Modifying Configurations and Tolerances for Improved Convergence in PSpice for TI

Lucas Burnette

Texas Instruments

Precision Amplifiers

PSPICE Convergence FAQ

- What is convergence?
 - Convergence is when an electrical simulator is able to find a solution to a circuit. Many different factors influence convergence.
- What can cause a failure to converge?
 - Improper connections, faulty spice models, tight tolerances, and oscillations
- How can I make my simulation converge?
 - Fix glaring circuit issues (PWR and GND connections, current directions)
 - Simplify circuit
 - Check 3rd party models first, then TI models (isolate and simulate)
 - Modify
 - Auto-Converge
 - Tolerances
 - Simulation Conditions
 - The parameters above will be discussed in the following slides

Tolerances Overview

- What are tolerances in PSpice for TI?
 - Tolerances are how much error/iterations will be accepted when finding a circuit's solution
 - Loosening tolerances can help the simulation converge and also speed up simulations
 - Larger tolerances mean the simulation is less accurate

(Recommended vs Default)

Name	Value	Default Value
SPEED_LEVEL	3 🔻	3
RELTOL	2m	0.001
VNTOL	1m	1.0u
ABSTOL	1n	1.0p
CHGTOL	0.01p	0.01p
GMIN	1.0E-12	1.0E-12
ITL1	150	150
ITL2	20	20
ITL4	10	10

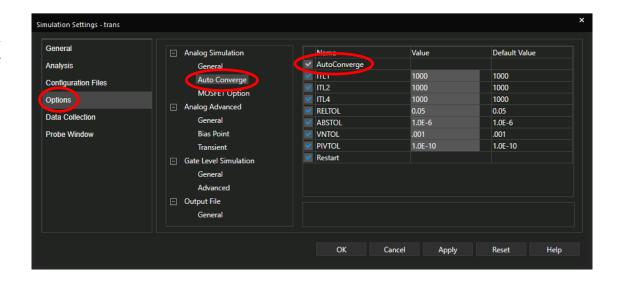
Tolerances Definitions

- RELTOL Relative accuracy of voltages and currents [%] Universal accuracy
- VNTOL Best accuracy of voltages [V] Smaller values are ignored
- ABSTOL Best accuracy of currents [A] Smaller values are ignored
- CHGTOL Best accuracy of charges [C] Smaller values are ignored
- **GMIN** Minimum conductance for any branch $[1/\Omega]$ Added to nonlinear devices
- ITL1 DC and bias "blind" iteration limit Maximum iterations
- ITL2 DC and bias "best guess" iteration limit Maximum step iterations
- ITL4 Transient time point iteration limit Maximum transient step iterations
- TSTOP Run to time [s]
- TMAX Maximum step size [s]

PSpice for TI vs TINA-TI – Default Tolerances

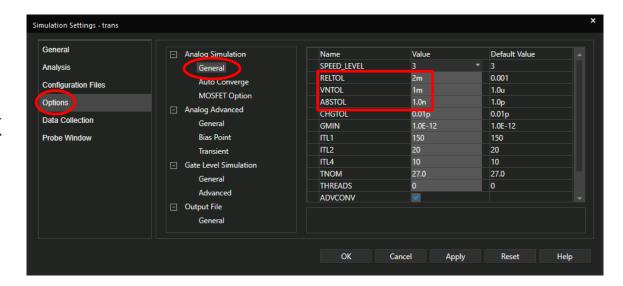
Tolerance	PSpice for TI	TINA-TI
RELTOL	1m	10m
VNTOL	1u	10u
ABSTOL	1p	10u
CHGTOL	1p	10f
GMIN	1p	-
ITL1	150	1000
ITL2	20	40
ITL4	10	20

5

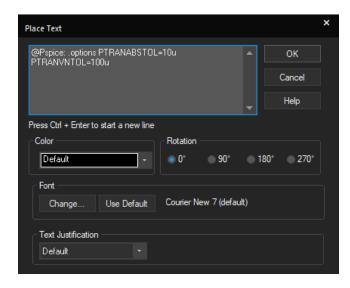

Recommended Steps to Fix Convergence Issues

- Enable AutoConverge and run simulation
- 2. Modify simulation tolerances
 - a. Change ABSTOL to 100p
 - b. Change VNTOL to 1m
 - c. Change RELTOL to 2m
- 3. Modify pseudotransient options
 - Change PTRANABSTOL to 10u
 - 2. Change PTRANVNTOL to 100u
- 4. Set the initial conditions (IC) of capacitors to 0
- 5. If transient:
 - a. Check the "Skip initial transient bias point calculation" (SKIPBP) checkbox
 - b. Switch power supplies to pulse and start at 0

Note: Each step reduces simulation accuracy, especially RELTOL.


Step 1: Enabling AutoConverge

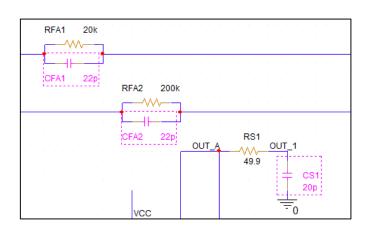
- 1. Go to Edit Simulation Profile
- 2. Go to Options > Analog Simulation > Auto Converge
- 3. Check AutoConverge
- 4. Click Apply and then OK

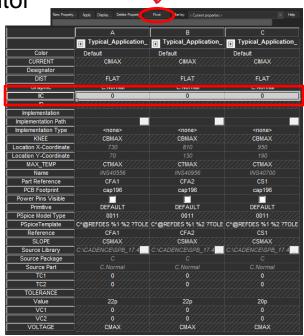

Step 2: Changing Tolerances

- 1. Go to Edit Simulation Profile
- 2. Go to Options > Analog Simulation > General
- 3. Change ABSTOL to 1n
- 4. Change VNTOL to 1m
- 5. Change RELTOL to 2m
- 6. Click Apply and then OK

Step 3: Changing Pseudotransient Options

- In your schematic, go to Place > Text (or use the hotkey "T")
- 2. Type "@Pspice: .options PTRANABSTOL=10u PTRANVNTOL=100u"
- 3. Click OK and place text in schematic

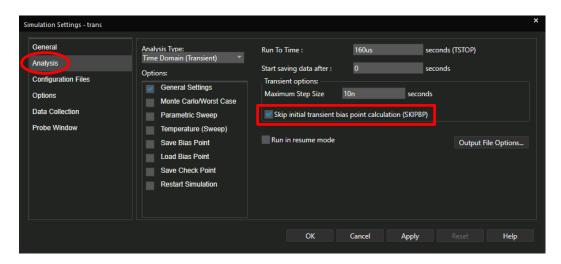

Step 4: Setting CAP Initial Conditions


1. CTRL+LeftClick to highlight multiple capacitors

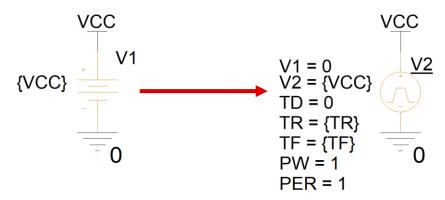
2. LeftClick a capacitor twice to open Property Editor

3. Change all IC fields to 0

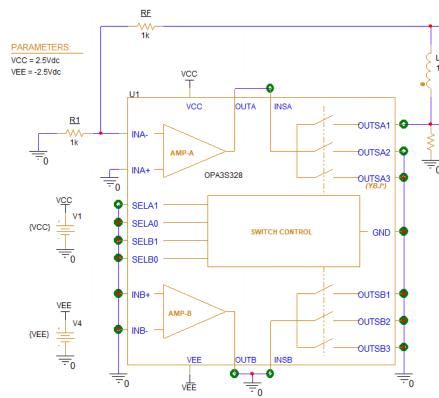
Click Apply and then close Property Editor



Click Pivot if properties are horizontal for easier viewing!


Step 5a (Transient): Check SKIPBP

- 1. Go to Edit Simulation Profile
- 2. Go to Analysis
- 3. Check Skip initial transient bias point calculation (SKIPBP)
- 4. Click Apply and then OK


Step 5b (Transient): Use pulse power supplies

- 1. Go to Place > PSpice Component > Source > Voltage Sources > Pulse
- 2. Configure V1 as 0 and V2 as the desired VDD
- 3. Configure TD as 0
- 4. Calculate TR, TF as at least $(100ns * \frac{VCC}{5V})$
- 5. Configure PW and PER as longer than simulation time

12

Non-Convergence Example


```
Convergence problem in bias point calculation
 These voltages failed to converge:
  VIVOUTI
                    = -540.38e-27V \ 2.435V
  V(X U1.X OPAx328 A.N3116503) = 52.44V \
  V(X_U1.X_OPAx328_A.N3116515) = 122.55mV \setminus 1.076V
  V(X U1,X OPAx328 A.VIMON) = -1,436mV \ 243,48mV
  V(X U1.X OPAx328 A.N3117073) = 26.28V \ 230.52V
ERROR(ORPSIM-15661): 5 of 5 errors shown. See output file for complete list
 These supply currents failed to converge:
  I(L L1)
                  = -5.408nA \ 13.18fA
  I(X_U1.X_OPA3S328_SWITCH.X_U22.L_L1) = 729.74pA \ 243.48uA
  I(X_U1.X_OPA3S328_SWITCH.X_U22.L_L2) = 729.86pA \ 243.48uA
  I[V V1]
                   = -13.60mA \ -13.84mA.
  IN V51
                   -5.408nA \ 63.18fA
ERROR(ORPSIM-15661): 5 of 34 errors shown. See output file for complete list
ERROR(ORPSIM-15660): These devices failed to converge
  X_U1.X_OPA3S328_SWITCH.X_U22.X_U1.E22
  X U1.X OPAx328 A.X U26.G1
  X_U1.X_0PAx328_A.X_U27.G1
  X_U1.X_0PA3S328_SWITCH.X_U38.GD1
  X U1.X OPA3S328 SWITCH.X U41.GD1
ERROR(ORPSIM-15661): 5 of 5 errors shown. See output file for complete list
```

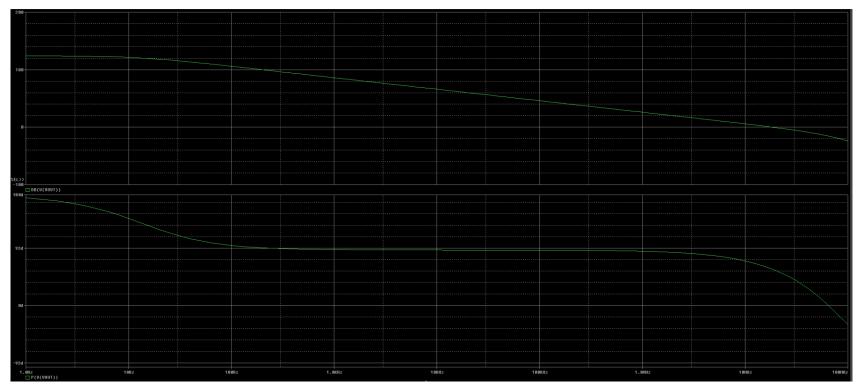
This is a Simulation Configuration for the Open Loop Gain (AoL) of the OPA3S328

AC Sweep from 1 Hz – 100 MHz

The circuit will not converge with default settings

<u>C1</u>

1T


RL

10k

Vout

1Vac/

Non-Convergence Example - Results

After enabling AutoConverge (Step 1), the simulation converges.

After modifying the tolerances (Step 2), the simulation converges 300% faster.