Op Amp Aol vs Vout Swing Rules-of-Thumb

Tim Green, MGTS 9/29/2015 Precision Analog Linear Applications Key TI Consultants:

Art Kay, MGTS

Marek Lis

Precision Analog Linear Applications

Slam Test vs Aol Test

Datasheet Specifications

OPA180 Specs for Discussion

- Output Voltage Output Swing from Rail
- Aol Open Loop Voltage Gain

Output Swing

ELECTRICAL CHARACTERISTICS: $V_s = \pm 2 V$ to $\pm 18 V$ ($V_s = \pm 4 V$ to $\pm 36 V$) (continued)

At $T_A = +25^{\circ}$ C, $R_L = 10 \text{ k}\Omega$ connected to $V_S/2$, and $V_{COM} = V_{OUT} = V_S/2$, unless otherwise noted.

		OPA2180, OPA4180			
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
OUTPUT					
	No load		8	18	mV
Voltage output swing from rail	R _L = 10 kΩ		250	300	mV
	$T_A = -40^{\circ}$ C to +105°C, $R_L = 10 \text{ k}\Omega$		325	360	mV
					-

This is "Slam Test" or "Saturation Test".

This is a **NON-LINEAR** test.

The output is driven hard into output stage saturation.

Aol is NOT guaranteed closer than 500mV to either rail

Note: Beyond point "B" is Test Equipment Range Limitation

🤴 Texas Instruments

Datasheet Specifications

Check Op Amp Datasheet for Op Amp used in application circuit as *ALL* Op Amps have this limitation!

- Output Voltage Output Swing from Rail
 - Output Saturation Specification
 - Slam Test
 - Claw Curve
- Aol Open Loop Voltage Gain
 - Measured in *Linear* Operating Range
 - Note Vout Swing where Aol is Tested

CMOS RRO Op Amps and Linear Vout Region

OPA188 – How do we know it is CMOS output?

ELECTRICAL CHARACTERISTICS:

High-Voltage Operation, $V_s = \pm 4$ V to ± 18 V ($V_s = \pm 8$ V to ± 36 V) (continued)

At $T_A = +25^{\circ}$ C, $R_L = 10 \text{ k}\Omega$ connected to $V_S / 2^{(1)}$, and $V_{CM} = V_{OUT} = V_S / 2^{(1)}$, unless otherwise noted.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
OUTPUT					
Voltage output swing from rail	No load		6	15	m∨
	$R_L = 10 k\Omega$		220	250	m∨
	$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$		310	350	m∨

Output Saturation or Slam Test shows < 300mV to the rail at light load (10k Ω) and <<100mV at no load.

OPA188 Aol Test

ELECTRICAL CHARACTERISTICS: High-Voltage Operation, V_s = ±4 V to ±18 V (V_s = +8 V to +36 V)

At $T_A = +25^{\circ}$ C, $R_L = 10 \text{ k}\Omega$ connected to $V_S / 2^{(1)}$, and $V_{CM} = V_{OUT} = V_S / 2^{(1)}$, unless otherwise noted.

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT			
OPEN-LOOP GAIN									
		$(V-) + 0.5 V < V_0 < (V+) - 0.5 V$	130	136		dB			
A _{OL}	Open-loop voltage gain	$(V-) + 0.5 V < V_O < (V+) - 0.5 V,$ $T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	120	126		dB			

Vout = (V+) - 0.5VVout = 18V - 0.5V = 17.5VRL = $10k\Omega$ lout = $\frac{Vout}{RL}$ lout = $\frac{17.5V}{10k\Omega} = 1.75mA$ Rds_on = $\frac{(V+) - Vout}{lout} = \frac{18V - 17.5V}{1.75mA} = 285.7\Omega$

OPA188 Claw Curves (they look like a Lobster Claw!)

OPA188 Claw Curve vs Linear Operation at 13mA

From Aol Test :

 $Rds_on = 285.7\Omega$

lout = 13mA

Vdrop_rds = lout * Rds_on

 $Vdrop rds = 13mA * 285.7\Omega = 3.7V$

 $Vdrop_claw = 2V @ 13mA$

For Linear Operation at 13mA use Vdrop_rds = 3.7V

Bipolar Emitter Follower Output Stage and Linear Vout Region

OPA227 – How do we know it is Bipolar Emitter Follower output?

	· · · -	1				
OUTPUT	•					
Voltage Output	R _L = 10 kΩ	(V −)+ 2	(V+)−2	(V–)+2	(V+)–2	V
	R _L = 10 kΩ	(V–)+2	(V+)–2	(V–)+2	(V+)–2	V
	T _A = -40°C to 85°C					
	R _L = 600 Ω	(V–)+3.5	(V+)-3.5	(V–)+3.5	(V+)-3.5	V
	R _L = 600 Ω	(V–)+3.5	(V+)-3.5	(V–)+3.5	(V+) − 3.5	V
	T _A = -40°C to 85°C					
	1					

Output Saturation or Slam Test shows >1.5V to the rail at light load ($10k\Omega$)

OPA227 Aol Test

6.6 Electrical Characteristics: OPAx227 Series (Vs = ±5 V to ±15 V)

At T_A = 25°C, and R_L = 10 k Ω , unless otherwise noted.

	PARAMETER TEST CONDITIONS		OPA227P, U OPA2227P, U			OPA227PA, UA OPA2227PA, UA OPA4227PA, UA			UNIT
			MIN	ТҮР	MAX	MIN	ТҮР	MAX	
OPEN-LO	DOP GAIN	1							
A _{OL}	Open-Loop Voltage Gain	$V_0 = (V)+2 V$ to $(V_+)-2 V$, R _L = 10 k Ω	132	160		132	160		dB
		T _A = -40°C to 85°C	132			132			dB
		$V_{\rm O}$ = (V–)+3.5V to (V+)–3.5 V, $\rm R_{L}$ = 600 Ω	132	160		132	160		dB
		T _A = -40°C to 85°C	132			132			dB

Aol Test (10k
$$\Omega$$
):
Vout = (V-)+2V
Vout = -15V+2V = -13V
RL = 10k Ω
lout = $\frac{Vout}{RL}$
lout = $\frac{-13V}{10k\Omega}$ = -1.3mA

Aol Test (600 Ω): Vout = (V-)+3.5V Vout = -15V+3.5V = -11.5V RL = 600 Ω lout = $\frac{Vout}{RL}$ lout = $\frac{-11.5V}{600\Omega}$ = -19.17mA

OPA227 Claw Curves (they look like a Lobster Claw!)

OPA227 Claw Curve vs Linear Operation

OPA227	Vdrop	Vdrop
lout	Aol	Claw
1.3mA	2V	0.5V
19mA	3.5V	2V

Vdrop_Linear = Vdrop_Claw + 1.5V

Bipolar Collector Output Stage and Linear Vout Region

OPA211 – How do we know it is Bipolar Emitter Follower output?

ELECTRICAL CHARACTERISTICS: V_s = ±2.25V to ±18V (continued)

BOLDFACE limits apply over the specified temperature range, $T_A = -40^{\circ}$ C to +125°C. At $T_A = +25^{\circ}$ C, $R_L = 10$ k Ω connected to midsupply, $V_{CM} = V_{OUT} =$ midsupply, unless otherwise noted.

			Standard Grade High Grade OPA211AI, OPA2211AI OPA211I ⁽¹⁾						
PARAMETER		CONDITIONS	MIN	TYP	MAX	MIN	ТҮР	MAX	UNIT
OUTPUT									
Voltage Output	Vout	R _L = 10kΩ, A _{OL} ≥ 114dB	(V-) + 0.2		(V+) – 0.2	(V-) + 0.2		(V+) – 0.2	v
		R _L = 600Ω, A _{OL} ≥ 110dB	(V–) + 0.6		(V+) – 0.6	(V–) + 0.6		(V+) – 0.6	v
		I ₀ < 15mA, A _{OL} ≥ 110dB	(V-) + 0.6		(V+) – 0.6	(V–) + 0.6		(V+) – 0.6	v

Output Saturation or Slam Test shows <300mV to the rail at light load ($10k\Omega$). Not as small as CMOS RRO unloaded (<100mV) but not as large as Bipolar emitter follower output (2V).

OPA211 – How do we know it is Bipolar Collector output?

Also because of the simplified schematic in the datasheet !

Figure 44. OPA211 Simplified Schematic

OPA211 Aol Test

ELECTRICAL CHARACTERISTICS: V_s = ±2.25V to ±18V

BOLDFACE limits apply over the specified temperature range, $T_A = -40^{\circ}C$ to +125°C. At $T_A = +25^{\circ}C$, $R_L = 10k\Omega$ connected to midsupply, $V_{CM} = V_{OUT} =$ midsupply, unless otherwise noted.

OPEN-LOOP GAIN							
Open-Loop Voltage Gain	Aol	$(V-) + 0.2V \le V_0 \le (V+) - 0.2V,$ $R_L = 10k\Omega$	114	130	114	130	dB
	A _{OL}	$(V-) + 0.6V \le V_{O} \le (V+) - 0.6V,$ $R_{L} = 600\Omega$	110	114	110	114	dB
Over Temperature							
OPA211	A _{OL}	$(V-) + 0.6V \le V_0 \le (V+) - 0.6V, I_0 \le 15mA$	110		110		dB
OPA211	AOL	$(V-) + 0.6V \le V_0 \le (V+) - 0.6V,$ 15mA $\le l_0 \le 30mA$	103		103		dB
OPA2211 (per channel)	Aol	$(V-) + 0.6V \le V_0 \le (V+)-0.6V, I_0 \le 15mA$	100				dB

Aol Test (10k Ω) : Vout = (V+)-0.2V Vout = 18V-0.2V = 17.8V RL = 10k Ω lout = $\frac{Vout}{RL}$ lout = $\frac{17.8V}{10k\Omega}$ = 1.78mA Aol Test (600 Ω): Vout = (V+)-0.6V Vout = 18V-0.6V = 17.4V RL = 600 Ω lout = $\frac{Vout}{RL}$ lout = $\frac{17.4V}{600\Omega}$ = 29mA

From OPA211 Aol Test

Aol Test (10k Ω) \rightarrow Vdrop_10k = 0.2V @ 1.78mA Aol Test (600 Ω) \rightarrow Vdrop_600 = 0.6V @ 29mA Rc (collector output resistance): Rc = $\frac{Vdrop_600 - Vdrop_10k}{lout_600}$ Rc = $\frac{0.6V - 0.2V}{29mA}$ = 13.8 Ω Vdrop_Linear = lout * Rc + 0.2V

OPA211 Claw Curves (they look like a Lobster Claw!)

OPA211 Claw Curve vs Linear Operation

OPA211	Vdrop	Vdrop
lout	Aol	Claw
29mA	0.6V	0.3V

Vdrop_Linear = (lout * Rc) + 0.2VRc for OPA211 = 13.8Ω

