Low Distortion Design – 3
TIPL 1323
TI Precision Labs – Op Amps

Presented by Collin Wells
Prepared by John Caldwell

Prerequisites: Noise 1 – 3
(TIPL1311 – TIPL1313)
Output Stage Topologies

• Most op amps use a Class-AB output stage configuration
 – Classic emitter follower configuration (top), gain = 1.
 – Rail-to-rail output (bottom), gain depends on load resistor.
Output Stage Transfer Function

• The transfer function of the output stage shows 3 distinct regions:
 – Large Signal Regions (Orange)
 • A single device conducts current from the power supply to the load.
 – Clipping Region (Red)
 • Insufficient V_{CE} (V_{DS}) drop on output devices to sustain load current
 – Crossover Region (Blue)
 • Both or neither output device conducting current to the load

• All 3 regions will produce some type of distortion

Large Signal Non-Linearity

- Magnified Transfer Function
- Nonlinearity from dissimilar output devices
 - NPN / PNP different transfer functions
Identifying Large Signal Non-Linearity

• Large signal non-linearity dominates at large output voltages
 – Even-order distortion (2\text{nd}, 4\text{th}, 6\text{th}, etc)
 – 2\text{nd} Harmonic is largest

• FFT
 – OPA1652
 – Gain: +1
 – +/-15V Supplies
 – \(V_{\text{OUT}}\): 8.1V_{\text{RMS}}
 – 2\text{nd} Harmonic: -128\text{dB}
Crossover Distortion

- At 0V load current switches from one device to the other
 - Small discontinuity at 0V crossing
 - Produces high-order harmonics
- Worst THD at low output amplitudes and high output currents
 - Load current degrades biasing
 - Low output voltages means crossover region makes up more of the total amplitude
Output Crossover Distortion

- **Test #1**
 - OPA1652
 - Gain: +1
 - +/-15V Supplies
 - $2.5m_{\text{A}_{\text{RMS}}}$ output current
 - R_{load}: 3240 Ohms, V_{out}: 8.1 Vrms
 - THD: -128dB

- **Test #2**
 - OPA1652
 - Gain: +1
 - +/-15V Supplies
 - $2.5m_{\text{A}_{\text{RMS}}}$ output current
 - R_{load}: 32.4 Ohms, V_{out}: 81 mVrms
 - THD: -100dB
Clipping

- Collector to emitter drop across output devices:
 - $V_{CE} = V_{OUT} - V_S$
- Insufficient voltage for linear operation.
 - $V_{CE} < V_{CE(SAT)}$
 - Notice $V_{CE(SAT)}$ depends on I_C
- Outside of active region:
 - Output stage gain drastically decreases
 - A_{OL} also decreases
 - Output stage distortion increases
 - Typically odd harmonics
- Use the A_{OL} test conditions for linear swing range

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPEN-LOOP GAIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_{OL}</td>
<td>Open-loop voltage gain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V(-) + 0.2 \text{ V} \leq V_0 \leq (V+) - 0.2 \text{ V}, R_L = 10 \text{ kΩ}$</td>
<td>114</td>
<td>130</td>
<td></td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>$V(-) + 0.6 \text{ V} \leq V_0 \leq (V+) - 0.6 \text{ V}, R_L = 2 \text{ kΩ}$</td>
<td>110</td>
<td>114</td>
<td></td>
<td>dB</td>
<td></td>
</tr>
</tbody>
</table>
Loading Effects on Transfer Function

- Decreased output stage gain, magnifies dissimilarities in output devices
- Worsens crossover region
- Reduced output swing (increased clipping region)
Loading Effects for Output Distortion

- Output stage distortion appears at high frequency in THD+N curves
 - Mirrors the decline of A_{OL}
- OPA1642 output THD+N
 - Gain: 1
 - $3.5V_{\text{RMS}}$
 - Different load resistors:
 - 10kΩ (red)
 - 1kΩ (blue)
 - 500 (green)
- Output loading includes the feedback resistors!
 - Low value feedback resistors increase output distortion
Short Circuit Current?

- Short circuit current only defines the output current with 0V output swing.
- It does not indicate linear output current!
- Example:
 - Device A: 80MHz, 1nV/√Hz, Short circuit current: +55/-62mA
 - Device B: 230MHz, 1nV/√Hz, Short circuit current: 135mA
- Device B shows additional distortion above 1mA_{RMS}
Thermal Distortion

- Possible causes of thermal distortion in IC amplifiers:
 - Dissimilar output device sizes
 - One transistor heats up significantly more during sourcing/sinking
 - Transistor parameters change over temperature
 - Thermal feedback to input stage
 - Input stage is not placed on thermal line of symmetry
 - One input transistor is heated more than the other
THD+N vs Frequency: 50mW, 32 Ohm Load

Increasing distortion at low frequency indicates thermal effects on die
Reducing Output Distortion

• Limit output loading
 – Increase feedback resistor values and load resistance

• Improve crossover distortion performance
 – Increase output voltage swing (not usually an option)
 – Bias output stage into class A with a resistor to the supply (increases power consumption)

• Stay away from clipping regions
 – Maximize supply voltage
 – Confirm linear swing range in datasheet (A_{OL} test conditions)

• Composite Amplifiers
 – Place a buffer inside the feedback loop of another amplifier
 • Increases the amount of loop gain around the output stage
Thanks for your time!
Please try the quiz.