and
power from the power supply must be allocated for these
devices. This is done in the early stages of the system design.

The SCANSTA101 STA master is designed to require very little
additional external logic, but depending upon the system design,
some signal conditioning on the parallel processor interface
handshake lines might be required. The system designer should
have an architecture in mind for connecting the SCANSTA101
STA master(s) to the system controller and for accomplishing
this handshaking. If external logic is anticipated, provision
should be made for it early in the system design.

The next consideration is the implementation of multiple scan
chains using the Scan Bridge multiplexers. If the decision of

23national.com/scan

how to implement the STA masters has implications for the
speed of testing the entire system, the implementation of the
Scan Bridge multiplexers has implications for the speed of
testing any part of the system independently. A board with many
JTAG-enabled devices and many interconnections to be tested
might require a very long test time if the devices are connected
in a single scan chain. It might be advantageous in this situation
to implement multiple scan chains on this board using the
SCANSTA111 or SCANSTA112 Scan Bridge multiplexers.

Considerations in the deployment of the Scan Bridge
multiplexers include whether there are sections of the board
with few operational interconnects between them. If there are
sets of devices on the board that perform relatively independent
functions in the operational system, these might be good
candidates for local scan chains. Additionally, if the JTAG TAP
is to be used to program a programmable logic device such as
a FPGA, it will speed up the programming process to put the
programmable logic device alone on a dedicated local scan
chain. This will also simplify the programming of the device.

The SCANSTA111 multiplexer provides three local scan
ports, two of which have a one-bit pass-through input and
output associated with them. This may be sufficient for
many applications. If more local scan ports are required, the
SCANSTA112 multiplexer provides seven, of which two have
two-bit pass-through inputs and outputs. If more local scan
chains than this are required, these devices may be configured
in a hierarchical scan chain, with a local port of one multiplexer
connected to the master port of the next. Many of the ATPG tools
can handle this sort of hierarchical configuration automatically.

Once the number and type of Scan Bridge multiplexers have
been determined, board space and power from the power
supply must be allocated for these devices as well. This is, again,
a decision that should be made early in the system design.

Finally, although this hasn’t been discussed yet, if analog voltage
monitoring and reporting over the IEEE 1149.1 TAP is desired,
National’s SCANSTA476 eight-input analog voltage monitor can
be implemented on the board. If this device is to be used, board
space and power must be allocated for it early in the design
cycle as well.

4.1.3. Delivery of the Test Vectors

If the system is to implement built-in self-test, somewhere in
it there must be contained a controller with parallel data and
address ports to communicate with the SCANSTA101 STA
master and sufficient memory to store the on-board test vectors.

In any system complex enough to be considered a candidate for
built-in self-test, there is probably already a system controller
that meets this requirement and enough memory to store the
test vectors.

In the worst case, it might be necessary to add some additional
system memory to store the required test vectors. These test
vectors are stored in the target system as binary-encoded
EVF2 files, which provide for efficient memory use. The system
designer should consider early in the design process whether
there is sufficient extra memory in the system to store the
required EVF2 files, and should plan for sufficient memory to
accommodate them.

If there is no controller in the system at all, perhaps the system
designer should consider whether built-in self-test is really
needed at all, and if so, how it will be initiated and how the
results will be reported. A simple system without a system
controller is not a good candidate for built-in self-test and
probably should be tested in another way.

4.1.4. TAP Connections

The IEEE 1149.1 TAP was designed as a four- or five-line interface
specifically to avoid complicating the system interconnection
design. Even so, provision must be made for additional backplane
connections associated with the built-in self-test function. There
are essentially three use models to be considered.

4.1.4.1. Single JTAG TAP over the Backplane

This architecture has been mentioned previously. This is the
situation when the SCANSTA101 STA master is located at
a single point on the backplane, for example on the system
controller board, and when any Scan Bridge multiplexers are
located on the boards to be self-tested. In this application, a
single set of JTAG TAP lines must be routed over the backplane
and through the backplane connectors of each board to be
tested. This requires just four or five additional lines on the
backplane and through the backplane connectors.

An example of this type of TAP connection is shown in Figure
4-1. The JTAG-enabled devices in this example are distributed
among multiple functional boards in the system. The system
controller and the SCANSTA101 STA master are located on a
system controller board. The JTAG TAP lines, TCK, TMS, and
TRST* could be routed through each board or could be tapped
off the backplane in parallel for each board. The same TCK,
TMS, and TRST* lines go to all the JTAG-enabled devices. The
TDI line is an input to each board and the TDO line is an output
to the next board in the system shown in Figure 4-1.

24

Hardware Design Considerations for Built-In Self-Test

The SCANSTA111 or SCANSTA112 multiplexers could be used
on any or all boards in the system to partition the scan chain
on each board into multiple local scan chains. The single
backplane JTAG TAP would then control the SCANSTA111 or
SCANSTA112 multiplexers. In such a system, the SCANSTA101
STA master would be responsible for addressing and
configuring the SCANSTA111 and SCANSTA112 multiplexers
during JTAG operations. National’s Application Note AN-1259,
SCANSTA112 Designer’s Reference9, describes the usage of
the SCANSTA112 multiplexer in detail. The application note also
applies to the SCANSTA111 multiplexer.

In essence, this single TAP connection over the backplane is
the use model for the SCANSTAEVK demonstration kit. There
are actually multiple JTAG TAPs routed over the backplane and
through the backplane connectors to the target board, but they
are not used in the case study presented in this design guide.
Only a single JTAG TAP is used. The SCANSTA101 STA master is
on the system controller board which is located in the PC.

4.1.4.2. Multiple JTAG TAPs over the Backplane

This is the case where the SCANSTA101 STA master and one
or more Scan Bridge multiplexers are located at a single point
on the backplane. In this case, four or five lines for each of the
JTAG TAPs are routed over the backplane and the appropriate
local scan port or ports are routed through each backplane
connector. This arrangement requires more backplane
connections than a single TAP would, but it provides some
additional flexibility and speed. This configuration may be the
best choice for some applications.

An example of this type of TAP connection is shown in Figure
4-2. The JTAG-enabled devices in this example are distributed
among multiple functional boards in the system. The system
controller, the SCANSTA101 STA master, and, in this example, a
SCANSTA112 seven-port multidrop JTAG multiplexer are located
on a system controller board. Two local scan ports are shown
in Figure 4-2. The TAP lines for each local scan port are routed
over the backplane and through the connectors to the functional
boards.

System Controller

SCANSTA101
Scan Master

JTAG-Enabled
Device

JTAG-Enabled
Device

JTAG-Enabled
Device

Other JTAG-
Enabled Devices

JTAG-Enabled
Device

TDO TDI
TMS

TCK
TRST

TDO

TDOTDO

TDO
Operational

Connections

A B

Board or
Interconnect

Defect

JTAG-Enabled
Device

TDO
TDO

TDO

TDI

Other JTAG-
Enabled Devices

JTAG-Enabled
Device

TDI

TD
O

TDITDI
TDI

TDI TDI

TDI

TRST

TR
S

T

TC
K

TCK

TM
S

TMS

TR
S

T

TR
S

T

TR
S

T

TR
S

T

TR
S

T

TC
K TC

K

TM
S

TM
S

TC
K

TM
S

TC
K

TC
K

TM
S TM

S

System Controller
Card

Backplane
System Functional Card

Backplane

Additional Cards and
Backplane Connections

Additional Cards and
Backplane Connections

Backplane

System
Functional

Card

System
Functional

Card
Parallel Interface

Figure 4-1. Example of a System with a Single JTAG TAP. The JTAG TAP is routed over the
Backplane and through the Backplane Connectors.

25national.com/scan

Where JTAG operations are to be performed that do not apply
to all the JTAG-enabled devices in the system, but only to some
subset of them, a partitioned scan chain system like that shown
in Figure 4-2 can improve the speed of JTAG operations. Only
the bits required for JTAG operations on the desired part of the
system must be transmitted through the scan chain. Fewer bits
imply faster operation. So the speed improvements possible with
this sort of system are not realized by shifting bits through the
scan chain faster, but by shifting fewer bits at the same speed
only through the required part of the scan chain.

4.1.4.3. Parallel-Port Communication over the Backplane

Where each board to be tested is equipped with a SCANSTA101
STA master, the system processor communicates with the STA
masters by means of a parallel interface over the backplane
and through the backplane connectors. This arrangement can
potentially provide the fastest built-in self-test operation. This
comes at the cost of potentially more lines on the backplane and
through the backplane connectors.

Figure 4-2. Example of a System with Multiple Multiplexed JTAG TAPs. The Local Port
JTAG TAPs are routed on the Backplane and through the Connectors.

System Controller
Card

System Controller

SCANSTA101
Scan Master

SCANSTA112
JTAG

Multiplexer

JTAG-Enabled
Device

JTAG-Enabled
Device

Other JTAG-
Enabled Devices

JTAG-Enabled
Device

TDO_SM TDI_B
TMS_SM
TCK_SM
TRST_SM

TDO0

TDOTDO

TDO

Operational
Connections

A B

Board Defect

JTAG-Enabled
Device TDO

TDO

TDI_SM

Other JTAG-
Enabled Devices

TDI
TDO

TDITDITDI

TDI TDI

TDI

TRST

TR
S

T

TC
K

TCK

TM
S

TMS

TR
S

T

TR
S

T

TR
S

T

TR
S

T

TR
S

T

TC
K

TC
K

TM
S

TM
S

TC
K

TM
S

TC
K

TC
K

TM
S TM

S

TMS_B
TCK_B

TRST_B

TDI0

TDO_B

TRST0

TCK0

TMS0

JTAG-Enabled
Device

TDI1
TMS1

TCK1

TRST1

TDO1

Backplane

System
Functional

Card

System
Functional

Card

System
Functional

Card

Additional Cards and
Backplane Connections

Additional Cards and
Backplane Connections

Parallel Interface

26

Hardware Design Considerations for Built-In Self-Test

An example of a system with multiple boards, each equipped
with a SCANSTA101 STA master, is shown in Figure 4-3.
The parallel interfaces from the system controller to each
SCANSTA101 STA master are routed over the backplane and
through the connectors. Each scan chain in this system could
be partitioned using a SCANSTA111 or SCANSTA112 multiplexer.
As is the case in the system with multiple JTAG TAPs, the
system shown in Figure 4-3 can improve the speed of JTAG
operations by communicating only with the desired subset of
JTAG-enabled devices. The scan chain is partitioned by the
operation of addressing only the desired SCANSTA101 STA
masters and also by addressing only the desired local scan
ports of the SCANSTA111 and SCANSTA112 multiplexers.

Obviously combinations of and extensions to these three
use models could also be envisioned, but the system-level
considerations are the same. However the system designer
chooses to implement built-in self-test, there must be enough
traces allocated on the backplane and through the backplane
connectors to support the additional communication required
for the built-in self-test.

Considerations of why and how to partition the JTAG scan
chain are beyond the scope of the present document. National
publishes an application note discussing partitioning of the
JTAG scan chain using the SCANSTA112 multiplexer9. JTAG
Technologies also publishes brochures on board Design For Test
(DFT) guidelines and system DFT guidelines that provide valuable
information about scan chain partitioning and signal routing10 11.

SCANSTA101
Scan Master

SCANSTA112
JTAG

Multiplexer

JTAG-Enabled
Device

JTAG-Enabled
Device

Other JTAG-
Enabled Devices

JTAG-Enabled
Device

TDO_SM TDI_B
TMS_SM
TCK_SM
TRST_SM

TDO0

TDOTDO

TDO

Operational
Connections

A B

Board Defect

JTAG-Enabled
Device TDO

TDO

TDI_SM

Other JTAG-
Enabled Devices

TDI
TDO

TDITDITDI

TDI TDI

TDI

TRST

TR
S

T

TC
K

TCK

TM
S

TMS

TR
S

T

TR
S

T

TR
S

T

TR
S

T

TR
S

T

TC
K

TC
K

TM
S

TM
S

TC
K

TM
S

TC
K

TC
K

TM
S TM

S

TMS_B
TCK_B

TRST_B

TDI0

TDO_B

TRST0

TCK0

TMS0

JTAG-Enabled
Device

TDI1
TMS1

TCK1

TRST1

TDO1

System
Functional

Card

System Controller
Card

System Controller

Backplane

System
Functional

Card

System
Functional

Card

Parallel Interface

Figure 4-3. Example of a System with Multiple SCANSTA101 STA Masters. The Parallel Interfaces to the SCANSTA101 STA
Masters are routed on the Backplane and through the Connectors.

27national.com/scan

4.2. Test Implementation
Once the previously-described, top-level system considerations
have been accounted for, most of the design related to the
primary functions of a system can proceed without any further
reference to the built-in self-test functionality. The devices in
the system can be interconnected in the manner required for
them to perform their primary function, whatever it may be. No
additional special provisions need to be made for built-in self-
test. This is a key feature of the IEEE 1149.1 boundary scan test
standard. Its highly-adaptable, light-weight interface makes it
simple to “bolt on” boundary scan testing near the end of the
design process.

The SerDes target board in the SCANSTAEVK demonstration
kit (which is used as the model for the board to be tested in
the present effort) was actually designed with boundary scan
in mind. That is why it includes provisions for introducing
deliberate faults in the interconnections and in the static
logic values. These are the faults in the board connections
that will be detected using boundary scan. It is easy to see,
however, that these specialized provisions for boundary scan
testing could be eliminated without compromising the primary
functionality of the board. The fact that these provisions are
there can provide some insight into the workings of the built-in
self-test, but in an operational system these sorts of things (for
example, the provision to short DIN4 to ground using S5; Figure
3-7) would not be included.

To reiterate, were the system being designed from scratch,
built-in self-test would have been considered only to a limited
extent so far. The following would have had to be considered:

1.	 Selection of devices that implement the IEEE 1149.1 TAP
2.	 Architecture, location, and power requirements of the

JTAG-support devices and allocation of devices to local
scan chains

3.	 Controller and memory requirements
4.	 Additional connections required on the backplane and

through the backplane connectors

Now, as far as the hardware design is concerned, it is time
to implement the built-in self-test and only three things are
necessary to do so.

4.2.1. Place and Route the JTAG Support Devices

Allocation of power and board space to the JTAG support
devices has already been made and a high-level decision has
been made as to where they will be placed. The SCANSTA101,
SCANSTA111, and SCANSTA112 devices to be used in the

system must now be placed on the schematic and connected
to the power supplies. All of these devices are highly integrated
and self contained, and they require little, if any, “glue logic” to
implement them in a system.

Referring to Figure 3-5, this schematic indicates, in the
SCANSTAEVK demonstration kit used in this effort, the address
of the SCANSTA111 is set by a pair of Binary-Coded Decimal
(BCD) switches. In an operational system, this isn’t necessary.
Something has to set the address of the SCANSTA111 or
SCANSTA112 multiplexers, but it does not need to be switches.
The address can be set with jumpers or can be hard-wired
if desired. The point is that even the modest additional
complexity associated with the SCANSTA111 multiplexer in
the SCANSTAEVK demonstration kit used for this effort is not
necessary in an operational system. Adding the SCANSTA111
or SCANSTA112 multiplexers to a board to implement built-in
self-test does not require adding much else to support it. This
is inherent in the design of the SCANSTA111 and SCANSTA112
multiplexers.

Likewise, adding the SCANSTA101 STA master to a board in
order to implement built-in self-test can be accomplished
with very little additional hardware. The block diagram of the
SCANSTA101 STA master is shown in Figure 4-4. For a boundary
scan-based built-in self-test, all the lines shown on the parallel
processor interface block would be connected to the system
controller.

4.2.2. Connect the Parallel Processor Interface of the
SCANSTA101 STA Master(s)

The only connections to be made to the JTAG-support devices,
aside from the JTAG TAPs themselves, are the connections
to the parallel processor interface of the SCANSTA101 STA
master(s) in the system. These connections consist of a 16-bit-
wide data bus, a 5-bit-wide address bus, several handshake
lines, a system clock, and reset and output enable lines.

The data bus is simple in concept. The system controller
must have some sort of bus for reading from and writing
to the onboard memory. The SCANSTA101 data bus could
be connected directly to the same bus since, as far as the
controller is concerned, all that is required is to read and write
16-bit memory locations. That these memory locations are
actually registers in the SCANSTA101 STA master need not
affect the process of reading from and writing to these memory
locations, though the handshaking required might be different.
This can be handled in software in the system controller.

28

Hardware Design Considerations for Built-In Self-Test

Address translation for the SCANSTA101 STA master might be
required. As far as the SCANSTA101 STA master is concerned,
its register address space runs from 0x00 to 0x19, but the
processor might need to map the address space differently.
Since the address bus of the SCANSTA101 STA master is only 5
bits wide, address translation could be as simple as selecting 5
bits from a wider address bus on the system controller. If more
sophisticated address translation is required, a small amount of
external logic might be added to accomplish this.

Similarly, some digital signal conditioning might be required for
the handshake lines between the parallel processor interface
and the system controller. This might be accomplished by
the controller itself or might require some external logic.
The handshaking is designed to be simple so that it can be
accomplished by minimal and simple external logic.

Figure 4-4. Block Diagram of the SCANSTA101 STA Master

The lines shown coming into the system inputs block in the
block diagram of Figure 4-4 may also be provided by the system
controller, or they may be provided from some other source. The
source for these inputs depends upon the system design and the
desired method for initiating built-in self-test and for resetting
the JTAG TAP. In any case, the amount of external logic required
in addition to the SCANSTA101 STA master itself is minimal. This
is part of the design philosophy of the SCANSTA101 STA master.

The system clock can be the same as the clock for the system
controller or it could be a divided-down version of this clock.
The maximum supported system clock frequency is 66 MHz.

4.2.3. Connect the TAP

This is the last step (from a hardware standpoint) in
implementing boundary scan-based built-in self-test. In
concept, what must be done is to connect the TAP lines
from the SCANSTA101 STA master to the TAPs on the JTAG-
enabled components on the board to be tested. These lines

may be connected directly or they may go through one or
more Scan Bridge multiplexers. The connections to the TAPs
are independent of the primary functional connections on
each device. This is required by the IEEE 1149.1 standard. The
handling of the TAP connections is fairly simple and is described
in the following sections.

4.2.4. Asynchronous Reset TRST*

Active low signals are designated in this design guide by a
trailing asterisk. Other conventions commonly used for this type
of signal are an overbar, which is used in some of the figures in
this design guide, and a trailing slash.

The asynchronous reset line TRST* is optional in the IEEE 1149.1
boundary scan standard. For devices that do implement this
line, it is intended to provide an asynchronous reset of the TAP,
sending the TAP state machine back to the Test-Logic-Reset
state immediately. Normally this line should be connected from
the SCANSTA101 STA master either to every JTAG-enabled
device that implements this line or to each of the SCANSTA111
and SCANSTA112 multiplexers, which can pass it through to the
local scan ports.

If the multiplexers are used, then the TRST* line of each local
scan port should be connected to the TRST* line of each device
in its corresponding local scan chain that implements this line.

The TRST* line is meant to fan out, as a single net, to all the
devices on a given scan chain. It either does this directly or
through a Scan Bridge multiplexer. If the TRST* line is routed
through a multiplexer, the local scan port TRST* lines carry a
buffered version of the input TRST* line to the multiplexer.

4.2.5. Test Clock (TCK)

The TCK line carries the test clock which clocks the Test Mode
Select (TMS), Test Data In (TDI) and Test Data Out (TDO) lines.
This signal is meant to fan out, as a single net, to all the JTAG-
enabled devices on a board.

When the SCANSTA111 or SCANSTA112 Scan Bridge
multiplexers are used, each local scan port has a buffered
version of the TCK line on the master TAP. When these
multiplexers are used, the TCK output from each local scan port
should be connected to the TCK inputs of all the devices on the
corresponding local scan chain.

4.2.6. Test Mode Select (TMS)

The TMS line controls the state of the TAP state machine
which controls the operation of the TAP. In normal operation of

29national.com/scan

the IEEE 1149.1 boundary scan chain, the TAP state machines
of all the devices on the scan chain are in the same state. To
accomplish this, all the TMS lines are connected together on a
single net.

When the SCANSTA111 or SCANSTA112 Scan Bridge
multiplexers are used, the TMS line from each local scan port
should be connected to the TMS inputs of all the devices on
the corresponding scan chain. When the multiplexers are used,
the TMS lines on each local scan port may not follow the TMS
line on the input to the multiplexer. This is by design. It is by
controlling the TMS line of each local scan chain that the Scan
Bridge multiplexers isolate the operation of each local scan port
from the others.

4.2.7. Test Data In (TDI) and Test Data Out (TDO)

Beginning with the SCANSTA101 STA master, the TDO line of
each boundary scan device should be connected to the TDI
line of the next device in the chain. This connection, in fact, is
why this configuration is called a boundary scan chain. When
the SCANSTA111 or SCANSTA112 Scan Bridge multiplexers
are used, the TDO line of each local scan port should be
connected to the TDI line of the first boundary scan device on
the corresponding local scan chain, and from there to the other
devices on the chain.

In the end, the TDO line of the last device in the chain is
connected to the TDI line of the original TDO driver, either the
SCANSTA101 STA master itself or the Scan Bridge multiplexer
local scan port TDI input. When Scan Bridge multiplexers are
used, they form their own scan chain, with the TDO output of the
last multiplexer in the chain connected to the TDI input of the
STA master.

In boundary scan operation, data is clocked out of the TDO
line of the STA master, one bit at a time, into the TDI line of the
next device in the chain. The state of the TAP state machine
and the internal JTAG logic of this device determine where this
data goes, but it eventually is shifted out on the TDO line of this
device and into the TDI line of the next one.

This is all that needs to be done to connect the TAP for built-in
self-test from a hardware point of view. Figure 4-5 shows an
example connection of a JTAG scan chain on a target board
using a SCANSTA112 Scan Bridge multiplexer. Each of the
LSP connections shown is only five lines wide, and there is no
interaction with the basic functionality of the board.

System Controller

SCANSTA101
Scan Master

SCANSTA112
JTAG

Multiplexer

JTAG-Enabled
Device

JTAG-Enabled
Device

Other JTAG-Enabled
Devices

JTAG-Enabled
Device

TDO_SM TDI_B
TMS_SM
TCK_SM
TRST_SM

TDO0

TDOTDO

TDO

Operational
Connections

A B

Board Defect

JTAG-Enabled
Device TDO

TDO

TDI_SM

Other JTAG-Enabled
Devices

TDI
TDO

TDITDITDI

TDI TDI

TDI

TRST

TR
S

T

TC
K

TCK

TM
S

TMS

TR
S

T

TR
S

T

TR
S

T

TR
S

T

TR
S

T

TC
K

TC
K

TM
S

TM
S

TC
K

TM
S

TC
K

TC
K

TM
S TM

S

TMS_B
TCK_B

TRST_B

TDI0

TDO_B

TRST0

TCK0

TMS0

JTAG-Enabled
Device

TDI1
TMS1

TCK1

TRST1

TDO1

Parallel Interface

Figure 4-5. Example JTAG Chain Configuration with the
SCANSTA111 Scan Bridge Multiplexer

30

Hardware Design Considerations for Built-In Self-Test

4.3. Summary
As previously mentioned, the hardware design of the
SCANSTAEVK demonstration kit used in this effort was
done several years ago. The design considerations for this
demonstration kit were somewhat different from those for
an operational system with built-in self-test functionality
included as an add-on. The demonstration kit was designed to
demonstrate JTAG functionality. An operational system would
just be designed to use it.

The previous sections have described the hardware design
considerations for such a system and related them to the design
of the SCANSTAEVK demonstration kit. The key points related to
hardware design are as follows:

1.	 The design of the boundary scan-based built-in self-test
can largely be deferred until late in the design process.
Only some high-level system considerations must be
addressed at the beginning of the process.

2.	 Once the functional design of the system is almost
complete, boundary scan-based built-in self-test can be
“bolted on” with very little impact to the hardware design
of the system.

3.	 Implementation of the boundary scan chains requires few,
if any, new components on the board.

4.	 Implementation of the boundary scan chains requires few
new board interconnects, and none that would disturb the
basic functionality of the board.

Thus far, the SCANSTAEVK demonstration kit used as a model
of an operational system for the present effort has been
described. Also described were some of the considerations
in the hardware design of such a system, relating them to the
design of the SCANSTAEVK demonstration kit. In the sections
that follow, how to develop and deploy a test sequence for the
SCANSTAEVK demonstration kit will be illustrated. The first step
in this process is to develop a test pattern using commercially-
available ATPG software.

31national.com/scan

5. Development of a Boundary Scan Test Pattern

In the course of this work, ATPG tools from three different
tool vendors were evaluated. These tools were Corelis
ScanExpressTPG, Flynn Systems OnTAP, and JTAG Technologies
ProVision. All three tools were suitable for generating boundary
scan-based built-in self-test patterns, and the choice of which
tool to use is largely a matter of personal preference and
company history. All three of these tools are primarily targeted
at producing test patterns to be deployed on hardware provided
by the tool vendor. This is, of course, a factory test, and is
different from built-in self-test. Having said that, all three tools
can also be used to produce SVF files suitable for built-in
self-test, and each of the three tools was used in this way to
produce such a SVF file.

