

DS90UR905 Serializer and DS90UR906 Deserializer Evaluation Kit

User's Manual

NSID: SERDESUR-65USB

Rev 0.4

National Semiconductor Corporation

Date: 3/26/2010 Page 1 of 44

Table of Contents

TABLE OF CONTENTS	
INTRODUCTION:	
CONTENTS OF THE DEMO EVALUATION KIT:	4
DS90UR905/906 SERDES TYPICAL APPLICATION:	
HOW TO SET UP THE DEMO EVALUATION KIT:	6
DEMO BOARD POWER CONNECTIONS:	6
DS90UR905 TX SERIALIZER BOARD DESCRIPTION:	7
CONFIGURATION SETTINGS FOR THE TX DEMO BOARD TX LVCMOS AND LVDS PINOUT BY CONNECTOR BOM (BILL OF MATERIALS) SERIALIZER DEMO PCB:	
DS90UR906 RX DE-SERIALIZER BOARD DESCRIPTION:	
CONFIGURATION SETTINGS FOR THE RX DEMO BOARD RX LVDS PINOUT AND LVCMOS BY CONNECTOR BOM (BILL OF MATERIALS) DE-SERIALIZER DEMO PCB:	
TYPICAL CONNECTION AND TEST EQUIPMENT	
TROUBLESHOOTING DEMO SETUP	
APPENDIX	
SERIALIZER (TX) DEMO PCB SCHEMATIC:	
SERIALIZER (TX) DEMO PCB LAYOUT:	
SERIALIZER (TX) DEMO PCB STACKUP:	40
DESERIALIZER (RX) DEMO PCB LAYOUT:	41
DESERIALIZER (RX) DEMO PCB STACKUP:	

Introduction:

The demo boards are not intended for EMI testing. The demo boards were designed for easy accessibility to device pins with tap points for monitoring or applying signals, additional pads for termination, and multiple connector options.

National Semiconductor's Flat Panel Displays DS90UR905/906 FPD-LINKII evaluation kit contains one (1) DS90UR905 Serializer (Tx) board, one (1) DS90UR906 Deserializer (Rx) board, and one (1) two (2) meter* high speed USB 2.0 cable. *Note: the chipset can support up to ten (10) meters.

The DS90UR905/906 chipset supports a variety of 8 bit color display applications on a two (2) wire serial stream. The single LVDS (FPD_LINKII) interface is well-suited for any display system interface. Typical applications include: navigation displays, automated teller machines (ATMs), POS, video cameras, global positioning systems (GPS), portable equipment/instruments, factory automation, etc.

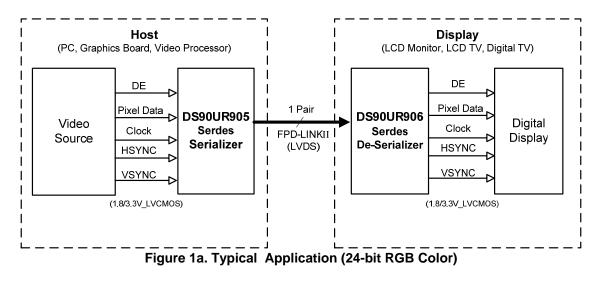
The DS90UR905 and DS90UR906 can also be used as a 24-bit general purpose LVDS Serializer and De-serializer chipset designed to transmit data at clocks speeds ranging from 20 to 65 MHz at up to 10 meters cable lengths over -40 to +105 Deg C.

The Serializer board accepts 1.8V/3.3V input signals. FPD-LINKII Serializer converts the 1.8V/3.3V LVCMOS parallel lines into a single serialized LVDS data pair with an embedded LVDS clock. The serial data stream toggles at 28 times the base clock rate. With an input clock at 65 MHz, the transmission line rate for the FPD-LINKII is 1.56Gbps (24 data bits x 65MHz).

The De-serializer board accepts FPD-LINKII serialized data stream with embedded clock and converts the data back into parallel 1.8V/3.3V LVCMOS signals and clock. Note that NO external reference clock is needed to prevent harmonic lock as with other devices currently on the market. An added feature on this chipset is when the PCLK from the transmitter is lost; an internally generated 25MHz +/- 20% PCLK is outputted on the receiver clock output. This feature can be turned off if not needed.

Suggested equipment to evaluate the chipset, a 1.8V/3.3V LVCMOS signal source such as a video generator or word generator or pulse generator and oscilloscope with a bandwidth of at least 65 MHz will be needed.

The user needs to provide the proper 1.8V/3.3V LVCMOS/RGB inputs and 1.8V/3.3V LVCMOS clock to the Serializer and also provide a proper interface from the Deserializer output to an LCD panel or test equipment. The Serializer and Deserializer boards can also be used to evaluate device parameters. A cable conversion board or harness scramble may be necessary depending on type of cable/connector interface used on the input to the DS90UR905 and to the output of the DS90UR906.


Example of suggested display setup:

- 1) video generator with 1.8V/3.3V output
- 2) 24-bit LCD panel with a 1.8V/3.3V LVCMOS input interface.

Contents of the Demo Evaluation Kit:

- 1) One Serializer board with the DS90UR905
- 2) One De-serializer board with the DS90UR906
- 3) One 2-meter high speed USB 2.0 cable (4-pin USB A to 5-pin mini USB)
- 4) Evaluation Kit Documentation (this manual)
- 5) DS90UR905/906 Datasheet

DS90UR905/906 SERDES Typical Application:

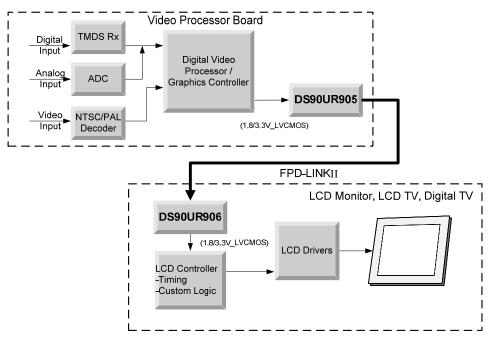


Figure 1b. Typical DS90UR905/906 SERDES System Diagram

Figures 1a and 1b illustrate the use of the Chipset (Tx/Rx) in a Host to Flat Panel Interface.

The chipsets support up to 24-bit color depth TFT LCD Panels.

Refer to the proper datasheet information on Chipsets (Tx/Rx) provided on each board for more detailed information.

How to set up the Demo Evaluation Kit:

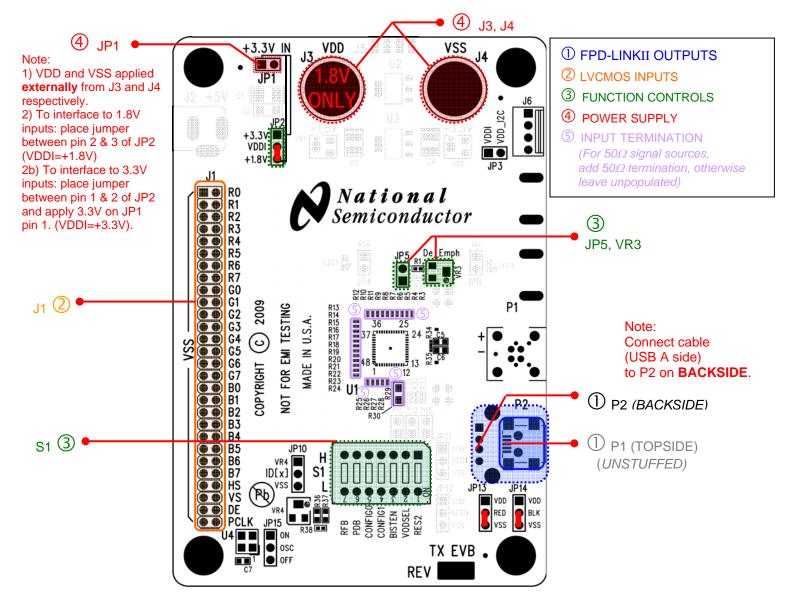
The PCB routing for the Tx input pins (DIN) have been lay out to accept incoming 1.8V/3.3V LVCMOS signals from 2x25-pin IDC connector. The TxOUT/RxIN (DOUT/RIN) interface uses a single twisted pair cable (provided). The PCB routing for the Rx output pins (ROUT) are accessed through a 2x25-pin IDC connector. Please follow these steps to set up the evaluation kit for bench testing and performance measurements:

1) A two (2) meter high speed USB 2.0 cable has been included in the kit. Connect the

4-pin USB A side of cable harness to the serializer board and the otherside of the harness, the 5-pin mini USB jack to the de-serializer board. This completes the FPD-LINKII interface connection. NOTE: The DS90UR905 and DS90UR906 are NOT USB compliant and should not be plugged into a USB device nor should a USB device be plugged into the demo boards.

