

Understanding of Long-Term Stability

By Marek Lis
Sr Application Engineer
Texas Instruments -Tucson

Summary of Topics

- Long-Term Stability (Life-Time Shift)
 - for specs centered around a mean value
 - for parameters specified as an absolute value
- Thermal Acceleration Factor (AF)
 - Arrhenius equation and the Acceleration Factor
 - Effect of AF on the life of a product

Normal Gaussian Distribution

Standard deviation and confidence intervals

edit

About 68% of values drawn from a normal distribution are within one standard deviation σ away from the mean; about 95% of the values lie within two standard deviations; and about 99.7% are within three standard deviations. This fact is known as the 68-95-99.7 rule, or the empirical rule, or the 3-sigma rule. To be more precise, the area under the bell curve between $\mu - n\sigma$ and $\mu + n\sigma$ is given by

$$F(\mu + n\sigma; \mu, \sigma^2) - F(\mu - n\sigma; \mu, \sigma^2) = \Phi(n) - \Phi(-n) = \operatorname{erf}\left(\frac{n}{\sqrt{2}}\right),$$

where erf is the error function. To 12 decimal places, the values for the 1-, 2-, up to 6-sigma points are: [16]

n	$\operatorname{erf}\left(\frac{n}{\sqrt{2}}\right)$	i.e. 1 minus	or 1 in
1	0.682 689 492 137	0.317 310 507 863	3.151 487 187 53
2	0.954 499 736 104	0.045 500 263 896	21.977 894 5080
3	0.997 300 203 937	0.002 699 796 063	370.398 347 345
4	0.999 936 657 516	0.000 063 342 484	15,787.192 7673
5	0.999 999 426 697	0.000 000 573 303	1,744,277.893 62
6	0.999 999 998 027	0.000 000 001 973	506,797,345.897

Dark blue is less than one standard deviation from the mean. For the normal distribution, this accounts for about 68% of the set, while two standard deviations from the mean (medium and dark blue) account for about 95%, and three standard deviations (light, medium, and dark blue) account for about 99.7%.

Life-Time Shift Guidelines

In a case of <u>specs centered around zero or a mean value</u> like Vos, Vos Drift, Vref, AOL, etc., they <u>may</u> shift over 10-year life up to:

+/-100% of the max (min) PDS specified value

In a case of <u>parameters specified as an absolute value</u> like IQ, Slew Rate (SR), Isc, etc. they <u>may</u> shift over 10-year life up to:

+/-10% of the max (min) PDS specified value

Understanding Statistical Distributions

(specs centered around a zero)

			OPA140, OPA2140, OPA4140			
PARAMETER		CONDITIONS	MIN	TYP	MAX	UNIT
OFFSET VOLTAGE						
Offset Voltage, RTI	Vos	V _S = ±18V		30	120	μV
Over Temperature		$V_S = \pm 18V$			220	μ V
Drift	dV _{os} /dT	$V_S = \pm 18V$		±0.35	1.0	μ V /°C

OFFSET VOLTAGE PRODUCTION DISTRIBUTION

OFFSET VOLTAGE DRIFT DISTRIBUTION

Long-Term Shift for Normal Gaussian Distributions

(Centered around a Mean Value)

Initial PDS Distribution (blue) vs Long-Term Parametric Shift (green)

Life-Time Vos and Vos Temp Drift Shift

			OPA140, OPA2140, OPA4140			
PARAMETER	₹	CONDITIONS	MIN	TYP	MAX	UNIT
OFFSET VOLTAGE						
Offset Voltage, RTI	Vos	V _S = ±18V		30	120	μV
Over Temperature		$V_S = \pm 18V$			220	μ V
Drift	dV _{OS} /dT	V _S = ±18V		±0.35	1.0	μ V /°C

OFFSET VOLTAGE PRODUCTION DISTRIBUTION

OFFSET VOLTAGE DRIFT DISTRIBUTION

Max LT Vos = 240uV

Max LT Vos Drift = 2.0 uV/C

Life-Time Max Shift (ten-year) = Max Initial Value Long-Term Max Spec = 2 * Initial Spec

What is the Vos Drift Maximum Value?