Other tools are also available for automatic test pattern
generation. The fact that only the three tools listed were
evaluated for this design guide does not imply any special
fitness of these tools for automatic test pattern generation.
These were simply the three tools that were evaluated. ATPG
tools from other vendors could certainly be used for JTAG-
based built-in self-test.

5.1. ATPG Tool Selection
In this design guide, the test preparation sequence using
several of the ATPG tools as demonstration vehicles will be
described. Again, the choice of an ATPG tool is largely a matter
of personal preference. Some of the considerations in the
choice of an ATPG tool are outlined in the following list.

1.	 The system to be tested might be described by a
single netlist or by multiple netlists. The SCANSTAEVK
demonstration system used is described by multiple
netlists. However, since only a single board was
fundamentally tested, (even though it was part of a
multiple board system, and since the SCANSTA111 Scan
Bridge multiplexer being used was really only connected
to the TAP), it was easy for the data to be input into any of
the tools to produce the desired tests.

2.	 All the tools produce intermediate text files describing
the tests to be performed. It is easy to edit these text
files with a standard text editor. As an example, the

text files were edited to describe the static logic levels
for the desired tests , the connections between the
parts not shown on the netlist, and the connection of
the SCANSTA111 multiplexer, which was also not on
the target board netlist. This method of adding this
information by editing text files seemed natural and
straightforward, and it was easy to get the necessary
behavior by editing these files. That being said, all of the
tools are designed so that editing these text files is not
necessary. All the required information can be entered
into each of the tools using the GUI.

3.	 Many of the tools support the SCANSTA111 and
SCANSTA112 JTAG multiplexers in a straightforward way.
However, implementation of a full hierarchical system
with multiple Scan Bridge multiplexers was not attempted.

4.	 Each of the tools can generate a SVF file that can be used
for producing an EVF2 file. The SVF files are also ASCII
text files that can be viewed or edited with a text editor.

To get started with the development of the boundary scan test,
it was first necessary to produce a netlist for the SCANSTAEVK
SerDes target board.

5.2. Producing the Netlist
The SCANSTAEVK demonstration kit was designed for National
by a third-party design house using Mentor Graphics PADS EDA
software. All of the ATPG tools that were evaluated can read
a wide variety of netlist formats. These netlist formats include
Mentor Graphics PADS, Cadence Allegro, Orcad (which is now
part of Cadence), and Altium Designer, the successor to ProTel.
Producing a native-format netlist from any of these tools, or
from almost any EDA software, is a relatively simple process.
So, it was not difficult to produce a netlist for the SCANSTAEVK
demonstration kit’s SerDes target board. This is the board
shown in Figure 3-6, Figure 3-7, and Figure 3-8.

Image caption

32

Development of a Boundary Scan Test Pattern

5.3. Entering the Netlist into the ATPG Tool
The following shows a representative section of the SerDes
target board netlist.

There are two sections of this netlist that are interesting from
the standpoint of automated test pattern generation. First,
the section with the heading *PART* includes the reference
designators and descriptions for each component on the
board. The ATPG tool uses these reference designators when
information for each device on the board is entered. For
example, as will be seen later, U1 and U2 are JTAG-enabled
integrated circuits. Using a BSDL file, information will be
provided about their boundary scan implementation and these
reference designators will be referred to in order to indicate to
which device the BSDL file applies.

Second, the section with the heading *NET*, in which each
element is labeled *SIGNAL*, describes the connections
between the components on the board. Like most EDA tools,
PADS permits but does not require the user to assign each net a
unique name. The line labeled *SIGNAL* A1_TMS, for example,
and the line after it, indicate that a net labeled A1_TMS (the test
mode select line for TAP A1) connects J13, pin 3, to R11, pin 2.
This is a net to which the original designer of the board attached
a label so that the function of the net would be obvious.

The line labeled *SIGNAL* $$$22002 and the line after it indicate
that a net for which the original designer did not enter a name
connects R9, pin 2, J1, pin 15, and RN5, pin 4. The software
assigned this net a unique name ($$$22002) when the netlist was
generated. For the purposes of the ATPG tool, a net name is just
a string, and an automatically-assigned net name is as good as
any. The use of these automatically-assigned net names in editing
the netlist edit file will be described further in Section 5.4.

With reference to Figure 3-7, it should be noted that not all the
connections to be tested exist in the netlist or on the schematic.
For example, the CAT-5 cable connection between J4 and J5
does not exist in the netlist. In fact, only the connections that
correspond to traces on the printed circuit board appear in
the netlist. If other connections exist and are to be tested, they
must be specified to the ATPG tool in some other way. All of the
ATPG tools include provisions for specifying such “off-netlist”
connections.

The method of entering the netlist varies from one ATPG tool
to another, but entering the netlist is one of the first steps in
the process with all of the tools. The main screen of the Flynn
Systems onTAP software showing the netlist entry window is
shown in Figure 5-1.

!PADS-POWERPCB-V2007.0-MILS! NETLIST FILE FROM PADS LOGIC
V2007.2
REMARK S-03490R0 - SCAN1023-1224.sch -- Thu Oct 01 13:28:53
2009
REMARK

PCB GENERAL PARAMETERS OF THE PCB DESIGN

MAXIMUMLAYER 2 Maximum routing layer

PART ITEMS
U1 SCAN921224@BGA\.8MM\49P
U2 SCAN921023@BGA\.8MM\49P
R12 RES\SMT@RES\0603
J1 CONN\DIN\HIR\64P\RA@CONN\DIN\HIR\64P\RA
J10 CONN\3M\2520\20P@CONN\3M\2520\20P
RN1 RSIP8P4R\SMT@RSIP\CTS\744\4R
.
.
.
R16 RES\SMT@RES\2010
M2 FIDUCIAL@FIDUCIAL
NET
SIGNAL GND
J17.3 J9.2 R1.2 J3.2 C1.2
C6.2 C5.2 C4.2 C3.2 C2.2
J2.11 J10.11 R12.2 RN6.8 RN6.6
RN6.2 RN6.4 RN7.2 RN7.4 RN7.6
RN7.8 J2.16 J10.16 C9.2 R16.1
.
.
.
SIGNAL A1_TMS
J13.3 R11.2
SIGNAL A1_LSP_ACT
J1.22 R2.1
SIGNAL $$$22002
R9.2 J1.15 RN5.4
SIGNAL REN
U1.D1 J10.13 RN7.5 S3.8
SIGNAL $$$11211
J13.2 U1.G7
SIGNAL $$$11228
U1.E5 J12.2
SIGNAL $$$11231
U1.E6 J11.2
SIGNAL X_\PWRDN
U2.C7 S2.8 RN6.5 J2.20
SIGNAL $$$11572
U1.F6 J14.2
.
.
.

33national.com/scan

Figure 5-1. Main Screen of the Flynn Systems onTAP Software showing the
Netlist Entry Window

5.4. Adding Information to the Netlist
The IEEE 1149.1 standard primarily relates to low-speed
or quasi-static testing of interconnections on a board
(the newer IEEE 1149.6 standard addresses higher-speed
interconnections12). Since quasi-static logic levels are
applied and sensed in boundary scan testing, some additional
information is required to ensure that all interconnects are
tested.

5.4.1. Power and Ground Nets

Power and ground nets are the first item of concern. On the
SCANSTAEVK SerDes board, none of the boundary scan devices
have bidirectional boundary cells (cells which can function
either as inputs or outputs). A board that includes devices
with bidirectional I/O pins would probably include bidirectional
boundary cells. Some of these cells might be connected to a
power supply rail, or to ground, to produce static logic levels.
If a boundary scan test sequence included an attempt to drive
such a bidirectional I/O to some logic level other than the power
supply or ground rail it was connected to, it could damage the
device. Accordingly, it is necessary to tell the ATPG software
about nets that are power supply rails and grounds.

With all the ATPG tools tested, the user designates power and
ground nets using the net names from the netlist. This step
is prone to error, as it is not always the case that all power
and ground nets are labeled with obvious descriptive names.
Unfortunately, there is no general way for the ATPG tool to

recognize power and ground nets. The user must designate
them. One technique for recognizing candidate power and
ground nets is to look for nets with a lot of pins connected to
them. Such nets are likely to be power or ground nets.

A screen shot of the Corelis ScanExpressTPG main screen
is shown in Figure 5-2. The list of net names has been sorted
according to the number of pins on each net and the power
and the ground net names are obvious. These nets have been
designated power and ground as appropriate.

Figure 5-2. Main Screen of the ScanExpressTPG Software showing Power and
Ground Net Designation

5.4.2. Resistors

Resistors on a digital board generally serve only a few purposes.
They might be pull-up or pull-down resistors used to provide
external terminations or to set logic levels on lines that might
not be actively driven. These resistors can be considered, for
the purposes of testing interconnections with boundary scan, as
drivers of ”weak zeros“ or ”weak ones“. “’Weak“, in this sense,
means a logic level that can be overridden by an active driver
on the output of an integrated circuit.

Resistors might also be used as transparent signal transmission
devices. Zero-ohm resistors are often used in this way on PC
boards to support multiple assembly options. Resistors used
in this way can generally be treated as wires for purposes of
testing interconnections with boundary scan.

Resistors might also be a part of signal conditioning networks
such as filters. Since boundary scan testing is implemented
with quasi-static logic levels, filter responses are not usually
a concern. Such resistors usually can be treated as shorts or
opens, depending upon the circuit topology.

Image caption

34

Development of a Boundary Scan Test Pattern

All of the ATPG tools include a provision for identifying resistors
on the board. Once the resistors are identified, the tools can
incorporate the nets that include them into the boundary scan
test. The resistors can be designated as pull-ups, pull-downs, or
transparent (pass-through) devices.

One other use for resistors, especially in high-speed digital
circuitry, is illustrated by R14 on the target SerDes board shown
in Figure 3-7. In this figure, the 27Ω resistor is a termination
for the high-speed transmission line from the serializer to the
deserializer. This resistor is clearly neither a pull-up nor a
pull-down resistor, and it must not be treated as a transparent
device, either. This resistor has no effect on the boundary scan
operations. The ATPG tool can be instructed to ignore this
resistor in developing the boundary scan tests.

5.4.3. Transparent Devices
As noted, resistors are in many cases transparent devices
(meaning, for resistors, short-circuits) for the purposes of
boundary scan testing. There are also other devices that often
should be considered transparent, though perhaps not always.
These include buffers, switches, multiplexers, and drivers –
basically any device that transmits a logic level unmodified from
its output to its input. All of the ATPG tools include provisions
for identifying transparent devices and include simple models
for these devices.

5.4.4. Adding BSDL Models

Arguably the most critical devices on a board to be tested using
boundary scan are the JTAG-enabled devices themselves. The
IEEE 1149.1 standard specifies extensions to the VHSIC (Very-
High-Speed Integrated Circuit) Hardware Description Language
(VHDL) to describe the boundary scan operation of JTAG-
enabled devices. The Boundary Scan Description Language
(BSDL) specification uses the generic attributes feature of VHDL
to describe the JTAG commands that a device implements,
what boundary cells it uses, what bit patterns correspond
to each command, which registers each command targets,
and other essential information for generating boundary scan
test patterns. Following is the BSDL file for the SCAN921023
serializer, shown in its entirety.

-- Copyright National Semiconductor Corporation 2001
--
-- Boundary Scan Description Language, BSDL Model for NSC_
SCAN921023
-- 10-bit LVDS Serializer
--
-- National Semiconductor Customer Service Center
-- N. America (800) 272-9959
-- Europe Germany p49 (0) 69 9508 6208

-- 01 Initial
-- 02 14 Mar 01 Verified through additional ATPG tools
-- Changed BGA_49 to BGA_49_INTEGER. Added
BGA_49_BALL
-- Reversed order of DIN from (9 downto 0)
-> (0 to 9)
-- Corrected ID code
-- Corrected RUNBIST
-- 03 21 Mar 01 Corrected ID
-- Corrected cell ordering i.e. cell
closest TDO = 0
-- 04 29 Mar 01 Corrected control cells
-- 05 29 Mar 01 Corrected disable value
-- 06 29 Apr 02 Corrected attribute ordering (RUNBIST_
EXECUTION) & fixed bist register name
-- 07 28 Aug 09 Uncommented DOn and differential port
grouping

entity NSC_SCAN921023 is
 generic (PHYSICAL_PIN_MAP : string := “BGA_49_BALL”);

 port (

 DIN: in bit_vector(0 to 9);
 SYNC2: in bit;
 SYNC1: in bit;
 PWRDN: in bit;
 DOp: out bit;
 DOn: out bit; -- 28 Aug 09
was commented out
 DEN: in bit;
 TCLK: in bit;
 TCLK_R_F: in bit;
 TDI: in bit;
 TMS: in bit;
 TCK: in bit;
 TRST: in bit;
 TDO: out bit;
 DVCC: linkage bit_vector(2 downto
0);
 DGND: linkage bit_vector(4 downto
0);
 AVCC: linkage bit_vector(4 downto
0);
 AGND: linkage bit_vector(4 downto 0)
);

 use STD_1149_1_1994.all;

 attribute COMPONENT_CONFORMANCE of NSC_SCAN921023 :
entity is “STD_1149_1_1993”;

 attribute PIN_MAP of NSC_SCAN921023 : entity is
PHYSICAL_PIN_MAP;

-- BGA_49_INTEGER identifies each pin as an integer
 constant BGA_49_INTEGER : PIN_MAP_STRING :=
 “DIN:(3, 8, 23, 15, 24, 22, 30, 29, 37, 39),” &
 “SYNC2:10,” &

35national.com/scan

 “SYNC1:4,” &
 “PWRDN:21,” &
 “DOp:28,” &
 “DOn:26,” & -- 28 Aug 09 was commented out
 “DEN:27,”&
 “TCLK:32,”&
 “TCLK_R_F:45,”&
 “TDI:36,”&
 “TMS:31,” &
 “TCK:38,” &
 “TRST:44,” &
 “TDO:43,” &
 “DVCC:(17, 18, 33),” &
 “DGND:(1, 16, 34, 40, 46),” &
 “AVCC:(5, 6, 11, 14 ,47),” &
 “AGND:(12, 13, 20, 35, 42)”;

-- BGA_49_BALL identifies each pin by a “ball” identifier
 constant BGA_49_BALL : PIN_MAP_STRING :=
 “DIN:(A3,B1, D2, C1, D3, D1, E2, E1, F2, F4),” &
 “SYNC2:B3,” &
 “SYNC1:A4,” &
 “PWRDN:C7,” &
 “DOp:D7,” &
 “DOn:D5,” & -- 28 Aug 09 was commented out
 “DEN:D6,”&
 “TCLK:E4,”&
 “TCLK_R_F:G3,”&
 “TDI:F1,”&
 “TMS:E3,” &
 “TCK:F3,” &
 “TRST:G2,” &
 “TDO:G1,” &
 “DVCC:(C3, C4, E5),” &
 “DGND:(A1, C2, E6, F5, G4),” &
 “AVCC:(A5, A6, B4, B7 ,G5),” &
 “AGND:(B5, B6, C6, E7, F7)”;

 attribute PORT_GROUPING of NSC_SCAN921023 : entity is
-- 28 Aug 09 was commented out
 “DIFFERENTIAL_VOLTAGE ((DOp, DOn))”;
-- 28 Aug 09 was commented out

 attribute TAP_SCAN_IN of TDI : signal is true;
 attribute TAP_SCAN_MODE of TMS : signal is true;
 attribute TAP_SCAN_OUT of TDO : signal is true;

 attribute TAP_SCAN_CLOCK of TCK : signal is (25.0e6,
BOTH);
 attribute TAP_SCAN_RESET of TRST : signal is true;

 attribute INSTRUCTION_LENGTH of NSC_SCAN921023 : entity
is 8;

 attribute INSTRUCTION_OPCODE of NSC_SCAN921023 : entity
is
 “BYPASS (11111111),” &
 “EXTEST (00000000),” &
 “SAMPLE (10000010),” &
 “IDCODE (10000001),” &
 “CLAMP (10000111),” &
 “HIGHZ (00000110),” &
 “RUNBIST (10000011)”;

 attribute INSTRUCTION_CAPTURE of NSC_SCAN921023 : entity
is “XXXXXX01”;

 attribute IDCODE_REGISTER of NSC_SCAN921023 : entity is
 “1000” & -- version
 “1111110000100110” & -- part number FC26 TX
 “00000001111” & -- manufacturer’s identity
 “1”; -- required by 1149.1

 attribute REGISTER_ACCESS of NSC_SCAN921023 : entity is
 “BYPASS (BYPASS, CLAMP, HIGHZ),” &

 “BOUNDARY (SAMPLE, EXTEST),” &
 “BISTREG[2] (RUNBIST),” &
 “DEVICE_ID (IDCODE)”;

-- attribute BOUNDARY_CELLS of NSC_SCAN921023 :entity is
“BC_1,BC_4”;

 attribute BOUNDARY_LENGTH of NSC_SCAN921023 : entity
is 18;

 attribute BOUNDARY_REGISTER of NSC_SCAN921023 : entity
is
 --
 -- num cell port function safe
[ccell disval rslt]
 --
 “17 (BC_4, DIN(8), input, X),” &
 “16 (BC_4, DIN(7), input, X),” &
 “15 (BC_4, DIN(6), input, X),” &
 “14 (BC_4, DIN(5), input, X),” &
 “13 (BC_4, DIN(4), input, X),” &
 “12 (BC_4, DIN(3), input, X),” &
 “11 (BC_4, DIN(2), input, X),” &
 “10 (BC_4, DIN(1), input, X),” &
 “9 (BC_4, DIN(0), input, X),” &
 “8 (BC_4, SYNC2, input, X),” &
 “7 (BC_4, SYNC1, input, X),” &
 “6 (BC_4, PWRDN, input, X),” &
 “5 (BC_1, DOp, output3, X,
4, 0, Z),” &
 “4 (BC_1, *, controlr, 0),”
&
 “3 (BC_4, DEN, input, X),” &
 “2 (BC_4, TCLK, input, X),” &
 “1 (BC_4, TCLK_R_F, input, X),” &
 “0 (BC_4, DIN(9), input, X)”;

 attribute RUNBIST_EXECUTION of NSC_SCAN921023 : entity is
 “Wait_Duration (10.0e-3), “&
 “Observing HIGHZ At_Pins, “&
 “Expect_Data 01”;

end NSC_SCAN921023;

It should be noted that this is a BSDL file, but it is also a VHDL file.
VHDL is a commonly-used hardware description language13 14.
Most of the information in the BSDL file is not used in VHDL
simulations or in the VHDL synthesis process. VHDL permits the
addition of user-defined attributes, and this was the mechanism
chosen in the IEEE 1149.1 standard to describe the boundary
scan operation of a device in a BSDL file. This BSDL file
specifies a number of items.

First, it is a VHDL entity description with a generic constant
parameter, PHYSICAL_PIN_MAP. Like any VHDL entity
description, it describes the interface of the device. The entity
declaration specifies the ports of the device, and everything
else in the file is an entity declaration item.

Image caption

36

Development of a Boundary Scan Test Pattern

The BSDL file specifies the following information used by the
ATPG tools:

•	Use of the IEEE 1149.1 package STD_1149_1_1994
•	The mapping of device ports to physical pins of the device as

referred to on the netlist
•	The differential pair that represents the LVDS output
•	The ports associated with the TAP, which the ATPG tool needs

to know about in order to generate the test pattern
•	The instructions the device will support
•	The corresponding op-codes for each instruction
•	Which register each instruction targets
•	The expected output bit patterns for the Capture-IR state and

for the IDCODE instruction
•	Which standard boundary register cells are used and how they

are arranged in the boundary register, including the mapping
from the boundary register to the ports of the device.

All of the ATPG tools require specification of the BSDL files
for each JTAG-enabled device to be tested. Some of the tools
provide some BSDL files, but these are mostly for examples. The
best way to obtain a BSDL file for a device is to get it from the
manufacturer of the device. National provides BSDL files for all
of its JTAG-enabled devices.

5.4.5. Modifying the Connections in the Netlist

So far all the additional information added to the netlist has
been simply to clarify the information contained in the netlist
itself. For example, which nets are power and ground and how
various devices should be treated in generating the boundary
scan tests have been specified. Some of the information
required to develop a boundary scan test is not contained in the
netlist, however, and so this information must be provided to the
ATPG tools in some other way.

A PC board netlist generally contains only information that
relates to the connections made by traces on the board. When
a board is deployed in a system, however, it usually includes
other connections that are not shown on the netlist. Examples
include jumper connections used to set operational conditions,
cables between the various boards, switch settings, and
interconnections between multiple boards in the same scan
chain system.

One way to include all of this information in the system
description used to generate the boundary scan tests is to
modify the netlist itself. This can be done with a text editor and

is straightforward, although it is prone to error. All of the ATPG
tools provide techniques to modify the information in the netlist
without modifying the netlist itself.

All of the ATPG tools, for example, provide a means for adding
connections that are not shown on the netlist. Once these
connections have been specified, they can be tested as part of
the boundary scan test.

Another example of information that might be added to a
netlist is information about static logic levels. All of the ATPG
tools allow the specification of static logic levels to be tested.
The procedure used to specify static logic levels in the JTAG
Technologies tool, for example, is shown in Figure 5-3. The
shaded items reading ”Sense 1“ and ”Sense 0“ were manually
added, and they indicate to the tool that the test pattern should
include detection of those static logic levels on those nets.

Figure 5-3. JTAG Technologies ProVision Netlist Explorer View showing
Specification of Static Logic Levels for Testing

For all of the ATPG tools, the process of generating a boundary
scan test specification proceeds in several steps. First,
information about the board to be tested, the components on the
board, and any additional information not on the netlist are input
into the tool. Then the algorithms for test pattern generation are
invoked and the boundary scan test specification is produced.

In order to generate and deploy a built-in self-test using
National’s SCANSTA101 STA master, with or without any
additional boundary scan support devices, the boundary scan
test specification must eventually be converted to a sequence
of register reads and writes that instruct the SCANSTA101 STA
master how to perform the required tests. This conversion is

37national.com/scan

performed by a software tool, EVF Workbench, supplied by
National. EVF Workbench requires as input a test specification
in Serial Vector Format (SVF). The following section discusses
the generation of the boundary scan test and its presentation as
a SVF file.

5.5. Generation of the Boundary Scan Test
and SVF File
Once the netlist information and any additional information
have been supplied to any of the ATPG tools, the next step is to
generate one or more sets of test vectors. Considerable effort
has been applied to the problem of generating useful sets of test
vectors15 16 17. Each tool generates the test vectors differently,
but each tool is designed to produce a set of test vectors that
will detect as many board faults as possible with as few test
vectors as possible.

5.5.1. Boundary Scan Test Strategy

Fundamentally, what the boundary scan test does is drive
known test data on the accessible outputs of the JTAG-enabled
devices and look for the corresponding known test data at the
inputs of the JTAG-enabled devices. In principle this allows a
boundary scan built-in self-test sequence to detect broken or
bridged connections on or between the JTAG-enabled devices
on the board.

Consider, however, the case where an input line to a JTAG-
enabled device is shorted on the board to the positive power
supply. No matter what values the driving devices on the line
attempt to drive, the JTAG-enabled device at the receiving
end of the line will see logic high. If the boundary scan built-in
self-test sequence is such that the driving devices on the line
only try to drive a logic high, then the board fault will not be
detected. The test sequence will only look for logic high, will
only see a logic high, and will not detect the fault.

In order to be sure that these sorts of faults are detected,
it is necessary to drive multiple logic values on each of the
accessible driver lines. If the lines are wire-ORed together,
however, and each of the drivers on the line can be driven
independently, the important question becomes: How many
different values must be driven to ensure detection of all faults
that may exist on the board?

It is also possible that logic lines might be shorted to adjacent
logic lines and not just to a power supply rail. Then, it is
important to determine how many different drive values are
required in order to detect such a fault.

The more logic values must be driven and detected, the
longer the self-test will take. Therefore, there is a penalty for
excessively long test sequences just as there is a penalty
for test sequences that are too short to detect existing faults
on the board. Automatic generation of a board test pattern
utilizes algorithms, unique to each tool, to generate the shortest
possible set of tests that will detect all the possible faults on
the board. The literature describes the basic strategies for
generating these test vectors, but each tool vendor implements
these strategies differently. As a result, the test sequences
generated by each tool are different. They have different
numbers of unique test vectors, and the test vectors are of
different lengths.

On a complex board, the number and length of the test vectors
required to produce an acceptably-complete board test might
be very large, and the corresponding test time might be very
long. For the simplified model system used in the present effort,
all the tools produced test sequences of comparable length, and
all were short enough so that test time was not an important
factor. Test time should be considered in a complex system,
however, and the efficiency of the test sequence generated by
one tool versus another might be an important consideration in
the design of a board built-in test sequence.

5.5.2. Serial Vector Format

Serial Vector Format (SVF) is a generic ASCII file format for
specifying a sequence of boundary scan-related instructions.
For a complete description of the SVF format, see the document
Serial Vector Format Specification, maintained by Asset
InterTech, Inc18.

At this point, just to give the reader a flavor of what a SVF
format file contains, a section of the SVF file from the Corelis
ScanExpressTPG tool has been reproduced.

!--

!
! NOTE: Text comments are marked with a preceding
‘!’ character
! NOTE: MASK bit value of ‘0’ masks out the
relevant TDO bit
! NOTE: Serial-data-out (TDI) is shifted out with
LSB first
!
!--

TRST OFF;

STATE IDLE;
!--

!

Image caption

38

Development of a Boundary Scan Test Pattern

! Source CVF file generated by ScanPlus TPG Version 2.03
!
!--

SIR 8 TDI (09)
 TDO (00)
 MASK (00);

SIR 8 TDI (8E)
 TDO (25)
 MASK (FF);

SDR 8 TDI (01)
 TDO (00)
 MASK (00);

SIR 8 TDI (E7)
 TDO (25)
 MASK (FF);

!--

!
! TOPOLOGY INFORMATION
! The devices are listed in the order from TDI to TDO of the
board
!
! STA_U1 	 (SCANSTA111 Enhanced Scan Bridge at address
0x00000009 on TAP0)
! - Instruction Length (8)
Boundary Length (1)
! U1 	 (on TAP0) - Instruction Length (8) Boundary
Length (19)
! U2 	 (on TAP0) - Instruction Length (8) Boundary
Length (18)
! PAD 	 (on TAP0) - Instruction Length (1) Boundary
Length (1)
!
!--

SIR 25 TDI (1FF0505)
 TDO (0000202)
 MASK (0000606);

SDR 39 TDI (6DFAAFFFFF)
 TDO (0000000000)
 MASK (0000000000);

SIR 25 TDI (1FE0001)
 TDO (0000202)
 MASK (0000606);

SDR 39 TDI (4EFB3FFFFF)
 TDO (00E807FC96)
 MASK (00E807FF96);

SDR 39 TDI (77FC3FFFFF)
 TDO (00E807FE96)
 MASK (00E807FF96);

SDR 39 TDI (47FFCFFFFF)
 TDO (00E807FE96)
 MASK (00E807FF96);

The first real SVF statement in this file is the TRST OFF
statement. This is an instruction to disable the use of the
asynchronous TRST* line. It instructs any process that uses the
instructions in this SVF file that the asynchronous TRST* line is
not to be used. The OFF specification means that this line is to

be held inactive during the processing of the SVF file.

The next statement is a STATE IDLE statement. When the
keyword following the STATE instruction is one of four stable
TAP states, like IDLE, then the instruction specifies that the TAP
is to be driven to the indicated state by a correct sequence of
TMS line values. After the STATE instruction is executed, the
TAP will be left in the Run-Test-Idle state for the next command.

Following is a fragment of the SVF file generated by the JTAG
Technologies ProVision tool.

! SVF File: “c:\Bst32\ProVision\projects\JTAG_EVK_Demo\
interconnect_JTAG_Tech\interconnect_JTAG_Tech\interconnect_
JTAG_Tech.svf”
! Input GEN File: “c:\bst32\provision\projects\JTAG_EVK_Demo\
interconnect_JTAG_Tech\interconnect_JTAG_Tech\interconnect_
JTAG_Tech.gen”
! Input APL File: “c:\Bst32\ProVision\projects\JTAG_EVK_Demo\
interconnect_JTAG_Tech\interconnect_JTAG_Tech\interconnect_
JTAG_Tech.apl”
! Input CON File: “c:\bst32\provision\projects\JTAG_EVK_Demo\
interconnect_JTAG_Tech\interconnect_JTAG_Tech\interconnect_
JTAG_Tech.con”

FREQUENCY 25000000 Hz;

STATE RESET;
SIR 8
 TDI (09);
SIR 8
 TDI (8e);
SDR 8
 TDI (01);
SIR 8
 TDI (e7);
!
! Load Sample/Preload Instruction
!
SIR 25
 TDI (1550504);
SDR 70
 TDI (000000003f07f80060);
!
! Load Test Instruction
!
SIR 25
 TDI (1540000);
SDR 70
 TDI (000000000400080020)
 TDO (03f03c07c0e8000694)
 MASK (03ffffffc0e8004694);
SDR 70
 TDI (000000001c00080020)
 TDO (03f03c07c0c8000494)
 MASK (03ffffffc0e8004694);

This file also includes comments at the top, prefaced by an
exclamation point (“!”). The first real SVF instruction in this file
is a FREQUENCY instruction. This instruction indicates to the
test vector deployment system (the system processor) that the
Test Clock (TCK) frequency should not exceed 25 MHz. This
specification is contained in the Boundary Scan Description
Language (BSDL) files for the devices in the system.

39national.com/scan

The next instruction in this SVF file is also a STATE instruction.
In this case, the TAP is commanded to the Test-Logic-Reset
state. The TAP controller will be sequenced through the set of
TAP controller states required to perform the specified data shift
operations starting from the Test-Logic-Reset state.

The next command in both files is a Scan Instruction Register
(SIR) command. This particular command is an address
command to the SCANSTA111 multiplexer, which has its 8-bit
address statically set to 09. The commands sent to the various
devices will be discussed in more detail later.

The other command in these fragments of SVF files is the Scan
Data Register (SDR) command. Both the SIR and SDR command
include bit sequences to be shifted into the TDI input of the
first device in the scan chain. Bit sequences expected at the
TDO output of the last device in the chain may also be included.
Physically, in a partitioned scan chain like this one, the first and
last devices in the chain are the same device, the SCANSTA111
multiplexer in this case. The difference between the two
commands is that when a SIR command is executed, the TAP is
controlled so that its state machine is sent to the Shift-IR state,
whereas when the SDR command is executed, the TAP state
machine is sent to the Shift-DR state.

Following is one last example, the SVF file produced by the Flynn
Systems onTap tool.

// Created by Flynn Systems onTAP Boundary Scan Software
Build 4120, Fri Sep 11 10:39:29 2009

! DeviceTypes: U1_A2=SCAN921224 U2_A2=SCAN921023
! onTAP Option Selections:
! (ICT)Single Device Tests Option................NOT
SELECTED
! Allow Self Capture(monitoring) on BIDIR Pins...SELECTED
! Test All Bus Pins(BUS-WIRE Test)...............SELECTED
! Test PULL-UP and PULL-DOWN Resistors...........SELECTED
! (ICT)Do Not Use Tester Probes..................NOT
SELECTED

! onTAP Test and Chain Selections:
! Chain Device Type
Test
! A U1_A2 SCAN921224
Interconnect
! A U2_A2 SCAN921023
Interconnect

! SVF PIO Characters: H = Drive Logic 1, L = Drive Logic 0.
! U = Detect Logic 1, D = Detect Logic
0.
! Z = Drive High Impedance, X = Detect
Unknown.
!PIOMAP Map package pins to pin names.
! ATE drives and senses these pins.
! Begin Test Program
ENDIR IDLE;
ENDDR IDLE;
HDR 0;
HIR 0;

TDR 0;
TIR 0;

! Begin BSD cell and port map for U1_A2, SCAN921224
! Pin count = 49
! Pin connections and board level I/O are shown.
! num cell port pin function safe ccell disv rslt I/O
joins signal probe
!
! 0 BC_1 * controlr 0

The first two instructions in this file are ENDIR IDLE and ENDDR
IDLE. The first instruction specifies that at the end of each
SIR instruction, the TAP controller is to be left in the Run-Test/
Idle state. The second instruction says the same thing for SDR
instructions.

The SVF file specifies what the test sequence is to do. That is,
it may specify that the TRST* line is, or is not, to be used in the
test sequence. It may specify a maximum test clock frequency.
It specifies the state from which the test sequence is to begin.
It may specify the ending TAP state for the various types of
instructions. And it specifies what data is to be shifted into the
instruction register of each device through the TAP and what
data is to be shifted into and out of the data register in order to
perform the test.

Some set of software and hardware must be used to execute
the test sequence. This is what the SCANSTA101 STA master is
designed to do.

The SCANSTA101 STA master provides a simplified parallel port
interface between a system processor and the serial TAP. Once
a test sequence has been specified by a SVF file, the system
processor must be programmed to convert the instructions in
the SVF file into register reads and writes to the SCANSTA101
STA master which will perform the specified test. Fortunately,
this conversion can be done in advance without an additional
burden on the system processor. A PC-based program called
EVF Workbench performs this conversion, and it will be
described in the following section.

5.6. Generation of an EVF2 File using EVF Workbench
The simplest way to use the SCANSTA101 STA master to enable
a built-in self-test is the multi-step process described in this
design guide; namely, generate the self-test description in a SVF
file using an ATPG tool, convert it to an EVF2 file using National’s
software, and deliver it to the SCANSTA101 STA master using
National source code functions. The EVF2 format is a binary
format that makes efficient use of memory in an embedded
processor system. It describes the values to be written to and

Image caption

40

Development of a Boundary Scan Test Pattern

read from the various registers in the SCANSTA101 STA master
in order to implement the self-test.

For several years, National has provided a command-line-driven
utility called svf2evf for converting SVF files to the EVF2 format.
This utility has been extensively tested and is stable. It is also
fairly easy to use, relying for most settings upon a configuration
file that seldom requires modification.

National has recently developed a graphical user interface tool
for the SVF to EVF2 format conversion called EVF Workbench.
At present, this tool is only available for Microsoft Windows. For
Windows users, a graphical tool provides a much more uniform
and intuitive interface, and it makes the conversion both simpler
and less prone to error. The underlying conversion software is
the command-line-based svf2evf program. EVF Workbench can
produce a script file that can be run from the command line or
can run the script from within the graphical user interface. A
screen shot of the front panel of EVF Workbench is shown in
Figure 3-10.

Conversion of the SVF file to EVF2 format is simple and fast.
The user specifies a configuration file, an input SVF file, and an
output EVF2 file. The configuration file describes the parameters
of the target device, in this case the SCANSTA101 STA master.
The input SVF file describes the test to be performed. The
output EVF2 file contains the binary-formatted instructions to be
executed by the system controller when the self-test is run.

EVF Workbench also provides the user with a panel of intuitive
controls for setting the arguments passed to svf2evf. These
parameters would be input on the command line when svf2evf

is run from the command line. Having these arguments set from
graphical controls makes it easier for the user to specify the
parameters for the conversion process.

The process of converting the SVF file to EVF2 format can
be performed from EVF Workbench, or it can be run from the
command line using the EVF Workbench script output (.ecs) file.
The conversion is fast and, if run from inside EVF Workbench,
produces diagnostic outputs that are displayed in the text
display section at the bottom of the main EVF Workbench
window.

EVF Workbench provides a simple interface for conversion of
the SVF file to an EVF2 format. Once this conversion has been
completed, the EVF2 file contains the information required to run
the built-in self-test. Delivery of this information by the system
processor to the SCANSTA101 STA master is the subject of the
next section of this design guide.

41national.com/scan

6. Embedded Vector Delivery Software

The steps taken so far to produce a board capable of built-in
self-test using the IEEE 1149.1 TAP are as follows:

1.	 Design the board for its primary function, choosing JTAG-
enabled devices where possible and allocating board
space and power supply capacity for the additional JTAG
support devices that will be required to implement the
built-in self-test

2.	 Design in the JTAG support devices and connect them
to the system processor and to the TAPs of the JTAG-
enabled devices

3.	 Generate a test pattern using a commercially-available
ATPG tool

4.	 Convert the test pattern into National’s EVF2 format

The EVF2 format specifies the sequence of register reads and
writes to the SCANSTA101 STA master to perform the built-in
self-test. The next step is to program the system controller to
perform this sequence of register reads and writes. National
provides software to be embedded into the system controller to
assist in delivering the vectors to the SCANSTA101 STA master.

6.1. Development of the System Controller Software
Any system that includes boards to be tested by a built-in
self-test must also include some provision for initiating the
built-in self-test and reporting the results. Often this function
is performed by an embedded controller in the system.
The embedded controller must be programmed in some
programming language such as C or C++. Even if another
language is chosen for the embedded controller, compiled C or
C++ libraries often can be linked in to the final program.

To support the delivery of EVF2 format test vectors to the
SCANSTA101 STA master, National provides source code which
can be integrated into the program for an embedded system
controller. This software is designed to provide an interface
between the EVF2 format file stored in the system’s memory and
the low-level register reading and writing functions designed
into the system controller.

In order to use the National source code, the system software
designer must provide some low-level support facilities. These
are described in this section. In this section it is assumed
that the system controller is programmed in C. If the system

controller is programmed in a different high-level language, or in
assembler, it will be necessary for the system software designer
to control the interface to the National-supplied source code
functions. This is beyond the scope of the present design guide.

6.1.1. National Semiconductor Code

From the perspective of the system software designer,
National’s source code is simple and modular. Three new files
must be compiled and linked to the existing embedded system
controller code. These files are as follows:

•	EVF2Delivery.h – This header file contains definitions and
function prototypes required for the EVF2Delivery functions.

•	ST101Def.h – This header file contains the register addresses
for the SCANSTA101 STA master and some macros required
for the EVF2Delivery functions.

•	EVF2Delivery.c – This file may also have a .cpp extension,
but it is maintained in standard ANSI C. This file contains the
functions required for delivery of the EVF2 vectors.

The EVF2 vector delivery process, from the point of view of the
system programmer, consists of providing interfaces to the EVF2
file on the embedded system, providing interfaces to write and
read registers in the SCANSTA101 STA master, and using the
function EVF2VectorDelivery to connect these two interfaces.
Following is the prototype for the function EVF2VectorDelivery.

int EVF2VectorDelivery(int (*pfGetData)(void *,void *,void
*,size_t,size_t),
int (*pfErrorHndlr)(const char *,void *,void *),
int (*pfFailHndlr)(unsigned long,void *,void *),
void (*pfRegTraceHndlr)(void *,void *,unsigned
	 short,unsigned long,unsigned long),
void (*pfDebugHndlr)(void *,void *,unsigned
	 long,unsigned long,unsigned long,
 unsigned long,unsigned long),
void (*pfPollingHndlr)(void *,void *,unsigned long),
unsigned long dwTimeoutMs,
unsigned long dwLatencyMs,
void *pvUser1,void *pvUser2);

The arguments to this function specify the interface to the EVF2
file and to the error-detection and handling mechanisms. These
are described in a later section.

Also included in the EVF2Delivery.c file are prototypes and
definitions for the functions used to read and write the registers
in the SCANSTA101 STA master. Following is this section of the file.

Image caption

42

Embedded Vector Delivery Software

/*
** Prototypes for the specific i/o functions that are currently
** implemented in another module and resolved during final linkage.
** These could be replaced or removed depending upon the transport
** mechanisim used to access the STA101.
*/
void Write16BitRegister(unsigned short wAddr,unsigned short wData);
void Read16BitRegister(unsigned short wAddr,unsigned short *pwData);
void Write32BitRegister(unsigned short wAddr,unsigned long dwData);
void Read32BitRegister(unsigned short wAddr,unsigned long *pdwData);

/*
** These macros are now defined for the a specific hardware based
** implementation. Simply define these macros to use the appropriate
** i/o functions for the hardware in use.
*/
#define READ16REG(addr,wval) Read16BitRegister((addr),&(wval))
#define WRITE16REG(addr,wval) Write16BitRegister((addr),(wval))
#define READ32REG(addr,lval) Read32BitRegister((addr),&(lval))
#define WRITE32REG(addr,lval) Write32BitRegister((addr),(lval))

The macros READ16REG, WRITE16REG, and so forth are used in
the EVF2VectorDelivery function to read and write the registers
in the SCANSTA101 STA master. Functions with these names
and argument lists must be supplied by the user. These are
described in a later section of this design guide.

Once the appropriate interface functions are available, all the system
controller has to do to perform a self-test as specified by the EVF2 file
is call the function EVF2VectorDelivery. This function then handles
reading the data in from the EVF2 file, interpreting its content, and
manipulating the registers of the SCANSTA101 STA master to perform
the test. The source code for this function and for the ancillary
functions it uses is supplied in the file EVF2Delivery.c so that the
user can customize it if desired, but the intent is that this function is
platform-independent and can run properly on any system controller
equipped with an ANSI C compiler.

6.1.2. Interface to the EVF2 File and Error Handling

In concept, what the EVF2VectorDelivery function does can be
described in three steps. First, it reads the EVF2 file from system
memory or wherever it is stored. Then it interprets each record in
the EVF2 file and determines the required register reads and writes
associated with that record. Finally it performs the desired register
read and write operations on the SCANSTA101 STA master.

The user is required to provide the EVF2VectorDelivery function with
a method for reading data from the EVF2 file and handling errors. This
is encapsulated in the argument list to EVF2VectorDelivery.

6.1.2.1. EVF2 File Read Function

The first argument to EVF2VectorDelivery is a pointer to a
function returning an int and taking 5 arguments. An example
of this function, used in the SCANSTAEVK demonstration kit
described in this design guide, follows:

In the implementation used in the SCANSTAEVK demonstration kit
software, the first argument, pUser1, is a pointer to the EVF2 file,
which is stored on disk in the PC. The second argument, pUser2, is
a pointer to the user interface main window. The third argument,
pData, is a pointer to the location where the data from the EVF2 file
is to be returned. The fourth argument, nSize, is the size in bytes
of each element to be read from the file, and the fourth argument,
nCount, is the number of elements to read from the file.

The calls to the function pointed to by this function pointer are
embedded in the code for EVF2VectorDelivery. The function
EVF2VectorDelivery knows the size of the elements and the
number of elements to read with each call to this function, so all
the user must provide is a function (like FileCallback, previously
referenced) which, when called, retrieves nCount elements
of size nSize from the location pointed to by pUser1 (or from
some constant, hard-coded location) and returns them in the
location pointed to by pData. Memory allocation is handled in
EVF2VectorDelivery.

The second pointer, pUser2, is not used in EVF2VectorDelivery.
Its intended use is as a location to which error messages
can be directed, but it can be used in any way the system
programmer chooses. It should also be noted that the first
pointer, even though its intended use is as a location from which
to read the EVF2 data, need not be used this way. For example,
if the location of the EVF2 data in memory is always the same,
this location can be hard-coded into the file-reading function
and the first pointer can be used for anything the system
programmer desires, or not used at all. All EVF2VectorDelivery
cares about is that the user’s function returns the correct
amount of data and places it in the passed memory location.

int FileCallback(void *pUser1,void *pUser2,void *pData, size_t nSize,size_t nCount);

43national.com/scan

6.1.2.2. Error Handler

The second argument to EVF2VectorDelivery is a pointer to an
error handler function. An example of an error handler function
used in the SCANSTAEVK demonstration kit software is:

int ErrorCallback(const char *pszText,void *pUser1,void *pUser2);

The first argument to this function, pszText, is an error message
supplied by EVF2VectorDelivery. The other two arguments,
pUser1 and pUser2, are the two pointers passed in to
EVF2VectorDelivery. As mentioned previously, the first pointer is
intended to point to the location of the EVF2 file. In this function,
it is used to identify the file that created the error. The second
argument is intended to be the location to which the error
message is directed. In this function, this is a pointer to the top
window of the vector delivery application running on the PC. As
a reminder, however, these pointers can be anything the system
programmer chooses.

EVF2VectorDelivery calls this function, if it is supplied, with an
appropriate text error message when incorrect data is read from
the EVF2 file. This function need not be supplied by the user if
error messages are not desired. If the function is not supplied, the
corresponding argument to EVF2VectorDelivery should be NULL.

6.1.2.3. Fail Handler

The third argument to EVF2VectorDelivery is a pointer to a fail
handler function. This function is called by EVF2VectorDelivery
when a test failure is detected, i.e., when the test data received
from the scan chain does not match the expected test data. An
example of a fail handler function used in the SCANSTAEVK
demonstration kit software is:

int FailureCallback(unsigned long dwSeq,void *pUser1,void
*pUser2);

The pointer arguments to this function are the same as those
previously discussed and they can be used in the same way.
EVF2VectorDelivery supplies the first argument, dwSeq, and it is
the sequential number of the test vector being executed when
the failure was detected. This may provide valuable information
for debugging a board problem.

This function need not be provided if a failure indication is not
required. If the function is not provided, then the pointer passed
in to EVF2VectorDelivery should be NULL.

6.1.2.4. Register Trace Handler

The fourth argument to EVF2VectorDelivery is a pointer to
a register trace handler function. This function need not be

provided if register write tracing is not required. If the function
is not provided, then the pointer passed in to EVF2VectorDelivery
should be NULL.

This function is called by EVF2VectorDelivery whenever the
EVF2 file specifies a register write. The prototype of the function
used in the SCANSTAEVK demonstration kit is:

void TraceCallback(void *pUser1,void *pUser2,unsigned short
wId,unsigned long dwValue,unsigned long dwMasked);

The pointer arguments to this function are the same as
those used previously. The parameter wId is the index of the
SCANSTA101 STA master register to be written. The parameters
dwValue and dwMasked are the bits and mask bits to write to
the register, respectively. Bits for which the mask is not set to
“1” retain their original value after a register write.

It should be noted that this use of a mask is different from the
use of a mask in comparing TDO data to an expected value. This
mask is used to specify which register bits to write and which to
leave at their original values.

6.1.2.5. Debug Handler

In the release version of EVF2VectorDelivery the debug handler
function is never called. It is intended to be used to debug the
embedded vector delivery process, so it can be defined as the
user desires. Since the user has access to the source code,
debugging calls can be added as needed and then removed
when they are no longer necessary. It is recommended that
conditional compilation be used for this purpose.

The parameters of the debug handler function can be set to
whatever the user needs in order to accomplish the required
debug. In essence, this argument is a placeholder for a generalized
debug function pointer to be defined and supplied by the user.

6.1.2.6. Polling Handler

The sixth argument to EVF2VectorDelivery is a pointer to the
polling handler function. This function, if it is supplied, is called
before every register write during execution of a load-on-the-fly
test sequence. This function need not be supplied and, if it is
not, the pointer passed to EVF2VectorDelivery should be NULL.

If the function is supplied, its purpose is to permit the system
controller to respond to other events in the system during the
time when it is supervising a built-in self-test. This applies to a
load-on-the-fly test sequence and to a test sequence in which
multiple vectors are used with the SCANSTA101 STA master
sequencer.

Image caption

44

Embedded Vector Delivery Software

For a load-on-the-fly test sequence, the system controller loads
every vector into the SCANSTA101 STA master in real time as
opposed to loading all the vectors into the device memory and
then initiating the test. This can block execution of other threads
in the system controller’s program for a significant period of
time, since the system controller must continuously update the
SCANSTA101 STA master with new vectors. The same thing
can happen when the SCANSTA101 STA master sequencer is
used. When the polling handler function is called, it can check
for events produced by other threads in the system controller
program and respond to those events before returning to the
self-test thread.

In the SCANSTAEVK demonstration kit used for the case study
in this design guide, the polling handler function was written to
examine the message queue for messages from all the windows
in the vector delivery program and to dispatch these messages.
As mentioned, this function is only called during load-on-the-fly
vector operations or operations where the SCANSTA101 STA
master sequencer is used. The prototype for the function used
in the SCANSTAEVK demonstration kit software is:

void PollingCallback(void *pUser1,void *pUser2,unsigned long
dwDelay);

The first two arguments to this function are the same pointers
used in all the other function pointer argument lists. The last
argument, dwDelay, is a delay setting in ms which specifies the
minimum period the function should wait to detect events from
other threads before returning to the load-on-the-fly vector
sequence. In the production version of EVF2VectorDelivery, this
is hard-coded to zero for each register write in the load-on-
the-fly sequence, but it could be edited by the user to be any
desired value. For the sequencer operation, the delay time is set
by the parameter dwLatencyMs.

6.1.2.7. Timeout Value

When the sequencer is in use, a timeout value can be provided
in dwTimeoutMs. This is the maximum amount of time in ms to
wait while waiting for the status register in the SCANSTA101
STA master to indicate that the test sequence is complete. A
value of zero will produce an infinitely long wait.

This timeout operation can be modified by the user to meet the
needs of a particular system. As currently implemented it is a
simple timeout, but more complex operation might be required in
some systems.

6.1.2.8. User Pointer Arguments

The intended use of the user pointer arguments passed to
EVF2VectorDelivery has been described. However, these
pointers may be used in any way the system controller
programmer desires, so their definitions are flexible.

The system controller programmer should also keep in mind
that the source code for EVF2VectorDelivery is provided for
inclusion in the system controller program, so it can be changed
if desired. For example, the system programmer might choose
to pass a third pointer to EVF2VectorDelivery to use in place of
(or in addition to) the two pointers in the original argument list.
A third pointer might be useful, for example, to pass a memory
location for register tracing which might be different from the
location for error messages.

The code for EVF2VectorDelivery is designed to provide
flexibility for the system programmer. In order to use the
function as it is delivered, all that is necessary on the EVF2
interface side is to provide a function that can deliver the data
contained in the EVF2 file when the EVF2VectorDelivery function
requests it.

45national.com/scan

6.2. Interface to the SCANSTA101 STA Master
Registers
The first task of EVF2VectorDelivery is to read, with the
assistance of the functions passed in its argument list, the data
from the EVF2 file stored in the system memory. The second
function is to perform the indicated reads from and writes to the
appropriate SCANSTA101 STA master registers.

The functions required for reading and writing the registers are
not optional, of course. The National software assumes that
these functions have the prototypes shown in the following
listing (which is repeated here for convenient reference) and
that the macros shown are directed to those functions. The
16-bit read and write functions are used for register access
and the 32-bit versions are used to write to and read from the
internal long word memory of the SCANSTA101 STA master.

/*
** Prototypes for the specific i/o functions that are currently
** implemented in another module and resolved during final linkage.
** These could be replaced or removed depending upon the transport
** mechanisim used to access the STA101.
*/
void Write16BitRegister(unsigned short wAddr,unsigned short wData);
void Read16BitRegister(unsigned short wAddr,unsigned short *pwData);
void Write32BitRegister(unsigned short wAddr,unsigned long dwData);
void Read32BitRegister(unsigned short wAddr,unsigned long *pdwData);

/*
** These macros are now defined for the a specific hardware based
** implementation. Simply define these macros to use the appropriate
** i/o functions for the hardware in use.
*/
#define READ16REG(addr,wval) Read16BitRegister((addr),&(wval))
#define WRITE16REG(addr,wval) Write16BitRegister((addr),(wval))
#define READ32REG(addr,lval) Read32BitRegister((addr),&(lval))
#define WRITE32REG(addr,lval) Write32BitRegister((addr),(lval))

The macro definitions make it easy for the user to change the
names of the functions if desired. Only the prototypes and
the macro definitions must be changed if this is desired. The
changes required are limited to a small section of the code.
The user has access to the entire source code, so other more
extensive changes could be made if necessary.

The user must supply the functions for reading and writing
16-bit registers and 32-bit memory locations. These functions
can do anything else the user needs them to do as long as they
eventually read from or write to the appropriate registers in
the SCANSTA101 STA master. Address translation, for example,
could be handled in these functions.

All of the software supplied by National, including the SVF to
EVF2 conversion software and the embedded source code, is
designed to make it easy for the user to implement built-in self-
test. In many cases National’s software can be used as supplied
and the user need not be concerned about the details of the
built-in self-test. For the purposes of this design guide, however,
what the built-in self-test really does at a bit level is illustrated.
The next section looks in some detail at how the built-in self-test
was implemented.

Image caption

46

7. Dissecting the Built-In Self-Test

To really understand how the built-in self-test is implemented,
it is useful to examine it in detail on two levels. First, the bit
patterns that are to be shifted into the TAP and what they are
intended to do are seen in the SVF file. Then, by decompilation
and examination of the EVF2 file, the details of the mapping from
SCANSTA101 STA master register reads and writes onto the bit
patterns from the SVF file are shown.

7.1. The SVF File
The SVF files produced by each tool were somewhat
different, although they all achieved the same objective. The
beginning sections of the SVF file produced by the Corelis
ScanExpressTPG tool are shown below.

!--

!
! Generated by Corelis CVFtoSVF Converter Version 1.07
!
! Generated from C:\Documents and Settings\CJRJSC\My Documents\
Scan\ScanExpress_Projects\SCANSTAEVK_Demo\JTAG_EVK_Demo_
interconnect_ic.cvf
! CVF File Version: 1.01
! CVF Test Name : JTAG_EVK
! CVF Test Type : INTERCON
! CVF Revision : 1.01
! CVF File Date : 091009
!
!--

!
! SVF FILE STATEMENTS OPCODE SYNTAX SUMMARY
! --- ---- ---------- ------ ------ -------
!
! ENDDR - Specify the end state for any data register (SDR) scan
operation
!
! ENDIR - Specify the end state for any instruction register
(SIR) scan
! operation
!
! RUNTEST - Forces the IEEE 1149.1 bus to the specified run state
for
! a specified number of clocks. This can be used to
control RUNBIST
! operation in the target
!
! SDR - Performs an IEEE 1149.1 Data Register scan
! Shift data opcode, followed by number-of-bits
(decimal),
! serial-data-out (hex), expected-serial-data-in (hex),
mask-of-
! serial-data-in (hex)
!
! SIR - Performs an IEEE 1149.1 Instruction Register scan
! Shift instruction opcode, followed by number-of-bits
(decimal),
! serial-data-out (hex), expected-serial-data-in (hex),
mask-of-
! serial-data-in (hex)
!
! STATE - Move the boundary scan controller state-machine to this
stable
! state
!
! TRST - Controls the optional Test Reset line
!

!--

!
! NOTE: Text comments are marked with a preceding
‘!’ character
! NOTE: MASK bit value of ‘0’ masks out the
relevant TDO bit
! NOTE: Serial-data-out (TDI) is shifted out with
LSB first
!
!--

TRST OFF;

STATE IDLE;

!--

!
! Source CVF file generated by ScanPlus TPG Version 2.03
!
!--

SIR 8 TDI (09)
 TDO (00)
 MASK (00);

SIR 8 TDI (8E)
 TDO (25)
 MASK (FF);

SDR 8 TDI (01)
 TDO (00)
 MASK (00);

SIR 8 TDI (E7)
 TDO (25)
 MASK (FF);

!--

!
! TOPOLOGY INFORMATION
! The devices are listed in the order from TDI to TDO of the
board
!
! STA_U1 	 (SCANSTA111 Enhanced Scan Bridge at address
0x00000009 on TAP0)
! - Instruction Length (8)
Boundary Length (1)
! U1 	 (on TAP0) - Instruction Length (8) Boundary
Length (19)
! U2 	 (on TAP0) - Instruction Length (8) Boundary
Length (18)
! PAD 	 (on TAP0) - Instruction Length (1) Boundary
Length (1)
!
!--

SIR 25 TDI (1FF0505)
 TDO (0000202)
 MASK (0000606);

SDR 39 TDI (6DFAAFFFFF)
 TDO (0000000000)
 MASK (0000000000);

SIR 25 TDI (1FE0001)
 TDO (0000202)
 MASK (0000606);

SDR 39 TDI (4EFB3FFFFF)

47national.com/scan

 TDO (00E807FC96)
 MASK (00E807FF96);

SDR 39 TDI (77FC3FFFFF)
 TDO (00E807FE96)
 MASK (00E807FF96);

SDR 39 TDI (47FFCFFFFF)
 TDO (00E807FE96)
 MASK (00E807FF96);

.

.

.

! Total number of vectors : 21

Comments in this file are preceded by an exclamation point.

The TRST OFF and STATE IDLE instructions in the file already
have been discussed. Next, the first Scan Instruction Register
(SIR) instruction is examined and is shown as:

SIR 8 TDI (09)
 TDO (00)
 MASK (00);

This is a SIR instruction. That means that when the system
executes it, the TAP will be sent to the Shift-IR state prior to
scanning in the data on the TDI input. The data will go into the
instruction register. At the beginning of the test sequence, since
there is a SCANSTA111 multiplexer in the system and since it is
in the Wait-for-Address state, the scan chain consists only of
this device; so the instruction register chain is the instruction
register in the SCANSTA111 multiplexer, which is 8 bits long.

The eight bits scanned into the TDI input of the SCANSTA111
multiplexer, which subsequently pass into its instruction register,
are 0x09 or b00001001. This is the address of the SCANSTA111
multiplexer which is set by the static bit values on its address
inputs, S6:S0. The SCANSTA111 multiplexer has a seven-bit
address space. The ATPG software was told that the address of
the SCANSTA111 multiplexer was set to 0x09 prior to generating
the test vectors. Accordingly, the first instruction in the SVF file
selects the SCANSTA111 multiplexer by scanning its address
into its instruction register. When the SCANSTA111 multiplexer
detects that it has been addressed, it enters the Run-Test-Idle
state and waits for the system to configure it.

The next SIR instruction looks like this:

SIR 8 TDI (8E)
 TDO (25)
 MASK (FF);

Since the SCANSTA111 multiplexer has not been configured
yet, the instruction register chain is still just the 8-bit instruction
register of the SCANSTA111 multiplexer. The instruction
scanned in at this step is 0x8E or b10001110. The SCANSTA111
multiplexer datasheet illustrates that this instruction is
MODESEL, which puts the Mode Register 0 in the data path.

The TDO value to be compared is 0x25 or b00100101. Referring
to the SCANSTA111 multiplexer datasheet, it is evident that upon
exiting the Capture-IR state, the value bXXXXXX01 is captured
into the instruction register, where the six Most-Significant Bits
(MSB) are the values set on the address lines S5:S0. Since the
address lines are set to 0x09, the instruction register should
capture b00100101 and this should be the value shifted out of the
TDO output. This corresponds to the expected TDO value of 0x25.

The mask is set to 0xFF or b11111111. This indicates that all the
bits received on the TDO output of the SCANSTA111 multiplexer
should be compared to the expected value 0x25. In this case,
that is the appropriate behavior.

Capturing and testing the TDO output after this SIR instruction
provides a valuable confirmation that the JTAG TAP is
configured and operational. Obviously, if the JTAG TAP is not
working, nothing else can be tested in the system. The SVF
files produced by the various ATPG tools specify testing the
operation of the JTAG TAP in different ways. All of the JTAG
tools produce SVF files which include provisions for verifying
the operation of the JTAG TAP.

The next instruction is the SVF file sets up the SCANSTA111
multiplexer mode register:

SDR 8 TDI (01)
 TDO (00)
 MASK (00);

This is a SDR instruction, so the SCANSTA111 multiplexer TAP,
which is still the only thing in the scan chain, will be put into the
Shift-DR mode before the data is shifted into the TDI input. Since
the previous instruction issued was the MODESEL command,
the data shifted into the TDI input goes into the Mode Register 0.
The SCANSTA111 multiplexer datasheet shows that setting the
Mode Register 0 value to 0x01 sets the scan chain configuration
as follows:

TDIB Register LSP0 PAD TDOB

In other words, the data shifted into the TDIB input will go
first to whatever register is inserted in the scan chain in
the SCANSTA111 multiplexer, then to local scan port 0 and

48

Dissecting the Built-In Self-Test

whatever is on the scan chain attached to local scan port 0,
then to a pad bit register in the SCANSTA111 multiplexer which
re-synchronizes the local scan port, then finally to the TDOB
output. The ATPG software was told that the JTAG devices
were all on a chain attached to LSP0 when the SVF file was
generated. This scan chain configuration will be active after the
UNPARK instruction is issued to the SCANSTA111 multiplexer.

The current mode register contents are shifted out on the TDO
output when the new mode register contents are shifted in, but
these are not interesting, so the mask is set to 0x00. This means
that no comparison will be performed on the TDO output data at
this step.

The next instruction in the file looks like this:

SIR 8 TDI (E7)
 TDO (25)
 MASK (FF);

Again, this is a Scan-Instruction-Register instruction, so the
TAP for the scan chain (which still consists, at this point, only
of the SCANSTA111 multiplexer) will be put into the Shift-IR
state before the data is shifted out to the TDI input. Instruction
0xE7, or b11100111, is the op-code for UNPARK, which puts
the desired local scan port into the scan chain. As before, the
instruction register captures 0x25 and the value scanned out of
the TDO output is compared to the expected value with a mask
of 0xFF.

Following this UNPARK instruction, the scan chain now includes
everything on local scan port 0 in addition to the SCANSTA111
multiplexer itself. The next instruction in the file looks like this:

SIR 25 TDI (1FF0505)
 TDO (0000202)
 MASK (0000606);

This is another SIR instruction, but now the data pattern is
25 bits long instead of just eight. That is because the 8-bit
instruction registers of the SCAN921224 deserializer and the
SCAN921023 serializer are now in the scan chain in addition to
the 8-bit instruction register of the SCANSTA111 multiplexer,
and there is a pad bit at the end of the scan chain. What this
instruction does is discussed next.

The bit pattern and the way it divides among the various
registers is shown in Figure 7-1. What this instruction in the
SVF file does is (1) sets the SCANSTA111 multiplexer to BYPASS
mode, inserting its one-bit bypass register in the scan chain;
and (2) issues the SAMPLE instruction to the SCAN921224
deserializer, which puts it in a state to preload the next data

shifted into the boundary register; and (3) issues the SAMPLE
instruction to the SCAN921023 serializer. For the SCAN921224
deserializer and the SCAN921023 serializer, the SAMPLE and
PRELOAD instructions are the same.

Once this instruction is executed, which occurs when the TAP
state machine enters the Update-IR state, the scan chain will
consist of the following: the SCANSTA111 multiplexer’s bypass
register (one bit), the SCAN921224 deserializer’s boundary
register (19 bits), the SCAN921023 serializer’s boundary
register (18 bits), and the pad bit inserted by the SCANSTA111
multiplexer, which is the same pad bit that was inserted in the
scan chain when the Scan-Instruction-Register instruction was
executed. The scan chain at this point will look like a 39-bit shift
register. The next data scanned into the TDI port by a Scan-
Data-Register instruction will go into this shift register.

The expected TDO output is a 25-bit pattern consisting of
0x00000202, and the mask is a 25-bit pattern consisting of
0x00000606. This means that only bits 1, 2, 9, and 10 of the output
from the TDO will be compared, and the expected bit pattern will
contain ones at bits 1 and 9 and zeros at bits 2 and 10. As seen
in Figure 7-1, the comparison is meant to look for the required
01 pattern in the last two bits of the instruction register for the
SCAN921224 deserializer and the SCAN921023 serializer, and
nothing else.

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit Number

1 F F 0 5 0 5 Hex Digit

1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 Bit Pattern

SCANSTA111 Instruction
Register

SCAN921224 Instruction
Register

SCAN921023 Instruction
Register

Pad Bit

FF 82 82 Op-Code

BYPASS SAMPLE SAMPLE Instruction

Figure 7-1. Instruction Bit Pattern and Decomposition

The next instruction in the file loads the initial data into the
boundary registers of the SCAN921224 deserializer and
SCAN921023 serializer as follows:

SDR 39 TDI (6DFAAFFFFF)
 TDO (0000000000)
 MASK (0000000000);

The bit pattern is 39 bits long; that is, 1 bit for the SCANSTA111
multiplexer bypass register plus 19 bits for the SCAN921224

49national.com/scan

deserializer boundary register plus 18 bits for the SCAN921023
serializer boundary register plus 1 pad bit. This bit pattern can
be examined according to the scheme shown in Figure 7-1. Bit
0, which is the pad bit, can be ignored. As shown, the contents
of the boundary register for the SCAN921023 serializer are
b111111111111111111 – all ones. If the boundary register for the
SCAN921023 serializer is examined, it is evident that it only has
one output cell in its boundary register, bit 5, the differential
output. This boundary cell is controlled by bit 4, its enable bit.
So this SAMPLE/PRELOAD instruction enables the single output
boundary cell on the device and sets its value to logic 1. This
value will be presented at the output pin of the SCAN921023
serializer when an EXTEST instruction is executed. When
the EXTEST instruction is executed, the values on the input
boundary cells will be replaced by the values sampled at the
input pins of the SCAN921023 serializer.

Also shown is that the contents of the boundary register for
the SCAN921224 deserializer are b1011011111101010101. The
SCAN921224 deserializer has more output boundary cells than
the SCAN921023 serializer. For the SCAN921224 deserializer, bits
1, 2, 3, 4, 5, 6, 7, 13, 14, 16, 17, and 18 in the boundary register
are all output boundary cells. All of these cells except bit 14
are controlled by bit 0 in the boundary register. This bit is set to
logic 1 in the current bit pattern, meaning that all these cells are
enabled.

The output cell on bit 14, which is the LOCK* output, is
controlled by bit 15 in the boundary register, which is also set
to logic 1 in this bit pattern. So output cell 14 is also enabled. In
this bit pattern, bit 14 is logic 0, so the output of the boundary
cell on bit 14 will be logic 0 when the EXTEST instruction is
executed.

Bits 16, 17, 18, 1, 2, 3, 4, 5, 6, and 7, in that order, are the
receiver output bits 9:0. From the bit pattern, it is evident that
these outputs are driven by a bit pattern 1010101010 from Most-
Significant Bit (MSB) to Least-Significant Bit (LSB). The only other
output bit in the boundary register is bit 13, the RCLK output bit.
This bit is driven to logic 1 in the pattern shown previously.

The MSB of the entire bit pattern is a logic 1. This goes into the
bypass register of the SCANSTA111 multiplexer, but it will not be
visible to the rest of the circuit.

At this point, the boundary registers of the SCAN921224
deserializer and SCAN921023 serializer are preloaded with the
first data pattern to be presented at their output pins. This data
pattern is presented at the output pins and the input pins are
sampled when the EXTEST instruction is executed.

The next line in the SVF file is:

SIR 25 TDI (1FE0001)
 TDO (0000202)
 MASK (0000606);

The expected TDO output and the mask are the same for
this Scan-Instruction-Register instruction as for the previous
one. Figure 7-2 shows the instruction. As the figure indicates,
the SCANSTA111 multiplexer is left in BYPASS mode and
the EXTEST instruction is issued to both the SCAN921224
deserializer and the SCAN921023 serializer. This will cause each
device to assert the preloaded bit pattern on its output cells and
to sample the incoming bit pattern on its input cells. This will be
shifted out of the TDO output when new data is loaded into the
TDI input at the next step.

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit Number

1 F E 0 0 0 1 Hex Digit

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 Bit Pattern

SCANSTA111 Instruction
Register

SCAN921224 Instruction
Register

SCAN921023 Instruction
Register

Pad Bit

FF 00 00 Op-Code

BYPASS EXTEST EXTEST Instruction

Figure 7-2. Instruction Bit Pattern and Decomposition

The next step in the SVF file is:

SDR 39 TDI (4EFB3FFFFF)
 TDO (00E807FC96)
 MASK (00E807FF96);

Upon examination of the mask and expected data for this
instruction, the bits 0 and 38 of the mask are both 0, meaning
that neither the pad bit from the TDO output (bit 0) or the bit
placed in the bypass register of the SCANSTA111 multiplexer (bit
38) will be considered in comparing the received output with the
expected output.

For the SCAN921224 deserializer, the mask is given by
bits 19-37 of the bit pattern above. This bit pattern is
b0000001110100000000. This means that only bits 8, 10, 11, and
12 of the boundary register will be used in the comparison.
These bits are the same in the expected TDO pattern, so all of
them should be 1. From the boundary scan register description
for the SCAN921224 deserializer, only bits 8, 9, 10, 11, and 12
are input bits. In the SCANSTAEVK SerDes board schematic,
the boundary cell on bit 9, which is the REFCLK input, is not
connected to anything that can drive a logic level on it (the TCLK

Image caption

50

Dissecting the Built-In Self-Test

pin it is connected to on the SCAN921023 serializer is also an
input). So this bit is masked out in the comparison since it is not
known what logic level to expect at this input.

In the SCAN921224 deserializer, boundary cell bits 8, 11,
and 12 correspond to the RCLKR/F, PWRDN, and REN inputs
respectively, and all these are tied high through S3. The ATPG
tool was told that all the switches in DIP switch S3 were closed,
so it was able to correctly determine that there should be static
high levels on these pins.

Bit 10 of the boundary cell is the differential input, which
is connected to the differential output of the SCAN921023
serializer. The ATPG tool was told that these two pins are
connected since this is not indicated on the netlist. Accordingly,
it was able to determine that the logic 1 driven on the differential
output of the SCAN921023 serializer should be detected at the
differential input of the SCAN921224 deserializer.

For the SCAN921023 serializer, the mask is given by bits 1-18 of
the previous bit pattern. This bit pattern is b111111111111001011.
For the SCAN921023 serializer, all the bits in the boundary
register are input bits except bits 4 and 5, which are masked off
in the mask shown previously. Bit 2 is also masked off because
this is the TCLK input line, which, as noted, does not have an
accessible driver. Therefore, this input is not considered in the
comparison.

For the SCAN921224 deserializer, the mask and the expected
data were exactly the same, meaning that all the bits to be
considered in the comparison were expected to be at logic 1.
For the SCAN921023 serializer, this is almost true. The only bits
that are different in the mask and the expected data are bits
7 and 8. Bit 7 is the SYNC1 input bit. Referring to Figure 3-7, it
is clear that this bit is tied low through R1. The ATPG tool was
instructed to sense a static low on this input, which explains the
resulting pattern.

Bit 8 is the SYNC2 input bit which is connected to the LOCK*
output bit of the SCAN921224 deserializer. In the Figure 3-7
schematic, the connection is made by a jumper between pins
1 and 2 of header J17. It is important to remember that this bit
was driven low by the preloaded pattern, bit 14 of the boundary
register of the SCAN921224 deserializer, so a low should be
sensed when the EXTEST is performed. This is what is shown in
the comparison pattern.

For the SCAN921023 serializer, bits 0, 17, 16, 15, 14, 13, 12, 11, 10,
and 9, in that order, are digital input bits DIN9:0. In Figure 3-7,
these are all tied high through resistor networks RN1, RN2, and

RN3. The ATPG tool was instructed to sense static high levels at
all these inputs. This is what is seen in the previous bit pattern.

Bits 1, 3, and 6 of the SCAN921023 serializer boundary register
are the TCLKR/F, DEN, and PWRDN bits respectively, and all
these are tied high through switch S2. The bit pattern specifies
sensing static high levels on these bits.

So this mask and expected bit pattern tests the static input
levels and partially tests the connections between the
SCAN921224 deserializer and the SCAN921023 serializer. This is
exactly what was desired from the built-in self-test.

As the data from the previous test is read, the data is shifting
in for the next test. The pattern to be shifted into the TDI input
is 0x4EFB3FFFFF, and the pattern is 39 bits long. Again, bit 0
is the pad bit and bit 38 is the bit for the bypass register of
the SCANSTA111 multiplexer, so neither of these bits will be
involved in the test.

The bit pattern shifted into the boundary register of the
SCAN921023 serializer is the same as that from the previous
test, b111111111111111111. Again, the only output boundary cell
in the SCAN921023 serializer is bit 5 of the boundary register,
which is the differential output. This output cell is driven to logic
1 for this test, the same as it was for the previous test.

The bit pattern shifted into the boundary register of the
SCAN921224 deserializer is different from that used in the
previous test. This bit pattern is b0011101111101100111. Bit 15
enables bit 14. In this test, bit 14, which is the LOCK output, is
enabled and is set to 1, where it was set to 0 in the previous
test.

Bit 0, also set to 1, enables all the other output bits. There is no
way for the boundary scan built-in self-test to directly sense the
values on ROUT9:0, but the test sets them anyway. They are set
to a bit pattern of 1001100110, a different pattern from that used
in the previous test. These output bits, even though they cannot
be directly sensed, are useful for detecting shorts between the
traces on the board.

Bit 13, the RCLK output, is set to 0. It was set to 1 in the previous
test.

Review of one more instruction in the SVF file in detail is useful.
The next line of the file is:

SDR 39 TDI (77FC3FFFFF)
 TDO (00E807FE96)
 MASK (00E807FF96);

51national.com/scan

The mask is the same for this instruction as for the previous
one. In fact for the remainder of the SVF file, the mask is the
same. This means that comparison will be made between the
same bits in the received data pattern, the bits for which the
expected value is known.

Also, the expected bit pattern for this instruction is almost
the same as the previous one. In fact, for the SCAN921224
deserializer, the expected bit pattern is exactly the same. That
is because all the input cells in the boundary register are
connected to static logic levels that will not change during the
test except for bit 10, the differential input, which is connected
to the differential output of the SCAN921023 serializer. Since
this differential output is still driving a 1, just like it was in the
previous test, exactly the same data pattern on the SCAN921224
deserializer’s input cells is expected.

For the SCAN921023 serializer, the only difference in the
expected bit pattern is that bit 8, which was previously a 0,
is now a 1. This bit is the SYNC2 input, which is connected to
the LOCK* output of the SCAN921224 deserializer. In this test,
the LOCK* output of the SCAN921224 deserializer is driven to
a logic 1, so this is the bit that is expected at the input of the
SCAN921023 serializer. All the other input bits are driven to
static logic levels, so the expected bit pattern on those bits does
not change.

The balance of the SVF file, which is included in its entirety in
Chapter 9, can be examined in the same way, and where the
expected bit pattern changes will be evident. The mask is the
same for all the tests in the file. The expected bit pattern only
changes in two bits. The differential input of the SCAN921224
deserializer, bit 10 in the boundary register for this device or
bit 29 in the TDO bit sequence, changes when different values
are driven on bit 5 of the boundary register for the SCAN921023
serializer. The SYNC2 input of the SCAN921023 serializer, bit 8
of the boundary register for the SCAN921023 serializer or bit
9 in the TDO bit sequence, changes when the LOCK output
of the SCAN921224 deserializer changes. This is bit 14 of the
SCAN921224 deserializer boundary register.

Nothing else in the expected bit pattern changes. The output
bits that cannot be sensed are driven to different values, but this
does not change the expected bit pattern. Only the output bits
that can be sensed on an input bit change in the expected bit
pattern.

