

I wanted to talk about TI's Newest JFET amplifiers and Buffers the OPA2810 & OPA810 for high-voltage, high-input Impedance front-end systems in LCR Meters. The OPA2810 is a dual-channel and OPA810 is the single-channel version. The OPAx810 offers 70MHz, FET-input, rail-to-rail Input & Output, 24V amplifier with 2x performance over similar competition devices.

LCR meters and impedance analyzers measure unknown values of passive components like resistors, capacitors, inductors, or a combination of these elements. Impedance measurement channels in LCR meters will require low noise and large input impedance with low distortion for a high-fidelity signal chain. For impedance measurements, several existing techniques provide various tradeoffs between measurement accuracy, complexity, and frequency range.

Generic Auto balancing method Block Diagram:

Composite Loop:

The <u>BUF634A</u> is a high-speed wide bandwidth unity gain buffer. It is used in a composite loop with the OPA2810 to increase the output current capability from 100mA to 250mA.
 The <u>BUF634A</u> has two bandwidth options of 35MHz and 210MHz. It is optional to use in this application.

ADC Driver:

Differential:

- FDA is needed to attenuate the voltage & drive the Precision or High-Speed ADCs to perform the single-ended to differential signal conversion, TI offers several FDAs with a variety of BW and voltage ranges depending on the system need.
- For a fully differential input ADC check out the latest fully differential amplifier <u>THS4561</u>. The THS4561 is Tl's latest low-power(0.78mA), 70-MHz, high-supply-range(12.6V), simple interface for taking single-ended sources to the differential output required by precision analog-to-digital converters.
- Check out the <u>TIDA-00187: Extending Rail-to-Rail Output Range for Fully Differential</u>

 Amplifiers to Include True Zero Volts
- For a fully differential input ADC check out the latest fully differential ADC drivers for your application below: (THS4531A, THS4551, THS4561, THS4541, THS4509)

Parameter	THS4531A	THS4561	THS4551	THS4541	THS4509
ADC Pairing	> 14-bit, 500kSPS-1MSPS	> 14-bit, 1 – 2 MSPS	> 16-bit, 1 – 4 MSPS	> 10-MSPS	>100-MSPS
Gain Bandwidth Product (MHz)	36	68	135	850	3000
Quiescent Current, I _Q (typ) (mA)	0.25	0.775	1.37	10.1	37.7
e _{noise} (nV/VHz) (1/f corner frequency)	10 (45Hz)	4 (8Hz)	3.3 (150Hz)	2.2 (30kHz)	1.9(10kHz)
Slew Rate (V/µs)	200	230	220	1500	6600
V _{os} (25°C, Max) (μV)	400	250	175	450	4
V _{os} drift (typ) (μV/°C)	3	0.5	1.8	0.5	2.6
THD (dB), $V_{OUT} = 2 V_{PP} @ 100 kHz$	-102	-117	-128	-93 (@ 5MHz)	-104 (@10MHz)
Output Voltage Swing (V)	V_{S-} +0.2, V_{S+} - 0.11	V _{S-} +0.25, V _{S+} -0.1	$V_{S-}+0.2$, $V_{S+}-0.2$	V_{S-} +0.2, V_{S+} - 0.2	V _{S-} +1.1, V _{S+} - 1.1
Differential Output Impedance (Ω) f= 100kHz, G= 1)	0.25	0.06	0.02	0.1	0.3
Settling Time (G=1, 0.1%, V _{OUT} =2V step) (ns)	60	40	30	8 (G=2)	10
Temperature Range (°C)	-40 to 125	-40 to 125	-40 to 125	-40 to 125	-40 to 125
Features	Low Iq	Feedback Pin	Feedback Pin	Bare Die Option Feedback Pin Auto Q100	Shutdown

Additional Collateral:

- SBOA496: Optimizing LCR Meter and Impedance Analyzer Front-End Design for Accurate Impedance Measurements
- **TIDA-060029**: LCR meter analog front-end reference design
- **SBOT049:** Pairing High-speed JFET Amplifiers with Hi-Z DAQ Systems
- <u>SBOT050</u>: Pairing ADC Drivers with Fully-Differential Input ADCs for Wide Bandwidth Data Acquisition

Looking forward to your thoughts on the above!

Please visit our <u>High-speed op amps page</u> for additional amplifiers where you can sort by desired supply voltage, channel count, output current, and other amplifier features.

