

[Sample &](http://www.ti.com/product/PCF8575C?dcmp=dsproject&hqs=sandbuy&#samplebuy) $\frac{1}{2}$ Buy

[PCF8575C](http://www.ti.com/product/pcf8575c?qgpn=pcf8575c)

SCPS123F –MARCH 2005–REVISED JANUARY 2015

PCF8575C Remote 16-Bit I ²C AND SMBus Low-Power I/O Expander with Interrupt Output

- I²C to Parallel-Port Expander
-
- Low Standby-Current Consumption of
-
- 400-kHz Fast I^2C Bus
-
-
- Latch-Up Performance Exceeds 100 mA Per
- -
	- 200-V Machine Model
	-

-
- **Servers**
- Routers (Telecom Switching Equipment) **but all assets the United States (Telecom Switching Equipment) Device Information**^{[\(1\)](#page-0-0)}
- **Personal Computers**
- **Personal Electronics**
- Industrial Automation
- Products with GPIO-Limited Processors

1 Features 3 Description

This 16-bit I/O expander for the two-line bidirectional bus (I^2C) is designed for 4.5-V to 5.5-V V_{CC}
Open-Drain Interrupt Output operation.

The PCF8575C provides general-purpose remote I/O
10 μA Maximum expansion for most microcontroller families via the I²C
1. expansion for most microcontroller families via the I²C
1. interface serial clock (SCL) and ser expansion for most microcontroller families via the I²C interface serial clock (SCL) and serial data (SDA).

2C BUS TO BUS TO DUS THE device features a 16-bit quasi-bidirectional
Address by Three Hardware Address Pins for Use input/output (I/O) port (P07–P00 P17–P10) including • Address by Three Hardware Address Pins for Use input/output (I/O) port (P07–P00, P17–P10), including latched outputs with high-current drive capability for • Latched Outputs With High-Current Drive directly driving LEDs. Each quasi-bidirectional I/O can Capability for Directly Driving LEDs be used as an input or output without the use of a data-direction control signal. At power on, the I/Os Eatch-op renormance Exceeds from the research are in 3-state mode. The strong pullup to V_{CC} allows
JESD 78, Class II fast-rising edges into heavily loaded outputs. This
ESD Protection Exceeds JESD 22 device turns on whe device turns on when an output is written high and is – 2000-V Human-Body Model switched off by the negative edge of SCL. The I/Os should be high before being used as inputs. After power on, as all the I/Os are set to 3-state, all of them – 1000-V Charged-Device Model example is a can be used as inputs. Any change in setting of the I/Os as either inputs or outputs can be done with the **2 Applications** write mode. If a high is applied externally to an I/O Telecom Shelters: Filter Units I_{OL} that has been written earlier to low, a large current

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Table of Contents

4 Revision History

12.3 Glossary .. [24](#page-23-3) **7 Parameter Measurement Information** [8](#page-7-0) **13 Mechanical, Packaging, and Orderable 8 Detailed Description** .. [11](#page-10-0)

 6.6

Product Folder Links: *[PCF8575C](http://www.ti.com/product/pcf8575c?qgpn=pcf8575c)*

5 Pin Configuration

Pin Functions

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

(1) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under [Recommended](#page-3-3) Operating [Conditions](#page-3-3) is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

6.2 ESD Ratings

6.3 Recommended Operating Conditions

6.4 Thermal Information

(1) For more information about traditional and new thermal metrics, see the *IC Package Thermal Metrics* application report ([SPRA953\)](http://www.ti.com/lit/pdf/spra953).

6.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

(1) All typical values are at V_{CC} = 5 V, T_A = 25°C.
(2) The power-on reset circuit resets the I²C bus logic with V_{CC} < V_{POR} and sets all I/Os to logic high (with current source to V_{CC}).

6.6 I ²C Interface Timing Requirements

over recommended operating free-air temperature range (unless otherwise noted) (see [Figure](#page-7-1) 7)

(1) C_b = total bus capacitance of one bus line in pF

6.7 Switching Characteristics

over recommended operating free-air temperature range, $C_L \le 100$ pF (unless otherwise noted) (see [Figure](#page-9-0) 8 and Figure 9)

6.8 Typical Characteristics

 $T_A = 25^{\circ}$ C (unless otherwise noted)

Typical Characteristics (continued)

 $T_A = 25^{\circ}$ C (unless otherwise noted)

Texas **NSTRUMENTS**

7 Parameter Measurement Information

BYTE	DESCRIPTION
	$I2C$ address
2.3	P-port data

Figure 7. I ²C Interface Load Circuit and Voltage Waveforms

Parameter Measurement Information (continued)

INTERRUPT LOAD CONFIGURATION

RUMENTS

AS

8 Detailed Description

8.1 Overview

The PCF8575C provides an open-drain interrupt (INT) output, which can be connected to the interrupt input of a microcontroller. An interrupt is generated by any rising or falling edge of the port inputs in the input mode. After time (t_{iv}) , the signal INT is valid. Resetting and reactivating the interrupt circuit is achieved when data on the port is changed to the original setting, or data is read from or written to the port that generated the interrupt. Resetting occurs in the read mode at the acknowledge (ACK) bit after the rising edge of the SCL signal or in the write mode at the ACK bit after the falling edge of the SCL signal. Interrupts that occur during the ACK clock pulse can be lost (or be very short), due to the resetting of the interrupt during this pulse. Each change of the I/Os after resetting is detected and is transmitted as INT. Reading from or writing to another device does not affect the interrupt circuit.

By sending an interrupt signal on this line, the remote I/O can inform the microcontroller if there is incoming data on its ports, without having to communicate via the I²C bus. Thus, the PCF8575C can remain a simple slave device.

Every data transmission to or from the PCF8575C must consist of an even number of bytes. The first data byte in every pair refers to port 0 (P07–P00), and the second data byte in every pair refers to port 1 (P17–P10). To write to the ports (output mode), the master first addresses the slave device, setting the last bit of the byte containing the slave address to logic 0. The PCF8575C acknowledges and the master sends the first data byte for P07–P00. After the first data byte is acknowledged by the PCF8575C, the second data byte (P17–P10) is sent by the master. Once again, the PCF8575C acknowledges the receipt of the data, after which this 16-bit data is presented on the port lines.

The number of data bytes that can be sent successively is not limited. After every two bytes, the previous data is overwritten. When the PCF8575C receives the pairs of data bytes, the first byte is referred to as P07–P00 and the second byte as P17–P10. The third byte is referred to as P07–P00, the fourth byte as P17–P10, and so on.

Before reading from the PCF8575C, all ports desired as input should be set to logic 1. To read from the ports (input mode), the master first addresses the slave device, setting the last bit of the byte containing the slave address to logic 1. The data bytes that follow on the SDA are the values on the ports. If the data on the input port changes faster than the master can read, this data may be lost.

When power is applied to V_{CC} , an internal power-on reset holds the PCF8575C in a reset state until V_{CC} has reached V_{POR} . At that time, the reset condition is released, and the device I²C-bus state machine initializes the bus to its default state.

The hardware pins (A0, A1, and A2) are used to program and vary the fixed I²C address, and allow up to eight devices to share the same I²C bus or SMBus. The fixed I²C address of the PCF8575C is the same as the PCF8575, PCF8574, PCA9535, and PCA9555, allowing up to eight of these devices, in any combination, to share the same I²C bus or SMBus.

[PCF8575C](http://www.ti.com/product/pcf8575c?qgpn=pcf8575c) SCPS123F –MARCH 2005–REVISED JANUARY 2015 **www.ti.com**

8.2 Functional Block Diagram

8.2.1 Simplified Block Diagram of Device

8.2.2 Simplified Schematic Diagram of Each P-Port Input/Output

8.3 Feature Description

The bidirectional I²C bus consists of the serial clock (SCL) and serial data (SDA) lines. Both lines must be connected to a positive supply via a pullup resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy.

¹²C communication with this device is initiated by a master sending a start condition, a high-to-low transition on the SDA input/output while the SCL input is high (see [Figure](#page-12-1) 10). After the start condition, the device address byte is sent, MSB first, including the data direction bit (R/W). This device does not respond to the general call address. After receiving the valid address byte, this device responds with an ACK, a low on the SDA input/output during the high of the ACK-related clock pulse. The address inputs (A2–A0) of the slave device must not be changed between the start and the stop conditions.

The data byte follows the address ACK. If the R/W bit is high, the data from this device are the values read from the P port. If the R/W bit is low, the data are from the master, to be output to the P port. The data byte is followed by an ACK sent from this device. If other data bytes are sent from the master, following the ACK, they are ignored by this device. Data are output only if complete bytes are received and acknowledged. The output data is valid at time (t_{pv}) after the low-to-high transition of SCL, during the clock cycle for the ACK.

On the I²C bus, only one data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the high pulse of the clock period, as changes in the data line at this time are interpreted as control commands (start or stop) (see [Figure](#page-13-0) 11).

A stop condition, a low-to-high transition on the SDA input/output while the SCL input is high, is sent by the master (see [Figure](#page-12-1) 10).

The number of data bytes transferred between the start and the stop conditions from transmitter to receiver is not limited. Each byte of eight bits is followed by one ACK bit. The transmitter must release the SDA line before the receiver can send an ACK bit.

A slave receiver that is addressed must generate an ACK after the reception of each byte. Also, a master must generate an ACK after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges has to pull down the SDA line during the ACK clock pulse so that the SDA line is stable low during the high pulse of the ACK-related clock period (see [Figure](#page-13-1) 12). Setup and hold times must be taken into account.

A master receiver must signal an end of data to the transmitter by not generating an acknowledge (NACK) after the last byte that has been clocked out of the slave. This is done by the master receiver by holding the SDA line high. In this event, the transmitter must release the data line to enable the master to generate a stop condition.

Figure 10. Definition of Start and Stop Conditions

Feature Description (continued)

Figure 12. Acknowledgment on I ²C Bus

8.3.2 Interface Definition

8.3.3 Address Reference

8.4 Device Functional Modes

[Figure](#page-14-1) 13 and [Figure](#page-15-0) 14 show the address and timing diagrams for the write and read modes, respectively.

Integral Multiples of Two Bytes

EXAS NSTRUMENTS

Device Functional Modes (continued)

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

[Figure](#page-16-3) 15 shows an application in which the PCF8575C can be used.

9.2 Typical Application

- (1) The SCL and SDA pins must be tied directly to VCC because if SCL and SDA are tied to an auxiliary power supply that could be powered on while VCC is powered off, then the supply current, ICC, will increase as a result.
- A. Device address is configured as 0100000 for this example.
- B. P0, P2, and P3 are configured as outputs.
- C. P1, P4, and P5 are configured as inputs.
- D. P6 and P7 are not used and must be configured as outputs.

Figure 15. Application Schematic

Figure 17. Device Supplied by a Lower Voltage

Typical Application (continued)

9.2.1 Design Requirements

9.2.1.1 Minimizing ICC When I/Os Control LEDs

When the I/Os are used to control LEDs, normally they are connected to V_{CC} through a resistor as shown in [Figure](#page-16-3) 15. For a P-port configured as an input, I_{CC} increases as V_1 becomes lower than V_{CC} . The LED is a diode, with threshold voltage $\vee_{\sf T}$, and when a P-port is configured as an input the LED will be off but $\vee_{\sf I}$ is a $\vee_{\sf T}$ drop below V_{CC} .

For battery-powered applications, it is essential that the voltage of P-ports controlling LEDs is greater than or equal to V_{CC} when the P-ports are configured as input to minimize current consumption. [Figure](#page-17-0) 16 shows a high-value resistor in parallel with the LED. [Figure](#page-17-1) 17 shows V_{CC} less than the LED supply voltage by at least V_T . Both of these methods maintain the I/O V_1 at or above V_{CC} and prevents additional supply current consumption when the P-port is configured as an input and the LED is off.

LED

ベ

100 kΩ

VCC

Figure 16. High-Value Resistor in Parallel With LED

LEDx

VCC

www.ti.com SCPS123F –MARCH 2005–REVISED JANUARY 2015

Typical Application (continued)

9.2.2 Detailed Design Procedure

[PCF8575C](http://www.ti.com/product/pcf8575c?qgpn=pcf8575c)

The pull-up resistors, R_p , for the SCL and SDA lines need to be selected appropriately and take into consideration the total capacitance of all slaves on the $I²C$ bus. The minimum pull-up resistance is a function of V_{CC} , $V_{\text{OL.(max)}}$, and I_{OL} :

$$
R_{p(min)} = \frac{V_{CC} - V_{OL(max)}}{I_{OL}}
$$
\n(1)

The maximum pull-up resistance is a function of the maximum rise time, t_r (300 ns for fast-mode operation, $f_{\rm SCL}$ = 400 kHz) and bus capacitance, C_{b} :

$$
R_{p(max)} = \frac{t_r}{0.8473 \times C_b}
$$
 (2)

The maximum bus capacitance for an I²C bus must not exceed 400 pF for standard-mode or fast-mode operation. The bus capacitance can be approximated by adding the capacitance of the TCA9534, C_i for SCL or C_{io} for SDA, the capacitance of wires/connections/traces, and the capacitance of additional slaves on the bus.