This SVF file is for built-in self-test of a very simple scan chain
with only three devices. For an operational board, the scan
chain might be much longer and the SVF file considerably more

complex. Crafting a test sequence manually, without the aid of
an ATPG tool, to test a more complicated board would be time-
consuming and prone to errors. This is the value of the ATPG
tools. They are capable of generating exhaustive boundary scan
test sequences from relatively simple inputs.

Normally it is neither necessary nor desirable (and maybe not
even possible) to dissect a SVF file as has been done here. It
is instructive, however, to perform this exercise at least once
in order to gain an appreciation for what the test sequence is
really accomplishing.

One interesting point about this test sequence is that many of
the test steps don’t appear to do anything because they involve
manipulation of outputs that cannot be sensed. These test steps
are useful, however, because they can detect the presence of
solder bridges on the board. If an output change which is not
supposed to change the expected bit pattern does change it,
then something is wrong with the board. The tests where the
expected bit pattern does not change are designed to detect
these problems.

It should be noted that this is not the only test sequence that will
work for this board. As an example, the following fragment of
the SVF file created by the JTAG Technologies ProVision tool is
considered.

! SVF File: “c:\Bst32\ProVision\projects\JTAG_EVK_Demo\
interconnect_JTAG_Tech\interconnect_JTAG_Tech\interconnect_
JTAG_Tech.svf”
! Input GEN File: “c:\bst32\provision\projects\JTAG_EVK_Demo\
interconnect_JTAG_Tech\interconnect_JTAG_Tech\interconnect_
JTAG_Tech.gen”
! Input APL File: “c:\Bst32\ProVision\projects\JTAG_EVK_Demo\
interconnect_JTAG_Tech\interconnect_JTAG_Tech\interconnect_
JTAG_Tech.apl”
! Input CON File: “c:\bst32\provision\projects\JTAG_EVK_Demo\
interconnect_JTAG_Tech\interconnect_JTAG_Tech\interconnect_
JTAG_Tech.con”

FREQUENCY 25000000 Hz;

STATE RESET;
SIR 8
 TDI (09);
SIR 8
 TDI (8e);
SDR 8
 TDI (01);
SIR 8
 TDI (e7);
!
! Load Sample/Preload Instruction
!
SIR 25
 TDI (1550504);
SDR 70
 TDI (000000003f07f80060);
!
! Load Test Instruction
!
SIR 25

Image caption

52

Dissecting the Built-In Self-Test

 TDI (1540000);
SDR 70
 TDI (000000000400080020)
 TDO (03f03c07c0e8000694)
 MASK (03ffffffc0e8004694);
SDR 70
 TDI (000000001c00080020)
 TDO (03f03c07c0c8000494)
 MASK (03ffffffc0e8004694);

The first few instructions, the ones that select the SCANSTA111
multiplexer, select its LSP, and unpark the LSP, are essentially
the same in this file as in the previous one. This SVF file does
not specify a comparison pattern for the TDO data, so no mask
is necessary.

Next, the Sample/Preload instruction called out in this SVF file is
considered. In this SVF file, this instruction is:

SIR 25
 TDI (1550504);
SDR 70
 TDI (000000003f07f80060);

This instruction is different from that shown in the previous
SVF file. The instruction details are shown in Figure 7-3. As the
figure indicates, this SVF file sends the SCANSTA111 multiplexer
the IDCODE instruction instead of the BYPASS instruction.
This means that when data is scanned in (the SDR instruction
that occurs next in the file, for example), the SCANSTA111
multiplexer’s ID register will be inserted in the scan chain and
the ID code for the SCANSTA111 multiplexer will be scanned out
as the test data is scanned in.

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit Number

1 5 5 0 5 0 4 Hex Digit

1 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 Bit Pattern

SCANSTA111 Instruction
Register

SCAN921224 Instruction
Register

SCAN921023 Instruction
Register

Pad Bit

AA 82 82 Op-Code

IDCODE SAMPLE SAMPLE Instruction

Figure 7-3. Instruction Bit Pattern and Decomposition

The next instruction in the file, which scans the IDCODE
instruction into the SCANSTA111 multiplexer and the EXTEST
instruction into both the SCAN921023 serializer and the
SCAN921224 deserializer is:

SIR 25
 TDI (1540000);
SDR 70
 TDI (000000000400080020)
 TDO (03f03c07c0e8000694)
 MASK (03ffffffc0e8004694);

On this data register scan and on each subsequent data
register scan, the 32 most-significant bits of the TDI bit pattern
are all zeros. This bit pattern is scanned into the SCANSTA111
multiplexer’s data register. Since the SCANSTA111 multiplexer
has been sent the IDCODE instruction, the data register is the
ID code register. The data that comes out of the SCANSTA111
multiplexer is the 32-bit ID code, which is 0x1FC0F01F (this
comes from the SCANSTA111 BSDL file).

This is the reason that the bit pattern in this file is 70-bits long
as opposed to the 39-bit long patterns shown in the previous
SVF file. The TDI and TDO bit sequences in this case are
targeted at a shift register consisting of the 32-bit ID register in
the SCANSTA111 mulitplexer plus 19 bits for the SCAN921224
deserializer boundary register plus 18 bits for the SCAN921023
serializer boundary register plus 1 pad bit.

Next, the 32 most-significant bits of the TDO bit pattern and the
mask is considered.The 32 most-significant bits of data scanned
out from the scan chain should contain the SCANSTA111
multiplexer’s ID code. The least-significant 28 bits of the 32-bit
ID code are compared to the known value obtained from the
BSDL file. The four most-significant bits are the revision code,
which is not compared.

For the TDO comparison value, the most-significant 32 bits of the
70-bit value are 0x0FC0F01F. The most-significant 32 bits of the
mask are 0x0FFFFFFF. From this, it is evident that the comparison
is performed only on the least-significant 28 bits of the ID code
for each test vector.

Using the IDCODE instruction to command the SCANSTA112
multiplexer to scan out its ID code on each data vector
verifies the operation of the JTAG TAP. In this SVF file, every
shift operation incorporates a test of the operation of the
SCANSTA112 multiplexer. As mentioned, each of the ATPG tools
produces a SVF file that includes verification of the operation of
the JTAG TAP. The IDCODE instruction is the method used in this
SVF file to verify the operation of the JTAG TAP.

The remainder of the SVF file consists of test data scanned into
the scan chain and comparison values and masks to check the
data scanned out of the scan chain. The bit sequences in this
SVF file check the same interconnect errors as those in the
previous file. When this file was converted into an EVF2 file and
deployed to the SCANSTAEVK demonstration system, it was
able to detect all the induced board faults just as the previous
SVF file was.

7.2. The EVF2 File
The SVF file describes the boundary scan tests in a human-

53national.com/scan

readable format. In order to implement the required boundary
scan test with the SCANSTA101 STA master, the SVF file test
sequence must be converted into a series of register writes
and reads to the SCANSTA101 STA master that will result in the
performance of the desired tests.

National’s EVF Workbench graphical conversion program is
used to convert the SVF file into an EVF2 file which can be
delivered by the embedded software to the SCANSTA101 STA
master. The EVF2 file is in a binary format and is not readable
by humans. National provides a utility, Evf2Dump, to convert
the EVF2 file into a human-readable format which is useful for
examining the mechanics of the test sequence.

The converted EVF2 file corresponding to the first SVF file
presented earlier is shown below. Note that converting the EVF2
file into a human-readable format normally is not necessary.
This converted file is examined, in this instance, only to describe
what the SCANSTA101 STA master is really doing to perform the
built-in self-test. Every record in this file will not be examined,
only a few records to understand further the implementation of
the test sequence.

Verbose mode
=============== HEADER ====================
Largest vector bit length: 39 bits
Largest buffer bit length: 0 bits
Macro record count: 4
Vector record count: 23
Buffer record count: 0
Register record count: 28
Assumed initial state: Undefined
Defined final state: Undefined
===
===== REGISTER Sequence # 0 =====
	 Fixed Length = 24 bytes
	 Total Length = 24 bytes
	 Register id = 4 (SETUPR)
	 Mask = 00000004
	 Data = 00000004
	 Register bits =1..

===== REGISTER Sequence # 1 =====
	 Fixed Length = 24 bytes
	 Total Length = 24 bytes
	 Register id = 5 (CLKDIV)
	 Mask = 000000FE
	 Data = 00000020
	 Register bits =0010000.

===== REGISTER Sequence # 2 =====
	 Fixed Length = 24 bytes
	 Total Length = 24 bytes
	 Register id = 4 (SETUPR)
	 Mask = 00000003
	 Data = 00000040
	 Register bits =00

===== REGISTER Sequence # 3 =====
	 Fixed Length = 24 bytes
	 Total Length = 24 bytes
	 Register id = 2 (INTCTRL)
	 Mask = 00001E00
	 Data = 00000000

	 Register bits =0000.........

===== MACRO Sequence # 0 =====
	 Fixed Length = 20 bytes
	 Total Length = 20 bytes
	 Macro number = 4
	 Macro = 0503007C

===== VECTOR Sequence # 0 =====
	 Fixed Length = 32 bytes
	 Total Length = 32 bytes
	 Clocks = 0 ticks
	 Slot number = 0
	 Macro number = 4
	 Load on fly = NO
	 Compare data = NO
	 Use mask = NO
	 Array Length = 0 longwords
	 Data length = 0 bits
	 Data length = 0 longwords
	 Expect length = 0 bits
	 Expect length = 0 longwords
	 Mask length = 0 bits
	 Mask length = 0 longwords

===== REGISTER Sequence # 4 =====
	 Fixed Length = 24 bytes
	 Total Length = 24 bytes
	 Register id = 0 (START)
	 Mask = 00000007
	 Data = 00000001
	 Register bits =001

===== REGISTER Sequence # 5 =====
	 Fixed Length = 24 bytes
	 Total Length = 24 bytes
	 Register id = 4 (SETUPR)
	 Mask = 00000008
	 Data = 00000043
	 Register bits =0...

===== MACRO Sequence # 1 =====
	 Fixed Length = 20 bytes
	 Total Length = 20 bytes
	 Macro number = 3
	 Macro = 01030000

===== VECTOR Sequence # 1 =====
	 Fixed Length = 32 bytes
	 Total Length = 32 bytes
	 Clocks = 0 ticks
	 Slot number = 0
	 Macro number = 3
	 Load on fly = NO
	 Compare data = NO
	 Use mask = NO
	 Array Length = 0 longwords
	 Data length = 0 bits
	 Data length = 0 longwords
	 Expect length = 0 bits
	 Expect length = 0 longwords
	 Mask length = 0 bits
	 Mask length = 0 longwords

===== REGISTER Sequence # 6 =====
	 Fixed Length = 24 bytes
	 Total Length = 24 bytes
	 Register id = 0 (START)
	 Mask = 00000007
	 Data = 00000001
	 Register bits =001

===== MACRO Sequence # 2 =====
	 Fixed Length = 20 bytes
	 Total Length = 20 bytes

Image caption

54

Dissecting the Built-In Self-Test

	 Macro number = 2
	 Macro = D3020330

===== VECTOR Sequence # 2 =====
	 Fixed Length = 32 bytes
	 Total Length = 44 bytes
	 Clocks = 8 ticks
	 Slot number = 3
	 Macro number = 2
	 Load on fly = NO
	 Compare data = YES
	 Use mask = YES
	 Array Length = 3 longwords
	 Data length = 8 bits
	 Data length = 1 longwords
		 DATA[00000000]: 00000009
	 Expect length = 8 bits
	 Expect length = 1 longwords
		 EXPECT[00000000]: 00000000
	 Mask length = 8 bits
	 Mask length = 1 longwords
		 MASK[00000000]: FFFFFFFF

===== REGISTER Sequence # 7 =====
	 Fixed Length = 24 bytes
	 Total Length = 24 bytes
	 Register id = 0 (START)
	 Mask = 00000007
	 Data = 00000004
	 Register bits =100

===== VECTOR Sequence # 3 =====
	 Fixed Length = 32 bytes
	 Total Length = 44 bytes
	 Clocks = 8 ticks
	 Slot number = 2
	 Macro number = 2
	 Load on fly = NO
	 Compare data = YES
	 Use mask = YES
	 Array Length = 3 longwords
	 Data length = 8 bits
	 Data length = 1 longwords
		 DATA[00000000]: 0000008E
	 Expect length = 8 bits
	 Expect length = 1 longwords
		 EXPECT[00000000]: 00000025
	 Mask length = 8 bits
	 Mask length = 1 longwords
		 MASK[00000000]: FFFFFF00

===== REGISTER Sequence # 8 =====
	 Fixed Length = 24 bytes
	 Total Length = 24 bytes
	 Register id = 0 (START)
	 Mask = 00000007
	 Data = 00000003
	 Register bits =011

===== MACRO Sequence # 3 =====
	 Fixed Length = 20 bytes
	 Total Length = 20 bytes
	 Macro number = 1
	 Macro = D2020320

===== VECTOR Sequence # 4 =====
	 Fixed Length = 32 bytes
	 Total Length = 36 bytes
	 Clocks = 8 ticks
	 Slot number = 3
	 Macro number = 1
	 Load on fly = NO
	 Compare data = YES
	 Use mask = YES
	 Array Length = 1 longwords

	 Data length = 8 bits
	 Data length = 1 longwords
		 DATA[00000000]: 00000001
	 Expect length = 0 bits
	 Expect length = 0 longwords
	 Mask length = 0 bits
	 Mask length = 0 longwords

===== REGISTER Sequence # 9 =====
	 Fixed Length = 24 bytes
	 Total Length = 24 bytes
	 Register id = 0 (START)
	 Mask = 00000007
	 Data = 00000004
	 Register bits =100

===== VECTOR Sequence # 5 =====
	 Fixed Length = 32 bytes
	 Total Length = 36 bytes
	 Clocks = 8 ticks
	 Slot number = 2
	 Macro number = 2
	 Load on fly = NO
	 Compare data = YES
	 Use mask = YES
	 Array Length = 1 longwords
	 Data length = 8 bits
	 Data length = 1 longwords
		 DATA[00000000]: 000000E7
	 Expect length = 0 bits
	 Expect length = 0 longwords
	 Mask length = 0 bits
	 Mask length = 0 longwords

===== REGISTER Sequence # 10 =====
	 Fixed Length = 24 bytes
	 Total Length = 24 bytes
	 Register id = 0 (START)
	 Mask = 00000007
	 Data = 00000003
	 Register bits =011

===== VECTOR Sequence # 6 =====
	 Fixed Length = 32 bytes
	 Total Length = 44 bytes
	 Clocks = 25 ticks
	 Slot number = 1
	 Macro number = 2
	 Load on fly = NO
	 Compare data = YES
	 Use mask = YES
	 Array Length = 3 longwords
	 Data length = 25 bits
	 Data length = 1 longwords
		 DATA[00000000]: 01FF0505
	 Expect length = 25 bits
	 Expect length = 1 longwords
		 EXPECT[00000000]: 00000202
	 Mask length = 25 bits
	 Mask length = 1 longwords
		 MASK[00000000]: FFFFF9F9

===== REGISTER Sequence # 11 =====
	 Fixed Length = 24 bytes
	 Total Length = 24 bytes
	 Register id = 0 (START)
	 Mask = 00000007
	 Data = 00000002
	 Register bits =010

===== VECTOR Sequence # 7 =====
	 Fixed Length = 32 bytes
	 Total Length = 56 bytes
	 Clocks = 39 ticks
	 Slot number = 3

55national.com/scan

	 Macro number = 1
	 Load on fly = NO
	 Compare data = YES
	 Use mask = YES
	 Array Length = 6 longwords
	 Data length = 39 bits
	 Data length = 2 longwords
		 DATA[00000000]: FAAFFFFF
		 DATA[00000001]: 0000006D
	 Expect length = 39 bits
	 Expect length = 2 longwords
		 EXPECT[00000000]: 00000000
		 EXPECT[00000001]: 00000000
	 Mask length = 39 bits
	 Mask length = 2 longwords
		 MASK[00000000]: FFFFFFFF
		 MASK[00000001]: FFFFFFFF

===== REGISTER Sequence # 12 =====
	 Fixed Length = 24 bytes
	 Total Length = 24 bytes
	 Register id = 0 (START)
	 Mask = 00000007
	 Data = 00000004
	 Register bits =100

===== VECTOR Sequence # 8 =====
	 Fixed Length = 32 bytes
	 Total Length = 36 bytes
	 Clocks = 25 ticks
	 Slot number = 1
	 Macro number = 2
	 Load on fly = NO
	 Compare data = YES
	 Use mask = YES
	 Array Length = 1 longwords
	 Data length = 25 bits
	 Data length = 1 longwords
		 DATA[00000000]: 01FE0001
	 Expect length = 0 bits
	 Expect length = 0 longwords
	 Mask length = 0 bits
	 Mask length = 0 longwords

===== REGISTER Sequence # 13 =====
	 Fixed Length = 24 bytes
	 Total Length = 24 bytes
	 Register id = 0 (START)
	 Mask = 00000007
	 Data = 00000002
	 Register bits =010

===== VECTOR Sequence # 9 =====
	 Fixed Length = 32 bytes
	 Total Length = 56 bytes
	 Clocks = 39 ticks
	 Slot number = 2
	 Macro number = 1
	 Load on fly = NO
	 Compare data = YES
	 Use mask = YES
	 Array Length = 6 longwords
	 Data length = 39 bits
	 Data length = 2 longwords
		 DATA[00000000]: FB3FFFFF
		 DATA[00000001]: 0000004E
	 Expect length = 39 bits
	 Expect length = 2 longwords
		 EXPECT[00000000]: E807FC96
		 EXPECT[00000001]: 00000000
	 Mask length = 39 bits
	 Mask length = 2 longwords
		 MASK[00000000]: 17F80069
		 MASK[00000001]: FFFFFFFF

===== REGISTER Sequence # 14 =====
	 Fixed Length = 24 bytes
	 Total Length = 24 bytes
	 Register id = 0 (START)
	 Mask = 00000007
	 Data = 00000003
	 Register bits =011

===== VECTOR Sequence # 10 =====
	 Fixed Length = 32 bytes
	 Total Length = 48 bytes
	 Clocks = 39 ticks
	 Slot number = 2
	 Macro number = 1
	 Load on fly = NO
	 Compare data = YES
	 Use mask = YES
	 Array Length = 4 longwords
	 Data length = 39 bits
	 Data length = 2 longwords
		 DATA[00000000]: FC3FFFFF
		 DATA[00000001]: 00000077
	 Expect length = 39 bits
	 Expect length = 2 longwords
		 EXPECT[00000000]: E807FE96
		 EXPECT[00000001]: 00000000
	 Mask length = 0 bits
	 Mask length = 0 longwords

===== REGISTER Sequence # 15 =====
	 Fixed Length = 24 bytes
	 Total Length = 24 bytes
	 Register id = 0 (START)
	 Mask = 00000007
	 Data = 00000003
	 Register bits =011

.

.

.

DUMP COMPLETE

Comparing this file to the EVF2 record specification, it is easy to
see that there is a one-to-one correspondence between the two.
The header record is self-explanatory. And in the header record
there are counts for each of the other record types in the file.

The first few records in the file are register records. These
specify data to be written to the control registers of the
SCANSTA101 STA master. For example, the first register record is:

===== REGISTER Sequence # 0 =====
	 Fixed Length = 24 bytes
	 Total Length = 24 bytes
	 Register id = 4 (SETUPR)
	 Mask = 00000004
	 Data = 00000004
	 Register bits =1..

Image caption

56

Dissecting the Built-In Self-Test

This record specifies that bit 2 of the setup register of the
SCANSTA101 STA master is to be set while all the other bits
in the setup register retain their previous values. Referring to
the SCANSTA101 datasheet, setting bit 2 of the setup register
resets the SCANSTA101 STA master. This action is automatically
inserted by the svf2evf converter before any other register
accesses to the SCANSTA101 STA master are performed.

The second register record sets the clock divider register in the
SCANSTA101 STA master. The value written to the clock divider
register, b0010000, implies that the system clock is to be divided
by 32 to produce the test clock.

The third register record clears bits 0 and 1 in the setup register. This
sends the SCANSTA101 STA master into normal operation mode.

The remainder of the register records can be interpreted in the
same way. Moving on to the first macro record, it is:

===== MACRO Sequence # 0 =====
	 Fixed Length = 20 bytes
	 Total Length = 20 bytes
	 Macro number = 4
	 Macro = 0503007C

A macro record sets the data for one of the macros available
in the SCANSTA101 STA master. In this case, this macro record
sets up macro number 4. The macro is 32-bits long. Next, the bit
structure of this macro is reviewed.

In Figure 7-4, bits 16 and 17 are considered first. These bits are
11, indicating that this is a STATE macro. In other words, this
macro is used to send the SCANSTA101 STA master output TAP
controller to a given state.

Bits 24-26 contain the pre-shift TCK_SM count, which is
a little misleading since this isn’t a shift macro. The value
contained there is 5, which really means that when the vector
corresponding to this macro is started by writing its vector
number into the START register, the SCANSTA101 STA master
will send 5 TCK_SM pulses while driving the TMS_SM (Test
Mode Select – Scan Master) line with bits 2-6 of the macro. This
behavior is described in the SCANSTA101 STA master datasheet.

Bits 2-6 of the macro are all ones, so the effect of this macro will
be to output 5 TCK_SM pulses with the TMS_SM line held high.
This is a “five-high TMS reset”. When this macro is executed,
it will send the TAP controllers of all the devices in the scan
chain into the Test-Logic-Reset state. That is what this macro is
designed to do.

The next record is a vector record which references this macro,
macro number 4. The record is:

===== VECTOR Sequence # 0 =====
	 Fixed Length = 32 bytes
	 Total Length = 32 bytes
	 Clocks = 0 ticks
	 Slot number = 0
	 Macro number = 4
	 Load on fly = NO
	 Compare data = NO
	 Use mask = NO
	 Array Length = 0 longwords
	 Data length = 0 bits
	 Data length = 0 longwords
	 Expect length = 0 bits
	 Expect length = 0 longwords
	 Mask length = 0 bits
	 Mask length = 0 longwords

This is, in some sense, a dummy vector because it does not
contain any data and it does not consume any clocks. All it

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit Number

0 5 0 3 0 0 7 C Hex Digit

0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 Bit Pattern

Post-Shift
TCK_SM Count Last 7 TMS_SM

Bits
First 7 TMS_SM

Bits

0 00 Value

Compare

Use Mask

Pre-Shift
TCK_SM Count

Sync Bit
Enable

Bit 8
Enable

Bit 7
Enable

Header /
Trailer
Usage

Macro
Type Bit 8

Loop Bit

0 0 5 0 0 0 0 3 0 0 7C

Figure 7-4. Bit Structure of the First Macro Record

57national.com/scan

really does is reference macro number 4, the STATE macro
previously set up. When this vector is started, macro number 4
runs and performs a “five-high TMS reset”.

So the next record is a register record which runs this vector,
vector number 1 (vector slot number 0). This record is:

===== REGISTER Sequence # 4 =====
	 Fixed Length = 24 bytes
	 Total Length = 24 bytes
	 Register id = 0 (START)
	 Mask = 00000007
	 Data = 00000001
	 Register bits =001

When this record executes, it writes a value of 001 to the bottom
three bits of the START register. This activates vector number 1
(vector slot number 0), which, in turn, activates macro number 4.
The effect of this is to reset the scan chain TAP controllers.

The next record is another register record, shown below.

===== REGISTER Sequence # 5 =====
	 Fixed Length = 24 bytes
	 Total Length = 24 bytes
	 Register id = 4 (SETUPR)
	 Mask = 00000008
	 Data = 00000043
	 Register bits =0...

This record clears bit 3 of the SETUP register, which sets the
asynchronous TRST* outputs high, their inactive state. It is
important to remember that the first instruction in the SVF
file was TRST OFF. This register record implements that SVF
command by setting the TRST* line to its inactive state.

The next three records set up and run another macro with a
dummy vector. These records are:

===== MACRO Sequence # 1 =====
	 Fixed Length = 20 bytes
	 Total Length = 20 bytes
	 Macro number = 3
	 Macro = 01030000

===== VECTOR Sequence # 1 =====
	 Fixed Length = 32 bytes
	 Total Length = 32 bytes
	 Clocks = 0 ticks
	 Slot number = 0
	 Macro number = 3
	 Load on fly = NO
	 Compare data = NO
	 Use mask = NO
	 Array Length = 0 longwords
	 Data length = 0 bits
	 Data length = 0 longwords
	 Expect length = 0 bits
	 Expect length = 0 longwords
	 Mask length = 0 bits
	 Mask length = 0 longwords

===== REGISTER Sequence # 6 =====
	 Fixed Length = 24 bytes
	 Total Length = 24 bytes
	 Register id = 0 (START)
	 Mask = 00000007
	 Data = 00000001
	 Register bits =001

If the macro is examined, it becomes clear that it is also a
STATE macro and that it calls for a pre-shift TCK_SM count of 1.
The TMS_SM line will be driven to zero during this single clock
count. When this macro runs, the TAP controller is in the Test-
Logic-Reset state because of the previous macro operation. This
macro operation sends it to the Run-Test-Idle state.

