$$
\begin{array}{lll}
\mathrm{V}_{\text {in_min }}=0.25 & \mathrm{~V}_{\text {O_MIN }}=1 & \mathrm{~V}_{\text {REF }}=5 \\
\mathrm{~V}_{\text {in_max }}=0.8 & \mathrm{~V}_{\text {O_MAX }}=4.95 &
\end{array}
$$

Write the equations for the two cases in the system and solve for the gain and offset coeffcients (m and b)
$1 \quad 1=m \cdot 0.25+b$
$2 \quad 4.95=\mathrm{m} \cdot 0.8+\mathrm{b}$
Solve Eqn 2 for b
$\mathrm{b}=4.95-0.8 \cdot \mathrm{~m}$
Plug b back into Eqn1 and solve for m
$1=\mathrm{m} \cdot 0.25+(4.95-0.8 \cdot \mathrm{~m})$
$1=4.95-0.55 \cdot \mathrm{~m}$
$\mathrm{m}=7.1818181818181818182$
Plug m back into Eqn 2 and solve for b
$\mathrm{b}=4.95-0.8 \cdot(7.1818181818181818182)$
$\mathrm{b}=-0.79545454545454545456$
Double Check the results for m and b

$$
\begin{aligned}
& \mathrm{Vo}_{\text {min }}:=7.1818181818181818182 \cdot 0.25+-0.795=1 \\
& \mathrm{Vo}_{\text {max }}:=7.1818181818181818182 \cdot 0.8+-0.795=4.95
\end{aligned}
$$

Solve for the circuit component values:
Assuming R1 || R2 is \ll RG, then

$$
\mathrm{m}=\frac{\mathrm{R}_{\mathrm{F}}+\mathrm{R}_{\mathrm{G}}}{\mathrm{R}_{\mathrm{G}}}
$$

Plug in m and solve for RF

$$
\begin{aligned}
& 7.1818181818181818182=\frac{\mathrm{R}_{\mathrm{F}}+\mathrm{R}_{\mathrm{G}}}{\mathrm{R}_{\mathrm{G}}} \\
& \mathrm{R}_{\mathrm{F}}=6.1818181818181818182 \cdot \mathrm{R}_{\mathrm{G}}
\end{aligned}
$$

R1 and R2 can be solved for once b, VREF, and RF/RG are known

$$
\begin{aligned}
& |b|=V_{R E F} \cdot\left(\frac{R_{F}}{R_{G}}\right) \cdot\left(\frac{R_{2}}{R_{1}+R_{2}}\right) \\
& 0.795=5 \cdot 6.1818181818181818182 \cdot\left(\frac{R_{2}}{R_{1}+R_{2}}\right) \\
& R_{1}=37.879359634076615209 \cdot R_{2}
\end{aligned}
$$

