

Understanding of Long-Term Stability

By Marek Lis
Sr Application Engineer
Texas Instruments -Tucson

Summary of Topics

- Long-Term Stability (Life-Time Shift)
- for specs centered around a mean value
- for parameters specified as an absolute value
- Thermal Acceleration Factor (AF)
- Arrhenius equation and the Acceleration Factor
- Effect of AF on the life of a product

Normal Gaussian Distribution

Standard deviation and confidence intervals

About 68% of values drawn from a normal distribution are within one standard deviation σ away from the mean; about 95% of the values lie within two standard deviations; and about 99.7% are within three standard deviations. This fact is known as the $68-95-99.7$ rule, or the empirical rule, or the 3 -sigma rule. To be more precise, the area under the bell curve between $\mu-n \sigma$ and $\mu+n \sigma$ is given by

$$
F\left(\mu+n \sigma ; \mu, \sigma^{2}\right)-F\left(\mu-n \sigma ; \mu, \sigma^{2}\right)=\Phi(n)-\Phi(-n)=\operatorname{erf}\left(\frac{n}{\sqrt{2}}\right)
$$

where er is the error function. To 12 decimal places, the values for the $1-, 2-$, up to 6 -sigma points are: ${ }^{[18]}$

n	$\operatorname{erf}\left(\frac{n}{\sqrt{2}}\right)$	i.e. 1 minus ...	or 1 in ...
10.682689492137	0.317310507863	3.15148718753	
20.954499736104	0.045500263896	21.9778945080	
3	0.997300203937	0.002699796063	370.398347345
4	0.999936657516	0.000063342484	$15,787.1927673$
5	0.999999426697	0.000000573303	$1,744,277.89362$
600.999999998027	0.000000001973	$506,797,345.897$	

Dark blue is less than one standard deviation from the mean,
For the normal distribution, this accounts for about 68% of the set, while two standard deviations from the mean (medium and dark blue) account for about 95%, and three standard deviations (ight, medium, and dark blue) account for about 99.7%.

Life-Time Shift Guidelines

In a case of specs centered around zero or a mean value like Vos, Vos Drift, Vref, AOL, etc., they may shift over 10-year life up to: +/-100\% of the max (min) PDS specified value

In a case of parameters specified as an absolute value like IQ, Slew Rate (SR), Isc, etc. they may shift over 10-year life up to:
+/-10\% of the max (min) PDS specified value

Understanding Statistical Distributions

 (specs centered around a zero)| PARAMETER | | CONDITIONS | OPA140, OPA2140, OPA4140 | | | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | MIN | TYP | MAX | |
| OFFSET VOLTAGE | | | | | | |
| Offset Voltage, RTI | $\mathrm{V}_{\text {OS }}$ | $\mathrm{V}_{\mathrm{S}}= \pm 18 \mathrm{~V}$ | | 30 | 120 | $\mu \mathrm{V}$ |
| Over Temperature | | $\mathrm{V}_{\text {S }}= \pm 18 \mathrm{~V}$ | | | 220 | $\mu \mathrm{V}$ |
| Drift | $\mathrm{dV}_{\text {os }} / \mathrm{dT}$ | $\mathrm{V}_{\text {S }}= \pm 18 \mathrm{~V}$ | | ± 0.35 | 1.0 | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |

OFFSET VOLTAGE PRODUCTION DISTRIBUTION

Offset Voltage ($\mu \mathrm{V}$)

OFFSET VOLTAGE DRIFT DISTRIBUTION

Long-Term Shift for Normal Gaussian Distributions

(Centered around a Mean Value)

Initial PDS Distribution (blue) vs Long-Term Parametric Shift (green)

Life-Time Vos and Vos Temp Drift Shift

PARAMETER		CONDITIONS	OPA140, OPA2140, OPA4140			UNIT
			MIN	TYP	MAX	
OFFSET VOLTAGE						
Offset Voltage, RTI	$\mathrm{V}_{\text {OS }}$	$\mathrm{V}_{\text {S }}= \pm 18 \mathrm{~V}$		30	120	$\mu \mathrm{V}$
Over Temperature		$\mathrm{V}_{\text {S }}= \pm 18 \mathrm{~V}$			220	$\mu \mathrm{V}$
Drift	$\mathrm{dV}_{\text {os }} / \mathrm{dT}$	$\mathrm{V}_{\text {S }}= \pm 18 \mathrm{~V}$		± 0.35	1.0	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

Max LT Vos = 240uV

OFFSET VOLTAGE DRIFT DISTRIBUTION

Max LT Vos Drift $=2.0 u \mathrm{~V} / \mathrm{C}$

Life-Time Max Shift (ten-year) = Max Initial Value
Long-Term Max Spec = 2 * Initial Spec

What is the Vos Drift Maximum Value?