The next record is another macro record. This record is:

===== MACRO Sequence # 2 =====
	 Fixed Length = 20 bytes
	 Total Length = 20 bytes
	 Macro number = 2
	 Macro = D3020330

Figure 7-5 shows the bit structure for this macro record.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit Number

D 3 0 2 0 3 3 0 Hex Digit

1 1 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 Bit Pattern

Post-Shift
TCK_SM Count Last 7 TMS_SM

Bits
First 7 TMS_SM

Bits

1 01 Value

Compare

Use Mask

Pre-Shift
TCK_SM Count

Sync Bit
Enable

Bit 8
Enable

Bit 7
Enable

Header /
Trailer
Usage

Macro
Type Bit 8

Loop Bit

1 2 3 0 0 0 0 2 1 0 30

Figure 7-5. Bit Structure of the Second Macro Record

58

Dissecting the Built-In Self-Test

The type of this macro is 10. This is a shift macro with capture.
The pre-shift TCK_SM count for this macro is 3, which means
that it will output bits 4-6 on the TMS_SM line when it is
activated. These bits are 1-1-0.

The TAP controller is in the Run-Test-Idle state when this macro
is initiated, so this sequence of TMS_SM bits sends it to the
Capture-IR state, ready for instructions to be shifted into the
instruction register. These instructions are contained in the
following vector record.

===== VECTOR Sequence # 2 =====
	 Fixed Length = 32 bytes
	 Total Length = 44 bytes
	 Clocks = 8 ticks
	 Slot number = 3
	 Macro number = 2
	 Load on fly = NO
	 Compare data = YES
	 Use mask = YES
	 Array Length = 3 longwords
	 Data length = 8 bits
	 Data length = 1 longwords
		 DATA[00000000]: 00000009
	 Expect length = 8 bits
	 Expect length = 1 longwords
		 EXPECT[00000000]: 00000000
	 Mask length = 8 bits
	 Mask length = 1 longwords
		 MASK[00000000]: FFFFFFFF

When this vector is activated, it initiates the pre-shift operation
specified by macro number 2, which will send the TAP controller
into the Capture-IR state. The TMS_SM line will then be driven
to 0 (the loop bit in the macro) while the data in the vector is
presented on the TDI_SM line for the next eight clock pulses.
This data bit pattern is b00001001 or 0x09. This is the address of
the SCANSTA111 multiplexer. The effect of executing this vector
is to address the SCANSTA111 multiplexer.

The expected data is 0x00 but the mask is inverted. The actual
mask value is 0x00. In the EVF2 record output produced by
evf2dump, the mask should be interpreted as the inverse of the
mask value in the SVF file. In other words, only bits which are
0 in the mask will be active in the data comparison. No data is
compared at this step.

At the terminal count of the vector, meaning after 8 bits have
been shifted in on the TDI_SM line, the TMS_SM line will be
driven to 1. This puts the TAP controller in the Exit1-IR state.
Then the macro instructs the SCANSTA101 STA master to output
two more values on the TMS_SM line (the post-shift clock count
is 2). These values are 1-0, which sends the TAP controller back
to the Run-Test-Idle state.

The next record in the file is the register record that sets the
START register to activate this vector. When this operation is

complete, the SCANSTA111 multiplexer has been addressed and
its TAP controller is in the Run-Test-Idle state.

Following is the next vector record:

===== VECTOR Sequence # 3 =====
	 Fixed Length = 32 bytes
	 Total Length = 44 bytes
	 Clocks = 8 ticks
	 Slot number = 2
	 Macro number = 2
	 Load on fly = NO
	 Compare data = YES
	 Use mask = YES
	 Array Length = 3 longwords
	 Data length = 8 bits
	 Data length = 1 longwords
		 DATA[00000000]: 0000008E
	 Expect length = 8 bits
	 Expect length = 1 longwords
		 EXPECT[00000000]: 00000025
	 Mask length = 8 bits
	 Mask length = 1 longwords
		 MASK[00000000]: FFFFFF00

When this vector is activated, it uses the same macro to load a
new instruction into the SCANSTA111 multiplexer’s instruction
register. This instruction is op-code 0x8E, the MODESEL
instruction. After this vector runs with macro 2, the TAP
controller is once again in the Run-Test-Idle state. As before, the
comparison mask is inverted so that only the 8 least-significant
bits are used for the comparison.

Following a register record that activates this vector, another
macro record is executed as seen below. The macro number 1
is loaded by this record.

===== MACRO Sequence # 3 =====
	 Fixed Length = 20 bytes
	 Total Length = 20 bytes
	 Macro number = 1
	 Macro = D2020320

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit Number

D 2 0 2 0 3 2 0 Hex Digit

1 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 Bit Pattern

Post-Shift
TCK_SM Count Last 7 TMS_SM

Bits
First 7 TMS_SM

Bits

1 01 Value

Compare

Use Mask

Pre-Shift
TCK_SM Count

Sync Bit
Enable

Bit 8
Enable

Bit 7
Enable

Header /
Trailer
Usage

Macro
Type Bit 8

Loop Bit

1 2 2 0 0 0 0 2 1 0 20

Figure 7-6. Bit Pattern of the Third Macro Record

This macro will have the effect of shifting data into the data
register instead of the instruction register. Starting with the TAP
controller in the Run-Test-Idle state, two bits are shifted out, 1-0.
This sets the TAP controller to the Capture-DR state. The first bit
is shifted into the data register in this state. The TAP controller

59national.com/scan

then enters the Shift-DR state, where it loops until the vector
data has been shifted out. After the data from the vector has
been shifted out, the TAP controller transitions to the Exit1-DR
state, then to the Update-DR state, and then back to the Run-
Test-Idle state.

Vector sequence number 4 uses this macro to shift the value
0x01 into the mode select 0 register of the SCANSTA111
multiplexer. This selects local scan port 0, as indicated in the
SVF file.

Vector sequence number 5, shown below, uses macro number
2 to shift the UNPARK instruction into the instruction register of
the SCANSTA111 multiplexer. As a reminder, the macro number
2 was previously set up to put the scan chain in the Capture-IR
state, shift in an instruction, and leave the scan chain in the
Run-Test-Idle state.

===== VECTOR Sequence # 5 =====
	 Fixed Length = 32 bytes
	 Total Length = 36 bytes
	 Clocks = 8 ticks
	 Slot number = 2
	 Macro number = 2
	 Load on fly = NO
	 Compare data = YES
	 Use mask = YES
	 Array Length = 1 longwords
	 Data length = 8 bits
	 Data length = 1 longwords
		 DATA[00000000]: 000000E7
	 Expect length = 0 bits
	 Expect length = 0 longwords
	 Mask length = 0 bits
	 Mask length = 0 longwords

Following execution of this vector by register sequence number
11, which writes a value of 010 into the three LSBs of the START
register, the scan chain consists of the SCANSTA111 multiplexer
and the devices on local scan port 0. These devices are the
SCAN921224 deserializer and the SCAN921023 serializer, in that
order.

So now, when an instruction is shifted into the TAP, enough bits
need to be shifted to fill the instruction registers for all three
devices, plus a pad bit. The same macro, macro number 2, can
be used to shift instructions into the instruction registers of
all the devices just as it was used to shift instructions into the
SCANSTA111 multiplexer.

Following is vector sequence number 6 which uses macro
number 2 to shift the BYPASS instruction into the SCANSTA111
multiplexer and the SAMPLE instruction into the SCAN921224
deserializer and the SCAN921023 serializer. It should be noted
that the least significant bit of the vector data is a pad bit.

===== VECTOR Sequence # 6 =====
	 Fixed Length = 32 bytes
	 Total Length = 44 bytes
	 Clocks = 25 ticks
	 Slot number = 1
	 Macro number = 2
	 Load on fly = NO
	 Compare data = YES
	 Use mask = YES
	 Array Length = 3 longwords
	 Data length = 25 bits
	 Data length = 1 longwords
		 DATA[00000000]: 01FF0505
	 Expect length = 25 bits
	 Expect length = 1 longwords
		 EXPECT[00000000]: 00000202
	 Mask length = 25 bits
	 Mask length = 1 longwords
		 MASK[00000000]: FFFFF9F9

Now all the macros needed are in place. Macro number 4,
which was the first one that was set up, issues a “five-high”
TMS reset to the TAP controller. Macro number 3 places
the TAP in the Run-Test-Idle state when it starts out in the
Test-Logic-Reset state. Macro number 2 shifts data into the
instruction register. It assumes that the TAP controller starts
out in the Run-Test-Idle state and, when it is done, it leaves the
TAP controller in the Run-Test-Idle state. Macro number 1 shifts
data into the data register, also assuming that the TAP controller
starts out in the Run-Test-Idle state and leaving it in this state
when it is done.

If something else was needed besides this, new macros could
be defined as needed, used, and then redefined. This isn’t
necessary in this case, though. Vector sequence number 7,
shown below, uses macro number 1 to shift the first test data
into the boundary register.

===== VECTOR Sequence # 7 =====
	 Fixed Length = 32 bytes
	 Total Length = 56 bytes
	 Clocks = 39 ticks
	 Slot number = 3
	 Macro number = 1
	 Load on fly = NO
	 Compare data = YES
	 Use mask = YES
	 Array Length = 6 longwords
	 Data length = 39 bits
	 Data length = 2 longwords
		 DATA[00000000]: FAAFFFFF
		 DATA[00000001]: 0000006D
	 Expect length = 39 bits
	 Expect length = 2 longwords
		 EXPECT[00000000]: 00000000
		 EXPECT[00000001]: 00000000
	 Mask length = 39 bits
	 Mask length = 2 longwords
		 MASK[00000000]: FFFFFFFF
		 MASK[00000001]: FFFFFFFF

The required 39 bits of data is too long to fit into a single 32-bit
long word, so two long words are used. Also the mask, when
inverted as described previously, specifies that no comparison

Image caption

60

Dissecting the Built-In Self-Test

is to be done on the data shifted out of the TDO output of the
scan chain.

As a reminder, the 39 bits of data are the bypass register bit in
the SCANSTA111 multiplexer, the 19-bit boundary register of
the SCAN921224 deserializer, the 18-bit boundary register of the
SCAN921023 serializer, and a pad bit. After this data is loaded
into the boundary registers of the SCAN921224 deserializer and
SCAN921023 serializer, it will be presented at the output pins of
these devices when the EXTEST instruction is issued.

Next, vector sequence number 8 issues the BYPASS instruction
to the SCANSTA111 multiplexer (again), and the EXTEST
instruction to the SCAN921224 deserializer and SCAN921023
serializer. It uses macro number 2 to write the data into the
instruction registers of the parts.

===== VECTOR Sequence # 8 =====
	 Fixed Length = 32 bytes
	 Total Length = 36 bytes
	 Clocks = 25 ticks
	 Slot number = 1
	 Macro number = 2
	 Load on fly = NO
	 Compare data = YES
	 Use mask = YES
	 Array Length = 1 longwords
	 Data length = 25 bits
	 Data length = 1 longwords
		 DATA[00000000]: 01FE0001
	 Expect length = 0 bits
	 Expect length = 0 longwords
	 Mask length = 0 bits
	 Mask length = 0 longwords

Now the remainder of the file executes the same thing over and
over. It scans data into the boundary registers of the devices on
the board while scanning out and comparing the previous test
results. The remainder of the file consists of vector sequences
and register sequences such as these:

===== VECTOR Sequence # 9 =====
	 Fixed Length = 32 bytes
	 Total Length = 56 bytes
	 Clocks = 39 ticks
	 Slot number = 2
	 Macro number = 1
	 Load on fly = NO
	 Compare data = YES
	 Use mask = YES
	 Array Length = 6 longwords
	 Data length = 39 bits
	 Data length = 2 longwords
		 DATA[00000000]: FB3FFFFF
		 DATA[00000001]: 0000004E
	 Expect length = 39 bits
	 Expect length = 2 longwords
		 EXPECT[00000000]: E807FC96
		 EXPECT[00000001]: 00000000
	 Mask length = 39 bits
	 Mask length = 2 longwords
		 MASK[00000000]: 17F80069
		 MASK[00000001]: FFFFFFFF

===== REGISTER Sequence # 14 =====
	 Fixed Length = 24 bytes
	 Total Length = 24 bytes
	 Register id = 0 (START)
	 Mask = 00000007
	 Data = 00000003
	 Register bits =011

Like the SVF file from which it was produced, this EVF2 file is
for built-in self-test of a very simple scan chain with only three
devices. For an operational board the scan chain might be much
longer and the SVF and EVF2 files considerably more complex.

It is worth reiterating that the process that has just been
carried out is not part of the normal flow for building a board
built-in self-test. Normally it is neither necessary nor desirable
(and maybe not even possible) to dissect an EVF2 file as has
been done in this case. It is instructive, however, to perform
this exercise at least once in order to gain an appreciation for
what the test sequence is really accomplishing. In particular,
examining the EVF2 file and the SVF file from which it was
produced together illustrates how the commands in the SVF file
are converted into register and memory reads and writes to the
SCANSTA101 STA master.

The developer of a board built-in self-test does not need to go
through this process, however. Almost always it is sufficient just
to let the ATPG tool produce a SVF file and then convert it to an
EVF2 file using EVF Workbench. The process shown here can be
instructive for debugging if a self-test sequence is not working
as expected, but normally this is not necessary.

61national.com/scan

8. Putting It All Together

In an effort to summarize, it is beneficial to consider step by
step what has been implemented thus far, and how this could be
applied to the development of a built-in self-test for a board.

First, a board designed to demonstrate the capabilities of
National’s JTAG support devices was utilized. The board was
designed with JTAG-enabled devices. It was equipped with
JTAG TAP connections on the backplane and through the
connectors. And it was designed to accommodate the use of the
SCANSTA111 Scan Bridge multiplexer.

From a hardware standpoint, this is really all that would be
required of an operational system designed to support boundary
scan built-in self-test. The JTAG support components could be
“bolted on” to the board after the board interconnects were
designed. The only additional interconnects required between
the devices are those for the JTAG TAP itself.

Then the netlist for the board was taken, along with some
additional information about the components on it and
interconnects not shown on the netlist, and a built-in self-test
sequence for the board was produced using a third-party ATPG
tool. This process wasn’t automatic, but it was relatively simple.
The ATPG tool took most of the complexity out of the process of
generating the built-in self-test. The output of the ATPG tool was
a SVF file describing the test sequence in a human-readable
form.

Next, the SVF file was taken and converted to an EVF2 file
using National’s EVF Workbench tool. This file encapsulated,
in a binary format, the operations required to enable the
SCANSTA101 STA master to perform the desired built-in self-
test. The EVF2 file that results can be stored in some in-system
memory and used for running the built-in self-test.

The interface function provided by National as C source code
in the system controller software was included in order to
deliver the instructions from the EVF2 file to the SCANSTA101
STA master. The interface function is flexible and easy to use.
It ties into the remainder of the system controller software in a
modular form that is easy to understand and implement.

These are the steps required to implement a built-in self-test
for a board using the National’s JTAG support devices. National
supplies tools to convert the self-test sequence into the required
format. National also supplies software source code for use
in the embedded system software. This source code can be
modified by the user if required. It can be used as-is in a wide
variety of systems.

The design process described above is shown graphically in
Figure 8-1. The information and tools required to develop the
built-in self-test are shown in the figure. The figure illustrates
that the process of developing a board built-in self-test using
JTAG is relatively simple and straightforward. All the steps in
the development have been described in this design guide.

This design flow has been tested by working through all these
steps for an example system, the SCANSTAEVK demonstration
kit. In addition, for this simple system, the additional steps of
examining the SVF and EVF2 files in detail were taken in order to
understand what the test sequence is really accomplishing.

In the end, the self-test on the SCANSTAEVK demonstration
kit was run. The intent was to demonstrate that when all
the connections are good, the self-test passes, and when
a connection is deliberately broken or a static logic level is
deliberately set to an incorrect value, the self-test fails. This is
what was observed, as described in the following section.

Image caption

62

Putting It All Together

Start Implementing
Built-In Self-Test

Choose Components with
JTAG Capability

Component
Datasheets,

Application Notes,
Other Information

Provide Power for JTAG
Support Devices, Allocate

Board and Connector
Interconnects

SCANSTA101,
SCANSTA11x,
SCANSTA476
Datasheets

Operational System Design

Generate Board Netlists

Generate Test Pattern
Vectors and SVF File

Third-Party ATPG Tool and
SVF Conversion Tool

Convert SVF File to EVF2
Format EVF Workbenchsvf2evf.exe

Build EVF2 Vector Delivery
Capability into Embedded

System Software

Embedded Vector Delivery
Software

Deliver Embedded Test
Vectors to Perform Built-In

Self-Test

Built-In Self-Test
Implemented

Figure 8-1. Design Flowchart for Built-In Self-Test

63national.com/scan

8.1. Demonstration of the Built-In Self-Test
As mentioned, the SCANSTAEVK demonstration kit includes
software for delivering the test sequences to the board. This
software uses an SCANSTA101 STA master implemented on a
Corelis PCI-1149.1/101 JTAG controller. The PC-based software
tool for JTAG vector delivery is called SCANEase.

The software uses the EVF2VectorDelivery interface described
previously. In fact, the function prototypes used as examples of
the required interface functions are taken from the SCANEase
software. SCANEase includes a graphical user interface that
enables the user to select an EVF2 file, or files, and to deliver
these files to the target board.

After the EVF2 file was produced as described in previous
sections, it was delivered to the SCANSTAEVK demonstration
system by the SCANEase software. With all of the extra jumpers
in place, and with a cable connecting connectors J4 and J5
shown in Figure 3-7, the test ran to completion and passed. The
output window of the SCANEase software is shown in Figure 8-2.

It is comforting that the board self-test passes when there is
nothing wrong with the board. But what if a fault is induced?
The question is: Will the self-test detect it?

To answer that question, the cable from J4 was removed,
breaking the connection between the differential output of
the SCAN921023 serializer and the differential input of the
SCAN921224 deserializer. In an operational system, if anything
were to fail, it would likely be a cable, like this.

When the self-test was run in this condition, it did indeed fail,
producing the output shown in Figure 8-3. This indicates that the
self-test detected the disconnection of the cable and indicated
correctly that there was a problem on the board.

Introducing other faults on the board produced similar error
indications at different steps in the test. For example, with
reference to Figure 3-7, the jumper J17 was removed to produce
an error. Also, the position of switch S5 was changed which
introduced a static 0 level on SCAN921023 serializer input DIN4.
Each of these deliberately-induced board errors was detected.
The switches in DIP switch S2 and S3 were also opened,
producing errors when this changed the static input levels.

Figure 8-2. Screen Shot of the SCANEase Software indicating that the Board
Self-Test Passed

Figure 8-3. Screen Shot of the SCANEase Software indicating that the Board
Self-Test Failed

In summary, all the faults introduced on the board were
correctly detected by the self-test. This is exactly the desired
behavior. This illustrates the utility of built-in self-test using
boundary scan.

8.2. Summary and Conclusions
In conclusion, in the process of developing and deploying a
board built-in self-test , it has been shown that it does what it
was intended to do. Next, what it takes to develop and deploy
such a test using the National’s JTAG support devices is
summarized.

When the design of the system begins, the designer doesn’t
need to think much about built-in self-test at all. Part of
designing any system is choosing components that fulfill the
requirements of the system. If the intention is to implement

64

Putting It All Together

a built-in self-test, the designer simply selects components
that also implement boundary scan whenever possible. It is
important to ensure there is enough board space and power
supply capacity available for the JTAG support devices, such as
the SCANSTA101 STA master and the SCANSTA111 multiplexer,
that are to be used. And it is also critical to ensure that there
are enough spare contacts on the connectors and enough
spare traces on the backplane to accommodate the JTAG
connections. If that has been done at the beginning of the
system design, then it’s very likely that the boundary scan-based
built-in self-test in the system will be implemented successfully.

After the schematic for a board to be tested by boundary scan-
based built-in self-test has been completed, the boundary scan
support components and connections must be added. The
boundary scan support devices are generally connected to the
other components on the board only by the JTAG TAP.

The impact of boundary scan on board layout is minimal.
Boundary scan generally does not require high-speed
interconnects, so the TAP traces on the board can be routed
without significant concern about signal integrity. The board
traces related to the primary function of the board may need
to be routed to support high-speed signals, but the TAP traces
generally do not.

No matter what EDA tool was used to generate the board
schematics, it is likely that the netlist output of that tool can
be used for automated test pattern generation. Multiple
vendors supply tools for automatic test pattern generation. All
of them work off a netlist and a minimal amount of additional
information. All the tools can produce boundary scan test
sequences that can be deployed for built-in self-test. Any ATPG
tool desired can be used to generate a SVF description of the
boundary scan self-test to be performed.

The SVF file can be converted to an EVF2 format suitable for
embedded test vector delivery by National’s EVF Workbench
tool. This tool works from a simple, intuitive GUI and produces
EVF2 files that can be directly ported to storage on the system to
be tested.

National provides source code to be added to the system
software for delivering the test sequences to the SCANSTA101
STA master using a third-party ATPG tool. Incorporating this
source code into the system software is straightforward for an
experienced programmer.

Once all of these elements are in place, the system controller
can initiate a built-in self-test that can diagnose many
connection problems on the system. This process has been
demonstrated on a model system. Also described in detail was
what goes on “under the hood” of a boundary scan-based built-
in self-test.

National’s family of JTAG support devices provides a powerful
capability for implementing boundary scan-based built-in
self-test. The devices are supported by an extensive software
suite provided both by ATPG software vendors and National.
Adding built-in self-test to a board can reduce the overall cost
of supporting the board. The minimal additional investment
required to design built-in self-test into a system can provide
payback many times over in improved reliability and lower
maintenance and repair costs.

65national.com/scan

9. Sample Files

9.1. BSDL Files
The BSDL files for the SCANSTA111 JTAG multiplexer,
SCAN921224 deserializer, and the SCAN921023 serializer follow
in their entirety. These files describe, among other things, the
op-codes associated with each instruction and the boundary
register details for each device.