- 2) Jumpers and switches have been configured at the factory; they should not require any changes for immediate operation of the chipset. See text on Configuration settings and datasheet for more details.
- 3) From the Video Decoder board, connect a flat cable (not supplied) to the Serializer board and connect another flat cable (not supplied) from the De-serializer board to the panel. Note: For 50 ohm signal sources, provide 1.8V/3.3V LVCMOS input signal levels into DIN[23:0] and TCLK and add 50 ohm parallel termination resistors R1-R25 on the DS90UR905 Serializer board.
- Power for the Tx and Rx boards must be supplied externally through Power Jack (VDD). Grounds for both boards are connected through Power Jack (VSS) (see section below).

Demo Board Power Connections:


The Serializer and De-serializer boards must be powered by supplying power externally through J4 (VDD) and J5 (VSS) on Serializer Board and J4 (VDD) and J5 (VSS) on De-serializer board. Note +2.5V is the MAXIMUM voltage that should ever be applied to the Serializer (DS90UR905) or De-serializer (DS90UR906) VDD terminal (except on VDDI or VDDIO where the absolute maximum is +4.0V). Damage to the device(s) can result if the voltage maximum is exceeded.

DS90UR905 Tx Serializer Board Description:

The 2x25-pin IDC connector J1 accepts 24 bits of 1.8V or 3.3V RGB data along with the clock input. VDDI must be set externally for 1.8V or 3.3V LVCMOS inputs.

The Serializer board is powered externally from the J4 (VDD) and J5 (VSS) connectors shown below. For the Serializer to be operational, the S1-PDB switch on S1 must be set HIGH. S1- CONFIG0, CONFIG1, and BISTEN must be set LOW. Rising or falling edge reference clock is user selected on S1-RFB: HIGH (for rising edge data latching) or LOW (for falling edge data latching).

The USB connector P2 (USB-A side) on the bottom side of the board provides the interface connection to the LVDS signals to the De-serializer board. Note: P1 (mini USB) on the top side is un-stuffed and not to be used with the cable provided in the kit.

Configuration Settings for the Tx Demo Board

Reference	Description			
JP2	VDDI LVCMOS input configuration.	VDDI = 1.8V (Default)	VDDI = 3.3V apply external	
		J J J J J J J J J J J J J J	+3.3V IN JP1 +3.3V +3.3V +1.8V -4.3.3V +1.8V -4.3.3V -4.3.2V -4.3.3V -4.3.3V -4.3.2V -4.3.2V -4.3.2V -4.3V -4.3V	+3.3V IN JP1 JP2 +3.3V VDD +1.8V

VDDI: 1.8V or 3.3V LVCMOS INPUT SELECTION

S1: Serializer Input Features Selection

Reference	Description	Input = L	Input = H		S1
RFB	Latch input data on R ising or Falling edge of TCLK	Falling Edge (Default)	Rising Edge	H S1	
PDB	PowerDown Bar	Powers Down	Operational (Default)	L	جې چ چ چ چ چ
CONFIG0 (* IMPORTANT See user note below)	See datasheet Table 2 for description of features	MUST be tied low for normal operation (Default)	-		RFB PDB CONFIGO CONFIG1 BISTEN VODSEL RES2
CONFIG1 (* IMPORTANT See user note below)	See datasheet Table 2 for description of features	MUST be tied low for normal operation (Default)	-		
BISTEN	BIST ENable See datasheet Table 2 for description	OFF (Default)	ON		
VODSEL	FPD-LINKII output VOD SELect	low (Default)	high		
RES 2 (* IMPORTANT See user note below)	REServed	MUST be tied low for normal operation (Default)			

*Note:

In user layout CONFIG0 (pin 12), CONFIG1 (pin 13), RES 2 (pin 18) **MUST** be tied low for proper operation.

Reference	Description	OPEN	CLOSED				
		(floating)	(Path to GND)				
JP5	De-Emphasis	Disabled –	Enabled –				
		no jumper	With jumper				
		(Default)					
		JP5	JP5	JP5			
	Note, when using						
	DeEmphasis, it is						
	recommended that		L , , , , , , , , , , , , , , , , , , ,				
	VODSEL = HIGH		RFB PDB CONFIGO CONFIG1 BISTEN VODSEL RES2				
JP5 &	Do Emphasis adjustment	Clockwise	Counter-				
VR3	De-Emphasis adjustment (via screw)	CIUCKWISE	Clockwise				
VIND	JP3 MUST have a jumper	VR3		ing Do Emph			
	to use VR3			JP5 De_Emph			
	potentiometer.	increases	decreases				
	VR3 = 0Ω to $20K\Omega$,	RPRE value	RPRE value	<mark>∣</mark> ∎∣ ∎ ⊚]>			
	$R1 = 1.5K\Omega$,	which	which				
	R1 + VR3 =	decreases	increases				
	1.5K Ω (maximum	De-	De-emphasis				
	DeEmph) to	emphasis					
	21.5K Ω (minimum						
	DeEmph).						
	$I_{PRE} = [1.2/(R_{DeEmph})] \times 20,$						
	RDeEmph (minimum) > $3K\Omega$						
	Note: There is no						
	maximum RDeEmph value						
	limitation						
De-emphasis user note:							

De-emphasis user note:

De-emphasis must be adjusted correctly based on application frequency, cable quality, cable length, and connector quality. Maximum De-emphasis should only be used under extreme worse case conditions; for example at the upper frequency specification of the part and/or low grade cables at maximum cable lengths. Typically all that is needed is minimum De-emphasis. Users should start with no De-emphasis first and gradually apply De-emphasis until there is clock lock and no data errors. The best way to monitor the De-emphasis effect is to hook up a differential probe to RIN+ and RIN- on the DS90UR906 Rx demo. The easiest tap point is pin2 of C1 and pin 2 of C2. The reason for monitoring RIN+/on the Rx side is because you want to see what the receiver will see the attenuation signal AFTER the cable/connector.

Reference	Description	ID[x]=OPEN (floating)	ID[x]	ID[x]
ID[x]	ID[x] I2C address	ID[x] = h'EC JP10 H ID[x] ● S1 VR4 ● L VR4 ● L	See RID JP10 H ID[x] VSS VR4 VR4	JP10 VR4 ID[x] VSS VR4 VR4
RID thru VR4	JP10 must have jumper between pin 1 and pin 2 to use VR4 RID value thru VR4 VR4 = 470 Ω ; ID[x]=h'E2 VR4 = 2.7K Ω ; ID[x]=h'E4 VR4 = 8.2K Ω ; ID[x]=h'E6		Counter clockwise decreases RID value: vR4 Clockwise increases RID value vR4	
RID thru external resistor	No jumper on JP10	UR4 UD[x] VR4 VR4 VR4	VR4 ID[x] VSS VR4	
RID	RID value thru VR4 VR4 = 470Ω; ID[x]=h'E2 VR4 = 2.7KΩ; ID[x]=h'E4 VR4 = 8.2KΩ; ID[x]=h'E6	Clockwise increases RID value	Counter- Clockwise decreases RID value	
De-emphas	is		I	

ID[x]J6,JP3: I2C like register programmable interface

JP13, JP14: USB Red and Black wire

Reference	Description	VDD	VSS	OPEN
JP13	Power wire in USB cable thru P2 (and P3, not mounted) connector Jumper RED to VSS – recommended	Red wire tied to VDD	Red wire tied to VSS (Default) JP13 VDD RED VSS	Red wire floating (not recommended) JP13 VDD RED VSS
JP14	Power wire in USB cable thru P2 (and P3, not mounted) connector Jumper BLACK to VSS – recommended	Black wire tied to VDD JP14 BLK VSS	Black wire tied to VSS (Default) JP14	Black wire floating (not recommended) JP14 BLK VDD BLK VSS
(n RED WIRE - BLACK WIRE	p side thru the board view pounded on solder side) T und 2 und \$ und \$ und \$ und \$ und \$ WID \$ WID			

Tx LVCMOS and LVDS Pinout by Connector

The following three tables illustrate how the Tx inputs are mapped to the IDC connector J1, the LVDS outputs on the USB-A connector P3, and the mini USB P2 (not mounted) pinouts. Note – labels are also printed on the demo boards for both the LVCMOS input and LVDS outputs.