Use of the Statistics to Determine Relative Maximum Value

Estimating a value of standard deviation (sigma)

n	$\operatorname{erf}\left(\frac{n}{\sqrt{2}}\right)$	i.e. 1 minus ...	or 1 in ...
10.682689492137	0.317310507863	3.15148718753	
20.954499736104	0.045500263896	21.9778945080	
3	0.997300203937	0.002699796063	370.398347345
4	0.999936657516	0.000063342484	$15,787.1927673$
5	0.999999426697	0.000000573303	$1,744,277.89362$
6	0.999999998027	0.000000001973	$506,797,345.897$

Knowing one-sigma is about $\sim 4 \mathrm{uV} / \mathrm{C}$, customer may assume the maximum offset drift to be:
12uV/C (3*sigma) where 1 out of 370 units will NOT meet this max spec
16uV/C (4*sigma) where 1 out of 15,787 units will NOT meet this max spec
20uV/C (5*sigma) where 1 out of $1,774,277$ units will NOT meet this max spec
24uV/C (6^{*} sigma) where 1 out of $506,797,345$ units will NOT meet this max spec

Life-Time Reference Voltage Initial Accuracy Shift (specs centered around a mean value)

OUTPUT VOLTAGE
INITIAL ACCURACY

Long-Term IQ and Isc Shift

(specs centered around an absolute value)

PARAMETER	CONDITIONS	OPA827AI			UNIT
		MIN	TYP	MAX	
Quiescent Current (per amplifier)	$\mathrm{I}_{\text {OUT }}=O A$		4.8	5.2	mA
Short-Circuit Current ISC		± 55	± 65		mA

Long-Term Vref Stability

PARAMETER	CONDITIONS	REF50xx			UNIT
		MIN	TYP	MAX	
LONG-TERM STABILITY					
MSOP-8	0 to 1000 hours		50		ppm/1000 hr
MSOP-8	1000 to 2000 hours		5		ppm/1000 hr
SO-8	0 to 1000 hours		90		ppm/1000 hr
SO-8	1000 to 2000 hours		10		ppm/1000 hr

REF50xx
LONG-TERM STABILITY (2000 HOURS)

REF50xx
LONG-TERM STABILITY (2000 HOURS)

Life-Time Shift Formula

To illustrate the life-time shift for an actual IC, let's consider the Iong-term stability of the low-noise, low-drift REF5025 precision voltage reference and its output initial accuracy specification.

Figure 3 shows the initial accuracy of REF5025 output voltage of $+/-0.05 \%$ and the long-term stability for 0 to 1000 hours specified at 50 ppm . As explained above, the long-term shift of the REF5025 must not exceed the life-test shift of $+/-100 \%$ of the max/min initial accuracy; therefore, the maximum output voltage shift after 10 years (87,600 hours), under constant operation at room temperature, must be less than $+/-0.05 \%$, or an equivalent of $+/-500 \mathrm{ppm}$.

PARAMETER	CONDITONS	REFS0xx			UNIT
		MN	TYP	max	
LONG-TERM STABILTY MSOP-8 MSOP-8	0 to 1000 hours 1000 to 2000 hours		50 5		pperv/1000 hr ppm/1000 hr

Parameter		conomons	Per device			Untr
			MN	TVP	Max	
REFS020 ($\mathrm{V}_{\text {cin }}=204 \mathrm{VV}{ }^{\text {c }}$						
OUTPUT VOLTMGE Output volage insa Acouncy: Hengrose	$\mathrm{vour}_{\text {or }}$	$2.7 \mathrm{~V}=\mathrm{V}_{\mathrm{n}} \times 15 \mathrm{~V}$	-0.05	2048	005	*

Figure 3 - Excerpts from REF5025 datasheet

Since the long-term shift clearly cannot be a linear function of time and simultaneously satisfy both conditions, the shift rate must initially be higher (having a steeper slope) and then gradually slow down (becoming more linear) over time. Therefore, it may be estimated by the square-root function normalized to $1000^{\text {th }}$ of hours and shown below in Figure 4.

Output Voltage Shift $=50 \mathrm{ppm}{ }^{\star} \sqrt{ }[$ time $($ hours $) / 1000 \mathrm{hrs}]$

Life-Time Shift Graph

Output Voltage Shift $=50 \mathrm{ppm} * \sqrt{ }$ [time $($ hours $) / 1000 \mathrm{hrs}$]

REF5025 Long-Term Shift vs Time

Figure 4 - REF5025 long-term stability

For example, after 25,000 hours of nonstop operation in the field, the typical output voltage shift in the REF5025 can be calculated using above equation, $50 \mathrm{ppm} * \sqrt{ } 25=250 \mathrm{ppm}$, while after 10 years $(87,600$ hours) the shift would be $50 \mathrm{ppm} * \sqrt{ } 87.6=468 \mathrm{pp}$. Therefore, at the end-of-life the REF5025 output voltage shift as expected is within the 500 ppm allowable shift which equals to 0.05% of the datasheet maximum initial accuracy spec.

Life-Time Shift Rule Summary

You may estimate the maximum expected parametric shift over any given period of time by using:

- 100% of the max (min) PDS guaranteed value in the case of specs centered around a mean value (Vos, Vos Drift, Vref, AOL, etc.)
- 10\% of the max (min) guaranteed value for parameters specified as an absolute value (IQ, slew rate, Isc, etc).

One may pro-rate the shift based on the expected ten-year life of the product

It needs to be understood that the long-term shift is NOT exactly a linear function of time - the shift is greater (curve is steeper) initially and slows down (become linear) over time. Therefore, the linear character of shift usually excludes the first month due to continuing self-curing of the molding compound used for packaging of IC.

-is Texas

HTOL (High Temperature Operating Life)

- HTOL is used to measure the constant failure rate region at the bottom of the bathtub curve as well as to assess the wear-out phase of the curve for some use conditions.
- Smaller sample sizes than EFR but are run for a much longer duration
- Jedec and QSS default are Ta=125C for 1000 hours
- Q100 calls for 1000 hours at max temperature for the device's grade
- Most modern IC's undergo HTOL at Ta=150C for 300 hours

The Arrhenius Equation

The Arrhenius equation is a simple, but remarkably accurate, formula for the temperature dependence of the reaction rate constant of a process.

Process Rate $(P R)=A e^{-(E a / k T)}$

$A=A$ constant

Ea $=$ Thermal activation energy in electron-volts (eV)
$\mathrm{k}=$ Boltzman's constant, $8.62 \times 10^{-5} \mathrm{eV} / \mathrm{K}$

T = Absolute temperature in degrees Kelvin (Deg C + 273.15)

Acceleration Factor

Acceleration Factors are the ratio of the Process Rate at two temperatures.

$$
\text { AF(T1 to T2) }=\mathbf{P R 2} / \mathbf{P R 1}=\mathbf{A e}-(\text { Ea/kT2 }) / \mathbf{A e} e^{-(E a / k T 1)}
$$

$$
\mathrm{AF}(\mathrm{~T} 1 \text { to } \mathrm{T} 2)=\mathbf{e}^{(\mathrm{Ea} / \mathrm{k})(1 / \mathrm{T} 1-1 / \mathrm{T} 2)}
$$

A = A constant (has canceled out of the formula)
$\mathrm{Ea}=$ Thermal activation energy in electron volts (eV)
$\mathrm{k}=$ Boltzman's constant, $8.62 \times 10^{-5} \mathrm{eV} / \mathrm{K}$
$\mathrm{T}=$ Absolute temperature in degrees Kelvin (degrees $\mathrm{C}+273.15$)

Acceleration Factors (example 1)

Calculate the thermal acceleration factor (AF) between the stress test temperature at 150C and the product operating temperature at 65C:

T1 (application) $=65 \mathrm{C}->338 \mathrm{~K}$

T2 (life-test stress) $=150 \mathrm{C}$-> 423K
$\mathrm{Ea}=0.7 \mathrm{eV}$

$$
A F(65 C \text { to } 150 C)=e^{\left(0.7 e \mathrm{~V} / 8.62 \times 10^{\wedge-5}\right)(1 / 338-1 / 423)}=125
$$

This means every hour of stress at 150C is equivalent to 125 hours of use in the application at 65C.

Thus, for example, 300 hour life-test at 150C would cause similar shift as 37,500 hours ($125 * 300 \mathrm{hrs}$), or about 4 years, in the field at 65 C .

Acceleration Factors (example 2)

Calculate the thermal acceleration factor (AF) between the stress test temperature at 150C and the product operating temperature at 100C:

T 1 (application) $=100 \mathrm{C}->373 \mathrm{~K}$

T2 (life-test stress) =150C -> 423K
$\mathrm{Ea}=0.7 \mathrm{eV}$

$$
A F(100 C \text { to } 150 C)=e^{(0.7 e V / k)(1 / 373-1 / 423)}=13
$$

This means every hour of stress at 150C is equivalent to 13 hours of use in the application at 100C.

Thus, for example, 300 hour life-test at 150C would cause similar shift as 3,900 hours ($13 * 300 \mathrm{hrs}$), less than 6 month, in the field at 100C.

Semiconductor Quality and Reliability

	Early life failure rate	MTBF / FIT		Early life failure rate supporting data				MTBF / FIT supporting data						
Part number	ELFRDPPM	MTBF	FIT	Conf level (\%)	Test temp $\left({ }^{\circ} \mathrm{C}\right)$	Sample size	Fails	Usage temp $\left({ }^{\circ} \mathrm{C}\right)$	Conf level (\%)	Activation energy (eV)	Test temp $\left({ }^{\circ} \mathrm{C}\right)$	Test duration (hours)	Sample size	Fails
OPA192ID	22	4.89×10^{9}	0.2	60	125	41306	0	55	60.0	0.7	125	1000	57098	0

The Bathtub Curve

Questions ?

Comments, Questions, Technical Discussions Welcome:
Marek Lis
(520)-750-2162 lis marek@ti.com