The BSDL file for the SCANSTA111 JTAG multiplexer follows:

-- SCANSTA111

-- Copyright National Semiconductor Corporation 2000
--
-- STA111 ScanBridge 2
-- JTB 15 Sept 2000 Orignal
-- BillA 8 Oct 2000 Added S6 to data register
--
--
-- National Semiconductor Customer Service Center
-- N. America (800) 272-9959
-- Europe Germany p49 (0) 69 9508 6208

-- Revised Sept 12 02 to add BGA package and change ID code
version to 0001...

entity scansta111 is
 generic (PHYSICAL_PIN_MAP : string := “UNDEFINED”);

 port (VCC: linkage bit_vector(2 downto 0);
 GND: linkage bit_vector(2 downto 0);
 TRSTB,TCKB,TMSB,TDIB: in bit;
 TDOB: out bit;
 TRISTB,YB,AB: linkage bit;
 OE: in bit;
 TEST_ENABLE: linkage bit;
 -- S6: linkage bit;
 S: in bit_vector(6 downto 0);
 TDI: linkage bit_vector(2 downto 0);
 TDO: linkage bit_vector(2 downto 0);
 TRIST: linkage bit_vector(2 downto 0);
 LSP_ACTIVE: linkage bit_vector(2 downto 0);
 TMS: linkage bit_vector(2 downto 0);
 TCK: linkage bit_vector(2 downto 0);
 TRST: linkage bit_vector(2 downto 0);
 Y: linkage bit_vector(1 downto 0);
 A: linkage bit_vector(1 downto 0)
);

 use STD_1149_1_1990.all; -- Get Std 1149.1-1990
attributes and definitions

 attribute PIN_MAP of scansta111 : entity is PHYSICAL_PIN_
MAP;

 constant TSSOP_PACKAGE:PIN_MAP_STRING:=”VCC:(1,24,35),
GND:(25,36,48),” &
 “TRSTB:2, TCKB:3, TMSB:4, TDIB:5,TDOB:6,TRISTB:7,
YB:8, AB:9, OE:10,” &
 “TEST_ENABLE:11, S:(18, 17,16,15,14,13,12),” &
 “TDI:(19,33,44), TDO:(20,32,43), TRIST:(21,31,42),
LSP_ACTIVE:(22,28,39),” &
 “TMS:(23,34,45), TCK:(26,37,46), TRST:(27,38,47),
Y:(30,41), A:(29,40)”;

 constant BGA_PACKAGE:PIN_MAP_STRING:=”VCC:(A4,E4,E7),
GND:(C4,D5,G4),” &
 “TRSTB:B3, TCKB:A3, TMSB:B2,
TDIB:A2,TDOB:A1,TRISTB:C3, YB:C2, AB:B1, OE:D2,” &

 “TEST_ENABLE:C1, S:(G1,F1,F2,E1,E2,D1,D3),” &
 “TDI:(E3,F7,B5), TDO:(F3,E6,C5), TRIST:(G2,E5,A7),
LSP_ACTIVE:(F4,F6,C7),” &
 “TMS:(G3,D6,A6), TCK:(F5,D7,B4), TRST:(G5,C6,A5),
Y:(G7,B7), A:(G6,B6)”;

 attribute TAP_SCAN_IN of TDIB : signal is true;
 attribute TAP_SCAN_MODE of TMSB : signal is true;
 attribute TAP_SCAN_OUT of TDOB : signal is true;
 attribute TAP_SCAN_CLOCK of TCKB : signal is (25.0e6,
BOTH);
 attribute TAP_SCAN_RESET of TRSTB : signal is true;

 attribute INSTRUCTION_LENGTH of scansta111 : entity is 8;

 attribute INSTRUCTION_OPCODE of scansta111 : entity is
 “BYPASS (11111111),” &
 “EXTEST (00000000),” &
 “SAMPLE (10000001),” &
 “IDCODE (10101010),” &
 “UNPARK (11100111),” &
 “PARKTLR (11000101),” &
 “PARKRTI (10000100),” &
 “PARKPAUSE (11000110),” &
 “GOTOWAIT (11000011),” &
 “MODESEL (10001110),” &
 “MODESEL2 (10000011),” &
 “MCGRSEL (00000011),” &
 “SOFTRESET (10001000),” &
 “LFSRSEL (11001001),” &
 “LFSRON (00001100),” &
 “LFSROFF (10001101),” &
 “CNTRSEL (11001110),” &
 “CNTRON (00001111),” &
 “CNTROFF (10010000),” &
 “TRANSPR0 (10100000),” &
 “TRANSPR1 (10100001),” &
 “TRANSPR2 (10100010),” &
 “SGPIO0 (10111000),” &
 “SGPIO1 (10111001),” &
 “SGPIO2 (10111010)”;

 attribute INSTRUCTION_CAPTURE of scansta111 : entity is
“XXXXXX01”;

 attribute IDCODE_REGISTER of scansta111 : entity is
 “0001” & -- Version
 “1111110000001111” & -- Part number
 “00000001111” & -- Manufacturer Identity
 “1”; -- Manditory LSB

 attribute REGISTER_ACCESS of scansta111 : entity is
 “IDCODE (UNPARK,PARKTLR,PARKRTI,PARKPAUSE,GOTOWAIT,SO
FTRESET,LFSRON,” &
 “LFSROFF,CNTRON,CNTROFF),” &
 “MODE[8] (MODESEL),” &
 “MODE2[8] (MODESEL2),” &
 “MCGR[2] (MCGRSEL),” &
 “LFSR[16] (LFSRSEL),” &
 “CNTR[32] (CNTRSEL),” &
 “TRANSPR0[8] (TRANSPR0),” &
 “TRANSPR1[8] (TRANSPR1),” &
 “TRANSPR2[8] (TRANSPR2),” &
 “SGPIO0[8] (SGPIO0),” &
 “SGPIO1[8] (SGPIO1),” &
 “SGPIO2[8] (SGPIO2)”;

 attribute BOUNDARY_CELLS of scansta111 : entity is “BC_4”;
 attribute BOUNDARY_LENGTH of scansta111 : entity is 8;

 attribute BOUNDARY_REGISTER of scansta111 : entity is
 -- num cell port function safe [ccell disval rslt]
 “0 (BC_4, S(0), input, X),” & --
All inputs

Image caption

66

Sample Files

 “1 (BC_4, S(1), input, X),” &
 “2 (BC_4, S(2), input, X),” &
 “3 (BC_4, S(3), input, X),” &
 “4 (BC_4, S(4), input, X),” &
 “5 (BC_4, S(5), input, X),” &
 “6 (BC_4, S(6), input, X),” &
 “7 (BC_4, OE, input, X)”;

end scansta111;

The BSDL file for the SCAN921224 deserializer follows:

-- Copyright National Semiconductor Corporation 2001
--
-- Boundary Scan Description Language, BSDL Model for NSC_
SCAN921224
-- 10-bit LVDS Deserializer
--
-- National Semiconductor Customer Service Center
-- N. America (800) 272-9959
-- Europe Germany p49 (0) 69 9508 6208

-- 01 Initial
-- 02 4 Feb 2001 Include relationship between
-- cell_18 ctrl cell and cell_05 RCLK
cell
-- 03 14 Mar 01 Verified through additional ATPG tools
-- Changed BGA_49 to BGA_49_INTEGER. Added
BGA_49_BALL
-- Add and commented out attribute PORT_
GROUPING for RIn
-- as this attrubute is not handled by
all ATPG
-- Corrected RUNBIST
-- Corrected Boundary scan cell chain
length
-- Corrected Control values for ROUT(7-9)
-- 04 21 Mar 01 Corrected ID
-- Corrected cell ordering i.e. cell
closest TDO = 0
-- 05 29 Mar 01 Corrected control cells
-- 06 29 Apr 02 Corrected attribute ordering (RUNBIST_
EXECUTION)
-- 07 28 Aug 09 Uncommented RIn port and differential
port grouping.

entity NSC_SCAN921224 is
 generic (PHYSICAL_PIN_MAP : string := “BGA_49_BALL”);

 port (
 ROUT: out bit_vector(0 to 9);
 RCLK_R_F: in bit;
 RIp: in bit;
 RIn: in bit; -- 28 Aug 09
was commented out was linkage bit
 PWRDN: in bit;
 LOCK: out bit;
 RCLK: out bit;
 REN: in bit;
 REFCLK: in bit;
 TDI: in bit;
 TMS: in bit;
 TCK: in bit;
 TRST: in bit;
 TDO: out bit;
 DVCC: linkage bit_vector(4 downto
0);
 DGND: linkage bit_vector(6 downto
0);
 AVCC: linkage bit_vector(4 downto
0);
 AGND: linkage bit_vector(4 downto
0);

 NC: linkage bit_vector(3 downto
0)
);

 use STD_1149_1_1994.all;

 attribute COMPONENT_CONFORMANCE of NSC_SCAN921224 :
entity is “STD_1149_1_1993”;

 attribute PIN_MAP of NSC_SCAN921224 : entity is
PHYSICAL_PIN_MAP;

-- BGA_49_INTEGER identifies each pin as an integer
 constant BGA_49_INTEGER : PIN_MAP_STRING :=
 “ROUT:(18, 5, 11, 13, 21, 27, 42, 47, 40, 46),” &
 “RCLK_R_F:10,” &
 “RIp:23,” &
 “RIn:15,” & -- 28 Aug 09 was commented out
 “PWRDN:24,” &
 “LOCK:29,” &
 “RCLK:30,”&
 “REN:22,”&
 “REFCLK:3,”&
 “TDI:41,”&
 “TMS:49,” &
 “TCK:33,” &
 “TRST:34,” &
 “TDO:48,” &
 “DVCC:(7, 14, 19, 20, 26),” &
 “DGND:(1, 6, 12, 28, 32, 35, 45),” &
 “AVCC:(8, 16, 36, 37, 43),” &
 “AGND:(4, 9, 38, 39, 44),” &
 “NC:(2, 17, 25, 31)”;

-- BGA_49_BALL identifies each pin by a “ball” identifier
 constant BGA_49_BALL : PIN_MAP_STRING :=
 “ROUT:(C4, A5, B4, B6, C7, D6, F7, G5, F5, G4),” &
 “RCLK_R_F:B3,” &
 “RIp:D2,” &
 “RIn:C1,” & -- 28 Aug 09 was commented out
 “PWRDN:D3,” &
 “LOCK:E1,” &
 “RCLK:E2,”&
 “REN:D1,”&
 “REFCLK:A3,”&
 “TDI:F6,”&
 “TMS:G7,” &
 “TCK:E5,” &
 “TRST:E6,” &
 “TDO:G6,” &
 “DVCC:(A7, B7, C5, C6, D5),” &
 “DGND:(A1, A6, B5, D7, E4, E7, G3),” &
 “AVCC:(B1, C2, F1, F2, G1),” &
 “AGND:(A4, B2, F3, F4, G2),” &
 “NC:(A2, C3, D4, E3)”;

 attribute PORT_GROUPING of NSC_SCAN921224 : entity is
-- 28 Aug 09 was commented out
 “DIFFERENTIAL_VOLTAGE ((RIp, RIn))”;
-- 28 Aug 09 was commented out

 attribute TAP_SCAN_IN of TDI : signal is true;
 attribute TAP_SCAN_MODE of TMS : signal is true;
 attribute TAP_SCAN_OUT of TDO : signal is true;

 attribute TAP_SCAN_CLOCK of TCK : signal is (25.0e6,
BOTH);
 attribute TAP_SCAN_RESET of TRST : signal is true;

 attribute INSTRUCTION_LENGTH of NSC_SCAN921224 : entity
is 8;

 attribute INSTRUCTION_OPCODE of NSC_SCAN921224 : entity
is
 “BYPASS (11111111),” &

67national.com/scan

 “EXTEST (00000000),” &
 “SAMPLE (10000010),” &
 “IDCODE (10000001),” &
 “CLAMP (10000111),” &
 “HIGHZ (00000110),” &
 “RUNBIST (10000011)”;

 attribute INSTRUCTION_CAPTURE of NSC_SCAN921224 : entity
is “XXXXXX01”;

 attribute IDCODE_REGISTER of NSC_SCAN921224 : entity is
 “1000” & -- version
 “1111110000100101” & -- part number FC25 RX
 “00000001111” & -- manufacturer’s identity
 “1”; -- required by 1149.1

 attribute REGISTER_ACCESS of NSC_SCAN921224 : entity is
 “BYPASS (BYPASS, CLAMP, HIGHZ),” &
 “BOUNDARY (SAMPLE, EXTEST),” &
 “BISTREG[2] (RUNBIST),” &
 “DEVICE_ID (IDCODE)”;

-- attribute BOUNDARY_CELLS of NSC_SCAN921224 :entity is
“BC_1,BC_4”;

 attribute BOUNDARY_LENGTH of NSC_SCAN921224 : entity is
19;

 attribute BOUNDARY_REGISTER of NSC_SCAN921224 : entity
is
 --
 -- num cell port function safe
[ccell disval rslt]
 --
 “18 (BC_1, ROUT(7), output3, X,0, 0,
Z),” &
 “17 (BC_1, ROUT(8), output3, X,0, 0,
Z),” &
 “16 (BC_1, ROUT(9), output3, X,0, 0,
Z),” &
 “15 (BC_1, *, controlr, 0),” &
 “14 (BC_1, LOCK, output3, X, 15, 0,
Z),” &
 “13 (BC_1, RCLK, output3, X,0, 0,
Z),” &
 “12 (BC_4, REN, input, X),” &
 “11 (BC_4, PWRDN, input, X),” &
 “10 (BC_4, RIp, input, X),” &
 “9 (BC_4, REFCLK, input, X),” &
 “8 (BC_4, RCLK_R_F, input, X),” &
 “7 (BC_1, ROUT(0), output3, X,0, 0,
Z),” &
 “6 (BC_1, ROUT(1), output3, X,0, 0,
Z),” &
 “5 (BC_1, ROUT(2), output3, X,0, 0,
Z),” &
 “4 (BC_1, ROUT(3), output3, X,0, 0,
Z),” &
 “3 (BC_1, ROUT(4), output3, X,0, 0,
Z),” &
 “2 (BC_1, ROUT(5), output3, X,0, 0,
Z),” &
 “1 (BC_1, ROUT(6), output3, X,0, 0,
Z),” &
 “0 (BC_1, *, controlr, 0)”;

 attribute RUNBIST_EXECUTION of NSC_SCAN921224 : entity
is
 “Wait_duration (10.0e-3), “&
 “Observing HIGHZ At_Pins, “&
 “Expect_Data 11”;

end NSC_SCAN921224;

The BSDL file for the SCAN921023 serializer follows:

-- Copyright National Semiconductor Corporation 2001
--
-- Boundary Scan Description Language, BSDL Model for NSC_
SCAN921023
-- 10-bit LVDS Serializer
--
-- National Semiconductor Customer Service Center
-- N. America (800) 272-9959
-- Europe Germany p49 (0) 69 9508 6208

-- 01 Initial
-- 02 14 Mar 01 Verified through additional ATPG tools
-- Changed BGA_49 to BGA_49_INTEGER. Added
BGA_49_BALL
-- Reversed order of DIN from (9 downto 0)
-> (0 to 9)
-- Corrected ID code
-- Corrected RUNBIST
-- 03 21 Mar 01 Corrected ID
-- Corrected cell ordering i.e. cell
closest TDO = 0
-- 04 29 Mar 01 Corrected control cells
-- 05 29 Mar 01 Corrected disable value
-- 06 29 Apr 02 Corrected attribute ordering (RUNBIST_
EXECUTION) & fixed bist register name
-- 07 28 Aug 09 Uncommented DOn and differential port
grouping

entity NSC_SCAN921023 is
 generic (PHYSICAL_PIN_MAP : string := “BGA_49_BALL”);

 port (

 DIN: in bit_vector(0 to 9);
 SYNC2: in bit;
 SYNC1: in bit;
 PWRDN: in bit;
 DOp: out bit;
 DOn: out bit; -- 28 Aug 09
was commented out
 DEN: in bit;
 TCLK: in bit;
 TCLK_R_F: in bit;
 TDI: in bit;
 TMS: in bit;
 TCK: in bit;
 TRST: in bit;
 TDO: out bit;
 DVCC: linkage bit_vector(2 downto
0);
 DGND: linkage bit_vector(4 downto
0);
 AVCC: linkage bit_vector(4 downto
0);
 AGND: linkage bit_vector(4 downto 0)
);

 use STD_1149_1_1994.all;

 attribute COMPONENT_CONFORMANCE of NSC_SCAN921023 :
entity is “STD_1149_1_1993”;

 attribute PIN_MAP of NSC_SCAN921023 : entity is
PHYSICAL_PIN_MAP;

-- BGA_49_INTEGER identifies each pin as an integer

68

Sample Files

 constant BGA_49_INTEGER : PIN_MAP_STRING :=
 “DIN:(3, 8, 23, 15, 24, 22, 30, 29, 37, 39),” &
 “SYNC2:10,” &
 “SYNC1:4,” &
 “PWRDN:21,” &
 “DOp:28,” &
 “DOn:26,” & -- 28 Aug 09 was commented out
 “DEN:27,”&
 “TCLK:32,”&
 “TCLK_R_F:45,”&
 “TDI:36,”&
 “TMS:31,” &
 “TCK:38,” &
 “TRST:44,” &
 “TDO:43,” &
 “DVCC:(17, 18, 33),” &
 “DGND:(1, 16, 34, 40, 46),” &
 “AVCC:(5, 6, 11, 14 ,47),” &
 “AGND:(12, 13, 20, 35, 42)”;

-- BGA_49_BALL identifies each pin by a “ball” identifier
 constant BGA_49_BALL : PIN_MAP_STRING :=
 “DIN:(A3,B1, D2, C1, D3, D1, E2, E1, F2, F4),” &
 “SYNC2:B3,” &
 “SYNC1:A4,” &
 “PWRDN:C7,” &
 “DOp:D7,” &
 “DOn:D5,” & -- 28 Aug 09 was commented out
 “DEN:D6,”&
 “TCLK:E4,”&
 “TCLK_R_F:G3,”&
 “TDI:F1,”&
 “TMS:E3,” &
 “TCK:F3,” &
 “TRST:G2,” &
 “TDO:G1,” &
 “DVCC:(C3, C4, E5),” &
 “DGND:(A1, C2, E6, F5, G4),” &
 “AVCC:(A5, A6, B4, B7 ,G5),” &
 “AGND:(B5, B6, C6, E7, F7)”;

 attribute PORT_GROUPING of NSC_SCAN921023 : entity is
-- 28 Aug 09 was commented out
 “DIFFERENTIAL_VOLTAGE ((DOp, DOn))”;
-- 28 Aug 09 was commented out

 attribute TAP_SCAN_IN of TDI : signal is true;
 attribute TAP_SCAN_MODE of TMS : signal is true;
 attribute TAP_SCAN_OUT of TDO : signal is true;

 attribute TAP_SCAN_CLOCK of TCK : signal is (25.0e6,
BOTH);
 attribute TAP_SCAN_RESET of TRST : signal is true;

 attribute INSTRUCTION_LENGTH of NSC_SCAN921023 : entity
is 8;

 attribute INSTRUCTION_OPCODE of NSC_SCAN921023 : entity
is
 “BYPASS (11111111),” &
 “EXTEST (00000000),” &
 “SAMPLE (10000010),” &
 “IDCODE (10000001),” &
 “CLAMP (10000111),” &
 “HIGHZ (00000110),” &
 “RUNBIST (10000011)”;

 attribute INSTRUCTION_CAPTURE of NSC_SCAN921023 : entity
is “XXXXXX01”;

 attribute IDCODE_REGISTER of NSC_SCAN921023 : entity is
 “1000” & -- version
 “1111110000100110” & -- part number FC26 TX
 “00000001111” & -- manufacturer’s identity
 “1”; -- required by 1149.1

 attribute REGISTER_ACCESS of NSC_SCAN921023 : entity is
 “BYPASS (BYPASS, CLAMP, HIGHZ),” &
 “BOUNDARY (SAMPLE, EXTEST),” &
 “BISTREG[2] (RUNBIST),” &
 “DEVICE_ID (IDCODE)”;

-- attribute BOUNDARY_CELLS of NSC_SCAN921023 :entity is
“BC_1,BC_4”;

 attribute BOUNDARY_LENGTH of NSC_SCAN921023 : entity
is 18;

 attribute BOUNDARY_REGISTER of NSC_SCAN921023 : entity
is
 --
 -- num cell port function safe
[ccell disval rslt]
 --
 “17 (BC_4, DIN(8), input, X),” &
 “16 (BC_4, DIN(7), input, X),” &
 “15 (BC_4, DIN(6), input, X),” &
 “14 (BC_4, DIN(5), input, X),” &
 “13 (BC_4, DIN(4), input, X),” &
 “12 (BC_4, DIN(3), input, X),” &
 “11 (BC_4, DIN(2), input, X),” &
 “10 (BC_4, DIN(1), input, X),” &
 “9 (BC_4, DIN(0), input, X),” &
 “8 (BC_4, SYNC2, input, X),” &
 “7 (BC_4, SYNC1, input, X),” &
 “6 (BC_4, PWRDN, input, X),” &
 “5 (BC_1, DOp, output3, X,
4, 0, Z),” &
 “4 (BC_1, *, controlr, 0),”
&
 “3 (BC_4, DEN, input, X),” &
 “2 (BC_4, TCLK, input, X),” &
 “1 (BC_4, TCLK_R_F, input, X),” &
 “0 (BC_4, DIN(9), input, X)”;

 attribute RUNBIST_EXECUTION of NSC_SCAN921023 : entity is
 “Wait_Duration (10.0e-3), “&
 “Observing HIGHZ At_Pins, “&
 “Expect_Data 01”;

end NSC_SCAN921023;

9.2. SVF file
The SVF file produced for the self-test described in this design
guide follows in its entirety.

!--

!
! Generated by Corelis CVFtoSVF Converter Version 1.07
!
! Generated from C:\Documents and Settings\CJRJSC\My
Documents\Scan\ScanExpress_Projects\SCANSTAEVK_Demo\JTAG_EVK_
Demo_interconnect_ic.cvf
! CVF File Version: 1.01
! CVF Test Name : JTAG_EVK
! CVF Test Type : INTERCON
! CVF Revision : 1.01
! CVF File Date : 091009
!
!--

!
! SVF FILE STATEMENTS OP-CODE SYNTAX SUMMARY
! --- ---- ---------- ------ ------ -------
!
! ENDDR - Specify the end state for any data register

69national.com/scan

(SDR) scan operation
!
! ENDIR - Specify the end state for any instruction
register (SIR) scan
! operation
!
! RUNTEST - Forces the IEEE 1149.1 bus to the specified run
state for
! a specified number of clocks. This can be used
to control RUNBIST
! operation in the target
!
! SDR - Performs an IEEE 1149.1 data register scan
! Shift data op-code, followed by number-of-bits
(decimal),
! serial-data-out (hex), expected-serial-data-in
(hex), mask-of-
! serial-data-in (hex)
!
! SIR - Performs an IEEE 1149.1 instruction register
scan
! Shift instruction op-code, followed by number-
of-bits (decimal),
! serial-data-out (hex), expected-serial-data-in
(hex), mask-of-
! serial-data-in (hex)
!
! STATE - Move the boundary scan controller state-machine
to this stable
! state
!
! TRST - Controls the optional Test Reset line
!
!--

!
! NOTE: Text comments are marked with a preceding
‘!’ character
! NOTE: MASK bit value of ‘0’ masks out the
relevant TDO bit
! NOTE: Serial-data-out (TDI) is shifted out with
LSB first
!
!--

TRST OFF;

STATE IDLE;

!--

!
! Source CVF file generated by ScanPlus TPG Version 2.03
!
!--

SIR 8 TDI (09)
 TDO (00)
 MASK (00);

SIR 8 TDI (8E)
 TDO (25)
 MASK (FF);

SDR 8 TDI (01)
 TDO (00)
 MASK (00);

SIR 8 TDI (E7)
 TDO (25)
 MASK (FF);

!--

!
! TOPOLOGY INFORMATION
! The devices are listed in the order from TDI to TDO of the
board
!
! STA_U1 	 (SCANSTA111 Enhanced Scan Bridge at address
0x00000009 on TAP0)
! - Instruction Length (8)
Boundary Length (1)
! U1 	 (on TAP0) - Instruction Length (8) Boundary
Length (19)
! U2 	 (on TAP0) - Instruction Length (8) Boundary
Length (18)
! PAD 	 (on TAP0) - Instruction Length (1) Boundary
Length (1)
!
!--

SIR 25 TDI (1FF0505)
 TDO (0000202)
 MASK (0000606);

SDR 39 TDI (6DFAAFFFFF)
 TDO (0000000000)
 MASK (0000000000);

SIR 25 TDI (1FE0001)
 TDO (0000202)
 MASK (0000606);

SDR 39 TDI (4EFB3FFFFF)
 TDO (00E807FC96)
 MASK (00E807FF96);

SDR 39 TDI (77FC3FFFFF)
 TDO (00E807FE96)
 MASK (00E807FF96);

SDR 39 TDI (47FFCFFFFF)
 TDO (00E807FE96)
 MASK (00E807FF96);

SDR 39 TDI (7FFFFFFFFF)
 TDO (00E807FE96)
 MASK (00E807FF96);

SDR 39 TDI (56FD5FFFBF)
 TDO (00E807FE96)
 MASK (00E807FF96);

SDR 39 TDI (75FCCFFFBF)
 TDO (00C807FE96)
 MASK (00E807FF96);

SDR 39 TDI (4CFBCFFFBF)
 TDO (00C807FC96)
 MASK (00E807FF96);

SDR 39 TDI (7CF83FFFBF)
 TDO (00C807FC96)
 MASK (00E807FF96);

SDR 39 TDI (44F80FFFBF)
 TDO (00C807FC96)
 MASK (00E807FF96);

SDR 39 TDI (67F99FFFBF)
 TDO (00C807FC96)
 MASK (00E807FF96);

SDR 39 TDI (7DFF0FFFBF)
 TDO (00C807FE96)
 MASK (00E807FF96);

70

Sample Files

SDR 39 TDI (74FBFFFFBF)
 TDO (00C807FC96)
 MASK (00E807FF96);

SDR 39 TDI (7CF83FFFBF)
 TDO (00C807FC96)
 MASK (00E807FF96);

SDR 39 TDI (7BFFF7FFDF)
 TDO (00C807FC96)
 MASK (00E807FF96);

! Total number of vectors : 21

9.3. EVF2 File
The EVF2 file, converted to human-readable format by
Evf2Dump, follows:

Verbose mode
=============== HEADER ====================
Largest vector bit length: 39 bits
Largest buffer bit length: 0 bits
Macro record count: 4
Vector record count: 23
Buffer record count: 0
Register record count: 28
Assumed initial state: Undefined
Defined final state: Undefined
===
===== REGISTER Sequence # 0 =====
	 Fixed Length = 24 bytes
	 Total Length = 24 bytes
	 Register id = 4 (SETUPR)
	 Mask = 00000004
	 Data = 00000004
	 Register bits =1..

===== REGISTER Sequence # 1 =====
	 Fixed Length = 24 bytes
	 Total Length = 24 bytes
	 Register id = 5 (CLKDIV)
	 Mask = 000000FE
	 Data = 00000020
	 Register bits =0010000.

===== REGISTER Sequence # 2 =====
	 Fixed Length = 24 bytes
	 Total Length = 24 bytes
	 Register id = 4 (SETUPR)
	 Mask = 00000003
	 Data = 00000040
	 Register bits =00

===== REGISTER Sequence # 3 =====
	 Fixed Length = 24 bytes
	 Total Length = 24 bytes
	 Register id = 2 (INTCTRL)
	 Mask = 00001E00
	 Data = 00000000
	 Register bits =0000.........

===== MACRO Sequence # 0 =====
	 Fixed Length = 20 bytes
	 Total Length = 20 bytes
	 Macro number = 4
	 Macro = 0503007C

===== VECTOR Sequence # 0 =====
	 Fixed Length = 32 bytes
	 Total Length = 32 bytes
	 Clocks = 0 ticks

	 Slot number = 0
	 Macro number = 4
	 Load on fly = NO
	 Compare data = NO
	 Use mask = NO
	 Array Length = 0 longwords
	 Data length = 0 bits
	 Data length = 0 longwords
	 Expect length = 0 bits
	 Expect length = 0 longwords
	 Mask length = 0 bits
	 Mask length = 0 longwords

===== REGISTER Sequence # 4 =====
	 Fixed Length = 24 bytes
	 Total Length = 24 bytes
	 Register id = 0 (START)
	 Mask = 00000007
	 Data = 00000001
	 Register bits =001

===== REGISTER Sequence # 5 =====
	 Fixed Length = 24 bytes
	 Total Length = 24 bytes
	 Register id = 4 (SETUPR)
	 Mask = 00000008
	 Data = 00000043
	 Register bits =0...

===== MACRO Sequence # 1 =====
	 Fixed Length = 20 bytes
	 Total Length = 20 bytes
	 Macro number = 3
	 Macro = 01030000

===== VECTOR Sequence # 1 =====
	 Fixed Length = 32 bytes
	 Total Length = 32 bytes
	 Clocks = 0 ticks
	 Slot number = 0
	 Macro number = 3
	 Load on fly = NO
	 Compare data = NO
	 Use mask = NO
	 Array Length = 0 longwords
	 Data length = 0 bits
	 Data length = 0 longwords
	 Expect length = 0 bits
	 Expect length = 0 longwords
	 Mask length = 0 bits
	 Mask length = 0 longwords

===== REGISTER Sequence # 6 =====
	 Fixed Length = 24 bytes
	 Total Length = 24 bytes
	 Register id = 0 (START)
	 Mask = 00000007
	 Data = 00000001
	 Register bits =001

===== MACRO Sequence # 2 =====
	 Fixed Length = 20 bytes
	 Total Length = 20 bytes
	 Macro number = 2
	 Macro = D3020330

===== VECTOR Sequence # 2 =====
	 Fixed Length = 32 bytes
	 Total Length = 44 bytes
	 Clocks = 8 ticks
	 Slot number = 3
	 Macro number = 2
	 Load on fly = NO
	 Compare data = YES
	 Use mask = YES

71national.com/scan

	 Array Length = 3 longwords
	 Data length = 8 bits
	 Data length = 1 longwords
		 DATA[00000000]: 00000009
	 Expect length = 8 bits
	 Expect length = 1 longwords
		 EXPECT[00000000]: 00000000
	 Mask length = 8 bits
	 Mask length = 1 longwords
		 MASK[00000000]: FFFFFFFF

===== REGISTER Sequence # 7 =====
	 Fixed Length = 24 bytes
	 Total Length = 24 bytes
	 Register id = 0 (START)
	 Mask = 00000007
	 Data = 00000004
	 Register bits =100

===== VECTOR Sequence # 3 =====
	 Fixed Length = 32 bytes
	 Total Length = 44 bytes
	 Clocks = 8 ticks
	 Slot number = 2
	 Macro number = 2
	 Load on fly = NO
	 Compare data = YES
	 Use mask = YES
	 Array Length = 3 longwords
	 Data length = 8 bits
	 Data length = 1 longwords
		 DATA[00000000]: 0000008E
	 Expect length = 8 bits
	 Expect length = 1 longwords
		 EXPECT[00000000]: 00000025
	 Mask length = 8 bits
	 Mask length = 1 longwords
		 MASK[00000000]: FFFFFF00

===== REGISTER Sequence # 8 =====
	 Fixed Length = 24 bytes
	 Total Length = 24 bytes
	 Register id = 0 (START)
	 Mask = 00000007
	 Data = 00000003
	 Register bits =011

===== MACRO Sequence # 3 =====
	 Fixed Length = 20 bytes
	 Total Length = 20 bytes
	 Macro number = 1
	 Macro = D2020320

===== VECTOR Sequence # 4 =====
	 Fixed Length = 32 bytes
	 Total Length = 36 bytes
	 Clocks = 8 ticks
	 Slot number = 3
	 Macro number = 1
	 Load on fly = NO
	 Compare data = YES
	 Use mask = YES
	 Array Length = 1 longwords
	 Data length = 8 bits
	 Data length = 1 longwords
		 DATA[00000000]: 00000001
	 Expect length = 0 bits
	 Expect length = 0 longwords
	 Mask length = 0 bits
	 Mask length = 0 longwords

===== REGISTER Sequence # 9 =====
	 Fixed Length = 24 bytes
	 Total Length = 24 bytes
	 Register id = 0 (START)

	 Mask = 00000007
	 Data = 00000004
	 Register bits =100

===== VECTOR Sequence # 5 =====
	 Fixed Length = 32 bytes
	 Total Length = 36 bytes
	 Clocks = 8 ticks
	 Slot number = 2
	 Macro number = 2
	 Load on fly = NO
	 Compare data = YES
	 Use mask = YES
	 Array Length = 1 longwords
	 Data length = 8 bits
	 Data length = 1 longwords
		 DATA[00000000]: 000000E7
	 Expect length = 0 bits
	 Expect length = 0 longwords
	 Mask length = 0 bits
	 Mask length = 0 longwords

===== REGISTER Sequence # 10 =====
	 Fixed Length = 24 bytes
	 Total Length = 24 bytes
	 Register id = 0 (START)
	 Mask = 00000007
	 Data = 00000003
	 Register bits =011

===== VECTOR Sequence # 6 =====
	 Fixed Length = 32 bytes
	 Total Length = 44 bytes
	 Clocks = 25 ticks
	 Slot number = 1
	 Macro number = 2
	 Load on fly = NO
	 Compare data = YES
	 Use mask = YES
	 Array Length = 3 longwords
	 Data length = 25 bits
	 Data length = 1 longwords
		 DATA[00000000]: 01FF0505
	 Expect length = 25 bits
	 Expect length = 1 longwords
		 EXPECT[00000000]: 00000202
	 Mask length = 25 bits
	 Mask length = 1 longwords
		 MASK[00000000]: FFFFF9F9

===== REGISTER Sequence # 11 =====
	 Fixed Length = 24 bytes
	 Total Length = 24 bytes
	 Register id = 0 (START)
	 Mask = 00000007
	 Data = 00000002
	 Register bits =010

===== VECTOR Sequence # 7 =====
	 Fixed Length = 32 bytes
	 Total Length = 56 bytes
	 Clocks = 39 ticks
	 Slot number = 3
	 Macro number = 1
	 Load on fly = NO
	 Compare data = YES
	 Use mask = YES
	 Array Length = 6 longwords
	 Data length = 39 bits
	 Data length = 2 longwords
		 DATA[00000000]: FAAFFFFF
		 DATA[00000001]: 0000006D
	 Expect length = 39 bits
	 Expect length = 2 longwords
		 EXPECT[00000000]: 00000000

72

Sample Files

		 EXPECT[00000001]: 00000000
	 Mask length = 39 bits
	 Mask length = 2 longwords
		 MASK[00000000]: FFFFFFFF
		 MASK[00000001]: FFFFFFFF

===== REGISTER Sequence # 12 =====
	 Fixed Length = 24 bytes
	 Total Length = 24 bytes
	 Register id = 0 (START)
	 Mask = 00000007
	 Data = 00000004
	 Register bits =100

===== VECTOR Sequence # 8 =====
	 Fixed Length = 32 bytes
	 Total Length = 36 bytes
	 Clocks = 25 ticks
	 Slot number = 1
	 Macro number = 2
	 Load on fly = NO
	 Compare data = YES
	 Use mask = YES
	 Array Length = 1 longwords
	 Data length = 25 bits
	 Data length = 1 longwords
		 DATA[00000000]: 01FE0001
	 Expect length = 0 bits
	 Expect length = 0 longwords
	 Mask length = 0 bits
	 Mask length = 0 longwords

===== REGISTER Sequence # 13 =====
	 Fixed Length = 24 bytes
	 Total Length = 24 bytes
	 Register id = 0 (START)
	 Mask = 00000007
	 Data = 00000002
	 Register bits =010

===== VECTOR Sequence # 9 =====
	 Fixed Length = 32 bytes
	 Total Length = 56 bytes
	 Clocks = 39 ticks
	 Slot number = 2
	 Macro number = 1
	 Load on fly = NO
	 Compare data = YES
	 Use mask = YES
	 Array Length = 6 longwords
	 Data length = 39 bits
	 Data length = 2 longwords
		 DATA[00000000]: FB3FFFFF
		 DATA[00000001]: 0000004E
	 Expect length = 39 bits
	 Expect length = 2 longwords
		 EXPECT[00000000]: E807FC96
		 EXPECT[00000001]: 00000000
	 Mask length = 39 bits
	 Mask length = 2 longwords
		 MASK[00000000]: 17F80069
		 MASK[00000001]: FFFFFFFF

===== REGISTER Sequence # 14 =====
	 Fixed Length = 24 bytes
	 Total Length = 24 bytes
	 Register id = 0 (START)
	 Mask = 00000007
	 Data = 00000003
	 Register bits =011

===== VECTOR Sequence # 10 =====
	 Fixed Length = 32 bytes
	 Total Length = 48 bytes
	 Clocks = 39 ticks

	 Slot number = 2
	 Macro number = 1
	 Load on fly = NO
	 Compare data = YES
	 Use mask = YES
	 Array Length = 4 longwords
	 Data length = 39 bits
	 Data length = 2 longwords
		 DATA[00000000]: FC3FFFFF
		 DATA[00000001]: 00000077
	 Expect length = 39 bits
	 Expect length = 2 longwords
		 EXPECT[00000000]: E807FE96
		 EXPECT[00000001]: 00000000
	 Mask length = 0 bits
	 Mask length = 0 longwords

===== REGISTER Sequence # 15 =====
	 Fixed Length = 24 bytes
	 Total Length = 24 bytes
	 Register id = 0 (START)
	 Mask = 00000007
	 Data = 00000003
	 Register bits =011

===== VECTOR Sequence # 11 =====
	 Fixed Length = 32 bytes
	 Total Length = 40 bytes
	 Clocks = 39 ticks
	 Slot number = 2
	 Macro number = 1
	 Load on fly = NO
	 Compare data = YES
	 Use mask = YES
	 Array Length = 2 longwords
	 Data length = 39 bits
	 Data length = 2 longwords
		 DATA[00000000]: FFCFFFFF
		 DATA[00000001]: 00000047
	 Expect length = 0 bits
	 Expect length = 0 longwords
	 Mask length = 0 bits
	 Mask length = 0 longwords

===== REGISTER Sequence # 16 =====
	 Fixed Length = 24 bytes
	 Total Length = 24 bytes
	 Register id = 0 (START)
	 Mask = 00000007
	 Data = 00000003
	 Register bits =011

===== VECTOR Sequence # 12 =====
	 Fixed Length = 32 bytes
	 Total Length = 40 bytes
	 Clocks = 39 ticks
	 Slot number = 2
	 Macro number = 1
	 Load on fly = NO
	 Compare data = YES
	 Use mask = YES
	 Array Length = 2 longwords
	 Data length = 39 bits
	 Data length = 2 longwords
		 DATA[00000000]: FFFFFFFF
		 DATA[00000001]: 0000007F
	 Expect length = 0 bits
	 Expect length = 0 longwords
	 Mask length = 0 bits
	 Mask length = 0 longwords

===== REGISTER Sequence # 17 =====
	 Fixed Length = 24 bytes
	 Total Length = 24 bytes
	 Register id = 0 (START)

73national.com/scan

	 Mask = 00000007
	 Data = 00000003
	 Register bits =011

===== VECTOR Sequence # 13 =====
	 Fixed Length = 32 bytes
	 Total Length = 40 bytes
	 Clocks = 39 ticks
	 Slot number = 2
	 Macro number = 1
	 Load on fly = NO
	 Compare data = YES
	 Use mask = YES
	 Array Length = 2 longwords
	 Data length = 39 bits
	 Data length = 2 longwords
		 DATA[00000000]: FD5FFFBF
		 DATA[00000001]: 00000056
	 Expect length = 0 bits
	 Expect length = 0 longwords
	 Mask length = 0 bits
	 Mask length = 0 longwords

===== REGISTER Sequence # 18 =====
	 Fixed Length = 24 bytes
	 Total Length = 24 bytes
	 Register id = 0 (START)
	 Mask = 00000007
	 Data = 00000003
	 Register bits =011

===== VECTOR Sequence # 14 =====
	 Fixed Length = 32 bytes
	 Total Length = 48 bytes
	 Clocks = 39 ticks
	 Slot number = 2
	 Macro number = 1
	 Load on fly = NO
	 Compare data = YES
	 Use mask = YES
	 Array Length = 4 longwords
	 Data length = 39 bits
	 Data length = 2 longwords
		 DATA[00000000]: FCCFFFBF
		 DATA[00000001]: 00000075
	 Expect length = 39 bits
	 Expect length = 2 longwords
		 EXPECT[00000000]: C807FE96
		 EXPECT[00000001]: 00000000
	 Mask length = 0 bits
	 Mask length = 0 longwords

===== REGISTER Sequence # 19 =====
	 Fixed Length = 24 bytes
	 Total Length = 24 bytes
	 Register id = 0 (START)
	 Mask = 00000007
	 Data = 00000003
	 Register bits =011

===== VECTOR Sequence # 15 =====
	 Fixed Length = 32 bytes
	 Total Length = 48 bytes
	 Clocks = 39 ticks
	 Slot number = 2
	 Macro number = 1
	 Load on fly = NO
	 Compare data = YES
	 Use mask = YES
	 Array Length = 4 longwords
	 Data length = 39 bits
	 Data length = 2 longwords
		 DATA[00000000]: FBCFFFBF
		 DATA[00000001]: 0000004C
	 Expect length = 39 bits

	 Expect length = 2 longwords
		 EXPECT[00000000]: C807FC96
		 EXPECT[00000001]: 00000000
	 Mask length = 0 bits
	 Mask length = 0 longwords

===== REGISTER Sequence # 20 =====
	 Fixed Length = 24 bytes
	 Total Length = 24 bytes
	 Register id = 0 (START)
	 Mask = 00000007
	 Data = 00000003
	 Register bits =011

===== VECTOR Sequence # 16 =====
	 Fixed Length = 32 bytes
	 Total Length = 40 bytes
	 Clocks = 39 ticks
	 Slot number = 2
	 Macro number = 1
	 Load on fly = NO
	 Compare data = YES
	 Use mask = YES
	 Array Length = 2 longwords
	 Data length = 39 bits
	 Data length = 2 longwords
		 DATA[00000000]: F83FFFBF
		 DATA[00000001]: 0000007C
	 Expect length = 0 bits
	 Expect length = 0 longwords
	 Mask length = 0 bits
	 Mask length = 0 longwords

===== REGISTER Sequence # 21 =====
	 Fixed Length = 24 bytes
	 Total Length = 24 bytes
	 Register id = 0 (START)
	 Mask = 00000007
	 Data = 00000003
	 Register bits =011

===== VECTOR Sequence # 17 =====
	 Fixed Length = 32 bytes
	 Total Length = 40 bytes
	 Clocks = 39 ticks
	 Slot number = 2
	 Macro number = 1
	 Load on fly = NO
	 Compare data = YES
	 Use mask = YES
	 Array Length = 2 longwords
	 Data length = 39 bits
	 Data length = 2 longwords
		 DATA[00000000]: F80FFFBF
		 DATA[00000001]: 00000044
	 Expect length = 0 bits
	 Expect length = 0 longwords
	 Mask length = 0 bits
	 Mask length = 0 longwords

===== REGISTER Sequence # 22 =====
	 Fixed Length = 24 bytes
	 Total Length = 24 bytes
	 Register id = 0 (START)
	 Mask = 00000007
	 Data = 00000003
	 Register bits =011

===== VECTOR Sequence # 18 =====
	 Fixed Length = 32 bytes
	 Total Length = 40 bytes
	 Clocks = 39 ticks
	 Slot number = 2
	 Macro number = 1
	 Load on fly = NO

74

Sample Files

	 Compare data = YES
	 Use mask = YES
	 Array Length = 2 longwords
	 Data length = 39 bits
	 Data length = 2 longwords
		 DATA[00000000]: F99FFFBF
		 DATA[00000001]: 00000067
	 Expect length = 0 bits
	 Expect length = 0 longwords
	 Mask length = 0 bits
	 Mask length = 0 longwords

===== REGISTER Sequence # 23 =====
	 Fixed Length = 24 bytes
	 Total Length = 24 bytes
	 Register id = 0 (START)
	 Mask = 00000007
	 Data = 00000003
	 Register bits =011

===== VECTOR Sequence # 19 =====
	 Fixed Length = 32 bytes
	 Total Length = 48 bytes
	 Clocks = 39 ticks
	 Slot number = 2
	 Macro number = 1
	 Load on fly = NO
	 Compare data = YES
	 Use mask = YES
	 Array Length = 4 longwords
	 Data length = 39 bits
	 Data length = 2 longwords
		 DATA[00000000]: FF0FFFBF
		 DATA[00000001]: 0000007D
	 Expect length = 39 bits
	 Expect length = 2 longwords
		 EXPECT[00000000]: C807FE96
		 EXPECT[00000001]: 00000000
	 Mask length = 0 bits
	 Mask length = 0 longwords

===== REGISTER Sequence # 24 =====
	 Fixed Length = 24 bytes
	 Total Length = 24 bytes
	 Register id = 0 (START)
	 Mask = 00000007
	 Data = 00000003
	 Register bits =011

===== VECTOR Sequence # 20 =====
	 Fixed Length = 32 bytes
	 Total Length = 48 bytes
	 Clocks = 39 ticks
	 Slot number = 2
	 Macro number = 1
	 Load on fly = NO
	 Compare data = YES
	 Use mask = YES
	 Array Length = 4 longwords
	 Data length = 39 bits
	 Data length = 2 longwords
		 DATA[00000000]: FBFFFFBF
		 DATA[00000001]: 00000074
	 Expect length = 39 bits
	 Expect length = 2 longwords
		 EXPECT[00000000]: C807FC96
		 EXPECT[00000001]: 00000000
	 Mask length = 0 bits
	 Mask length = 0 longwords

===== REGISTER Sequence # 25 =====
	 Fixed Length = 24 bytes
	 Total Length = 24 bytes
	 Register id = 0 (START)
	 Mask = 00000007

	 Data = 00000003
	 Register bits =011

===== VECTOR Sequence # 21 =====
	 Fixed Length = 32 bytes
	 Total Length = 40 bytes
	 Clocks = 39 ticks
	 Slot number = 2
	 Macro number = 1
	 Load on fly = NO
	 Compare data = YES
	 Use mask = YES
	 Array Length = 2 longwords
	 Data length = 39 bits
	 Data length = 2 longwords
		 DATA[00000000]: F83FFFBF
		 DATA[00000001]: 0000007C
	 Expect length = 0 bits
	 Expect length = 0 longwords
	 Mask length = 0 bits
	 Mask length = 0 longwords

===== REGISTER Sequence # 26 =====
	 Fixed Length = 24 bytes
	 Total Length = 24 bytes
	 Register id = 0 (START)
	 Mask = 00000007
	 Data = 00000003
	 Register bits =011

===== VECTOR Sequence # 22 =====
	 Fixed Length = 32 bytes
	 Total Length = 40 bytes
	 Clocks = 39 ticks
	 Slot number = 2
	 Macro number = 1
	 Load on fly = NO
	 Compare data = YES
	 Use mask = YES
	 Array Length = 2 longwords
	 Data length = 39 bits
	 Data length = 2 longwords
		 DATA[00000000]: FFF7FFDF
		 DATA[00000001]: 0000007B
	 Expect length = 0 bits
	 Expect length = 0 longwords
	 Mask length = 0 bits
	 Mask length = 0 longwords

===== REGISTER Sequence # 27 =====
	 Fixed Length = 24 bytes
	 Total Length = 24 bytes
	 Register id = 0 (START)
	 Mask = 00000007
	 Data = 00000003
	 Register bits =011

DUMP COMPLETE

75national.com/scan

10. References

1.	 “IEEE Standard Test Access Port and Boundary-Scan
Architecture”, IEEE Standard 1149.1-2001. New York, NY:
IEEE Standards Board, 2001.

2.	 “IEEE Standard for In-System Configuration of
Programmable Devices”, IEEE Standard 1532-2002. New
York, NY: IEEE Standards Board, 2003.

3.	 National Semiconductor Corp., SCANSTA101 Low-Voltage
IEEE 1149.1 STA Master datasheet, 2006.

4.	 National Semiconductor Corp., SCANSTA111 Enhanced
Scan Bridge Multidrop Addressable IEEE 1149.1 (JTAG)
Port datasheet, 2005.

5.	 National Semiconductor Corp., SCANSTA112 7-Port
Multidrop IEEE 1149.1 (JTAG) Multiplexer datasheet, 2005.

6.	 National Semiconductor Corp., SCANSTA476 Eight-Input
IEEE 1149.1 Analog Voltage Monitor datasheet, 2005.

7.	 K. P. Parker, The Boundary Scan Handbook, Third Edition.
Norwell, MA: Kluwer Academic Publishers, 2003.

8.	 National Semiconductor Corp., SCAN921023 and
SCAN921224 20 MHz to 60 MHz 10-Bit Bus LVDS Serializer
and Deserializer with IEEE 1149.1 (JTAG) and At-Speed
BIST datasheet, 2004.

9.	 National Semiconductor Corp., Application Note AN-1259,
SCANSTA112 Designer’s Reference, 2009.

10.	JTAG Technologies, “Design for Test Guidelines For Board
Testing and In-System Configuration”. JTAG Technologies,
June, 2008.

11.	JTAG Technologies, “Design for Test Guidelines For
System-Level Testing and In-System Configuration”. JTAG
Technologies, June 2008.

12.	“IEEE Standard for Boundary-Scan Testing of Advanced
Digital Networks”, IEEE Standard 1149.6-2003. New York,
NY: IEEE Standards Board, 2003.

13.	P. J. Ashenden, The Designer’s Guide to VHDL, Third
Edition. Burlington, MA: Elsevier, Inc., 2008.

14.	K. L. Short, VHDL for Engineers. Upper Saddle River, New
Jersey: Pearson Education, Inc., 2009.

15.	N. Jarwala and C. W. Yau, “A Unified Theory for Designing
Optimal Test Generation and Diagnosis Algorithms for
Board Interconnects”, in Proceedings, International Test
Conference, 1989, pp. 71-77.

16.	C. W. Yau and N. Jarwala, “A New Framework for
Analyzing Test Generation and Diagnosis Algorithms for
Wiring Interconnects”, in Proceedings, International Test
Conference, 1989, pp. 63-70.

17.	W. H. Kautz, “Testing for Faults in Wiring Networks”, IEEE
Transactions on Computers, vol. C-23, No. 4, April, 1974,
pp. 358-363.

18.	Asset Intertech, Inc., Serial Vector Format Specification,
Revision E, 1999.

© National Semiconductor Corporation, February 2010. National Semiconductor and are registered trademarks of National Semiconductor. All rights
reserved. All other brand or product names are trademarks or registered trademarks of their respective holders.

Worldwide Design Centers and
Manufacturing Facilities

World Headquarters
2900 Semiconductor Drive
Santa Clara, CA 95051
USA
+1 408 721 5000
www.national.com

Mailing Address:
PO Box 58090
Santa Clara, CA 95052
support@nsc.com

European Headquarters
Livry-Gargan-Str. 10
82256 Fürstenfeldbruck
Germany
+49 8141 35 0
europe.support@nsc.com

Asia Pacific Headquarters
2501 Miramar Tower
1 Kimberley Road
Tsimshatsui, Kowloon
Hong Kong
+852 2737 1800
ap.support@nsc.com

Japan Headquarters
Beside KIBA
2-17-16
Kiba, Koto-ku
Tokyo, 135-0042, Japan
+81 3 5639 7300
jpn.feedback@nsc.com

Design Centers
USA:
Chandler, Arizona
Federal Way, Washington
Fort Collins, Colorado
Grass Valley, California
Indianapolis, Indiana
Longmont, Colorado
Norcross, Georgia
Phoenix, Arizona
Salem, New Hampshire
Santa Clara, California
South Portland, Maine
Tucson, Arizona

EUROPE:
Delft, Netherlands
Unterhaching, Germany
Greenock, Scotland
Milan, Italy
Oulu, Finland
Tallinn, Estonia

ASIA:
Bangalore, India
Hangzhou, China
 (joint with Zhejiang University)
Hong Kong, China
Tokyo, Japan

Manufacturing Facilities
Wafer (Die) Fabrication:
Arlington, Texas
South Portland, Maine
Greenock, Scotland

Chip Test and Assembly:
Melaka, Malaysia

Design Centers
Manufacturing Facilities