J1 LVCMOS INPUT								
pin no.		name	pin no.					
1	GND	R0	2					
3	GND	R1	4					
5	GND	R2	6					
7	GND	R3	8					
9	GND	R4	10					
11	GND	R5	12					
13	GND	R6	14					
15	GND	R7	16					
17	GND	G0	18					
19	GND	G1	20					
21	GND	G2	22					
23	GND	G3	24					
25	GND	G4	26					
27	GND	G5	28					
29	GND	G6	30					
31	GND	G7	32					
33	GND	B0	34					
35	GND	B1	36					
37	GND	B2	38					
39	GND	B3	40					
41	GND	B4	42					
43	GND	B5	44					
45	GND	B6	46					
47	GND	B7	48					
49	GND	HS	50					
51	GND	VS	52					
53	GND	DE	54					
55	GND	PCLK	56					

P3 (bottom side) FPD-Linkll OUTPUT			
pin no.	name		
1	JP13		
2	DOUT+		
3	DOUT-		
4	JP14		

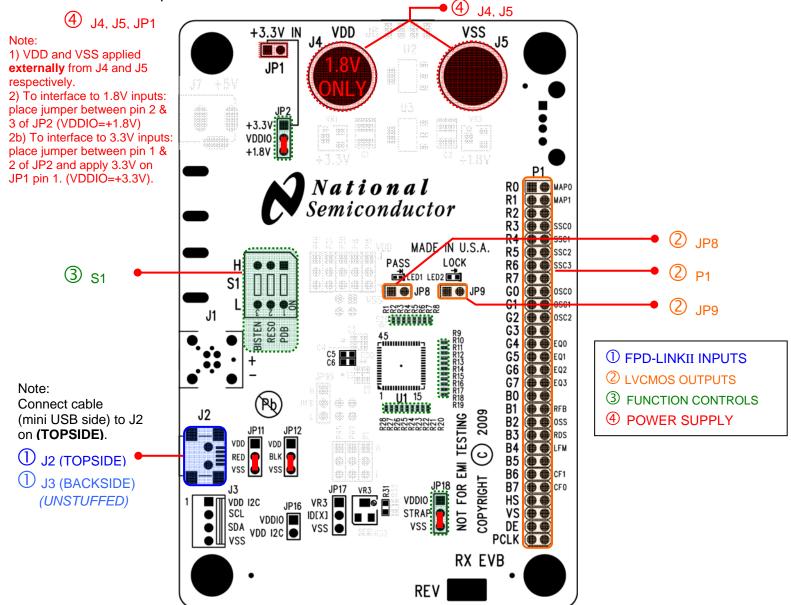
P2 (topside)			
(not mounted) FPD-Linkll OUTPUT			
pin no.	name		
5	JP14		
4	NC		
3	DOUT-		
2 DOUT+			
_			

BOM (Bill of Materials) Serializer Demo PCB:

DS90UR905 Tx Demo Board - Board Stackup Revised: Thursday, June 18, 2009

DS90UR905 Tx Demo Board Revision: 2

Bill Of Materials July 16,2009 19:47:16


Bill Of	Materia	ls July 16,2009	19:47:16				
Item	Qty	Reference	Part	PCB Footprint 3528-	Comments CAPACITOR TANT	MFR	MFR Part#
1	2	C1,C15	2.2uF	21_EIA CAP/HDC-	2.2UF 20V 10% SMD CAP .10UF 50V	KEMET	T491B225K020AT
2	2	C16,C2	0.1uF	1206 CAP/HDC-	CERAMIC X7R 1206 CAP CERAMIC .1UF	KEMET	C1206C104K5RACTU
4	2	C5,C6 C7,C14,C20,C23,	0.1uF	0603 CAP/HDC-	50V X7R 0603 CAP .1UF ±10% 25V	Panasonic	ECJ-1VB1H104K
5	7	C24,C28, C30	0.1uF	0603	CERAMIC X7R 0603 CAP TANTALUM	Panasonic	ECJ-1VB1E104K
6	2	C10,C13	22uF	CAP/N CAP/HDC-	22UF 25V 20% SMD CAP CERAMIC 5.0PF	nichicon	F931E226MNC
7	2	C11,C12 C17,C18,C21,C31,	5pF	0201 CAP/EIA-B	25V NP0 0201 CAPACITOR TANT	Panasonic	ECJ-ZEC1E050C
8	6	C32,C33 C19,C25,C26,C27,	22uF	3528-21 CAP/HDC-	22UF 16V 20% SMD CAP CERAMIC .01UF	Kemet	T494B226M016AT
9	5	C29	0.01uF	0603	100V X7R 0603 CONN HEADER VERT .100 2POS	KEMET	C0603C103K1RACTU
11	3	JP1,JP3,JP5 JP2,JP10,JP13,	2-Pin Header	Header/2P	30AU CONN HEADER VERT .100 3POS	AMP/Tyco	87220-2
12	5	JP14,JP15	3-Pin Header	Header/3P	15AU CONN HEADER	AMP/Tyco	87224-3
16	1	J1	HEADER 28x2	2x28 0.1" CON/	VERT 60POS .100 30AU. Cut to fit. BANANA-female	AMP/TYCO	3-87215-0
18	2	J3,J4	BANANA	BANANA-S	(non-insulated) CONN HEADER 4POS .100 VERT	Johnson Molex/Waldom Electronics	108-0740-001
20	1	J6	IDC1X4	IDC-1x4 USB_TYPE	GOLD CONN USB RECEPT	Corp	22-11-2042
26	1	P3	USB A	_A_4P RES/HDC-	R/A TYPE A 4POS. RES 1.50K OHM	AMP/Tyco	292303-1
27	1	R1 R31,R32,R33,R45,	1.50K	0402	1/16W 1% 0402 SMD	Panasonic	ERJ-2RKF1501X
31	10	R46,R47,R48,R53, R56,R57 R37,R58,R59,R60,	0 Ohm, 0402	RES/HDC- 0402 RES/HDC-	RES ZERO OHM 1/16W 5% 0402 SMD RES 10.0K OHM	Panasonic	ERJ-2GEJ0R00X
33	8	R61,R62, R63,R64	10K	0603 RES/HDC-	1/10W 1% 0603 SMD RES 4.7K OHM	Panasonic	ERJ-3EKF1002V
34	2	R40,R39	4.7K	0603 RES/HDC-	1/10W 5% 0603 SMD RES 0.0 OHM 1/20W	Panasonic	ERJ-3GEYJ472V
38	2	R52,R51	0 ohm	0201	5% 0201 SMD SWITCH DIP EXTENDED SEALED	Panasonic	ERJ-1GE0R00C
39	1	S1	SW DIP-7	DIP-14	7POS	Grayhill	78B07ST
40	1	U1	DS90UR905	48ld LLP Surface Mount 4mm	DS90UR905Q 11-Turn Trimming Potentiometer; Top	National	DS90UR905Q
44	1	VR3	SVR20K	Square Surface Mount 4mm	Adjust 11-Turn Trimming Potentiometer; Top	Bourns	3224W-1-203E
45	1	VR4	SVR100K	Square	Adjust	Bourns	3224W-1-104E

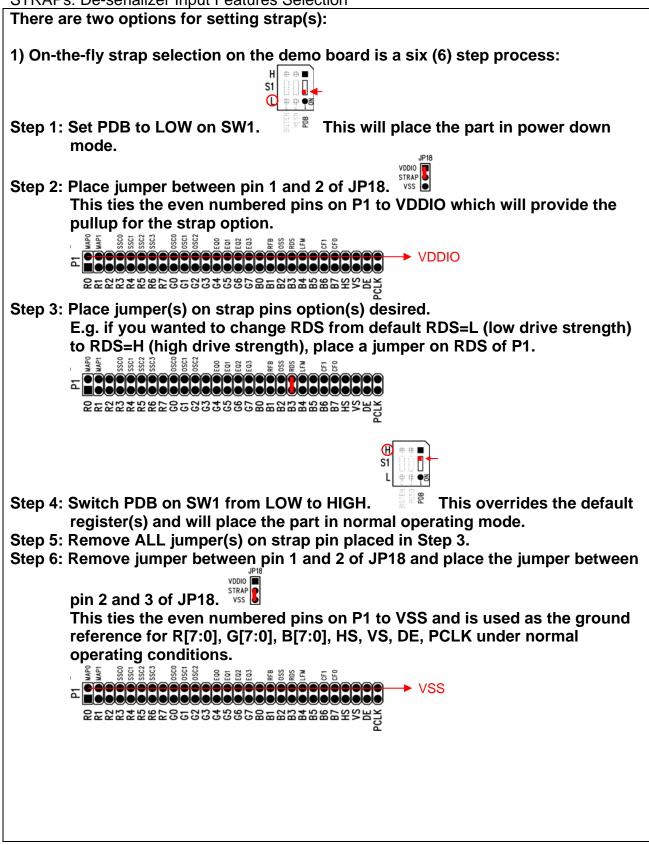
DS90UR906 Rx De-serializer Board Description:

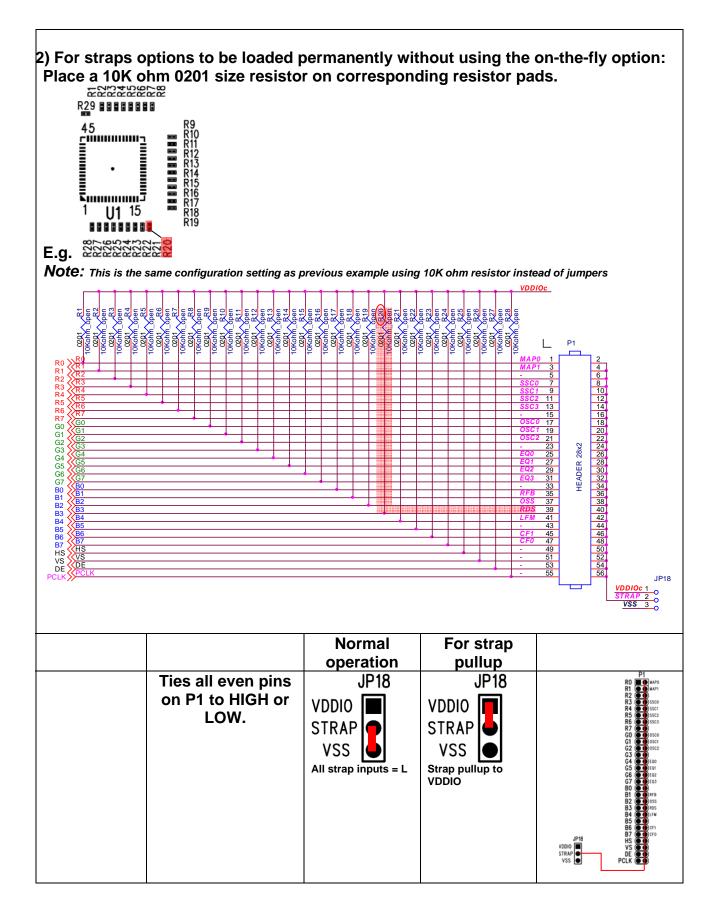
The USB connector J2 (mini USB) on the topside of the board provides the interface connection for FPD-LINKII signals to the Serializer board. Note: J3 (mini USB) on the bottom side is un-stuffed and not used with the cable provided in the kit.

The De-serializer board is powered externally from the J9 (VDD) and J7 (VSS) connectors shown below. For the De-serializer to be operational, the S1 – SLEEPB and switche on S1 must be set HIGH. Rising or falling edge reference clock is user selected by S1-RRFB: HIGH (for rising edge strobing) or LOW (for falling edge strobing).

The 2x25 pin IDC Connector P1 provides access to the 24 bit 1.8V or 3.3V LVCMOS and clock outputs.

Configuration Settings for the Rx Demo Board


Reference	Description			
JP1	VDDIO LVCMOS	VDDIO = 1.8V	VDDIO = 3.3V	
	input/output configuration.	(Default)	apply	
			externally	
		+3.3V VDD +3.3V VDDIO +1.8V	+3.3V IN VDD J6 JP1 +3.3V VDD0 +1.8V	+3.3V IN JP1 JP1 +3.3V IN +1.8V IN VDD0 +1.8V IN
		1.8V LVCMOS	3.3V LVCMOS	


VDDIO: 1.8V or 3.3V LVCMOS INPUT/OUTPUT SELECTION

Reference	Description	Input = L	Input = H	S1
PDB	PowerDown Bar	Power Down (Disabled)	Operational (Default)	
BISTEN	BIST EN able See datasheet Table 2 for description Note: Set BISTEN on the DS90UR905 before the DS90UR906	OFF (Default)	ON	BISTEN RESO PDB ON PDB
RESO (* IMPORTANT See user note below)	REServed	MUST be tied low for normal operation (Default)		

*Note: In user layout RES0 (pin 47) MUST be tied low for proper operation.

STRAPs: De-serializer Input Features Selection

Reference	Description	Input = L	Input = H	P1
MAPSEL[1:0]	MAP SELect	R0 MAP0 R1 MAP1	R0 MAP0 R1 MAP1	
		(Default) No jumpers		R1 (MAP1
SSC[3:0]	Spread Spectrum Clock Generation control See datasheet for settings	Disabled (Default) R3 © SSC0 R4 © SSC1 R5 © SSC2 R6 © SSC3 No jumpers	R3 \$\$\$\$\$\$\$\$\$\$\$ R5 \$	R3 SSC0 R4 SSC1 R5 SSC2 R6 SSC3
OSC[2:0]	OSC illator Frequency select See datasheet for settings	Disabled G0 0000000 G1 000000 G2 000000 (Default) No jumpers	60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	G0 0 0sc0 G1 0 0sc1 G2 0 0sc2
EQ[0]	Eq ualizer Disable/Enable	Disabled G4 () E00 (Default) No jumper	Enabled G4 💽 E00	G4 💽 EQO
EQ[3:1]	EQualizer control See datasheet for settings	G5 Eq1 G6 Eq2 G7 Eq3 (Default) No jumpers	G5 C1 G6 EQ2 G7 EQ3 C5 EQ1 G6 EQ2 G7 EQ2 G7 EQ2 G7 EQ3	G5 EQ1 G6 EQ2 G7 EQ3
RFB	Latch output data on R ising or F alling Data Strobe of RCLK	Falling B1 (I) PFB (Default) No jumper	Rising B1 (RFB Must also set JP18	B1 • RFB
OSS SEL	Output Select Sleep SELect	Disabled B2 (Default) No jumper	Enabled B2 💽 oss	B2 💽 OSS
RDS	Reciever Output Drive Strength	Low drive strength B3 O RDS (Default)	High drive strength B3 C RDS	B3 (RDS

		No jumper		
LF_MODE	Low Frequency MODE Used only when SSCG is enabled otherwise this pin is a don't care	PCLK <u>></u> 20MHz B4 O LFM (Default) No jumper	PCLK< <u>2</u> 0MHz B4 💽 LFM	B4 (LFM
CONFIG[1:0]	CONFIG uration control See datasheet for settings	B6 O CF1 B7 O CF0 (Default) No jumper	B6 CF1 B7 CF0 B6 CF1 B7 CF1 B7 CF0	B6 CF1 B7 CF0

JP4: Output Lock Monitor

Reference	Description	Output = L	Output = H	JP4
LOCK	Receiver PLL LOCK	Unlocked	Locked	
(JP9)	Note: DO NOT PUT A SHORTING	LOCK LED2	TOCK	
	JUMPER IN JP4.	∎● JP9	JP9	JP9

JP3: Output Pass Monitor

Reference	Description	Output = L	Output = H	JP3
PASS (JP8)	BIST PASS Note:	Unlocked PASS	PASS PASS	PASS
(JFO)	DO NOT PUT A SHORTING JUMPER IN JP3.			

JP1, JP2: USB Red and Black wire

Reference	Description	VDD	VSS	OPEN		
JP11	Power wire in USB cable	Red wire tied	Red wire	Red wire		
	thru J2 (and J3 not	to VDD	tied to VSS	floating		
	mounted) connector		(Default)	(not		
	Jumper RED to VSS –			recommended)		
	recommended	JP11 VDD 🗖	JP11 VDD	JP11 VDD		
	Note: Normally VDD in USB application	RED VSS	RED SS	RED VSS		
JP12	Power wire in USB cable	Black wire	Black wire	Black wire		
	thru J2 <i>(and J3 not</i>	tied to VDD	tied to VSS	floating		
	<i>mounted)</i> connector		(Default)	(not		
	Jumper BLACK to VSS –			recommended)		
	recommended	JP12	JP12	JP12		
	Note: Normally VSS in USB application	VDD BLK VSS		VDD BLK O VSS O		
J2						

Rx LVDS Pinout and LVCMOS by Connector

The following three tables illustrate how the Rx outputs are mapped to the IDC connector P1, the mini USB LVDS connector J2, and the mini USB LVDS connector J5 pinouts. Note – labels are also printed on the demo boards for both the LVDS inputs and LVCMOS outputs.

P1						
	LVCMOS OUTPUT					
pin no.						
1	R0	GND	2			
3	R1	GND	4			
5	R2	GND	6			
7	R3	GND	8			
9	R4	GND	10			
11	R5	GND	12			
13	R6	GND	14			
15	R7	GND	16			
17	G0	GND	18			
19	G1	GND	20			
21	G2	GND	22			
23	G3	GND	24			
25	G4	GND	26			
27	G5	GND	28			
29	G6	GND	30			
31	G7	GND	32			
33	B0	GND	34			
35	B1	GND	36			
37	B2	GND	38			
39	B3	GND	40			
41	B4	GND	42			
43	B5	GND	44			
45	B6	GND	46			
47	B7	GND	48			
49	HS	GND	50			
51	VS	GND	52			
53	DE	GND	54			
55	PCLK	GND	56			

J2 (topside) LVDS OUTPUT			
pin no. name			
1	JP5		
2	RIN+		
3	RIN-		
4	NC		
5	JP6		

J5				
(bottom	side)			
(not mo	unted)			
LVDS O	UTPUT			
pin no.	name			
5	JP6			
4	NC			
3	RIN-			
2	RIN+			
1	JP5			

BOM (Bill of Materials) De-serializer Demo PCB:

DS90UR906 Rx Demo Board - Board Stackup Revised: Friday, September 18, 2009

DS90UR906 Rx Demo Board Revision: 2 Bill Of Materials September 18,2009 18:25:53

Din Oi	maton		10.20.00	PCB			
ltem	Qty	Reference C3,C7,C21,	Part	Footprint CAP/HDC-	Comments CAP .1UF ±10% 25V	MFR	MFR Part#
2	6	C29,C30,C34 C4,C8,C22,	0.1uF	0603 CAP/HDC-	CERAMIC X7R 0603 CAP CERAMIC .01UF	Panasonic	ECJ-1VB1E104K
3	5	C25,C31	0.01uF	0603 CAP/HDC-	100V X7R 0603 CAP CERAMIC .1UF	KEMET	C0603C103K1RACTU
4	4	C5,C6,C15,C16	0.1uF	0603	50V X7R 0603 CAP TANTALUM 22UF	Panasonic	ECJ-1VB1H104K
5	2	C11,C14	22uF	CAP/N 3528-	25V 20% SMD CAPACITOR TANT	nichicon	F931E226MNC
6	2	C12,C17	2.2uF	21_EIA CAP/HDC-	2.2UF 20V 10% SMD CAP .10UF 50V	KEMET	T491B225K020AT
7	2	C18,C13 C19,C20,C24,	0.1uF	1206 CAP/EIA-B	CERAMIC X7R 1206 CAPACITOR TANT	KEMET	C1206C104K5RACTU
8	6	C28,C32,C33	22uF	3528-21 CAP/HDC-	22UF 16V 20% SMD CAP CERAMIC 4.7UF	Kemet	T494B226M016AT
10	1	C26	4.7µF	0402 CAP/HDC-	6.3V X5R 0402 CAP CERAMIC 5.0PF	Panasonic	ECJ-0EB0J475M
11	2	C35,C36	5pF 2-Pin	0201	25V NP0 0201 CONN HEADER VERT	Panasonic	ECJ-ZEC1E050C
12	2	JP1,JP16	Header 3-Pin	Header/2P	.100 2POS 30AU CONN HEADER VERT	AMP/Tyco	87220-2
13	3	JP2,JP17,JP18	Header 3-Pin	Header/3P	.100 3POS 15AU CONN HEADER VERT	AMP/Tyco	87224-3
16	2	JP11,JP12	Header	Header/3P mini_B USB	.100 3POS 15AU.	AMP/Tyco	87224-3
19	1	J2	mini USB 5pin	surface mount	CONN RECEPT MINI USB2.0 5POS.	Hirose Molex/ Waldom	UX60-MB-5ST
20	1	J3	IDC1X4	IDC-1x4 CON/	CONN HEADER 4POS .100 VERT GOLD BANANA-female	Electronics Corp	22-11-2042
21	2	J4,J5	BANANA	BANANA-S	(non-insulated)	Johnson Lumex	108-0740-001
26	1	LED1	0402 Orange LED 0603	0402 SMT 0603	LED ORN/CLEAR 610NM 0402 SMD LED GREEN CLEAR	Opto/ Components Inc LITE-ON	SML-LX0402SOC-TR
27	1	LED2	Green LED	(Super Thin)	THIN 0603 SMD CONN HEADER VERT 56POS .100 30AU.	INC	LTST-C191KGKT
28	1	P1 R31,R37,	HEADER 28x2	2x28 0.1" RES/HDC-	Cut 60 POS or use AMP part #2-87215-9. RES 10.0K OHM	AMP/TYCO	3-87215-0
32	4	R38,R39 R40,R43,R44,R45,	10K 0 Ohm,	0603 RES/HDC-	1/10W 1% 0603 SMD RES ZERO OHM	Panasonic	ERJ-3EKF1002V
37	8	R46,R47,R59,R60	0402	0402 RES/HDC-	1/16W 5% 0402 SMD RES 0.0 OHM 1/20W	Panasonic	ERJ-2GEJ0R00X
40	3	R56,R57,R58	0 ohm	0201 RES/HDC-	5% 0201 SMD. RES 4.7K OHM 1/10W	Panasonic	ERJ-1GE0R00C
41	2	R62,R61	4.7K	0603	5% 0603 SMD SWITCH DIP	Panasonic	ERJ-3GEYJ472V
42	1	S1	SW DIP-3	DIP-6	EXTENDED SEALED 3POS DO NOT PURCHASE,	Grayhill	78B03ST
43	1	U1	DS90UR906	60ld LLP Surface	National will supply.	National	DS90UR906
46	1	VR3	SVR50K	Mount 4mm Square	TRIMPOT 50K OHM 4MM CERMET SMD	Bourns	3224W-1-503E

National Semiconductor Corporation

Date: 3/26/2010 Page 24 of 44

Typical Connection and Test Equipment

The following is a list of typical test equipment that may be used to generate signals for the TX inputs:

- 1) Digital Video Source for generation of specific display timing such as Digital Video Processor or Graphics Controller with digital RGB (1.8V/3.3V LVCMOS) output.
- 2) Astro Systems VG-835 This video generator may be used for video signal sources for 6/8-bit Digital 1.8V/3.3V LVCMOS/RGB.
- 3) Any other signal / video generator that generates the correct input levels as specified in the datasheet.
- 4) Optional Logic Analyzer or Oscilloscope

The following is a list of typical test equipment that may be used to monitor the output signals from the RX:

- 1) LCD Display Panel which supports digital RGB (1.8V/3.3V LVCMOS) inputs.
- 2) National Semiconductor DS90UR905 Serializer (Tx)
- 3) Optional Logic Analyzer or Oscilloscope
- 4) Any SCOPE with a bandwidth of at least 65MHz for 1.8V/3.3V LVCMOS and/or 1GHz for looking at the differential signal.

LVDS signals may be easily measured with high impedance / high bandwidth differential probes such as the TEK P6247 or P6248 differential probes.

The picture below shows a typical test set up using a Graphics Controller and LCD Panel.

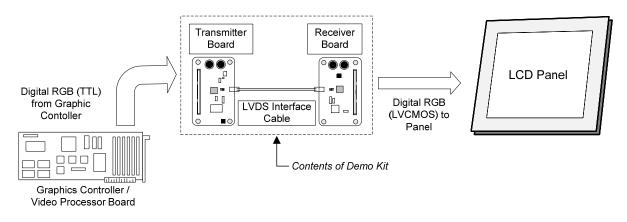


Figure 2. Typical SERDES Setup of LCD Panel Application

The picture below shows a typical test set up using a generator and scope.

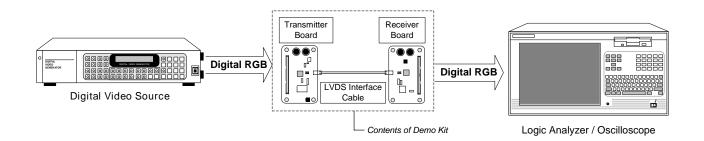


Figure 3. Typical SERDES Test Setup for Evaluation

Troubleshooting Demo Setup

NOTE: The DS90UR905 and DS90UR906 are NOT USB compliant and should not be plugged into a USB device nor should a USB device be plugged into the demo boards.

If the demo boards are not performing properly, use the following as a guide for quick solutions to potential problems. If the problem persists, please contact the local Sales Representative for assistance.

QUICK CHECKS:

- 1. Check that Powers and Grounds are connected to both Tx AND Rx boards.
- Check the supply voltage (typical 1.8V) and also current draw with both Tx and Rx boards. The Serializer board should draw about 100mA with clock and all data bits switching at 65MHz. The De-serializer board should draw about 120mA with clock and all data bits switching at 65MHz.
- 3. Verify input clock and input data signals meet requirements (VIL, VIH, tset, thold), Also verify that data is strobed on the selected rising/falling (RFB pin) edge of the clock.
- 4. Check that the Jumpers and Switches are set correctly.
- 5. Check that the cable is properly connected.

Problem	Solution
There is only the output clock.	Make sure the data is applied to the correct input pin.
There is no output data.	Make sure data is valid at the input.
No output data and clock.	Make sure Power is on. Input data and clock are active and connected correctly.
	Make sure that the cable is secured to both demo boards.
Power, ground, input data and	Check the Power Down pins of both Serializer and De-serializer boards to make sure that the devices
input clock are connected correctly, but no outputs.	are enabled (/PD=Vcc) for operation. Also check DEN on the Serializer board and REN on the Deserializer board is set HIGH.
The devices are pulling more than 1A of current.	Check for shorts in the cables connecting the TX and RX boards.
After powering up the demo boards, the power supply reads less than 1.8V when it is set to 1.8V.	Use a larger power supply that will provide enough current for the demo boards, a 500mA minimum power supply is recommended.

TROUBLESHOOTING CHART

Note: Please note that the following references are supplied only as a courtesy to our valued customers. It is not intended to be an endorsement of any particular equipment or hardware supplier.

Equipment References

Digital Video Pattern Generator – Astro Systems VG-835 (or equivalent):

Astro Systems 425 S. Victory Blvd. Suite A Burbank, CA 91502 Phone: (818) 848-7722 Fax: (818) 848-7799 www.astro-systems.com

Extra Component References

TDK Corporation of America 1740 Technology Drive, Suite 510 San Jose, CA 95110 Phone: (408) 437-9585 Fax: (408) 437-9591 <u>www.component.tdk.com</u> Optional EMI Filters – TDK Chip Beads (or equivalent)

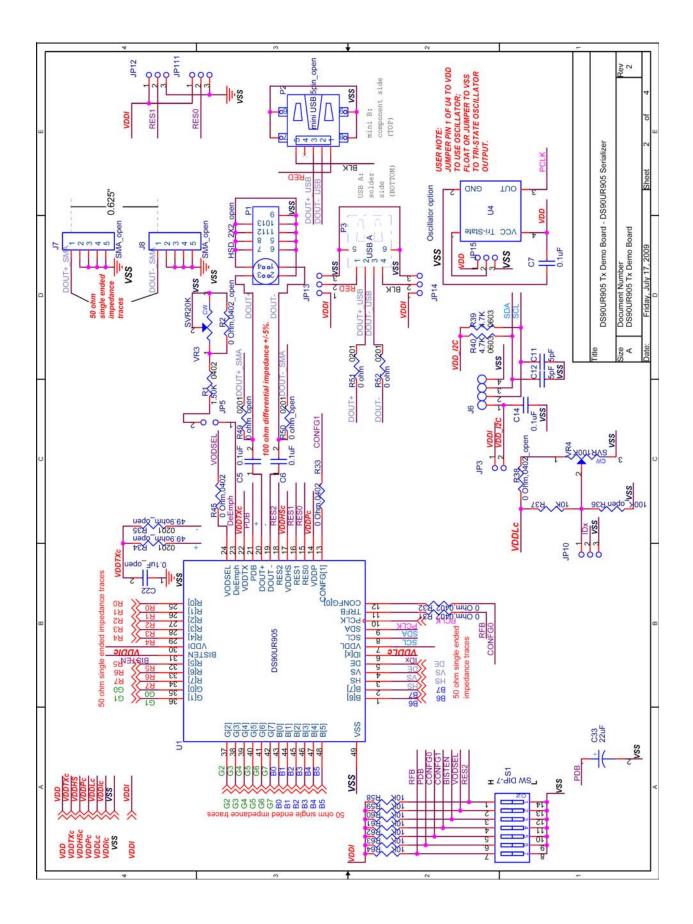
Cable References

The FPD-LINKII interface cable included in the kit is a standard off-the-shelf high-speed USB 2.0 with a 4-pin USB A type on one end and a 5-pin mini USB on the other end and is included for demonstration purposes only.

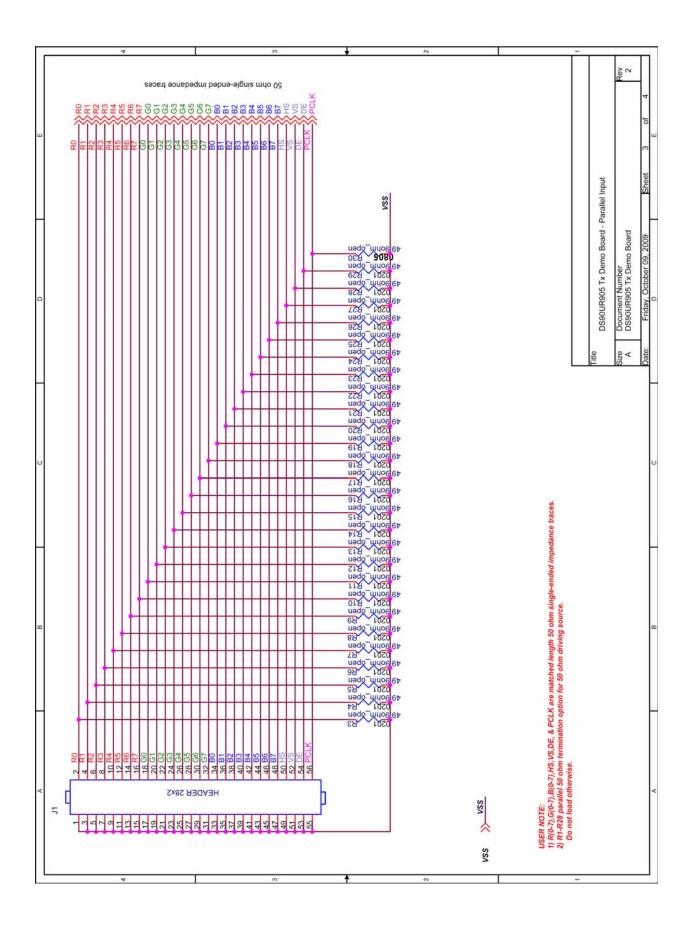
NOTE: The DS90UR905 and DS90UR906 are NOT USB compliant and should not be plugged into a USB device nor should a USB device be plugged into the demo boards.

The inclusion of the USB cable in the kit is for:

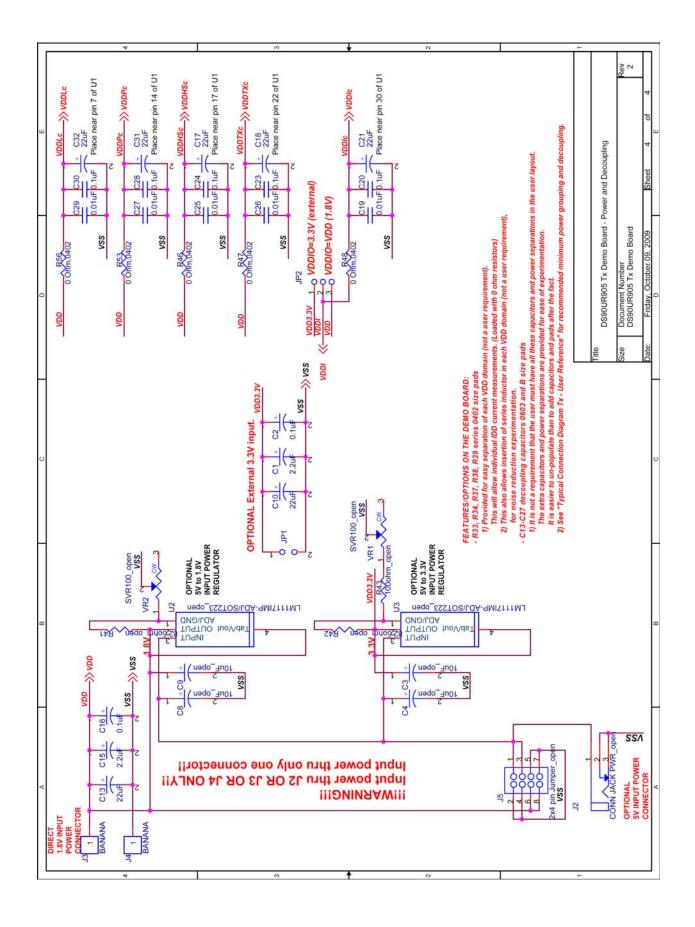
1) Demonstrating the robustness of the FPD-LINKII link over ordinary twisted pair data cables.


2) Readily available and in different lengths without having custom cables made.

- For optimal performance, we recommend Shielded Twisted Pair (STP) 100Ω differential impedance cable for high-speed data applications.

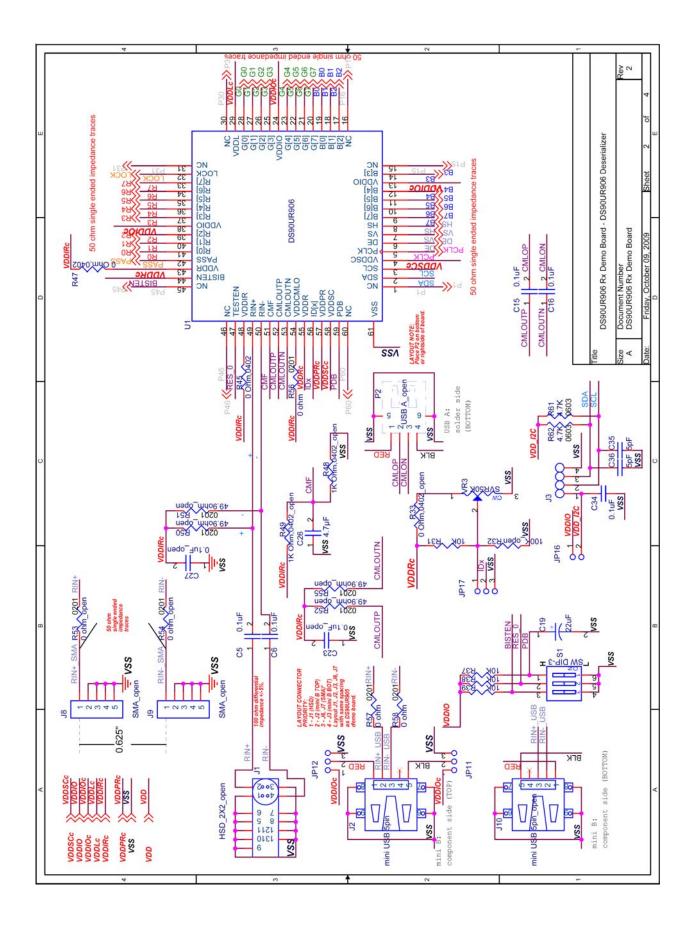

Appendix Serializer (Tx) Demo PCB Schematic:

4	en	N	F
w		.13	Core Material Prepreg Material Board Board Stackup Board Stackup 2009 Sheet 1 of 4
	Cu (layer 1) 2) 2) 2) 2) 2) 2 2 2 Cu (layer 4)		Core Mater Prepreg Ma Desoureo5 Tx Demo Board - Board Slackup Decomment Number Decomment Number Decomment Number Decomment Number
	<pre>Primary component side,1 oz Cu (layer 1) 4.0 mil, Prepreg, Std FR-370HR Ground plane,1 oz Cu (layer 2) 60.0 mil, Core, Std FR-370HR Power plane,1 oz Cu (layer 3) 4.0 mil, Prepreg, Std FR-370HR -Secondary component side,1 oz Cu (layer 4)</pre>		Title DS90U Size DS90U A DS90U
o	Primary comp 4.0 mil, Pre Ground plane 60.0 mil, Co Power plane, 4.0 mil, Pre Secondary co		U
_			-
ω			æ
<			
4	n 4	N	

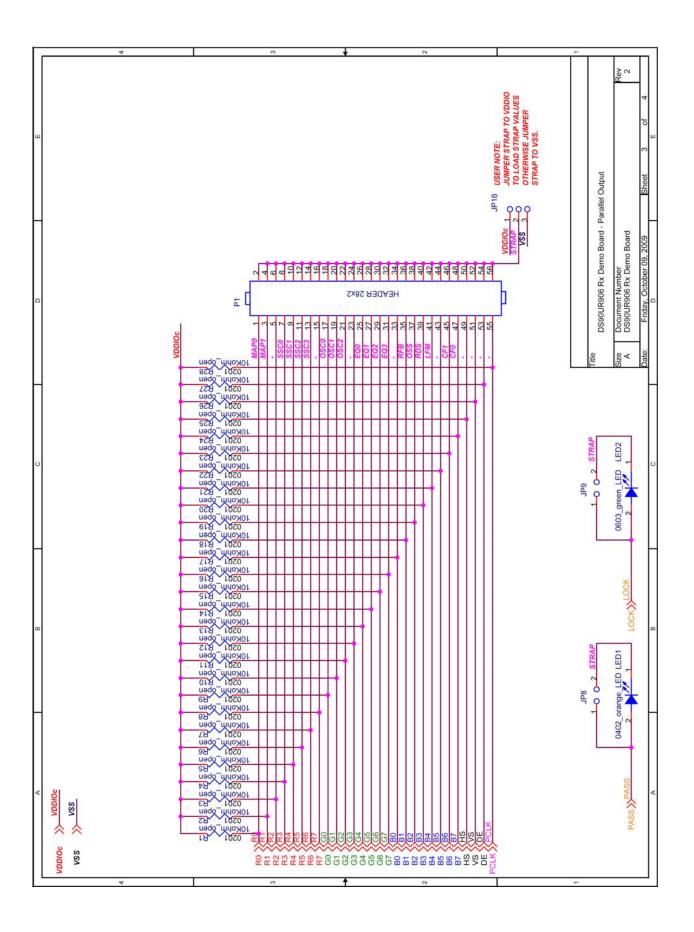

Date: 3/26/2010 Page 29 of 44

Date: 3/26/2010 Page 30 of 44

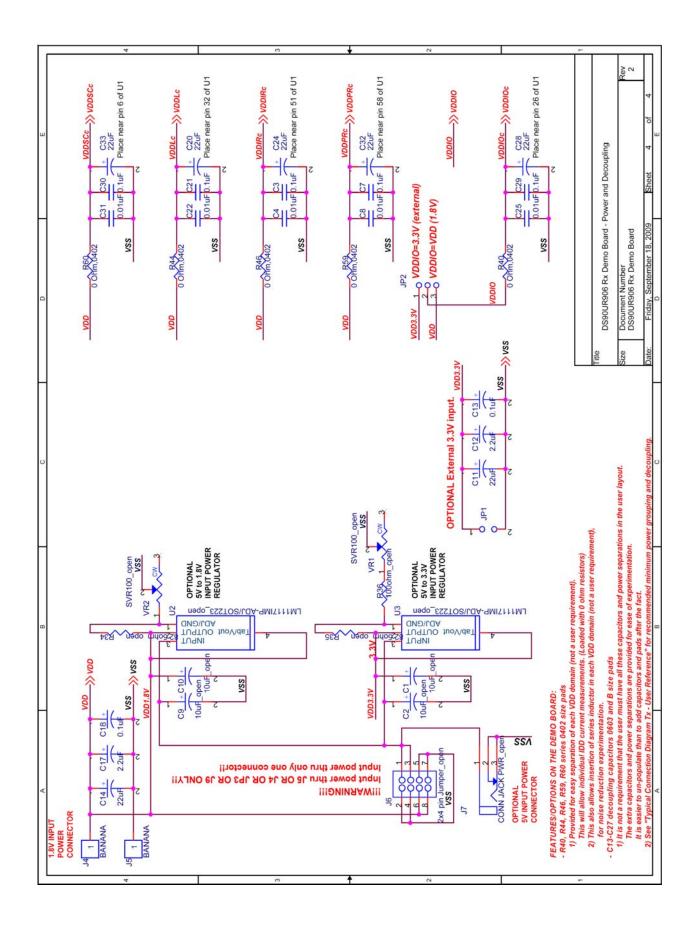
Date: 3/26/2010 Page 31 of 44



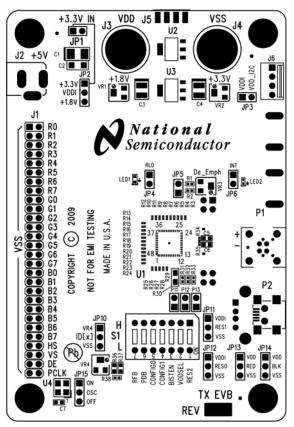
Ē	4		N	-	
4				Core Material Prepreg Material	- Board Stackup Rev Sheet 1 of 4
~		<pre>-Primary component side,1 oz Cu (layer 1) 4.5 mil, Prepreg, Std FR-370HR Ground plane,1 oz Cu (layer 2) 39.0 mil, Core, Std FR-370HR -Power plane,1 oz Cu (layer 3) -Power plane,1 oz Cu (layer 3) -Secondary component side,1 oz Cu (layer 4)</pre>		COr Prej	Title DS90UR906 Rx Demo Board - Board Stackup Size Document Number A DS90UR906 Rx Demo Board Date: Friday, October 09, 2009 Sheet
		Primary component side,1 oz Cu 4.5 mil, Prepreg, Std FR-370HR Ground plane,1 oz Cu (layer 2) 39.0 mil, Core, Std FR-370HR Power plane,1 oz Cu (layer 3) 4.5 mil, Prepreg, Std FR-370HR			0
					σ
A					<
L	4	m	N		-


De-serializer (Rx) Demo PCB Schematic:

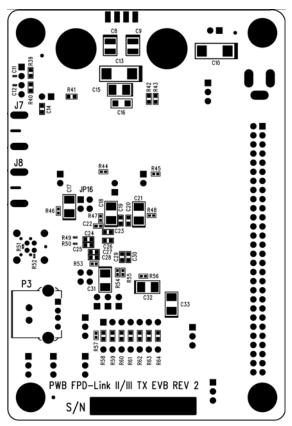
National Semiconductor Corporation


Date: 3/26/2010 Page 33 of 44

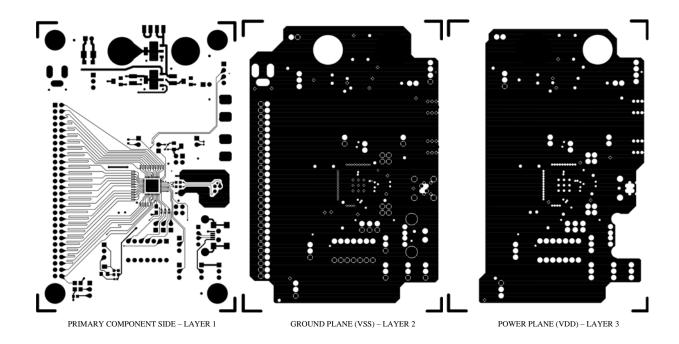
Date: 3/26/2010 Page 34 of 44

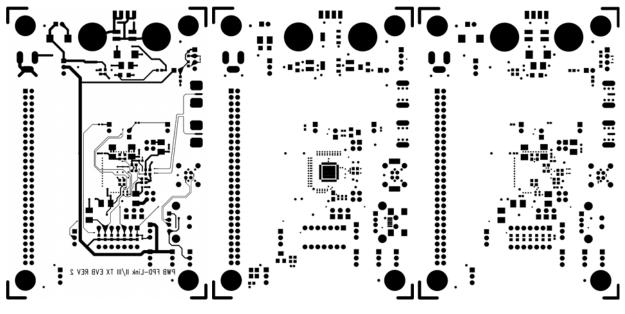


Date: 3/26/2010 Page 35 of 44

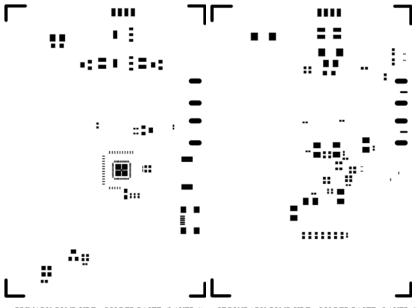


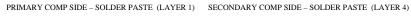
Date: 3/26/2010 Page 36 of 44

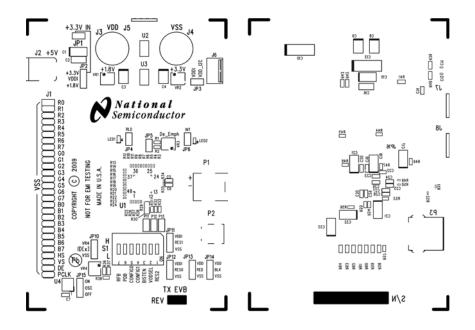

Serializer (Tx) Demo PCB Layout:



TOP VIEW

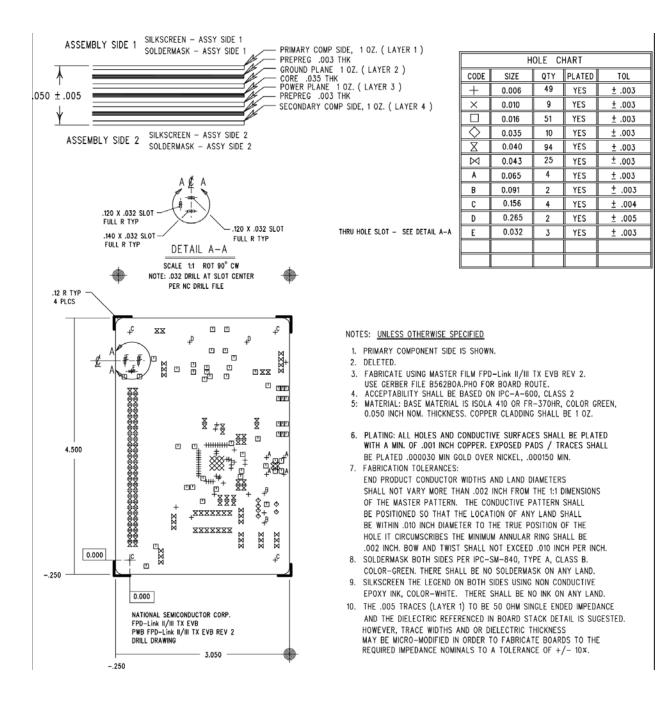

BOTTOMSIDE VIEW

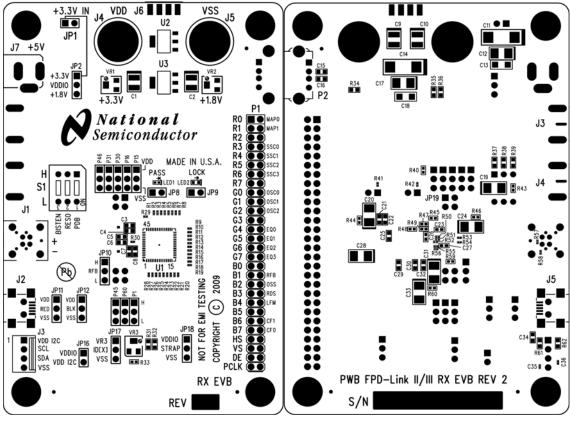




SECONDARY COMP SIDE - LAYER 4

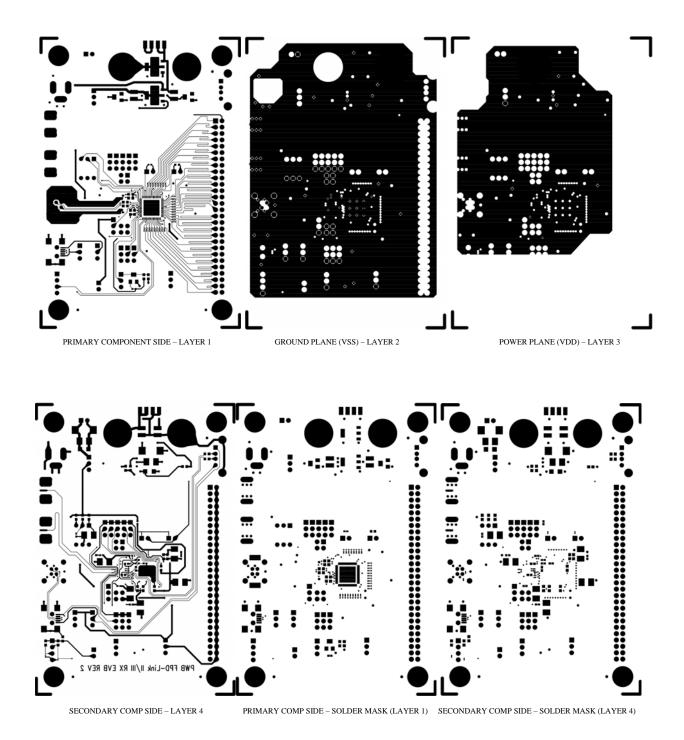
PRIMARY COMP SIDE – SOLDER MASK (LAYER 1) SECONDARY COMP SIDE – SOLDER MASK (LAYER 4)

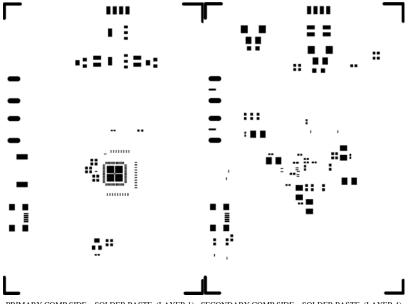


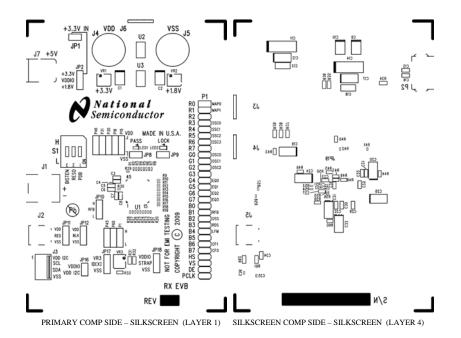

PRIMARY COMP SIDE – SILKSCREEN (LAYER 1)

SILKSCREEN COMP SIDE - SILKSCREEN (LAYER 4)

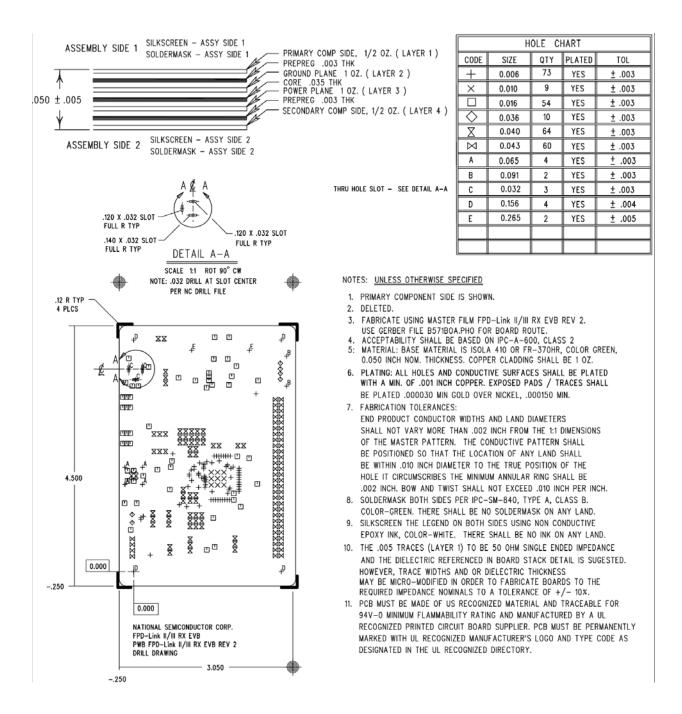
Serializer (Tx) Demo PCB Stackup:




Deserializer (Rx) Demo PCB Layout:


TOP VIEW

BOTTOMSIDE VIEW



PRIMARY COMP SIDE - SOLDER PASTE (LAYER 1) SECONDARY COMP SIDE - SOLDER PASTE (LAYER 4)

Deserializer (Rx) Demo PCB Stackup:

IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated ("TI") reference designs are solely intended to assist designers ("Buyers") who are developing systems that incorporate TI semiconductor products (also referred to herein as "components"). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer's systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. **TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design.** TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI REFERENCE DESIGNS ARE PROVIDED "AS IS". TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER'S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer's safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use.

Only those TI components that TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have **not** been so designated is solely at Buyer's risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated