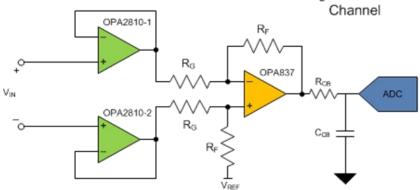

Check out TI's Newest JFET amplifiers the OPA2810 & OPA810 for High-Voltage, High-Input Impedance front-end systems in Digital Multimeter (DMM). The OPA2810 is a dual-channel and OPA810 is the single-channel version. The OPAx810 offers 70MHz, FET-input, Rail to Rail Input & Output, 24V amplifier with 2x performance over similar competition devices.


Voltage & Current measurement channels in DMMs will require low noise, large input impedance with low distortion for a high-fidelity signal chain.

Example Block Diagram with Differential ADC:

Generic Block Diagram Single ended ADC:

ADC Driver:

- Single Ended Output:
 - OPA837 is a voltage feedback amplifier that offers great precision (0.4 μ V/C)), Low power (0.592mA), and 105 MHz of bandwidth.
 - <u>OPA863A</u> is a 12V supply voltage RRIO feedback amplifier which offer great precision (0.095μV/C), low power (0.8mA) and 50MHz
- Differential Output:
 - An FDA is needed to attenuate the voltage & drive the Precision or High-Speed ADCs to perform the single-ended to differential signal conversion, TI offers several FDAs with a variety of BW and voltage ranges depending on the system need.
 - Check out the <u>TIDA-00187</u>: Extending Rail-to-Rail Output Range for Fully Differential Amplifiers to Include True Zero Volts
 - For a fully differential input ADC check out the latest fully differential ADC drivers for your application below: (THS4531A, THS4551, THS4561, THS4541, THS4509)

Parameter	THS4531A	THS4561	THS4551	THS4541	THS4509
ADC Pairing	> 14-bit, 500kSPS-1MSPS	> 14-bit, 1 – 2 MSPS	> 16-bit, 1 – 4 MSPS	> 10-MSPS	>100-MSPS
Gain Bandwidth Product (MHz)	36	68	135	850	3000
Quiescent Current, I _Q (typ) (mA)	0.25	0.775	1.37	10.1	37.7
e _{noise} (nV/vHz) (1/f corner frequency)	10 (45Hz)	4 (8Hz)	3.3 (150Hz)	2.2 (30kHz)	1.9(10kHz)
Slew Rate (V/μs)	200	230	220	1500	6600
V _{os} (25°C, Max) (μV)	400	250	175	450	4
V _{os} drift (typ) (μV/°C)	3	0.5	1.8	0.5	2.6
THD (dB), $V_{OUT} = 2 V_{PP} @ 100kHz$	-102	-117	-128	-93 (@ 5MHz)	-104 (@10MHz)
Output Voltage Swing (V)	V_{S-} +0.2, V_{S+} - 0.11	V _S . +0.25, V _{S+} -0.1	$V_{S-}+0.2$, $V_{S+}-0.2$	V_{S-} +0.2, V_{S+} - 0.2	V_{S-} +1.1, V_{S+} - 1.1
Differential Output Impedance (Ω) f= 100kHz, G= 1)	0.25	0.06	0.02	0.1	0.3
Settling Time (G=1, 0.1%, V _{OUT} =2V step) (ns)	60	40	30	8 (G=2)	10
Temperature Range (°C)	-40 to 125	-40 to 125	-40 to 125	-40 to 125	-40 to 125
Features	Low Iq	Feedback Pin	Feedback Pin	Bare Die Option Feedback Pin Auto Q100	Shutdown

Additional Signal Conditioning:

 May be needed if the signal has to be attenuated to compensate for the ADC input voltage range

Reference Buffer:

- Need for reference buffers for ADCs with external reference for multichannel and fast sampling rates.
- OPA863A- Reference buffer: Precision(95uV), Low power(0.8mA), 50MHz, RRIO voltage feedback amplifier.
 - Check out the TIDA-01055: ADC Voltage Reference Buffer Optimization Reference Design for High-Performance DAQ Systems

Additional Collateral:

- Check out this **BLOG** for more information on JFET amplifiers in different types of applications.
- Check out this <u>TIDA-01057</u>: <u>Reference Design Maximizing Signal Dynamic Range for True 10</u> <u>Vpp Differential Input to 20-bit ADC</u>
- SBOT049: Pairing High-speed JFET Amplifiers with Hi-Z DAQ Systems
- SBOT050: Pairing ADC Drivers with Fully-Differential Input ADCs for Wide Bandwidth Data Acquisition

