
PRL-444 Four Channel High Input Impedance 50 Ω TTL Line Driver

APPLICATIONS

- Converting Conventional TTL/CMOS Outputs to 50 Ω TTL Outputs
- Long Line Drivers
- High Speed Digital Communications System Testing
- Basic Lab Tool
- HI/LO Logic Level Generation

FEATURES

- f_{max} > 70 MHz Normal/50MHz Invert
- Drives 100 ft of cable @ 50 MHz Normal
- 2ns Typical Output Rise & Fall Times
- Four independent TTL Compatible 10 $k\Omega$ Inputs
- Four independent 50 Ω TTL Outputs
- BNC or SMA I/O Connectors
- DC Coupled I/O's
- Self-contained 1.3 x 2.9 x 2.9-in. unit includes an AC/DC Adapter

PRL-444 Four Channel TTL Line Driver

DESCRIPTION

The PRL-444 is a four channel TTL/CMOS input, 50 Ω output TTL/CMOS Line Driver. It is intended for interfacing with computer I/O cards that have TTL outputs not suitable for driving 50 Ω lines. Each input has a 10 k Ω pulled up to 2.5V so that it can also be driven by open collector devices. The 50 Ω back-terminated outputs of the PRL-444 can drive long lines with or without 50 Ω load terminations. With 50 Ω load terminations, however, all outputs can drive 100 ft of 50 Ω cables at clock rates greater than 60 MHz.

If the inputs are left open, all outputs will go Hi, because the inputs are pulled up to $\pm 2.5 \text{V}$. All outputs can be set to the LO state, however, by either setting the polarity inverting switch to the down position or terminating all inputs to $2k\Omega$ or lower. The polarity inverting switch enables easy generation of four static Hi/Lo logic signals when the inputs are not driven.

The PRL-444 is housed in a $1.3 \times 2.9 \times 2.9$ -in. extruded aluminum enclosure and is supplied with a $\pm 8.5 \text{ V}/\pm 1.4 \text{ A C/DC}$ Adapter. A maximum of four units can share a single AC/DC adapter using the PRL-730 or PRL-736 voltage distribution modules. If mounting is desired, a pair of the #35001420 mounting brackets can accommodate any two PRL modules of the same length. Please refer to the Accessories Section of the literature for more detail.

A block diagram showing the equivalent input and output circuits of the PRL-444 is shown in Fig. 1.

ORDERING INFORMATION

The PRL-444 is available with either BNC or SMA I/O connectors. Order PRL-444-BNC for BNC input and output connectors. Order PRL-444-SMA for SMA input and output connectors. All standard units include an AC/DC adapter (PRL-760B or equivalent). For "mixed" connector configurations or for OEM units without enclosures and/or adapters, please consult the factory.

SPECIFICATIONS* $(0^{\circ} C \le T_A \le 35^{\circ}C)$

Unless otherwise specified, dynamic measurements are made with all inputs and outputs terminated into 50 Ω

SYMBOL	PARAMETER	Min	Тур	Max	UNIT	Comments
R _{in}	Input Resistance	9.9	10	10.1	kΩ	Pulled up to +2.5V
Rout	Output Resistance		50		Ω	
$ m V_{IL}$	TTL input Low Level	-0.5	0	0.5	V	
V _{IH}	TTL input High Level	2.0	2.4	5.0	V	
Vol	TTL Output Low Level	0	0.25	0.5	V	$R_L=50 \Omega$
Vон1	TTL Output High Level	2.2	2.5		V	$R_L=50~\Omega~@~DC$
Vон2	TTL Output High Level	4.4	5		V	$R_L=1 M\Omega @ DC$
I_{DC1}	DC Input Currents		260	300	mA	f≤75 MHz
I _{DC2}	DC Input Currents		220	250	mA	f=50 MHz sq. wave ⁽¹⁾
V_{DC}	DC Input Voltages	7.5	8.5	12	V	
V _{AC}	AC/DC Adaptor Input Voltage	103	115	127	V	
T _{PLH}	Propagation Delay to output ↑		15	20	ns	
$T_{ m PHL}$	Propagation Delay to output ↓		15	20	ns	
t_r/t_f	Rise/Fall Times (10%-90%)		2.2/1.8	3	ns	f=50 MHz sq. wave
T_{SKEW}	Skew between any 2 outputs		900	1800	ps	f=50 MHz sq. wave
F _{max1}	Max. Clock Frequency Outputs set to Normal	70	80		MHz	RG58C/U Cable length =3 ft
F _{max2}	Max. Clock Frequency Outputs set to Invert	50	60		MHz	RG58C/U Cable length =3 ft
F _{max3}	Max. Clock Frequency ⁽²⁾ Outputs set to Normal	50	60		MHz	RG58C/U Cable length =100 ft
PWmin	Minimum Pulse Width		8		ns	↑ Input
PWmin	Minimum Pulse Width		8		ns	↓ Input
	Size	1.3 x 2.9 x 2.9			in.	
	Weight	5			Oz	

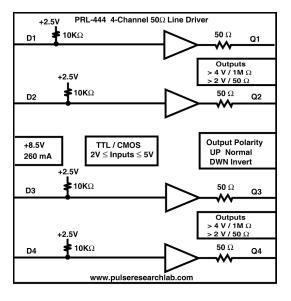


Fig. 1: PRL-444 Functional Block diagram

Notes:

- (1). For sharing a single PRL-760B, ± 8.5 V, ± 1.4 A AC/DC adapter, the total current should not exceed 1.4 A.
- (2). f_{MAX3} is measured by connecting a second PRL-444, with its input terminated into 50Ω , at the end of the 100 ft cable.

