Modifying Configurations and Tolerances for Improved Convergence in PSpice for TI

Lucas Burnette Texas Instruments Precision Amplifiers

PSPICE Convergence FAQ

- What is convergence?
 - Convergence is when an electrical simulator is able to find a solution to a circuit. Many different factors influence convergence.
- What can cause a failure to converge?
 - Improper connections, faulty spice models, tight tolerances, and oscillations
- How can I make my simulation converge?
 - Fix glaring circuit issues (PWR and GND connections, current directions)
 - Simplify circuit
 - Check 3rd party models first, then TI models (isolate and simulate)
 - Modify
 - Auto-Converge
 - Tolerances
 - Simulation Conditions
 - The parameters above will be discussed in the following slides

Tolerances Overview

- What are tolerances in PSpice for TI?
 - Tolerances are how much error/iterations will be accepted when finding a circuit's solution
 - Loosening tolerances can help the simulation converge and also speed up simulations
 - Larger tolerances mean the simulation is less accurate

Name	Value	Default Value
SPEED_LEVEL	3 💌	3
RELTOL	2m	0.001
VNTOL	1m	1.0u
ABSTOL	1n	1.0p
CHGTOL	0.01p	0.01p
GMIN	1.0E-12	1.0E-12
ITL1	150	150
ITL2	20	20
ITL4	10	10

(Recommended vs Default)

Tolerances Definitions

- **RELTOL** Relative accuracy of voltages and currents [%] Universal accuracy
- VNTOL Best accuracy of voltages [V] Smaller values are ignored
- ABSTOL Best accuracy of currents [A] Smaller values are ignored
- CHGTOL Best accuracy of charges [C] Smaller values are ignored
- **GMIN** Minimum conductance for any branch $[1/\Omega]$ Added to nonlinear devices
- ITL1 DC and bias "blind" iteration limit *Maximum iterations*
- ITL2 DC and bias "best guess" iteration limit Maximum step iterations
- ITL4 Transient time point iteration limit Maximum transient step iterations
- **TSTOP** Run to time [s]
- TMAX Maximum step size [s]

PSpice for TI vs TINA-TI – Default Tolerances

Tolerance	PSpice for TI	TINA-TI
RELTOL	1m	10m
VNTOL	1u	10u
ABSTOL	1р	10u
CHGTOL	1p	10f
GMIN	1р	-
ITL1	150	1000
ITL2	20	40
ITL4	10	20

Recommended Steps to Fix Convergence Issues

- 1. Enable AutoConverge and run simulation
- 2. Modify simulation tolerances
 - a. Change ABSTOL to 100p
 - b. Change VNTOL to 1m
 - c. Change RELTOL to 2m
- 3. Modify pseudotransient options
 - 1. Change PTRANABSTOL to 10u
 - 2. Change PTRANVNTOL to 100u
- 4. Set the initial conditions (IC) of capacitors to 0
- 5. If transient:
 - a. Check the "Skip initial transient bias point calculation" (SKIPBP) checkbox
 - b. Switch power supplies to pulse and start at 0

Note: Each step reduces simulation accuracy, especially RELTOL.

Try running your simulation with each step!

6

Step 1: Enabling AutoConverge

- 1. Go to Edit Simulation Profile
- 2. Go to Options > Analog Simulation > Auto Converge
- 3. Check AutoConverge
- 4. Click Apply and then OK

General				
	Analog Simulation		Value	Default Value
Inalysis	General	AutoConverge	1000	1000
onfiguration Files	Auto Converge		1000	1000
	MOSFEI Option		1000	1000
opuons	Analog Advanced		0.05	0.05
Data Collection	General		1.05-6	1.05-6
Probe Window	Bias Point		001	001
	Transiont		1.0F-10	1 0F-10
		✓ Restart		
	General			
	Advanced			
	Output File			
	General			

Step 2: Changing Tolerances

- 1. Go to Edit Simulation Profile
- 2. Go to Options > Analog Simulation > General
- 3. Change ABSTOL to 1n
- 4. Change VNTOL to 1m
- 5. Change RELTOL to 2m
- 6. Click Apply and then OK

eneral	Analog Simulation	Name	Value	Default Value	
nalysis	General	SPEED_LEVEL	3	▼ 3	
opfiguration Filos	Auto Converge	RELTOL	2m	0.001	
onliguration Flies	MOSEET Option	VNTOL	1m	1.0u	
ptions		ABSTOL	1.0n	1.0p	
ata Collection	Analog Advanced	CHGTOL	0.01p	0.01p	
	General	GMIN	1.0E-12	1.0E-12	
robe Window	Bias Point	ITL1	150	150	
	Transient	ITL2	20	20	
	Gate Level Simulation	ITL4	10	10	
	General	TNOM	27.0	27.0	
	Adversed	THREADS	0	0	
		ADVCONV			
	- Output File				
	General				

Step 3: Changing Pseudotransient Options

- 1. In your schematic, go to Place > Text (or use the hotkey "T")
- 2. Type "@Pspice: .options PTRANABSTOL=10u PTRANVNTOL=100u"
- 3. Click OK and place text in schematic

Place Text	×
@Pspice: .options PTRANABSTOL=10u PTRANVNTOL=100u	ОК
	Cancel
	Help
Press Ctrl + Enter to start a new line	
Color	
Default • 0* 90* 1	180° 🔵 270°
Font	
Change Use Default Courier New 7 (default)	
Text Justification	
Default 🔹	

Step 4: Setting CAP Initial Conditions

- 1. CTRL+LeftClick to highlight multiple capacitors
- 2. LeftClick a capacitor twice to open Property Editor
- 3. Change all IC fields to 0
- 4. Click Apply and then close Property Editor

Click Pivot if properties are

Step 5a (Transient) : Check SKIPBP

- 1. Go to Edit Simulation Profile
- 2. Go to Analysis
- 3. Check Skip initial transient bias point calculation (SKIPBP)
- 4. Click Apply and then OK

Simulation Settings - trans					×
General Analysis Configuration Files Options Data Collection Probe Window	Analysis Type: Time Domain (Transient) Options: General Settings Monte Carlo/Worst Case Parametric Sweep Temperature (Sweep) Save Bias Point Load Bias Point Save Check Point Restart Simulation	Run To Time : Start saving data after : Transient options: Maximum Step Size 1 Skip initial transient bias Run in resume mode	160us 0 10n secor s point calculation (SKIPB)	seconds (TSTOP) seconds nds p) Output File Options	
		ОК	Cancel Apply	Reset Help	

11

Step 5b (Transient): Use pulse power supplies

- 1. Go to Place > PSpice Component > Source > Voltage Sources > Pulse
- 2. Configure V1 as 0 and V2 as the desired VDD
- 3. Configure TD as 0
- 4. Calculate TR, TF as at least $(100ns * \frac{VCC}{5V})$
- 5. Configure PW and PER as longer than simulation time

Non-Convergence Example

13

Convergence problem in bias point calculation

Non-Convergence Example - Results

After enabling AutoConverge (Step 1), the simulation converges. After modifying the tolerances (Step 2), the simulation converges 300% faster.

🤴 Texas Instruments