1.0 DESCRIPTION

1.1 THIS SPECIFICATION DEFINES THE REQUIREMENTS FOR A LOW NOISE PRECISION OPERATIONAL AMPLIFIER.

2.0 APPLICABLE DOCUMENTS

- 2.1 REFERENCED DOCUMENTS FORM A PART OF THIS SPECIFICATION, TO THE EXTENT SPECIFIED HEREIN.
- 2.2 MIL-STD-1285 MARKING OF ELECTRICAL AND ELECTRONIC PARTS
- 2.3 MIL-STD-883 TEST METHODS AND PROCEDURES FOR MICROELECTRONICS

3.0 REQUIREMENTS

3.1 ABSOLUTE MAXIMUM RATINGS

SUPPLY±18VDC
INTERNAL POWER DISSIPATION ⁽¹⁾
DIFFERENTIAL INPUT VOLTAGE ⁽²⁾ ±36VDC
INPUT VOLTAGE RANGE (2)±18VDC
STORAGE TEMPERATURE RANGE65°C to +150°C
OPERATING TEMPERATURE RANGE55°C to +125°C
LEAD TEMPERATURE (SOLDERING, 10 SEC)+300°C
OUTPUT SHORT CIRCUIT DURATION
JUNCTION TEMPERATURE+175°C

NOTES:

- (1) PACKAGES MUST BE DERATED BASED ON $\theta_{\rm JC}$ = 150°C/W, OR $\theta_{\rm VA=}$ 300°C/W
- (2) FOR SUPPLY VOLTAGES LESS THAN ±18VDC THE ABSOLUTE MAXIMUM INPUT VOLTAGE IS EQUAL TO THE SUPPLY VOLTAGE.
- (3) SHORT CIRCUIT MAY BE TO POWER SUPPLY COMMON ONLY. RATING APPLIES TO $+25^{\circ}$ C AMBIENT. OBSERVE DISSIPATION LIMIT AND T_{J} .

BFGoodrich Aerospace

B-18

TITLE

MICROCIRCUIT, LINEAR, LOW NOISE PRECISION, OPERATIONAL AMPLIFIER NO: 577-1144

REY

CAGE CODE 25583

Jet Electronics and Technology, Inc.

3.2 ELECTRICAL SPECIFICATIONS

 $V_{\rm CC}=\pm 15 \text{VDC}$ And $T_{\rm A}=+25\,^{\circ}\text{C}$ unless otherwise noted. Pin 8 connected to ground.

CONDITIONS	MIN	MAX	UNITS
	:	80 40 15 8 1.2	nV/\sqrt{Hz} nV/\sqrt{Hz} nV/\sqrt{Hz} nV/\sqrt{Hz} $\mu V, rms$
V _{Cm} = 0VDC T _A = T _{MIN} to T _{MAX}	90	±500 ±5(-01) ±10(-02) ±31	μV μV/°C μV/°C dB μV/V
V _{Cm} = 0VDC		±2	pA
V _{cm} = 0VDC		±1.5	pA
V _{IN} = ±10VDC	±10 90		V dB
$R_{L} \geq 2k\Omega$	114		dB
		1	
20V p-p, $R_L = 2K$ $V_O = \pm 10v$, $R_L = 2k$	16 1		kHz V/µsec
$R_L = 2k\Omega$ $V_0 = \pm 10VDC$ DC, open loop $Gain = \pm 1$	±10 ±5		V mA
Gain	10		mA
	$V_{\text{cm}} = \text{OVDC}$ $T_{A} = T_{\text{MIN}} \text{ to } T_{\text{MAX}}$ $V_{\text{cm}} = \text{OVDC}$ $V_{\text{cm}} = \text{OVDC}$ $V_{\text{IN}} = \pm 10 \text{VDC}$ $R_{L} \geq 2k\Omega$ $20 \text{V p-p, } R_{L} = 2k$ $V_{O} = \pm 10 \text{V, } R_{L} = 2k$ $V_{O} = \pm 10 \text{VDC}$	$V_{\text{Cm}} = \text{OVDC}$ $T_{A} = T_{\text{MIN}} \text{ to } T_{\text{MAX}}$ 90 $V_{\text{Cm}} = \text{OVDC}$ $V_{\text{IN}} = \pm 10 \text{VDC}$ $\frac{\pm 10}{90}$ $R_{L} \geq 2k\Omega$ 114 $20V \text{ p-p, } R_{L} = 2k$ $V_{0} = \pm 10v, R_{L} = 2k$ 1 $R_{L} = 2k\Omega$ $V_{0} = \pm 10v \text{DC}$ $D_{0} = \text{open loop}$ $Gain = +1$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

BFGoodrich B-18 Aerospace	TITLE MICROCIRCUIT, LINEAR, LOW NOISE PRECISION,	NO: 577-1144	REV
Jet Electronics and Technology, Inc.	OPERATIONAL AMPLIFIER	CAGE CODE 25583	SH

CONTINUED...

PARAMETER	CONDITIONS	MIN	MAX	UNITS
POWER SUPPLY				
Voltage Range Derated Performance Current, Quiescent	I _O = OmADC	±5	±18 3.5	VDC mA
TEMPERATURE RANGE				
Specification Operating Storage	Ambient temp. Ambient temp. Ambient temp.	-55 -55 -55	+125 +125 +150	°C °C °C

- NOTE 1: OFFSET VOLTAGE, OFFSET CURRENT, AND BIAS CURRENT MEASURED WITH UNITS FULLY WARMED UP.
- 3.3 ELECTRICAL [FULL TEMPERATURE RANGE SPECIFICATIONS] V_{CC} 15VDC and T_{A} = T_{MIN} to T_{MAX} UNLESS OTHERWISE NOTED.

PARAMETER	CONDITIONS	MIN	MAX	UNITS
INPUT				
OFFSET VOLTAGENOTE 1 Input Offset Voltage Average Drift Supply Rejection	V _{cm} = 0VDC	86	±1500 ±5(-01) ±10(-02) ±50	μV μV/°C μV/°C dB μV/V
BIAS CURRENTNOTE 1 Input Bias Current	V _{cm} = 0VDC		±4100	рA
OFFSET CURRENTNOTE 1 Input Offset Current	V _{cm} = 0VDC		±3100	pA
VOLTAGE RANGE Common-Mode Input Range Common-Mode Rejection	V _{IN} = ±10VDC	±10 86		V dB
OPEN-LOOP GAIN, DC				
Open-Loop Voltage Gain	$R_{\rm L} = 2k\Omega$	110		dB
RATED OUTPUT				
Voltage Output Current Output Short Circuit Current	$R_{L} = 2k\Omega$ $V_{o} = \pm 10VDC$ $V_{o} = 0VDC$	±10 ±5 10		V mA mA

BFGoodrich B-18 Aerospace	TITLE MICROCIRCUIT, LINEAR, LOW NOISE PRECISION,	NO: 577-1144	REV
Jet Electronics and Technology, Inc.	OPERATIONAL AMPLIFIER	CAGE CODE 25583	SH 4

CONTINUED...

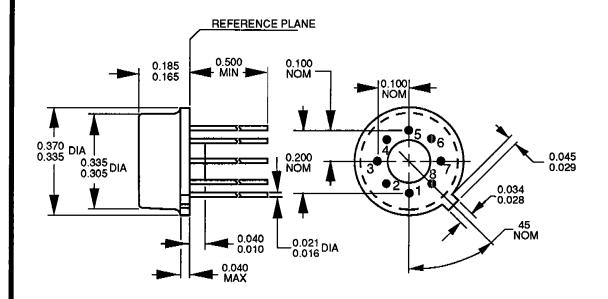
PARAMETER	CONDITIONS	MIN	MAX	UNITS
POWER SUPPLY				
Current, Quiescent	$I_O = OmADC$		3.5	mA

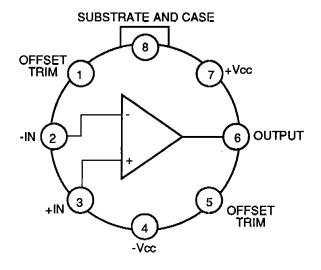
- NOTE 1: OFFSET VOLTAGE, OFFSET CURRENT, AND BIAS CURRENT ARE MEASURED WITH UNIT FULLY WARMED UP.
 - 3.4 PIN CONFIGURATION: SEE FIGURE 1.
 - 3.5 DESIGN: 8-PIN HERMETIC CAN IN ACCORDANCE WITH FIGURE 1.
 - 3.6 SOLDERABILITY
 - 3.6.1 WIRE AND PART LEADS WITH OR WITHOUT ATTACHED TERMINALS SHALL BE INSPECTED AND ACCEPTED FOR 95% WETTING. PARTS ARE TO BE TESTED IN THE "AS RECEIVED" CONDITION. LEADS SHALL BE DIPPED IN A NON-ACTIVATED ROSIN FLUX; THEN DIPPED IN A SOLDER POT CONTAINING AN SN60 OR SN63 SOLDER AT 250°C FOR 4.5 TO 5.5 SECONDS.
 - 3.6.2 PARTS MEETING EQUIVALENT MILITARY, COMMERCIAL, OR J.E.T. 515-1051 STANDARDS WILL BE ACCEPTABLE.
 - 3.7 RELIABILITY PREDICTION INFORMATION (FOR REFERENCE ONLY) NO. OF TRANSISTORS 50 TOTAL
 - 12 BIFET
 - 38 BIPOLAR
 - 3.8 <u>SCREENING</u>: SHALL BE SCREENED IN ACCORDANCE WITH MIL-STD-883 CLASS B SCREENING -02 ONLY.

4.0 <u>ITEM IDENTIFICATION</u>

- 4.1 IDENTIFY ITEM IN ACCORDANCE WITH MIL-STD-1285. INCLUDE THE FOLLOWING IN THE ORDER SHOWN AS SPACE PERMITS. THE MANUFACTURER SHALL DETERMINE SPACE REQUIREMENTS. *INDICATES MINIMUM MARKING REQUIREMENTS.
 - *A. INDEX (THE INDEX POINT, TAB OR OTHER MARKING INDICATING POINT FOR NUMBERING OF LEADS)
 - B. MANUFACTURERS' PART NUMBER OR TYPE
 - C. MANUFACTURERS' CAGE CODE, NAME OR SYMBOL

5.0 PART NUMBER


J.E.T.	BURR BROWN
PART NO.	PART NO
577-1144-01	OPA111SM
577-1144-02	OPA111VM/883B


BFGoodrich B-18 Aerospace	MICROCIRCUIT, LINEAR, LOW NOISE PRECISION,	NO: 577-1144	REV
Jet Electronics and Technology, Inc.	OPERATIONAL AMPLIFIER	CAGE CODE 25583	SH

Jet Electronics and Technology, Inc.

6.0 SOURCE IDENTIFICATION

6.1 <u>SPECIFICATION CONTROL DRAWING</u> - IDENTIFICATION OF THE SUGGESTED SOURCE(S) OF SUPPLY HEREON IS NOT TO BE CONSTRUED AS A GUARANTEE OF PRESENT OR CONTINUED AVAILABILITY AS A SOURCE OF SUPPLY FOR THE ITEM(S).

TOP VIEW

FIGURE 1.

BFGoodrich B-18 Aerospace	MICROCIRCUIT, LINEAR, LOW NOISE PRECISION,	NO: 577-1144	REV
Jet Electronics and Technology, Inc.	OPERATIONAL AMPLIFIER	CAGE CODE 25583	SH 6