9.2.3 Application Curves

10 Power Supply Recommendations

10.1 Power-On Reset Requirements

In the event of a glitch or data corruption, PCF8575C can be reset to its default conditions by using the power-on reset feature. Power-on reset requires that the device go through a power cycle to be completely reset. This reset also happens when the device is powered on for the first time in an application.

The two types of power-on reset are shown in [Figure](#page-19-2) 20 and [Figure](#page-19-3) 21.

Figure 20. V_{CC} is Lowered Below 0.2 V or 0 V and Then Ramped Up to V_{CC}

Figure 21. **V_{CC}** is Lowered Below the POR Threshold, Then Ramped Back Up to V_{CC}

[Table](#page-19-4) 1 specifies the performance of the power-on reset feature for PCF8575C for both types of power-on reset.

(1) $T_A = -40^{\circ}$ C to 85°C (unless otherwise noted)

Glitches in the power supply can also affect the power-on reset performance of this device. The glitch width (V_{CC_GW}) and height (V_{CC_GH}) are dependent on each other. The bypass capacitance, source impedance, and device impedance are factors that affect power-on reset performance. [Figure](#page-20-0) 22 and [Table](#page-19-4) 1 provide more information on how to measure these specifications.

Figure 22. Glitch Width and Glitch Height

 V_{POR} is critical to the power-on reset. V_{POR} is the voltage level at which the reset condition is released and all the registers and the I²C/SMBus state machine are initialized to their default states. The value of V_{POR} differs based on the V_{CC} being lowered to or from 0. [Figure](#page-20-1) 23 and [Table](#page-19-4) 1 provide more details on this specification.

11 Layout

11.1 Layout Guidelines

For printed circuit board (PCB) layout of the PCF8575C device, common PCB layout practices should be followed but additional concerns related to high-speed data transfer such as matched impedances and differential pairs are not a concern for I²C signal speeds.

In all PCB layouts, it is a best practice to avoid right angles in signal traces, to fan out signal traces away from each other upon leaving the vicinity of an integrated circuit (IC), and to use thicker trace widths to carry higher amounts of current that commonly pass through power and ground traces. By-pass and de-coupling capacitors are commonly used to control the voltage on the V_{CC} pin, using a larger capacitor to provide additional power in the event of a short power supply glitch and a smaller capacitor to filter out high-frequency ripple. These capacitors should be placed as close to the PCF8575C as possible. These best practices are shown in [Figure](#page-22-1) 24.

For the layout example provided in [Figure](#page-22-1) 24, it would be possible to fabricate a PCB with only 2 layers by using the top layer for signal routing and the bottom layer as a split plane for power (V_{CC}) and ground (GND). However, a 4 layer board is preferable for boards with higher density signal routing. On a 4 layer PCB, it is common to route signals on the top and bottom layer, dedicate one internal layer to a ground plane, and dedicate the other internal layer to a power plane. In a board layout using planes or split planes for power and ground, vias are placed directly next to the surface mount component pad which needs to attach to V_{CC} or GND and the via is connected electrically to the internal layer or the other side of the board. Vias are also used when a signal trace needs to be routed to the opposite side of the board, but this technique is not demonstrated in [Figure](#page-22-1) 24.

11.2 Layout Example

Figure 24. Layout Example for PCF8575C

12 Device and Documentation Support

12.1 Trademarks

All trademarks are the property of their respective owners.

12.2 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.3 Glossary

[SLYZ022](http://www.ti.com/lit/pdf/SLYZ022) — *TI Glossary.*

This glossary lists and explains terms, acronyms and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser based versions of this data sheet, refer to the left hand navigation.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](https://www.ti.com/legal/terms-conditions/terms-of-sale.html) or other applicable terms available either on [ti.com](https://www.ti.com) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated