Hand Calculations:

Schematic Shown Above:

Need Noise gain and equivalent feedback resistance

$$G_n = 1 + \frac{R_3}{R_1}$$

$$G_n = 1 + \frac{(2.5k)}{(100)}$$

$$G_n = 26 V/V$$

$$R_{eq} = R_3 || R_1$$

$$R_{eq} = (2.5k) || (100)$$

$$R_{eq} = 96.2\Omega$$

Need GBW from datasheet to calculate Noise Bandwidth

FREQUEN	ICY RESPONSE			
GBW	Gain-bandwidth product	C _L = 100 pF	350	kHz

Frequency cutoff of noise:

$$f_c = \frac{GBW}{G_n}$$

$$f_c = \frac{(350k)}{(26)}$$

$$f_c = 13.461 \, kHz$$

Modeling Noise as rectangle:

$$BW_n = k_n \cdot f_c$$

$$BW_n = (1.57) \cdot (13.461k)$$

$$BW_n = 21.1 \text{ kHz}$$

Only need broadband noise since all other noise sources are small comparatively but all calculations will be added for completeness. Note: flicker noise is negligible in this device.

Resistor Noise:

$$E_{n_r} = \sqrt{4kT_kR_{eq}BW_n}$$

$$E_{n_r} = \sqrt{4(1.38\cdot 10^{-23})(273+25)(96.2)(21.1k)}$$

$$E_{n_r} = 0.182 \,\mu Vrms$$

Broadband Noise:

Note: $e_n = 56nV/sqrtHz$ is the value from the Noise Spectral Density graph which you've already done

$$E_{n_{BB}} = e_n \sqrt{BW_n}$$

$$E_{n_{BB}} = (56n)\sqrt{(21.1k)}$$

$$E_{n_{BB}} = 8.13 \,\mu Vrms$$

Current Noise:

Note: i_n is from the datasheet:

- 1		r		1
	i _n Input current noise	f = 10 Hz	100	fA/√Hz

$$e_{n_i} = R_{eq} \cdot i_n$$

 $e_{n_i} = (96.2) \cdot (100f)$
 $e_{n_i} = 9.62 \cdot 10^{-12}$

$$E_{n_i} = e_{n_i} \sqrt{BW_n}$$

$$E_{n_i} = (9.62 \cdot 10^{-12}) \sqrt{(21.1k)}$$

$$E_{n_i} = 1.40 \, nVrms$$

Total Noise:

$$E_{n_{total}} = \sqrt{E_{n_i}^2 + E_{n_{BB}}^2 + E_{n_r}^2}$$

$$E_{n_{total}} = \sqrt{(1.40n)^2 + (8.13\mu)^2 + (0.18\mu)^2}$$

$$E_{n_{total}} = 8.13 \,\mu Vrms$$

Noise how the other sources compared to Broadband didn't matter at all. Broadband could be reduced by adding filtering.

$$E_{n_{Out_{total}}} = E_{n_{total}} \cdot G_n$$
 $E_{n_{Out_{total}}} = (8.13 \mu) \cdot (26)$
 $E_{n_{Out_{total}}} = 211.76 \mu Vrms$

Compare with Simulation:

Simulation Total noise = $219.18 \mu V_{RMS}$ Hand Calculation Total noise = $211.76 \mu V_{RMS}$