Use of the Statistics to Determine Relative Maximum Value

Estimating a value of standard deviation (sigma)

n	$\operatorname{erf}\left(\frac{n}{\sqrt{2}}\right)$	i.e. 1 minus	or 1 in
1	0.682 689 492 137	0.317 310 507 863	3.151 487 187 53
2	0.954 499 736 104	0.045 500 263 896	21.977 894 5080
3	0.997 300 203 937	0.002 699 796 063	370.398 347 345
4	0.999 936 657 516	0.000 063 342 484	15,787.192 7673
5	0.999 999 426 697	0.000 000 573 303	1,744,277.893 62
6	0.999 999 998 027	0.000 000 001 973	506,797,345.897

OFFSET VOLTAGE DRIFT MAGNITUDE PRODUCTION DISTRIBUTION

Knowing one-sigma is about ~4uV/C, customer may assume the maximum offset drift to be:

12uV/C (3*sigma) where 1 out of 370 units will NOT meet this max spec

16uV/C (4*sigma) where 1 out of 15,787 units will NOT meet this max spec

20uV/C (5*sigma) where 1 out of 1,774,277 units will NOT meet this max spec

24uV/C (6*sigma) where 1 out of 506,797,345 units will NOT meet this max spec

Life-Time Reference Voltage Initial Accuracy Shift (specs centered around a mean value)

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNIT				
REF5020 (V _{OUT} = 2.048V) ⁽¹⁾										
OUTPUT VOLTAGE										
Output Voltage	′оит	2.7V < V _{IN} < 18V		2.048		V				
Initial Accuracy: High-Grade			-0.05		0.05	%				

OUTPUT VOLTAGE INITIAL ACCURACY

Max LT Vref = $\pm -0.1\%$

Long-Term IQ and Isc Shift (specs centered around an absolute value)

			OPA827AI			
PARAMETER		CONDITIONS	MIN	TYP	MAX	UNIT
Quiescent Current (per amplifier)	IQ	I _{OUT} = 0A		4.8	5.2	mA
Short-Circuit Current	I _{sc}		±55	±65		mA

Long-Term Vref Stability

		REF50xx			
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
	+		·	I	
LONG-TERM STABILITY					
MSOP-8	0 to 1000 hours		50		ppm/1000 hr
MSOP-8	1000 to 2000 hours		5		ppm/1000 hr
SO-8	0 to 1000 hours		90		ppm/1000 hr
SO-8	1000 to 2000 hours		10		ppm/1000 hr

Life-Time Shift Formula

To illustrate the life-time shift for an actual IC, let's consider the long-term stability of the low-noise, low-drift REF5025 precision voltage reference and its output initial accuracy specification.

Figure 3 shows the initial accuracy of REF5025 output voltage of +/-0.05% and the long-term stability for 0 to 1000 hours specified at 50ppm. As explained above, the long-term shift of the REF5025 must not exceed the life-test shift of +/-100% of the max/min initial accuracy; therefore, the maximum output voltage shift after 10 years (87,600 hours), under constant operation at room temperature, must be less than +/-0.05%, or an equivalent of +/-500ppm.

		REF50xx			
PARAMETER	CONDITIONS	MIN	MIN TYP		UNIT
LONG-TERM STABILITY					
MSOP-8	0 to 1000 hours		50		ppm/1000 hr
MSOP-8	1000 to 2000 hours		5		ppm/1000 hr

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT					
REF5020 (V _{OUT} = 2.048V) ^(T)										
OUTPUT VOLTAGE										
Output Voltage Vovr	2.7V < V _m < 18V		2.048		V					
Initial Accuracy: High-Grade		-0.05		0.05	%					

Figure 3 - Excerpts from REF5025 datasheet

Since the long-term shift clearly cannot be a linear function of time and simultaneously satisfy both conditions, the shift rate must initially be higher (having a steeper slope) and then gradually slow down (becoming more linear) over time. Therefore, it may be estimated by the square-root function normalized to 1000th of hours and shown below in Figure 4.

Output Voltage Shift = 50ppm*\[fime(hours)/1000hrs]

Life-Time Shift Graph

Output Voltage Shift = 50ppm*\[(\text{lime(hours)}/1000hrs\)]

Figure 4 - REF5025 long-term stability

For example, after 25,000 hours of nonstop operation in the field, the typical output voltage shift in the REF5025 can be calculated using above equation, $50\text{ppm}^*\sqrt{25}=250\text{ppm}$, while after 10 years (87,600 hours) the shift would be $50\text{ppm}^*\sqrt{87.6}=468\text{pp}$. Therefore, at the end-of-life the REF5025 output voltage shift as expected is within the 500ppm allowable shift which equals to 0.05% of the datasheet maximum initial accuracy spec.

Life-Time Shift Rule Summary

You may estimate the maximum expected parametric shift over any given period of time by using:

- 100% of the max (min) PDS guaranteed value in the case of specs centered around a mean value (Vos, Vos Drift, Vref, AOL, etc.)
- 10% of the max (min) guaranteed value for parameters specified as an absolute value (IQ, slew rate, lsc, etc).

One may pro-rate the shift based on the expected ten-year life of the product

It needs to be understood that the long-term shift is NOT exactly a linear function of time – the shift is greater (curve is steeper) initially and slows down (become linear) over time. Therefore, the linear character of shift usually excludes the first month due to continuing self-curing of the molding compound used for packaging of IC.

HTOL (High Temperature Operating Life)

- HTOL is used to measure the constant failure rate region at the bottom
 of the bathtub curve as well as to assess the wear-out phase of the
 curve for some use conditions.
- Smaller sample sizes than EFR but are run for a much longer duration
- Jedec and QSS default are Ta=125C for 1000 hours
- Q100 calls for 1000 hours at max temperature for the device's grade
- Most modern IC's undergo HTOL at Ta=150C for 300 hours

The Arrhenius Equation

The Arrhenius equation is a simple, but remarkably accurate, formula for the temperature dependence of the <u>reaction rate constant</u> of a process.

Process Rate (PR) = $Ae^{-(Ea/kT)}$

A = A constant

Ea = Thermal activation energy in electron-volts (eV)

k = Boltzman's constant, 8.62 x 10⁻⁵ eV/K

T = Absolute temperature in degrees Kelvin (Deg C + 273.15)

Acceleration Factor

Acceleration Factors are the ratio of the Process Rate at two temperatures.

$$AF(T1 \text{ to } T2) = PR2 / PR1 = Ae^{-(Ea/kT2)} / Ae^{-(Ea/kT1)}$$

AF(T1 to T2) =
$$e^{(Ea/k)(1/T1 - 1/T2)}$$

A = A constant (has canceled out of the formula)

Ea = Thermal activation energy in electron volts (eV)

k = Boltzman's constant, 8.62 x 10⁻⁵ eV/K

T = Absolute temperature in degrees Kelvin (degrees C + 273.15)

Acceleration Factors (example 1)

Calculate the thermal acceleration factor (AF) between the stress test temperature at 150C and the product operating temperature at 65C:

T1 (application) = $65C \rightarrow 338K$

T2 (life-test stress) =150C -> 423K

Ea=0.7eV

AF(65C to 150C) = $e^{(0.7eV/8.62x10^{-5})(1/338 - 1/423)}$ = **125**

This means every hour of stress at 150C is equivalent to 125 hours of use in the application at 65C.

Thus, for example, 300 hour life-test at 150C would cause similar shift as 37,500 hours (125*300hrs), or about 4 years, in the field at 65C.

Acceleration Factors (example 2)

Calculate the thermal acceleration factor (AF) between the stress test temperature at 150C and the product operating temperature at 100C:

Ea=0.7eV

AF(100C to 150C) =
$$e^{(0.7eV/k)(1/373 - 1/423)}$$
 = **13**

This means every hour of stress at 150C is equivalent to 13 hours of use in the application at 100C.

Thus, for example, 300 hour life-test at 150C would cause similar shift as 3,900 hours (13*300hrs), less than 6 month, in the field at 100C.

Semiconductor Quality and Reliability

	Early life failure rate	MTBF / FIT		_	Early life failure rate supporting data			MTBF / FIT supporting data						
Part number	ELFR- DPPM	MTBF	FIT	Conf level (%)	Test temp (°C)	Sample size	Fails	Usage temp (°C)	Conf level (%)	Activation energy (eV)	Test temp (°C)	Test duration (hours)	Sample size	Fails
OPA192ID	22	4.89x 10 9	0.2	60	125	41306	0	55	60.0	0.7	125	1000	57098	0

Questions?

Comments, Questions, Technical Discussions Welcome:

Marek Lis

(520)-750-2162

lis_marek@ti.com

