
"""

 Copyright 2018 Texas Instruments Incorporated. All rights reserved.

 IMPORTANT: Your use of this Software is limited to those specific rights

 granted under the terms of a software license agreement between the user who

 downloaded the software, his/her employer (which must be your employer) and

 Texas Instruments Incorporated (the "License"). You may not use this Software

 unless you agree to abide by the terms of the License. The License limits your

 use, and you acknowledge, that the Software may not be modified, copied or

 distributed unless embedded on a Texas Instruments microcontroller which is

 integrated into your product. Other than for the foregoing purpose, you may

 not use, reproduce, copy, prepare derivative works of, modify, distribute,

 perform, display or sell this Software and/or its documentation for any

 purpose.

 YOU FURTHER ACKNOWLEDGE AND AGREE THAT THE SOFTWARE AND

DOCUMENTATION ARE

 PROVIDED AS IS WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,

 INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY, TITLE,

 NON-INFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL

TEXAS

 INSTRUMENTS OR ITS LICENSORS BE LIABLE OR OBLIGATED UNDER CONTRACT,

 NEGLIGENCE, STRICT LIABILITY, CONTRIBUTION, BREACH OF WARRANTY, OR OTHER

LEGAL

 EQUITABLE THEORY ANY DIRECT OR INDIRECT DAMAGES OR EXPENSES INCLUDING BUT

NOT

 LIMITED TO ANY INCIDENTAL, SPECIAL, INDIRECT, PUNITIVE OR CONSEQUENTIAL

 DAMAGES, LOST PROFITS OR LOST DATA, COST OF PROCUREMENT OF SUBSTITUTE

GOODS,

 TECHNOLOGY, SERVICES, OR ANY CLAIMS BY THIRD PARTIES (INCLUDING BUT NOT

 LIMITED TO ANY DEFENSE THEREOF), OR OTHER SIMILAR COSTS.

 Should you have any questions regarding your right to use this Software,

 contact Texas Instruments Incorporated at www.TI.com.

"""

OVT10640 reset and initialization

Run from UB954

Version 0.91

import time

import numpy as np

#reset and initialize OVT10640

Set up IDs

UB954 = 0x60

UB953ID = 0x30

UB953 = 0x18

OVTID = 0x6C

OVT = 0x4C

/* Reset Register, Digital Reset 0 */

board.WriteI2C(UB954,0x01,0x03)

time.sleep(1.0)

/* Enable port 0 */

board.WriteI2C(UB954,0x4C,0x01)

time.sleep(1.0)

/* Enable IIC */

board.WriteI2C(UB954,0x58,0x5E)

/* Set 953/sensor address */

board.WriteI2C(UB954,0x5B,UB953ID)

time.sleep(1.0)

board.WriteI2C(UB954,0x5C,UB953)

time.sleep(1.0)

board.WriteI2C(UB954,0x5D,OVTID)

time.sleep(1.0)

board.WriteI2C(UB954,0x65,OVT)

time.sleep(1.0)

/* RX port config */

board.WriteI2C(UB954,0x6D,0x7C)

time.sleep(1.0)

board.WriteI2C(UB954,0x32,0x01)

time.sleep(1.0)

/* CSI_CTL Register: 4 lanes, enable CSI output */

board.WriteI2C(UB954,0x33,0x03) #0x21

time.sleep(1.0)

/* FWD_CTL2 Register: best effort enabled */

board.WriteI2C(UB954,0x21,0x01)

time.sleep(1.0)

/* FWD_CTL1 Register: enable RX Port 0 */

board.WriteI2C(UB954,0x20,0x20)

time.sleep(1.0)

/* CSI rate: 800 Mbps serial rate */

board.WriteI2C(UB954,0x1F,0x02)

time.sleep(1.0)

/* RX port specific register: No CSI-2 channel vitual mapping */

board.WriteI2C(UB954,0x72,0x00)

time.sleep(1.0)

/* SCL Time register, set I2C Master SCL time */

board.WriteI2C(UB954,0x0A,0x7C)

time.sleep(1.0)

board.WriteI2C(UB954,0x0B,0x7C)

time.sleep(1.0)

/* Receiver port control register, Enable Port 0 Receiver */

board.WriteI2C(UB954,0x0C,0x81)

time.sleep(1.0)

/* Reset Register, Digital Reset 1 */

board.WriteI2C(UB953,0x01,0x03)

time.sleep(1.0)

/* General Configuration: I2C 1.8 voltage, 4-lane configuration, Transmitter CRC, CSI-2

Continuous Clock. */

board.WriteI2C(UB953,0x02,0x73)

time.sleep(1.0)

/* SCL Time: set I2C Master SCL High Time. */

board.WriteI2C(UB953,0x0B,0x7C)

time.sleep(1.0)

board.WriteI2C(UB953,0x0C,0x7C)

time.sleep(1.0)

/* Set output clock: 24MHZ. */

board.WriteI2C(UB953,0x06,0x41)

time.sleep(1.0)

board.WriteI2C(UB953,0x07,0x28)

time.sleep(1.0)

print "OV2740 register"

reg_list = np.array([

 [0x01, 0x03, 0x01],

 [0x03, 0x02, 0x18],

 [0x03, 0x0d, 0x1e],

 [0x03, 0x0e, 0x02],

 [0x03, 0x12, 0x01],

 [0x03, 0x12, 0x01],

 [0x30, 0x00, 0x00],

 [0x30, 0x18, 0x32],

 [0x30, 0x31, 0x0a],

 [0x30, 0x80, 0x08],

 [0x30, 0x83, 0xB4],

 [0x31, 0x03, 0x00],

 [0x31, 0x04, 0x01],

 [0x31, 0x06, 0x01],

 [0x35, 0x00, 0x00],

 [0x35, 0x01, 0x44],

 [0x35, 0x02, 0x40],

 [0x35, 0x03, 0x88],

 [0x35, 0x07, 0x00],

 [0x35, 0x08, 0x00],

 [0x35, 0x09, 0x80],

 [0x35, 0x0c, 0x00],

 [0x35, 0x0d, 0x80],

 [0x35, 0x10, 0x00],

 [0x35, 0x11, 0x00],

 [0x35, 0x12, 0x20],

 [0x36, 0x32, 0x00],

 [0x36, 0x33, 0x10],

 [0x36, 0x34, 0x10],

 [0x36, 0x35, 0x10],

 [0x36, 0x45, 0x13],

 [0x36, 0x46, 0x81],

 [0x36, 0x36, 0x10],

 [0x36, 0x51, 0x0a],

 [0x36, 0x56, 0x02],

 [0x36, 0x59, 0x04],

 [0x36, 0x5a, 0xda],

 [0x36, 0x5b, 0xa2],

 [0x36, 0x5c, 0x04],

 [0x36, 0x5d, 0x1d],

 [0x36, 0x5e, 0x1a],

 [0x36, 0x62, 0xd7],

 [0x36, 0x67, 0x78],

 [0x36, 0x69, 0x0a],

 [0x36, 0x6a, 0x92],

 [0x37, 0x00, 0x54],

 [0x37, 0x02, 0x10],

 [0x37, 0x06, 0x42],

 [0x37, 0x09, 0x30],

 [0x37, 0x0b, 0xc2],

 [0x37, 0x14, 0x63],

 [0x37, 0x15, 0x01],

 [0x37, 0x16, 0x00],

 [0x37, 0x1a, 0x3e],

 [0x37, 0x32, 0x0e],

 [0x37, 0x33, 0x10],

 [0x37, 0x5f, 0x0e],

 [0x37, 0x68, 0x30],

 [0x37, 0x69, 0x44],

 [0x37, 0x6a, 0x22],

 [0x37, 0x7b, 0x20],

 [0x37, 0x7c, 0x00],

 [0x37, 0x7d, 0x0c],

 [0x37, 0x98, 0x00],

 [0x37, 0xa1, 0x55],

 [0x37, 0xa8, 0x6d],

 [0x37, 0xc2, 0x04],

 [0x37, 0xc5, 0x00],

 [0x37, 0xc8, 0x00],

 [0x38, 0x00, 0x00],

 [0x38, 0x01, 0x00],

 [0x38, 0x02, 0x00],

 [0x38, 0x03, 0x00],

 [0x38, 0x04, 0x07],

 [0x38, 0x05, 0x8f],

 [0x38, 0x06, 0x04],

 [0x38, 0x07, 0x43],

 [0x38, 0x08, 0x07],

 [0x38, 0x09, 0x80],

 [0x38, 0x0a, 0x04],

 [0x38, 0x0b, 0x38],

 [0x38, 0x0c, 0x05],

 [0x38, 0x0d, 0x00],

 [0x38, 0x0e, 0x07],

 [0x38, 0x0f, 0x53],

 [0x38, 0x10, 0x00],

 [0x38, 0x11, 0x08],

 [0x38, 0x12, 0x00],

 [0x38, 0x13, 0x04],

 [0x38, 0x14, 0x01],

 [0x38, 0x15, 0x01],

 [0x38, 0x20, 0x86],

 [0x38, 0x21, 0x40],

 [0x38, 0x22, 0x84],

 [0x38, 0x29, 0x00],

 [0x01, 0x00, 0x01],

 [0x01, 0x00, 0x01],

 [0x01, 0x00, 0x01],

 [0x01, 0x00, 0x01],

 [0x01, 0x00, 0x01],

 [0x38, 0x2a, 0x01],

 [0x38, 0x2b, 0x01],

 [0x38, 0x30, 0x04],

 [0x38, 0x36, 0x01],

 [0x38, 0x37, 0x08],

 [0x38, 0x39, 0x01],

 [0x38, 0x3a, 0x00],

 [0x38, 0x3b, 0x08],

 [0x38, 0x3c, 0x00],

 [0x3f, 0x0b, 0x00],

 [0x40, 0x01, 0x20],

 [0x40, 0x09, 0x07],

 [0x40, 0x03, 0x10],

 [0x40, 0x10, 0xe0],

 [0x40, 0x16, 0x00],

 [0x40, 0x17, 0x10],

 [0x40, 0x44, 0x02],

 [0x43, 0x04, 0x08],

 [0x43, 0x07, 0x30],

 [0x43, 0x20, 0x80],

 [0x43, 0x22, 0x00],

 [0x43, 0x23, 0x00],

 [0x43, 0x24, 0x00],

 [0x43, 0x25, 0x00],

 [0x43, 0x26, 0x00],

 [0x43, 0x27, 0x00],

 [0x43, 0x28, 0x00],

 [0x43, 0x29, 0x00],

 [0x43, 0x2c, 0x03],

 [0x43, 0x2d, 0x81],

 [0x45, 0x01, 0x84],

 [0x45, 0x02, 0x40],

 [0x45, 0x03, 0x18],

 [0x45, 0x04, 0x04],

 [0x45, 0x08, 0x02],

 [0x46, 0x01, 0x10],

 [0x48, 0x00, 0x00],

 [0x48, 0x16, 0x52],

 [0x48, 0x37, 0x1b],

 [0x50, 0x00, 0x7f],

 [0x50, 0x01, 0x00],

 [0x50, 0x05, 0x38],

 [0x50, 0x1e, 0x0d],

 [0x50, 0x40, 0x00],

 [0x59, 0x01, 0x00],

 [0x01, 0x00, 0x01],

 [0x01, 0x00, 0x01],

 [0x01, 0x00, 0x01],

 [0x01, 0x00, 0x01],

 [0x35, 0x00, 0x00],

 [0x35, 0x01, 0x46],

 [0x35, 0x02, 0x60],

 [0x35, 0x08, 0x00],

 [0x35, 0x09, 0x10]

])

#Initialize OV2740

for i in range(0, 154):

 reg_1 = int(reg_list[i][0])

 reg_2 = int(reg_list[i][1])

 val = int(reg_list[i][2])

 board.WriteI2C(OVT, reg_1, [reg_2, val])

print "SEND value: ", i, hex(reg_list[i][0]), hex(reg_list[i][1]), hex(reg_list[i][2])

Seeing if CSI data is transmitting

print "THE END"

