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""" 

# OVT10640 reset and initialization 

# Run from UB954 

# Version 0.91 

 

import time 

import numpy as np 

#reset and initialize OVT10640  

 



# Set up IDs 

UB954 = 0x60 

UB953ID = 0x30 

UB953 = 0x18 

OVTID = 0x6C 

OVT = 0x4C 

 

 

# /* Reset Register, Digital Reset 0 */ 

board.WriteI2C(UB954,0x01,0x03) 

time.sleep(1.0) 

 

# /* Enable port 0 */ 

board.WriteI2C(UB954,0x4C,0x01) 

time.sleep(1.0) 

 

# /* Enable IIC */ 

board.WriteI2C(UB954,0x58,0x5E) 

 

# /* Set 953/sensor address */ 

board.WriteI2C(UB954,0x5B,UB953ID) 

time.sleep(1.0) 

board.WriteI2C(UB954,0x5C,UB953) 

time.sleep(1.0) 

board.WriteI2C(UB954,0x5D,OVTID) 

time.sleep(1.0) 

board.WriteI2C(UB954,0x65,OVT) 

time.sleep(1.0) 

 

# /* RX port config */ 

board.WriteI2C(UB954,0x6D,0x7C) 

time.sleep(1.0) 

 

board.WriteI2C(UB954,0x32,0x01) 

time.sleep(1.0) 

 

# /* CSI_CTL Register: 4 lanes, enable CSI output */ 

board.WriteI2C(UB954,0x33,0x03) #0x21 

time.sleep(1.0) 

 

# /* FWD_CTL2 Register: best effort enabled */   

board.WriteI2C(UB954,0x21,0x01) 

time.sleep(1.0) 

 



# /* FWD_CTL1 Register: enable RX Port 0 */ 

board.WriteI2C(UB954,0x20,0x20) 

time.sleep(1.0) 

 

# /* CSI rate: 800 Mbps serial rate */ 

board.WriteI2C(UB954,0x1F,0x02) 

time.sleep(1.0) 

 

# /* RX port specific register: No CSI-2 channel vitual mapping  */ 

board.WriteI2C(UB954,0x72,0x00) 

time.sleep(1.0) 

 

# /* SCL Time register, set I2C Master SCL time */ 

board.WriteI2C(UB954,0x0A,0x7C) 

time.sleep(1.0) 

board.WriteI2C(UB954,0x0B,0x7C) 

time.sleep(1.0) 

 

# /* Receiver port control register,  Enable Port 0 Receiver */ 

board.WriteI2C(UB954,0x0C,0x81) 

time.sleep(1.0) 

 

 

 

# /* Reset Register, Digital Reset 1 */ 

board.WriteI2C(UB953,0x01,0x03) 

time.sleep(1.0) 

 

# /* General Configuration: I2C 1.8 voltage, 4-lane configuration, Transmitter CRC, CSI-2 

Continuous Clock. */ 

board.WriteI2C(UB953,0x02,0x73) 

time.sleep(1.0) 

 

# /* SCL Time: set I2C Master SCL High Time. */ 

board.WriteI2C(UB953,0x0B,0x7C) 

time.sleep(1.0) 

board.WriteI2C(UB953,0x0C,0x7C) 

time.sleep(1.0) 

 

# /* Set output clock: 24MHZ. */ 

board.WriteI2C(UB953,0x06,0x41) 

time.sleep(1.0) 

board.WriteI2C(UB953,0x07,0x28) 

time.sleep(1.0) 



 

 

 

print "OV2740 register" 

 

reg_list = np.array([ 

 [0x01, 0x03, 0x01], 

 [0x03, 0x02, 0x18], 

 [0x03, 0x0d, 0x1e], 

 [0x03, 0x0e, 0x02], 

 [0x03, 0x12, 0x01], 

 [0x03, 0x12, 0x01], 

 [0x30, 0x00, 0x00], 

 [0x30, 0x18, 0x32], 

 [0x30, 0x31, 0x0a], 

 [0x30, 0x80, 0x08],  

 [0x30, 0x83, 0xB4], 

 [0x31, 0x03, 0x00],  

 [0x31, 0x04, 0x01],  

 [0x31, 0x06, 0x01],  

 [0x35, 0x00, 0x00],  

 [0x35, 0x01, 0x44],  

 [0x35, 0x02, 0x40],  

 [0x35, 0x03, 0x88],  

 [0x35, 0x07, 0x00],  

 [0x35, 0x08, 0x00],  

 [0x35, 0x09, 0x80],  

 [0x35, 0x0c, 0x00], 

 [0x35, 0x0d, 0x80],  

 [0x35, 0x10, 0x00],  

 [0x35, 0x11, 0x00],  

 [0x35, 0x12, 0x20],  

 [0x36, 0x32, 0x00],  

 [0x36, 0x33, 0x10],  

 [0x36, 0x34, 0x10],  

 [0x36, 0x35, 0x10],  

 [0x36, 0x45, 0x13],  

 [0x36, 0x46, 0x81],  

 [0x36, 0x36, 0x10],  

 [0x36, 0x51, 0x0a],  

 [0x36, 0x56, 0x02],  

 [0x36, 0x59, 0x04],  

 [0x36, 0x5a, 0xda],  

 [0x36, 0x5b, 0xa2],  



 [0x36, 0x5c, 0x04],  

 [0x36, 0x5d, 0x1d],  

 [0x36, 0x5e, 0x1a],  

 [0x36, 0x62, 0xd7],  

 [0x36, 0x67, 0x78],  

 [0x36, 0x69, 0x0a],  

 [0x36, 0x6a, 0x92],  

 [0x37, 0x00, 0x54],  

 [0x37, 0x02, 0x10],  

 [0x37, 0x06, 0x42],  

 [0x37, 0x09, 0x30],  

 [0x37, 0x0b, 0xc2],  

 [0x37, 0x14, 0x63],  

 [0x37, 0x15, 0x01],  

 [0x37, 0x16, 0x00],  

 [0x37, 0x1a, 0x3e],  

 [0x37, 0x32, 0x0e],  

 [0x37, 0x33, 0x10],  

 [0x37, 0x5f, 0x0e],  

 [0x37, 0x68, 0x30],  

 [0x37, 0x69, 0x44],  

 [0x37, 0x6a, 0x22],  

 [0x37, 0x7b, 0x20],  

 [0x37, 0x7c, 0x00],  

 [0x37, 0x7d, 0x0c],  

 [0x37, 0x98, 0x00],  

 [0x37, 0xa1, 0x55],  

 [0x37, 0xa8, 0x6d],  

 [0x37, 0xc2, 0x04],  

 [0x37, 0xc5, 0x00], 

 [0x37, 0xc8, 0x00],  

 [0x38, 0x00, 0x00],  

 [0x38, 0x01, 0x00],  

 [0x38, 0x02, 0x00],  

 [0x38, 0x03, 0x00],  

 [0x38, 0x04, 0x07],  

 [0x38, 0x05, 0x8f],  

 [0x38, 0x06, 0x04],  

 [0x38, 0x07, 0x43],  

 [0x38, 0x08, 0x07],  

 [0x38, 0x09, 0x80],  

 [0x38, 0x0a, 0x04],  

 [0x38, 0x0b, 0x38],  

 [0x38, 0x0c, 0x05],  



 [0x38, 0x0d, 0x00],  

 [0x38, 0x0e, 0x07],  

 [0x38, 0x0f, 0x53],  

 [0x38, 0x10, 0x00],  

 [0x38, 0x11, 0x08],  

 [0x38, 0x12, 0x00],  

 [0x38, 0x13, 0x04],  

 [0x38, 0x14, 0x01],  

 [0x38, 0x15, 0x01],  

 [0x38, 0x20, 0x86], 

 [0x38, 0x21, 0x40], 

 [0x38, 0x22, 0x84],  

 [0x38, 0x29, 0x00],  

 [0x01, 0x00, 0x01],  

 [0x01, 0x00, 0x01],  

 [0x01, 0x00, 0x01],  

 [0x01, 0x00, 0x01],  

 [0x01, 0x00, 0x01],  

 [0x38, 0x2a, 0x01],  

 [0x38, 0x2b, 0x01],  

 [0x38, 0x30, 0x04],  

 [0x38, 0x36, 0x01],  

 [0x38, 0x37, 0x08],  

 [0x38, 0x39, 0x01],  

 [0x38, 0x3a, 0x00],  

 [0x38, 0x3b, 0x08],  

 [0x38, 0x3c, 0x00],  

 [0x3f, 0x0b, 0x00],  

 [0x40, 0x01, 0x20],  

 [0x40, 0x09, 0x07],  

 [0x40, 0x03, 0x10],  

 [0x40, 0x10, 0xe0],  

 [0x40, 0x16, 0x00],  

 [0x40, 0x17, 0x10],  

 [0x40, 0x44, 0x02],  

 [0x43, 0x04, 0x08],  

 [0x43, 0x07, 0x30],  

 [0x43, 0x20, 0x80],  

 [0x43, 0x22, 0x00],  

 [0x43, 0x23, 0x00],  

 [0x43, 0x24, 0x00],  

 [0x43, 0x25, 0x00],  

 [0x43, 0x26, 0x00],  

 [0x43, 0x27, 0x00],  



 [0x43, 0x28, 0x00],  

 [0x43, 0x29, 0x00],  

 [0x43, 0x2c, 0x03],  

 [0x43, 0x2d, 0x81],  

 [0x45, 0x01, 0x84],  

 [0x45, 0x02, 0x40],  

 [0x45, 0x03, 0x18],  

 [0x45, 0x04, 0x04],  

 [0x45, 0x08, 0x02],  

 [0x46, 0x01, 0x10],  

 [0x48, 0x00, 0x00],  

 [0x48, 0x16, 0x52],  

 [0x48, 0x37, 0x1b],  

 [0x50, 0x00, 0x7f],  

 [0x50, 0x01, 0x00],  

 [0x50, 0x05, 0x38],  

 [0x50, 0x1e, 0x0d],  

 [0x50, 0x40, 0x00],   

 [0x59, 0x01, 0x00], 

 [0x01, 0x00, 0x01], 

 [0x01, 0x00, 0x01], 

 [0x01, 0x00, 0x01], 

 [0x01, 0x00, 0x01], 

 [0x35, 0x00, 0x00], 

 [0x35, 0x01, 0x46], 

 [0x35, 0x02, 0x60], 

 [0x35, 0x08, 0x00], 

 [0x35, 0x09, 0x10] 

]) 

 

 

#Initialize OV2740 

 

for i in range(0, 154): 

 reg_1 = int(reg_list[i][0]) 

 reg_2 = int(reg_list[i][1]) 

 val   = int(reg_list[i][2]) 

 board.WriteI2C(OVT, reg_1, [reg_2, val]) 

#   print  "SEND value:  ", i, hex(reg_list[i][0]), hex(reg_list[i][1]), hex(reg_list[i][2]) 

 

 

# Seeing if CSI data is transmitting 

print "THE END" 


