Solving Op Amp Stability Issues

(For Voltage Feedback Op Amps)
Tim Green \& Collin Wells
Precision Analog Linear Applications

This presentation will focus on techniques to solve voltage feedback op amp stability problems. The content is intended to teach any range of professional, from technician to PHD, to become an op amp stability expert!

Overview

Main Presentation Focus:

1) Op Amp Stability Basics
2) Stability Analysis - Method 1 : Loaded Aol \& $1 / \beta$ Technique
A) Riso Compensation Technique for Output Capacitive Loads
3) Stability Analysis - Method 2 : Aol \& $1 / \beta$ Technique
A) CF Compensation Technique for Input Capacitance
4) Stability Tricks and Rules of Thumb

Appendix:

1) Additional Useful Tools for your Analog Stability Toolbox
A) Op Amp Output Impedance
B) Pole and Zero: Magnitude and Phase on Bode Plots
C) Dual Feedback Paths and $1 / \beta$
D) Non-Loop Stability Problems
2) Nine different ways to stabilize op amps with capacitive loads
A) Definition by example using TINA-TI simulations

For small signal op amps the most common cause of op amp instability is capacitance on the output or input. Sometimes output capacitive loads are obvious, such as a reference buffer loaded by an output capacitor, for high frequency filtering, and as a charge reservoir for load transients. Other output capacitive loads can often be overlooked, such as, cable capacitance and MOSFET gate capacitance. Input capacitance is easy to overlook, since it is usually parasitic capacitance, such as, op amp input capacitance, photodiode capacitance, or diode/transient voltage suppressor capacitance. Both input and output capacitance are often the culprits of unstable op amp circuits.

For an inverting gain configuration, as shown here, some engineers will add a filter, Cin, which will result in a nice oscillatory behavior unless proper compensation is added for stability. Output capacitance on an op amp should always be of concern from a stability concern. Even if it is not a sustained oscillation, a response to a transient step excitation can result in undesired overshoot and ringing on the output. This becomes more of concern as we designs systems with 12 bit and higher resolution A/D Converters with sample rates fast enough to capture the ringing.

A typical "Supply Splitter" is shown above. Many an engineer has built one of these for a mid-supply reference point in a single supply system. A large capacitance is put on the output to provide a local charge reservoir for load transients on VOUT, and to also provide good high frequency bypassing in the form of a low impedance to ground at high frequencies, should loads connected generate noise or high frequency spikes. Then, in the lab, he has connected a DC meter and confirmed that the output voltage, VOUT, is indeed mid-supply. Now the supply splitter circuit goes into production. Best case the product passes final test and is shipped to the customer. Worst case production fall-out happens and yields go down. Worst, worst case the product ships to the end customer and the end customer starts to have intermittent performance problems All of this due to a marginally stable or unstable mid-supply reference circuit which could have been avoided by proper stability analysis at the design phase! Regardless of the final signal frequency of operation, including DC only, op amps have usable bandwidth and are happy to oscillate under the right conditions. Check stability on all op amp circuits.
Treat all op amp pins as inputs. A transient on +input, -input, output, or power supplies (Vcc or Vee) can set an unstable or marginally stable into an undesired, burst, oscillatory state that may eventually recover. However, during the oscillatory response due to a transient, the end application may read false data, make wrong decisions, or even cause unwanted shutdowns.

Your lab contains instruments that can help you check prototype circuits for stability problems. Most labs will have a Signal Generator and an Oscilloscope. Techniques will be shown later in this presentation on how to easily check op amp stability using these instruments in the time domain. If a Gain/Phase Analyzer or Network/Spectrum Analyzer are available they can be used to check op amp stability in the frequency domain.

In the time domain, a transient analysis in the lab, with the results displayed on and oscilloscope, can indicate whether there is a stability problem in the op amp circuit. On the output waveform, oscillations or ringing, overshoots, unstable DC voltages or high distortion are all indicators of stability issues.

In the frequency domain, a Gain/Phase Analyzer output waveform will have peaking in the magnitude plot and rapid phase shifts in the phase plot, if there are stability issues with the op amp circuit.

Quick Op-Amp Theory
 Bode Plot Review Basic Stability Tools

Pole \rightarrow A single pole response has a $-20 \mathrm{~dB} / \mathrm{dec}$ ade, $-6 \mathrm{db} /$ octave roll-off in the Bode plot (magnitude or gain plot). At the pole location the gain is reduced by -3 dB from the previous flat-band gain. In the phase plot the pole has a -45° phase shift at f_{p}, the frequency of the pole location. The phase extends on either side of f_{p} to roughly 0° and -90° at a $-45^{\circ} /$ decade slope. A single pole may be represented by a simple RC low pass network as shown. Recall that at low frequencies a capacitor is an open and at high frequencies a capacitor is a short. Hence at high frequencies $\mathrm{V}_{\text {OUT }}$ is shorted to ground and gain goes to zero.

Zero \rightarrow A single zero response has a $+20 \mathrm{~dB} /$ decade, $+6 \mathrm{db} /$ octave "roll-on" (opposite of roll-off?) in the Bode plot (magnitude or gain plot). At the zero location the gain is increased by +3 dB from the previous flat-band gain. In the phase plot the pole has $\mathrm{a}+45^{\circ}$ phase shift at f_{z}, the frequency of the zero location. The phase extends on either side of f_{z} to roughly 0° and $+90^{\circ}$ at a $+45^{\circ} /$ decade slope. A single zero may be represented by a simple LR high pass network, driven by a current sources, as shown. Recall that at low frequencies an inductor is a short and at high frequencies a inductor is an open, or a very large value of impedance. Hence at low frequencies L is shorted and the current gain of $\mathrm{x} 10 \mathrm{uA} / \mathrm{V}$ into the R of 100 k -ohm yields a gain $=1$ for $\mathrm{V}_{\mathrm{OUT}} / \mathrm{V}_{\text {IN }}$. As frequency increases the impedance of the inductor increases which will increase the $\mathrm{V}_{\text {Out }} / \mathrm{V}_{\text {IN }}$ gain at a rate of $+20 \mathrm{~dB} /$ decade for the fixed current gain of $x 10 \mathrm{uA} / \mathrm{V}$ times the increasing impedance of L as frequency increases.

Our Intuitive Capacitive Model for AC Stability Analysis is defined above and contains three distinct operating areas. At "DC" the capacitor will be viewed as an open circuit. At "High Frequency" the capacitor will be viewed as a short circuit. In between the capacitor will be viewed as a frequency controlled resistor with a $1 / 2 \pi f C$ decrease in impedance as frequency increases.

Our Intuitive Inductor Model for AC Stability Analysis is defined above and contains three distinct operating areas. At "DC" the inductor will be viewed as a short circuit. At "High Frequency" the inductor will be viewed as an open circuit. In between the inductor will be viewed as a frequency controlled resistor with a $2 \pi f L$ increase in impedance as frequency increases.

SPICE simulation confirms the impedance effects for a capacitor as Low Frequency = High Impedance and High Frequency = Low Impedance. Spice simulation also confirms the impedance effects for an inductor as Low Frequency = Low Impedance and High Frequency = High Impedance.

Our Intuitive Op Amp Model for AC Stability Analysis is defined above. The differential voltage between the $\mathrm{IN}+$ and IN - terminals will be amplified by $\times 1$ and converted to a single-ended AC Voltage Source, Vdiff. Vdiff is then amplified by $\mathrm{K}(\mathrm{f})$. K(f) represents the data sheet Aol Curve (Open Loop Gain vs Frequency Plot). This resultant voltage, Vo, is then followed by the Op Amp Open Loop, AC Small Signal, Output Impedance, Ro. After passing through Ro the voltage, Vo, appears as Vout.

The lower diagram is the traditional control loop model which represents an op amp circuit with feedback. The top diagram depicts the sections of a typical op amp circuit with feedback which correspond to the control loop model. This model of an op amp circuit with feedback we will call the Op Amp Loop Gain Model. Notice that the Aol is the Op Amp data sheet parameter Aol, and is the open loop gain of the op amp. β (Beta) is the amount of output voltage from $\mathrm{V}_{\text {out }}$ which gets fed back as feedback to the op amp -input. The β network in this example is a resistor feedback network.
In the derivation of $\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}$ we see that the closed loop gain function is directly defined by Aol and β.
β and $1 / \beta$

$>\beta$ is easy to calculate as feedback network around the Op Amp
$>1 / \beta$ is reciprocal of β
> Easy Rules-Of-Thumb and Tricks to Plot $1 / \beta$ on Op Amp Aol Curve
> Plotting Aol Curve and $1 / \beta$ Curve shows Loop Gain
Texas Instruments

Before we simulate a circuit in SPICE we will want to know what the approximate outcome will be. Remember GIGO (Garbage In Garbage Out)!!
Beta (β) and its reciprocal $1 /$ Beta $(1 / \beta)$ along with the data sheet Aol Curve will provide a powerful method for first-order approximations of Loop Gain analysis before we run SPICE. Beta (β) is easy to compute and its reciprocal even easier to plot!

Amplifier Stability Criteria

```
\(\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}=\mathrm{Aol} /(1+\mathrm{Aol} \beta\) )
If: Aol \(\beta=-1\)
Then: \(\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}=\mathrm{Aol} / 0 \rightarrow \infty\)
If \(\mathrm{V}_{\text {OUT }} / V_{\text {IN }}=\infty \rightarrow\) Unbounded Gain
Any small changes in \(\mathrm{V}_{\text {IN }}\) will result in large changes in \(\mathrm{V}_{\text {OUT }}\) which will feed
    back to \(\mathrm{V}_{\text {IN }}\) and result in even larger changes in \(\mathrm{V}_{\text {OUT }} \rightarrow\) OSCILLATIONS \(\rightarrow\)
    INSTABILITY !!
Aolß: Loop Gain
Aol \(\beta=-1 \rightarrow\) Phase shift of \(\pm 180^{\circ}\), Magnitude of 1 (OdB)
fcl: frequency where Aol \(\beta=1\) ( 0 dB )
Stability Criteria:
At fcl, where Aol \(\beta=1\) (0dB), Phase Shift < \(\pm 180^{\circ}\)
Desired Phase Margin (distance from \(\pm 180^{\circ}\) Phase Shift) \(\geq 45^{\circ}\)

From our Op Amp Loop Gain Model we can derive the criteria for a stable, closed loop, op amp circuit.
At the frequency fcl, where Loop Gain (Aol \(\beta\) ) goes to 1 or OdB, if the Loop Gain Phase Shift is \(+/-180^{\circ}\), then we have instability!!
At fcl the distance the Loop Gain Phase Shift is from \(180^{\circ}\) is called the Loop Gain Phase Margin. Our desired Loop Gain Phase Margin is \(>45^{\circ}\) for an acceptably damped, well-behaved, closed loop response.


Since stability is defined by the magnitude and phase plot of Loop Gain (Aol \(\beta\) ) then we will need to know how to easily analyze Loop Gain (Aolß) magnitude and phase. To do this we will break the closed loop op amp circuit and inject a small signal AC source into the loop and measure amplitude and phase to plot the complete loop gain picture. It is key to understand that Loop Gain is an open loop analysis as shown here.


Loop Gain is an Open Loop Gain Test which looks at magnitude and phase around the entire loop starting on one side of where the loop is broken open and ending at the other side where it is broken open. The loop can be broken anywhere but the break shown here will account for both input capacitance effects and the interaction of the op amp open loop output impedance, Zo, with any capacitive loading on the output. When breaking the loop open remember to inject the test signal into the highest impedance side of the break and read out from the lowest impedance side of the break. This makes intuitive sense since you cannot excite a circuit if the source is being shorted out by a low impedance. When analyzing a circuit built in SPICE for simulation the traditional Loop Gain Test breaks the closed loop op amp circuit through the use of an inductor and capacitor. A very large value of inductance ensures the loop is closed at DC (a requirement for SPICE simulation is to be able to calculate a DC Operating Point first before performing an AC Analysis) but open at AC frequencies of interest. A very large value of capacitance ensures that our AC Small Signal Source is not connected at DC but is directly connected at the frequencies of interest.


The SPICE loop gain circuit above is the preferred way to break open the loop for loop gain analysis for most applications. It will account for both input capacitance and any open loop output impedance, Zo, interactions with capacitive output loading. The DC Equivalent Circuit shows that the loop will be closed by the inductor, LT, being a short at DC and the capacitor, CT, being an open so our test generator, VG1, will not be connected. SPICE must find a DC operating point as a requirement before any AC Analysis will run. It is important to check the DC Operating point before running an AC Analysis. If an op amp output is saturated for example SPICE will use this condition to build its AC Equivalent Models and they will not be correct since the op amp will have a different AC Equivalent Model in saturation than in normal linear operation. AC Analysis is only valid when the op amp is in a linear operating condition. The AC Equivalent Circuit shows what SPICE will use during its AC Analysis. For all frequencies of interest the capacitor CT is a short and our test generator, VG1, injects the signal into the open loop since for all frequencies of interest the inductor, LT , is an open.


The \(1 / \beta\) plot plotted on the Aol curve will provide a clear picture of exactly what the Loop Gain (Aol \(\beta\) ) plot is. From our derivation above we clearly see that the Aol \(\beta\) magnitude plot is simply the difference between Aol and \(1 / \beta\) when we plot \(1 / \beta\) in dB on an Aol curve. Note that as frequency increases Aol \(\beta\) decreases. Aol \(\beta\) is the gain left to correct for errors in the \(\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}\) or Closed Loop response. So as Aol \(\beta\) decreases the \(\mathrm{V}_{\text {OUT }} / V_{\text {IN }}\) response will become less accurate until the point where Aol \(\beta\) goes to 0 dB where from then on the \(\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}\) response will simply follow the Aol curve.


Once we plot \(1 / \beta\) on the Aol curve there is an easy first-order check for stability called Rate-Of-Closure. This Rate-Of-Closure stability check is defined as the "rate of closure" of the \(1 / \beta\) curve with the Aol curve at fcl, where loop gain goes to 0 dB . A 40db/decade rate-of-closure implies an UNSTABLE circuit and a \(20 \mathrm{~dB} /\) decade rate-of-closure implies a STABLE circuit. The \(40 \mathrm{~dB} / \mathrm{dec}\) ade rate-ofclosure implies instability because it implies two poles in the Aol \(\beta\) plot before fcl which can mean a 180 phase shift. Four examples are shown above with their respective rate-of-closure computed below.
fcl1: Aol \(-1 / \beta 1=-20 \mathrm{~dB} /\) decade \(-+20 \mathrm{~dB} /\) decade \(=-40 \mathrm{~dB} /\) decade \(\rightarrow 40 \mathrm{~dB} /\) decade rate-of-closure \& UNSTABLE
fcl2: Aol-1/ß2 =-20dB/decade \(-0 \mathrm{~dB} /\) decade \(=-20 \mathrm{~dB} /\) decade \(\rightarrow 20 \mathrm{~dB} /\) decade rate-of-closure \& STABLE
fcl3: Aol \(-1 / 33=-40 \mathrm{~dB} /\) decade \(-(-20 \mathrm{~dB} /\) decade \()=-20 \mathrm{~dB} /\) decade \(\rightarrow 20 \mathrm{~dB} /\) decade rate-of-closure \& STABLE
fcl4: Aol-1/ß4 = -40dB/decade \(-0 \mathrm{~dB} /\) decade \(=-40 \mathrm{~dB} /\) decade \(\rightarrow 40 \mathrm{~dB} /\) decade rate-of-closure \& UNSTABLE


A loop gain analysis example serves to relate how we can analyze the stability of an op amp circuit from the \(1 / \beta\) curve plotted on the Aol curve. Here as frequency increases the capacitor Cin goes towards a short in impedance thereby lowering the magnitude of the \(\beta\) plot with frequency (less voltage feedback as frequency increases) and respectively raising the \(1 / \beta\) curve as frequency increases. From our rate-of-closure criteria we predict an UNSTABLE circuit. Note the locations of poles, \(\mathfrak{f p 1}\) and fp2, in the Aol curve and the zero, \(\mathfrak{f z 1}\), in the \(1 / \beta\) plot.

\section*{Loop Gain (Aolß) Plot from Aol \& \(1 / \beta\) Plot}


To Plot Aol \(\beta\) from Aol \& \(1 / \beta\) Plot:
Poles in Aol curve are Poles in Aol \(\beta\) (Loop Gain)Plot
Zeros in Aol curve are Zeros in Aolß (Loop Gain) Plot
Poles in \(1 / \beta\) curve are Zeros in Aol \(\beta\) (Loop Gain) Plot
Zeros in \(1 / \beta\) curve are Poles in Aol \(\beta\) ( Loop Gain) Plot
[Remember: \(\beta\) is the reciprocal of \(1 / \beta\) ]
Example 1: Note locations of poles and zeros in Loop Gain 悛 Texas Instruments

From our \(1 / \beta\) plot on the Aol curve we can plot the Aol \(\beta\) (Loop Gain) magnitude plot. From the Aol \(\beta\) (Loop Gain) magnitude plot we can then plot the Aol (Loop Gain) phase plot. The rules to create an Aol (Loop Gain) plot from the \(1 / \beta\) plot on the Aol curve are simple: Poles and zeros from the Aol curve are poles and zeros in the Aol \(\beta\) (Loop Gain) plot. Poles and zeros from the \(1 / \beta\) plot are opposite in the Aol \(\beta\) (Loop Gain) plot. One easy way to remember this is \(\beta\) is used in the Aol \(\beta\) (Loop Gain) plot and \(1 / \beta\) is the reciprocal of \(\beta\) and so we would expect the Aol \(\beta\) (Loop Gain) curve to use the reciprocal of poles and zeros from the \(1 / \beta\) plot. Reciprocal of a pole is a zero and reciprocal of a zero is a pole.

Phase shift at \(\mathrm{fcl}(\Theta \mathrm{cl})\) can be seen to be \(-180^{\circ}\) which is UNSTABLE. Mathematically the complete Phase Shift is calculated as:
©cl \(=-\tan ^{-1}(\mathrm{fcl} / \mathrm{fp} 1)-\tan ^{-1}(\mathrm{fcl} / \mathrm{fz} 1)-\tan ^{-1}(\mathrm{fcl} / \mathrm{fp} 2)\)
Ocl \(=-\tan ^{-1}(10 \mathrm{k} / 10)-\tan ^{-1}(10 \mathrm{k} / 1 \mathrm{k})-\tan ^{-1}(10 \mathrm{~K} / 1 \mathrm{M})\)
-cl \(=-89.94^{\circ}-84.29^{\circ}-0.57^{\circ}\)
\(\Theta \mathrm{cl}=-174.8^{\circ}\)
Note that in the Aol \(\beta\) (Loop Gain) plot there are all poles (fp1, fz1, fp2)

\section*{First order approximation errors for magnitude plots:}

Actual Pole is -3 dB down from ideal at fp
Actual Zero is +3 dB up from ideal at fz
First order approximation errors for phase plots:
Actual Pole Phase is \(6^{\circ}\) lower than \(0^{\circ}\) a decade less than \(f p\)
Actual Pole Phase is \(6^{\circ}\) higher than \(-90^{\circ}\) a decade more than fp
Actual Zero Phase is \(6^{\circ}\) higher than \(0^{\circ}\) a decade less than fz
Actual Pole Phase is \(6^{\circ}\) lower than \(+90^{\circ}\) a decade more than fz
Phase margin is a definition used to describe how close closed loop op amp configuration is to oscillation (how far away from \(180^{\circ} \mathrm{Ocl}\) is). A positive phase margin is an indication of stability. A phase margin of about \(45^{\circ}\) is desirable for maximum response to a pulse input without ringing or instability.
Opm \((\) phase margin \()=180+\Theta \mathrm{cl}\)
First Order Approximation Phase Margin:
\(\Theta \mathrm{pm}(\) phase margin \()=180^{\circ}+\Theta \mathrm{cl}\)
\(\Theta \mathrm{pm}=180^{\circ}+\left(-180^{\circ}\right)=0^{\circ}\)
Actual Phase Margin:
\(\Theta \mathrm{pm}(\) phase margin \()=180^{\circ}+\Theta \mathrm{cl}\)
\(\Theta \mathrm{pm}=180^{\circ}+\left(-174.8^{\circ}\right)=5.2^{\circ}\)


The \(\mathrm{V}_{\text {Out }} / \mathrm{V}_{\text {IN }}\) closed loop response is not always the same as \(1 / \beta\). In the example above we see that the AC small signal feedback is modified by the RnCn network in parallel with RI. As frequency increases we see the results of this network reflected in the \(1 / \beta\) plot on the Aol curve. Think of this example as an inverting summing op amp circuit. We are summing in \(\mathrm{V}_{\text {IN }}\) through RI and Ground through the Rn-Cn netowrk. \(\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}\) will not be affected by this \(\mathrm{Rn}-\mathrm{Cn}\) network at low frequencies and the desired gain is seen as 20 dB . As Loop Gain (Aol \(\beta\) ) is forced to \(1(0 \mathrm{~dB})\) by the Rn-Cn network there is no Loop Gain (Aol \(\beta\) ) left to correct for errors and \(\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}\) will follow the Aol curve at frequencies above fcl. In this example the closed loop gain is inverting but the \(1 / \beta\) will reflect a noninverting gain equivalent number at \(D C\). One way to view this is that the \(1 / \beta\) gain is the "noise gain" and a noise source could appear on the +input of the op amp. In essence the op amp always runs in its "noise gain" for loop stability considerations.

\section*{How to Modify \(1 / \beta\) for Stable Circuits}


Two common op amp networks, ZI and ZF are shown above. We will perform a \(1^{\text {st }}\) Order Analysis on each of these networks independently and then use Tina SPICE to simulate the op amp circuit and check if our predicted results agree! The key to our \(1^{\text {st }}\) Order Analysis will be to use our Intuitive Component Models (capacitor and inductor) from earlier in this presentation and a little intuition.


Let's perform our \(1^{\text {st }}\) Order Analysis for the ZF network above. This is a feedback network in the op amp circuit. Cp is open at low frequency and the Low Frequency \(1 / \beta\) becomes simply RF/RI as shown. At the other frequency extreme, high frequency, Cp is a short and the High Frequency \(1 / \beta\) becomes (Rp//RF)/RI. However, when Cp is a short \(\mathrm{Rp} \ll \mathrm{RF}\) and Rp should dominate the feedback resistance and so we approximate high frequency gain to be Rp/RI. We note there is a reactive element in the feedback path of the op amp, a capacitor, and therefore know there has to be some poles and/or zeros somewhere in the transfer function. At the frequency where the magnitude of Cp matches that of the parallel impedance with it (dominated here by RF) we anticipate a pole in the \(1 / \beta\) plot. Feedback resistance will be getting smaller and therefore \(\mathrm{V}_{\text {OUT }}\) must start to reduce. Now the frequency where the magnitude of Cp matches that of the impedance in series with it, Rp, we expect a zero since as Cp approaches a short the net feedback resistance can become no smaller and \(\mathrm{V}_{\text {OUt }}\) must flatten out as frequency increases. So we have predicted by our \(1^{\text {st }}\) order analysis where a pole and zero exists as well as the Low Frequency and High Frequency \(1 / \beta\) levels.


Our optimally scaled Tina SPICE simulation results are displayed above. Our First Order analysis results are shown along with the actual measured results. Our \(1^{\text {st }}\) Order Analysis results and predictions are not exact but certainly more than acceptable for a powerful and intuitive analysis for the \(1 / \beta\) curve for AC Stability Analysis.


Let's perform our \(1^{\text {st }}\) Order Analysis for the ZI network above. This is an input network in the op amp circuit. Cn is open at low frequency and the Low Frequency \(1 / \beta\) becomes simply RF/RI as shown. At the other frequency extreme, high frequency, Cn is a short and the High Frequency \(1 / \beta\) becomes RF/(RI//Rn). However, when Cp is a short \(\mathrm{Rn} \ll \mathrm{RI}\) and Rn should dominate the input resistance and so we approximate high frequency gain to be RF/Rn. We note there is a reactive element in the input path of the op amp, a capacitor, and therefore know there has to be some poles and/or zeros somewhere in the transfer function. At the frequency where the magnitude of Cn matches that of the parallel impedance with it (dominated here by RI) we anticipate a zero in the \(1 / \beta\) plot. Input resistance will be getting smaller and therefore \(\mathrm{V}_{\text {OUT }}\) must start to increase. Now the frequency where the magnitude of Cn matches that of the impedance in series with it, Rn, we expect a pole since as Cn approaches a short the net input resistance can become no smaller and \(\mathrm{V}_{\text {OUT }}\) must flatten out as frequency increases. So we have predicted by our \(1^{\text {st }}\) order analysis where a pole and zero exists as well as the Low Frequency and High Frequency \(1 / \beta\) levels.


Our optimally scaled Tina SPICE simulation results are displayed above. Our First Order analysis results are shown along with the actual measured results. Our \(1^{\text {st }}\) Order Analysis results and predictions are not exact but certainly more than acceptable for a powerful and intuitive analysis for the \(1 / \beta\) curve for AC Stability Analysis.

\title{
Stability Analysis - Method 1 (Loaded Aol \& 1/ \(\beta\) Technique) (Riso Compensation)
}

There are two basic methods for analyzing op amp stability problems. The first method, Method 1 , will use the Loaded Aol and \(1 / \beta\) Technique to analyze stability problems due to capacitive loading of an op amp output. The compensation used for this example will be Riso Compensation.

\section*{Capacitive Loading on Op Amp Outputs}


Capacitive loading on op amp outputs without proper stability considerations can lead to undesired oscillations on the op amp outputs as shown here. The worst case will be for a unity gain buffer as shown on the left, since phase margin will be lowest for this configuration. On the right is the transient response for a higher gain circuit with the same op amp and same capacitive load, with less oscillation, since phase margin is increased as closed loop gain is increased. Higher closed loop gain will also result in a decrease in closed loop bandwidth as well.


A loop gain analysis circuit can be used to analyze the "Loaded Aol" due to CLoad. As shown here the "Loaded Aol" curve due to CLoad,1uF, has an additional pole in it around \(3 \mathrm{kHz}, \mathrm{fp} 2\). fp 1 is the original pole in the Aol curve of the op amp before CLoad is applied. Since the circuit is running as a unity gain follower \(1 / \beta\) is 0 dB and at fcl, where \(1 / \beta\) intersects the Loaded Aol curve, we see a \(40 \mathrm{~dB} /\) decade rate-of-closure, which is UNSTABLE by our rate-of-closure criteria.


Our stability analysis of the effects of capacitive loading on an op amp will be simplified by the introduction of the "Loaded Aol Model". As shown in this slide the data sheet Aol curve is followed by the op amp output resistance, Ro. The capacitive load, CLoad, in conjunction with Ro will form an additional pole in the Aol plot and may be represented by a new "Loaded Aol" plot. The Ro-CLoad network form the "Aol Load" on the original op amp "Aol".


The data sheet Aol is loaded by the Ro-CLoad load network as shown here. The additional pole, fp2, due to Ro and CLoad is computed here.


The op amp original "Aol" is "multiplied" by the "Aol Load" to yield the resultant "Loaded Aol" curve. On dB plots linear multiplication is performed by adding the curves in dB. As shown above it becomes easy to see the resultant "Loaded Aol" by adding the op amp original "Aol" plus the "Aol Load" formed by Ro-CLoad.


The Loaded Aol caused by CLoad, 1uF, will result in Loop Gain phase margin at fcl of only 0.548 degrees. This is definitely an UNSTABLE circuit as it stands here.

\section*{Riso Compensation}

Riso will add a zero in the Loaded Aol Curve


One way to compensate the op amp circuit for CLoad is to add Riso Compensation. Note the point of feedback for the circuit is still taken directly at the output of the op amp. The addition of Riso will add a zero into the "Loaded Aol" curve and stabilize the circuit.


The Riso Compensation will add \(\mathfrak{f z 1}\) into the "Loaded Aol" which will result in a \(20 \mathrm{~dB} / \mathrm{decade}\) slope crossing 0db at fcl. This will result in a stable circuit by our rate-of-closure criteria of \(20 \mathrm{~dB} /\) decade indicating stability.


Our stability analysis using the "Loaded Aol Model" will be analyzed for the addition of the Riso Compensation. The data sheet Aol curve is followed by the op amp output resistance, Ro, Riso Compensation, Riso, and load capacitance, CLoad. Note the point of feedback is between Ro and Riso. The capacitive load, CLoad, in conjunction with Ro and Riso will form an additional pole in the Loaded Aol plot. The capacitive load, CLoad, in conjunction with Riso will add a zero in the Loaded Aol plot.


The data sheet Aol is loaded by the Ro-Riso-CLoad load network as shown here. The additional pole, fp2, due to Ro + Riso and CLoad is computed here. Also we see a zero, fz1, formed by Riso and Cload.


The op amp original "Aol" is "multiplied" by the "Aol Load" with Riso Compensation to yield the resultant "Loaded Aol" curve. On dB plots linear multiplication is performed by adding the curves in dB . As shown above, it becomes easy to see the resultant "Loaded Aol", by adding the op amp original "Aol" plus the "Aol Load", formed by the Ro-Riso-CLoad combination.

\section*{Riso Compensation Design Steps}
1) Determine fp2 in Loaded Aol due to CLoad
A) Measure in SPICE with CLoad on Op Amp Output
2) Plot fp2 on original Aol to create new Loaded Aol
3) Add Desired fz2 on to Loaded Aol Plot for Riso Compensation
A) Keep \(\mathrm{fz1} \leq 10^{\star} \mathrm{fp} 2\) (Case A)
B) Or keep the Loaded Aol Magnitude at \(\mathrm{fz} 1 \geq 0 \mathrm{~dB}\) (Case B) ( \(\mathrm{fz} 1 \geq 10 \mathrm{~dB}\) will allow for Aol variation of \(1 / 2\) Decade in Unity Gain Bandwidth)
4) Compute value for Riso based on plotted \(f z 1\)
5) SPICE simulation with Riso for Loop Gain (Aol \(\beta\) ) Magnitude and Phase
6) Adjust Riso Compensation if greater Loop Gain (Aol \(\beta\) ) phase margin desired
7) Check closed loop AC response for VOUT/VIN
A) Look for peaking which indicates marginal stability
B) Check if closed AC response is acceptable for end application
8) Check Transient response for VOUT/VIN
A) Overshoot and ringing in the time domain indicates marginal stability
B) Determine if settling time is acceptable for end application

Texas Instruments

The Riso Compensation design steps are outlined here. Two cases, Case A and Case B, will be presented. Rules-of-thumb will be presented to yield best stability on first pass analysis.


Two different CLoads will be analyzed to show rules-of-thumb to get the best stability using Riso Compensation. Case \(A\) will use CLoad \(=1 u F\) and Case \(B\) will used CLoad \(=2.9 \mathrm{nF}\). By setting Riso \(=0\) ohms we can easily analyze the Loaded Aol for each case without Riso Compensation. From above Loaded Aol plots we can use the phase plots to determine the pole locations of fp2 for each of Case A, CLoad=1uF and Case B, CLoad=2.9nF.
From above we have completed Steps 1 and 2 for the Riso Compensation Design:
1) Determine fp2 in Loaded Aol due to CLoad
A) Measure in SPICE with CLoad on Op Amp Output
2) Plot fp2 on original Aol to create new Loaded Aol


Our Loaded Aol curves for Case A, CLoad=1uF and Case B, CLoad=2.9nF, found using Step 1 and Step 2, are shown above. We can add straight line approximations to the magnitude plot (-20dB/decade slope) to indicate how and where we want to modify the Loaded Aol curve so the unity gain buffer \((1 / \beta=\) 0 dB ) will be stable with each respective capacitive load. These lines are added per the recommended rules-of-thumb below in Step 3.
From above we have completed Step 3 for the Riso Compensation Design:
3) Add Desired fz2 on to Loaded Aol Plot for Riso Compensation
A) Keep fz1 \(\leq 10 * f p 2\) (Case A)
B) Or keep the Loaded Aol Magnitude at \(\mathrm{fz} 1 \geq 0 \mathrm{~dB}\) (Case B)
(fz \(1 \geq 10 \mathrm{~dB}\) will allow for Aol variation of \(1 / 2\) Decade in Unity Gain Bandwidth)

\section*{4) Compute Value for Riso}

> Case A, CLoad=1uF, fz \(1=29.8 \mathrm{kHz}\)
> Case B, CLoad=2.9nF, fz \(1=4.07 \mathrm{MHz}\)

\section*{Zero : \\ \(\mathrm{fz} 1=\frac{1}{2 \pi * \text { Riso } * \text { CLoad }}\) \\ Riso \(=\frac{1}{2 \pi * \mathrm{fz} 1 * \text { CLoad }}\)}

Zero, Case A, CLoad =1 \(\mu \mathrm{F}, \mathrm{fz1}=29.8 \mathrm{kHz}\) :
\(\mathrm{fz} 1=\frac{1}{2 \pi * \text { Riso } * \text { CLoad }}\)
Riso \(=\frac{1}{2 \pi * 29.8 \mathrm{kHz} * 1 \mu \mathrm{~F}}=5.34 \Omega \rightarrow\) use \(5.36 \Omega\)
Zero, Case B, CLoad = 2.9nF, fz1 = 4.07MHz :
\(\mathrm{fz} 1=\frac{1}{2 \pi * \text { Riso } * \text { CLoad }}\)
Riso \(=\frac{1}{2 \pi * 4.07 \mathrm{MHz} * 2.9 \mathrm{nF}}=13.48 \Omega \rightarrow\) use \(13.7 \Omega\)

From Riso Compensation Design Step 3 we know the respective locations we want for fz1. From that we can compute Riso and choose a standard resistor value.

From above we have completed Step 4 for the Riso Compensation Design:
4) Compute value for Riso based on plotted fz1


Design Step 5 for Riso Compensation is to check the final Riso value chosen by a loop gain plot on the complete op amp circuit. We see from above that for Case A, CLoad=1uF, at fcl, where Loop Gain (Aol \(\beta\) ) goes to zero, the phase margin is 87.5 degrees. Step 6 is to adjust Riso for more phase margin if we are not satisfied with our first analysis and re-run the loop gain and phase plot to check the final design. Here we are happy with 87.5 degrees of Loop Gain (Aol \(\beta\) ) phase margin.
From above we have completed Steps 5 \& 6 for the Riso Compensation Design:
5) SPICE simulation with Riso for Loop Gain (Aolß) Magnitude and Phase
6) Adjust Riso Compensation if greater Loop Gain (Aol \(\beta\) ) phase margin desired


Design Step 5 for Riso Compensation is to check the final Riso value chosen by a loop gain plot on the complete op amp circuit. We see from above that for Case B, CLoad=2.9nF, at fcl, where Loop Gain (Aol \(\beta\) ) goes to zero, the phase margin is 54.2 degrees. Step 6 is to adjust Riso for more phase margin if we are not satisfied with our first analysis and re-run the loop gain and phase plot to check the final design. Here we are happy with 54.2 degrees of Loop Gain (Aol \(\beta\) ) phase margin.

From above we have completed Steps 5 \& 6 for the Riso Compensation Design:
5) SPICE simulation with Riso for Loop Gain (Aol \(\beta\) ) Magnitude and Phase
6) Adjust Riso Compensation if greater Loop Gain (Aol \(\beta\) ) phase margin desired


Design Step 7 for Riso Compensation is to check the closed loop AC response over frequency. From above, for Case A, CLoad=1uF, we see the closed loop AC response for both the output of the op amp, VOA, and the output after Riso, VOUT. If this closed loop bandwidth is not acceptable for the final application we will need to consider other capacitive stability techniques (see Appendix) or a different op amp or different load capacitance value.
From above we have completed Step 7 for the Riso Compensation Design:
7) Check closed loop AC response for VOUT/VIN
A) Look for peaking which indicates marginal stability
B) Check if closed AC response is acceptable for end application


Design Step 8 for Riso Compensation is to check the closed loop transient response. From above, for Case A, CLoad=1uF, we see the closed loop Transient response for both the output of the op amp, VOA, and the output after Riso, VOUT show no signs of excessive overshoot or ringing before settling.
From above we have completed Step 7 for the Riso Compensation Design:
8) Check Transient response for VOUT/VIN
A) Overshoot and ringing in the time domain indicates marginal stability

\title{
Riso Compensation: Key Design Consideration
}

\section*{Accuracy of VOUT depends on Load Current}


The Riso Compensation has one key design consideration with regards to accuracy at VOUT for heavy loads. The feedback for voltage accuracy is directly at the output of the op amp and the VOUT at the load is isolated by Riso. If output currents are large and depending upon the value of Riso the voltage at VOUT will not be the voltage at VIN for the unity gain follower shown above. If this is a problem in the end application a different compensation technique for the CLoad will need to be used (see Appendix for alternative compensation methods for output capacitive loads).

\section*{Stability Analysis - Method 2 (Aol and \(1 / \beta\) Technique) \\ (CF Compensation)}

There are two basic methods for analyzing op amp stability problems. The second method, Method 2 , will use the Aol and \(1 / \beta\) Technique to analyze stability problems due to capacitive loading of an op amp input. The compensation used for this example will be CF Compensation.


Large input resistances can combine with op amp input capacitance to create unanticipated and undesired instabilities as shown above in the transient response of the OPA140 in an inverting Gain \(=-1\) configuration with \(\mathrm{RF}=\mathrm{RI}=180 \mathrm{k}\) ohms.


We can use our SPICE Loop Gain Test circuit above to plot Aol and \(1 / \beta\) for this Gain \(=-1\) circuit. Note that the \(1 / \beta\) curve has a zero in it at 104 kHz . At fcl, where Loop Gain (Aol \(\beta\) ) goes to zero, we see that the \(1 / \beta\) curve intersects the Aol at a rate-of-closure that is \(40 \mathrm{~dB} /\) decade which by our criteria implies an UNSTABLE circuit.

\section*{Op Amp Input Capacitance}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{CONDITIONS} & \multicolumn{3}{|l|}{OPA140, OPA2140, OPA4140} & \multirow[b]{2}{*}{UNIT} \\
\hline & & MIN & TYP & MAX & \\
\hline \multicolumn{6}{|l|}{INPUT IMPEDANCE} \\
\hline Differential & & & \(10^{13}| | 10\) & & \(\Omega \| p F\) \\
\hline Common-Mode & \(\mathrm{V}_{\mathrm{CM}}=(\mathrm{V}-)-0.1 \mathrm{~V}\) to \((\mathrm{V}+)-3.5 \mathrm{~V}\) & & \(10^{13} \|{ }^{7}\) & & \(\Omega \| \mathrm{pF}\) \\
\hline
\end{tabular}


56
Texas Instruments

To properly analyze this circuit and thus properly compensate it for stability we first must analyze the OPA140 op amp input capacitance. The datasheet excerpt for the OPA140 is shown here with Input Impedance parameters for Differential and Common-Mode. The input capacitance model for the OPA140 is also shown. From the data sheet we can assign values for the capacitances shown, \(\mathrm{Ccm}+\), Ccm-, and Cdiff.


From our input capacitance model for the OPA140 and the circuit topology it is configured in we see there is a net input capacitance, Cin_eq which will affect our feedback factor, \(\beta\), over frequency. Since the Cin_eq capacitor is buffered by RF, 180k ohm resistor, there are no loading effects on Aol with this circuit topology and so the Aol remains unchanged.


Our \(\beta\) network is shown above. \(\beta\) is easy to compute if one sets VOUT \(=1\). \(\beta=\) (input impedance)/(feedback impedance + input impedance). Recall that \(1 / \beta\) is just the reciprocal of \(\beta\). From our derived and simplified equations above we see a zero, fz1, in the \(1 / \beta\) plot due to RF, RI and Cin_eq. Note that although our closed loop gain is -1 our \(1 / \beta\) is at 6 dB or x 2 . Remember our earlier discussion of noise gain and to view the op amp, from a loop gain view, to always be running in a noise gain equivalent to putting a noise source on the +input of the op amp and running in the non-inverting gain based on feedback and input impedances from output to -input.

\section*{CF Compensation Design Steps}
1) Determine fz 1 in \(1 / \beta\) due to Cin_eq
A) Measure in SPICE

OR
B) Compute by Datasheet \(\mathrm{C}_{\text {DIFF }}\) and \(\mathrm{C}_{\mathrm{CM}}\) and Circuit RF and RI
2) Plot \(1 / \beta\) with \(f z 1\) on original Aol
3) Add Desired fp1 on \(1 / \beta\) for CF Compensation
A) Keep fp \(1 \leq 10^{*} f z 1\)
B) Keep fp1 \(\leq 1 / 10\) * fcl
4) Compute value for CF based on plotted fp1
5) SPICE simulation with CF for Loop Gain (Aol \(\beta\) ) Magnitude and Phase
6) Adjust CF Compensation if greater Loop Gain (Aol \(\beta\) ) phase margin desired
7) Check closed loop AC response for VOUT/VIN
A) Look for peaking which indicates marginal stability
B) Check if closed AC response is acceptable for end application
8) Check Transient response for VOUT/VIN
A) Overshoot and ringing in the time domain indicates marginal stability

The CF Compensation design steps are outlined here. Rules-of-thumb are presented to yield best stability on first pass analysis.


Using our Loop Gain Test circuit in SPICE we can plot the Aol and \(1 / \beta\) for the uncompensated circuit as shown above. For best stability results on first pass we use the recommended rules-of-thumb shown and draw in what we want the final \(1 / \beta\) curve to look like. Based on this graphical approach we see we need a pole, fp1, added into the \(1 / \beta\) curve to allow the compensated \(1 / \beta\) to intersect the Aol at a rate-of-closure which is 20db/decade and thus stable by our criteria.
From above we have completed Steps 1, 2, and 3 for the CF Compensation Design:
1) Determine fz1 in \(1 / \beta\) due to Cin_eq
A) Measure in SPICE
B) Compute by Datasheet \(\mathrm{C}_{\text {DIFF }}\) and \(\mathrm{C}_{\mathrm{CM}}\) and Circuit RF and RI
2) Plot \(1 / \beta\) with \(f z 1\) on original Aol
3) Add Desired fp1 on \(1 / \beta\) for CF Compensation
A) Keep \(\mathrm{fp} 1 \leq 10 * f z 1\)
B) Keep fp \(1 \leq 1 / 10\) * fc


Our \(\beta\) network is shown above. \(\beta\) is easy to compute if one sets VOUT \(=1\). \(\beta=\) (input impedance)/(feedback impedance + input impedance). Recall that \(1 / \beta\) is just the reciprocal of \(\beta\). From our derived and simplified equations above we see a zero, fz 1 , in the \(1 / \beta\) plot due to RF, RI, Cin_eq, and CF. Note that although our closed loop gain is -1 our \(1 / \beta\) is at 6 dB or x 2 . Remember our earlier discussion of noise gain and to view the op amp, from a loop gain view, to always be running in a noise gain equivalent to putting a noise source on the +input of the op amp and running in the non-inverting gain based on feedback and input impedances from output to -input. Note that with the addition of CF Compensation the \(1 / \beta\) zero, fz1, is moved to a lower frequency since CF is in parallel with Cin_eq to determine the location of \(\mathfrak{f z 1}\). However, to choose the CF Compensation pole, fp1, it is only dependent upon Rf and CF.
From above we have completed Step 4 for the CF Compensation Design:
4) Compute value for CF based on plotted fp1


Design Step 5 for CF Compensation is to check the final CF value chosen by a loop gain plot on the complete op amp circuit. We see from above that at fcl, where Loop Gain (Aol \(\beta\) ) goes to zero, the phase margin is 68 degrees. Step 6 is to adjust CF for more phase margin if we are not satisfied with our first analysis and re-run the loop gain and phase plot to check the final design. Here we are happy with 68 degrees of Loop Gain (Aolß) phase margin.
From above we have completed Steps 5 \& 6 for the CF Compensation Design:
5) SPICE simulation with CF for Loop Gain (AoI \(\beta\) ) Magnitude and Phase
6) Adjust CF Compensation if greater Loop Gain (Aol \(\beta\) ) phase margin desired


Design Step 7 for CF Compensation is to check the closed loop AC response over frequency. From above, see the closed loop AC response for both the output of the op amp, VOUT. If this closed loop bandwidth is not acceptable for the final application we will need to consider other capacitive stability techniques (see Appendix) or a different op amp or different feedback and input resistor values of lower values.
From above we have completed Step 7 for the CF Compensation Design:
7) Check closed loop AC response for VOUT/VIN
A) Look for peaking which indicates marginal stability
B) Check if closed AC response is acceptable for end application


Design Step 8 for CF Compensation is to check the closed loop transient response. From above we see the closed loop Transient response for VOUT shows no signs of excessive overshoot or ringing before settling.

From above we have completed Step 7 for the CF Compensation Design:
8) Check Transient response for VOUT/VIN
A) Overshoot and ringing in the time domain indicates marginal stability

\section*{Stability \\ Tricks and Rules-of-Thumb}

There are some handy stability tricks and rules-of-thumb that have been developed based on experience in stabilizing hundreds of op amp circuits. They are presented here to help you get op amp stability done quickly and right the first time.


The established loop stability criteria is less than a 180 degree phase shift at fcl, the frequency at which loop gain goes to zero. How close the phase shift is to a full 180 degrees phase shift at fcl is defined as phase margin. As detailed in this slide the recommended rule-of-thumb for real world circuits is to design for 135 degree phase buffer ( 45 degree away from 180 degrees phase shift) throughout the loop gain bandwidth ( \(\mathrm{f} \leq \mathrm{fcl}\) ). This allows for the real world cases of powerup, power-down and power-transient conditions where the op amp can have changes in its Aol curve which may result in transient oscillations. This is especially undesirable in power op amp circuits. This rule-of-thumb also allows for extra phase buffer in the loop gain bandwidth to account for additional real world phase shifts due to parasitic capacitances and PCB layout parasitics. Also, a phase buffer less than 45 degrees within the loop gain bandwidth can result in undesired peaking in the closed loop transfer function. The lower the phase buffer dip and the closer the dip is to fcl, the more pronounced the closed loop peaking will be.


The "decade rules" for frequency in the Loop Gain plot are detailed in the slide above. These frequency decade rules will be used for \(1 / \beta\) plots and Aol plots as well as Aol \(\beta\), loop gain plots, which we can predict directly from the Aol and \(1 / \beta\) plots. For the circuit shown in this slide the Aol curve contains a second pole, fp2, around 100 kHz due to the capacitive load, CL, and the op amp's Ro. We will create a feedback network that will meet our Loop Gain Bandwidth rule of 45 degrees margin for \(\mathrm{f} \leq \mathrm{fcl}\). We will analyze and synthesize the feedback network using the \(1 / \beta\) plot and Aol plot with the knowledge of what we are doing to the Loop Gain plot, Aol \(\beta\). fp1 gives us a first pole at 10 Hz in the Loop Gain plot which implies a 45 degree phase shift at 10 Hz with phase shifting to a 90 degrees by 100 Hz . At 1 kHz , fz1, a zero in the \(1 / \beta\) plot, we add a pole in the Loop Gain plot and another 45 degree phase shift at 1 kHz . Our total phase shift now is -135 degrees at 1 kHz . But if we continue on in frequency with just fz1 we will reach -180 phase shift at 10 kHz !! So we add fp 3 , a pole in the \(1 / \beta\) plot, which is a zero in the Loop Gain plot at 10 kHz . This keeps the phase shift at 1 kHz to -135 degrees and flattens the phase plot to -135 degrees phase shift from 1 kHz to 10 kHz (remember poles and zeros have an effect a decade above and a decade below their actual frequency location). fp2 adds another pole in the Loop Gain plot at 100 kHz since fp2 is from the Aol plot. Between 10 kHz , where fp 3 is, and 100 kHz , where fp 2 is, we expect no change in phase shift since fp3 is a Loop Gain plot zero and fp2 is a Loop Gain plot pole.
So if we keep poles and zeros spaced a decade away from each other they will keep the phase shift from dipping between them since each has an effect on one another a decade above and a decade below their location. The final key part of the Frequency Decade Rules for Loop Gain is to place fp3 no closer than a decade away from fcl. This allows for a decade shift in Aol towards the lower frequency range before we would be in a marginal stability condition. Typical Aol curves may shift as much as \(1 / 2\) decade in the real world.
The \(\mathrm{V}_{\text {OuT }} / \mathrm{V}_{\text {IN }}\) for this circuit is predicted to be flat until loop gain goes away at 100 kHz , at which point it will then follow the Aol curve on down.


This is the first order hand analysis prediction for the Loop Gain phase plot of the circuit described in the previous slide.

\section*{Op Amp Circuits \& Second Order Systems}


Most Op Amps are dominated by Two Poles:
Aol curve shows a low frequency pole, fp1
Aol curve also has a high frequency pole, fp2
Often fp2 is at fcl for unity gain
This yields 45 degrees phase margin at unity gain

Most real world op amp circuits are dominated by a two pole, second order, system response. A typical op amp Aol has a low frequency pole in the 10 Hz to 100 Hz region and another high frequency pole at its unity gain crossover frequency, or soon after that in frequency. If pure resistive feedback is used we can see that the loop phase plot would demonstrate the effects of a two pole system. For more complicated op amp circuits the resultant loop gain and loop phase plots are usually dominated by a two pole response. Closed loop behavior of a second order system is well defined and offers us a powerful technique for a real world stability check.

\section*{Control Loop - Second Order System}
\(\mathrm{R}(\mathrm{s}) \longrightarrow \mathrm{G}(\mathrm{s}) \longrightarrow \mathbf{C}(\mathrm{s})\)
\(\frac{\mathrm{C}(\mathrm{s})}{\mathrm{R}(\mathrm{s})}=\frac{\omega_{\mathrm{n}}{ }^{2}}{\mathrm{~s}^{2}+2 \zeta \omega_{\mathrm{n}} \mathrm{s}+\omega_{\mathrm{n}}{ }^{2}}\)
where :
\(\omega_{\mathrm{n}}=\) natural frequency (rad/s)
\(\zeta=\) damping ratio
Closed Loop Response (Step and AC):
Underdamped :0 \(<\zeta<1\)
Marginally Stable : \(\zeta=\mathbf{0}\)
Critically Damped \(: \zeta=1\)
Overdamped \(: \zeta>1\)

The traditional second order system control loop block diagram and characteristic equation are shown above. G(s) for us represents our closed loop, 2-pole dominant, op amp circuit. There are well established, documented, and derived behaviors for such a 2-pole dominant system that we can use to help us assess most op amp stability problems.


Phase Margin can also be indirectly measured on closed-loop circuits in the time domain and in ac gain/phase measurements. In the time domain, we can observe phase margin based on the overshoot of an op amp's output relative to a smallsignal step input. In the frequency domain, we can observe phase margin based on the maximum AC peaking in the circuit's transfer function compared to the DC gain.


In AC Gain/Phase plots, the amount of ac peaking relative to the DC gain can be used to indirectly measure the phase margin of a circuit. In this example, the AC transfer function is peaking at 6 dB , while the DC gain is 0 dB . A total peaking of 6 dB again results in 29 degrees of phase margin.


This slide details the Transient Real World Stability Test. A small amplitude square wave is injected into the closed loop op amp circuit as the \(\mathrm{V}_{\text {IN }}\) source. A frequency is chosen well within the loop gain bandwidth but also high enough to make triggering with an oscilloscope easy. 1 kHz is a good test frequency for most applications. \(\mathrm{V}_{\text {IN }}\) is adjusted such that \(\mathrm{V}_{\text {OUT }}\) is 50 mVpp or less. We are interested in the small signal AC behavior of the circuit to look for AC stability. To that end we do not want a large signal swing on the output which could also contain large signal limitations such as slew rate or output current limitations or output stage voltage saturation. \(\mathrm{V}_{\text {offset }}\) provides a mechanism to move the output voltage up and down through its entire output voltage range to look for AC stability under all operating point conditions. For many circuits, especially those that drive capacitive loads, the worst case for stability is when the output is near zero (for a dual supply op amp application) and there is little or no DC load current since this results in the highest value of \(\mathrm{R}_{\mathrm{O}}\), the op amp's open loop small signal resistance. Record the amount of overshoot and ringing on the square wave output and compare it to the 2nd Order Transient Curves in the Slide 75 to derive the phase margin for stability.


In the time domain the percent overshoot to a step input can be used to indirectly calculate the phase margin. In this example, a 10 mV step was applied. The output overshoot reached 14.3 mV , or 4.3 mV above the intended output. This corresponds to a percent overshoot of \(43 \%\). Using the phase margin vs. percentage overshoot plot, we can see that \(43 \%\) of overshoot results in only 29 degrees of phase margin.


Not all op amps have open loop output impedance that is purely resistive. If it is not clear in the data sheet consult the manufacturer for the true unloaded Zo curve. Check the SPICE macromodel before relying on it for stability analysis in circuits where the correct Zo is critical for stability such as capacitive loading on the op amp output. See Appendix for a more detailed discussion of "Op Amp Output Impedance".


For many op amp application circuits is will be necessary to know the op amp Open Loop Small Signal AC Output Impedance, Zo. Often this can be obtained from the op amp data sheet. Many op amp SPICE macromodels properly model Zo. If the data sheet contains a Zo curve we can easily check the macromodel for Zo accuracy. The test circuit here uses inductor, LT, in the feedback path to act as a short for the DC Operating Point analysis. The capacitor, CT, on the input to ground is open for DC Analysis and will be a short for all frequencies of interest during the AC Analysis. Current Generator, IG1, is set to DC Current \(=0\) and selected as AC Current of 1. During the AC Analysis IG1 injects current into the output, Vout, and the op amp is open loop. AC Analysis reports Vout in dB over frequency as a ratio of Vout/IG1 which is Zo, in dB. To convert Zo in dB to Zo in ohms simply change the \(y\)-axis scaling from dB-Linear to logarithmic.

\section*{Summary for Stability}

For Stability Loop Gain Analysis all we need is:
1) Aol - from op amp data sheet or macromodel
2) Zo - Op Amp open loop, small signal AC output impedance from op amp data sheet or macromodel
3) \(1 / \beta\) - basic by application, modified for stability
4) Z_Load - given by application

\section*{Stability General Comments:}
1) Stability by modifying \(1 / \beta\) will decrease closed loop bandwidth
2) Stability compensation can slow large signal response (charging of caps) - check it
3) Simulate AC Transfer function (Closed Loop AC Response) as final check
4) Simulate Small Signal Transient Response as final check
5) DC operation in the lab does not guarantee stability
6) Marginal stability can cause undesired overshoot and ringing
7) DC circuits can get real world transient inputs from supplies, inputs, or output
8) That ringing in your circuit is not your Grandmother's dial telephone


\section*{Additional Analog Design Resources:}

\section*{TI Precision Designs}
http://www.ti.com/ww/en/analog/precision-designs/
Three design levels from the desks of our analog experts.


\section*{TI Precision Hub blog}
http://e2e.ti.com/blogs /b/precisionhub/


Get tips, tricks and techniques from TI precision analog experts

\section*{Additional Analog Design Resources:}

\section*{TI Precision Labs}

Introduction to TI Precisiontitisi fin


A new technical learning experience: Theory, Simulation, L Short videos focusing on a dedicated op amp characteristi mun Labs can be run with regular lab equipment or National Instruments VirtualBench.

\section*{www.ti.com/precisionlabs}

\section*{TINA-TI}

TINA-TI is an easy-to-use, powerful circuit simulation tool based on a SPICE engine. TINA-TI is a fully functional version of TINA, loaded with a library of TI macromodels plus passive and active models.
http://www.ti.com/tool/tina-ti


Texas Instruments

\section*{Additional Analog Design Resources:}

\section*{Analog Engineer's Pocket Reference}

Written by op amp experts Art Kay and Tim Green, the Analog Engineer's Pocket Reference covers a wide variety of popular precision signal chain topics - from op amp bandwidth and stability to analog-to-digital and digital-to-analog conversions and more. Download your free copy today to put this handy, tried-and-true reference guide at your fingertips.

\section*{Math still counts}

http://www.ti.com/lsds/ti/amplifiers-linear/precision-amplifier-support-community.page\#pocketref

\section*{Technical Support：http：／／e2e．ti．com／}
```

4% TEXAS INSTRUMENTS Products Applications Tools \& Software Support \& Community Sample \& Buy About Tl \#
TI E2E ${ }^{\text {m }}$ Community \boldsymbol{P} T Join｜Sign In with my．TI Login
engineer to engineer，solving problems

```Q
```

```
Support Forums Blogs Groups Videos 简体中文 Search Community
```

```
Support Forums Blogs Groups Videos 简体中文 Search Community
```

Home TIE2E Community

Find out if your question has already been answered

Acknowledgements

A special thanks to Jerald Graeme, whom we honorably dub "The Godfather of 1/ β " for his work at Burr-Brown Corporation, et ali, in research and writing about Op Amp Stability using 1/ß.

Jerald Graeme Brief Biography:

From: http://electronicdesign.com/analog/jerald-graeme
When ICs and op amps were separate devices, Jerald Graeme was among the first to develop a combined IC op amp while at Burr-Brown, in a 1968 team effort with Motorola. He designed many more op amps and video amplifiers whose precision, high speed, or low drift amplification made them a very useful component in a variety of analog applications. Nine U.S. patents and numerous foreign counterparts resulted from these designs. The internationally acknowledged authority on electronic amplifiers wrote five very popular books about op amps, the latest being Photodiode Amplifiers: Op Amp Solutions and Optimizing Op Amp Performance. The latter, subtitled "A new approach for maximizing op amp behavior in circuit designs without extensive mathematical analysis," offers design equations and models that reflect real-world op amp behavior and makes analysis of difficult-looking configurations easy. Graeme's earlier books are: Op Amps: Design and Application, Designing with Operational Amplifiers, and Amplifier Applications of Op Amps. He expects signal processing with op amps to be the domain of digital devices, but they will still require an analog interface to integrate with real-world items like process control or avionics.

Jerald Graeme Books:

http://www.amazon.com/Jerald-G.-Graeme/e/B001HO9X60

Appendix

Appendix Index

1) Op Amp Output Impedance
2) Pole and Zero: Magnitude and Phase on Bode Plots
3) Dual Feedback Paths and $1 / \beta$
4) Non-Loop Stability Problems
5) Stability: Riso (Output Cload)
6) Stability: High Gain and CF (Output Cload)
7) Stability: CF Non-Inverting (Input Cload)
8) Stability: CF Inverting (Input Cload)
9) Stability: Noise Gain Inverting \& Non-Inverting (Output Cload)
10) Stability: Noise Gain and CF (Output Cload)
11) Stability: Output Pin Compensation (Output Cload)
12) Stability: Riso w/Dual Feedback (Output Cload)

- Zo, $1 / \beta$, Aol Technique

13) Stability: Riso w/Dual Feedback (Output Cload) $-1 / \beta$, Loaded Aol Technique
14) Stability: Riso w/Dual Feedback plus RFx (Output Cload) $-1 / \beta$, Loaded Aol Technique
15) Stability: Discrete Difference Amplifier (Output Cload)

Appendix Index

Appendix No.	Title	Description/Stability Technique	When to use the Stability Technique
1	Op Amp Output Impedance	Zo vs Zout difference and datasheet curves	Zo is a key parameter for stability analysis
2	Pole and Zero: Magnitude and Phase on Bode Plots	Closed loop magnitude and phase shifts of a signal frequency due to poles and zeroes on a Bode Plot	Magnitude and phase shift at a frequency of interest for closed loop poles and zeroes
3	Dual Feedback Paths and $1 / \beta$	How to avoid problems when using dual feedback paths for stability compensation	Key tool in analyzing op amp circuits that use dual feedback for stability
4	Non-Loop Stability Problems	Oscillations and causes not seen in loop gain stability simulations	Check all designs to avoid oscillations that do not show up in SPICE simulation
5	Riso (Output Cload)	Stability: Isolation resistor with feedback at op amp	Output Cload, Note: accuracy of output is dependent upon load current
6	High Gain and CF (Output Cload)	Stability : High gain circuits and a feedback capacitor	Output Cload, closed loop gain >20dB
7	CF Non-Inverting (Input Cload)	Stability : Non-inverting gain and feedback capacitor	Input Cload, non-inverting gain, large value input resistor
8	CF Inverting (Input Cload)	Stability: Inverting gain and feedback capacitor	Input Cload, non-inverting gain, large value input resistor, photodiode type circuits
9	Noise Gain Inverting and Non-Inverting (Output Cload)	Stability: Noise Gain added by input R-C network	Output Cload, closed loop gain <20dB
10	Noise Gain and CF (Output Cload)	Stability: Noise Gain (input R-C) and feedback capacitor	Output Cload, Loaded Aol has a second pole located $>20 \mathrm{~dB}$
11	Output Pin Compensation (Output Cload)	Stability: Series R-C on op amp output to ground	Output Cload, no access to -input, monolithic, integrated difference amplifiers, complex feedback where not practical to use -input
12	Riso w/Dual Feedback (Output Cload) - Zo, $1 / \beta$, Aol Technique	Stability: Isolation resistor with two feedback paths analysis by $\mathrm{Zo}, 1 / \beta$, and Aol technique	Output Cload, some additional Vdrop across isolation resistor is okay, accurate Vout at load
13	Riso w/Dual Feedback (Output Cload) $-1 / \beta$, Loaded Aol Technique	Stability: Isolation resistor with two feedback paths analysis by $1 / \beta$, and Loaded Aol technique	Output Cload, some additional Vdrop across isolation resistor is okay, accurate Vout at load
14	Riso w/Dual Feedback plus RFx (Output Cload) $-1 / \beta$, Loaded Aol Technique	Stability: Isolation resistor with two feedback paths analysis by $1 / \beta$, and Loaded Aol technique	Output Cload, some additional Vdrop across isolation resistor is okay, accurate Vout at load. RFx can provide wider BW control at output load.
15	Discrete Difference Amplifier (Output Cload)	Stability: Balanced use of noise gain (series R-C)	Output Cload, difference amp configuration, any closed loop gain

1) Op Amp Output Impedance

Open Loop (Z_{o}) \&
 Closed Loop ($\mathrm{Z}_{\text {out }}$)

R_{O} is the Open Loop Output Resistance of an op amp. $R_{\text {OUt }}$ is defined as the Closed Loop Output Resistance of an op amp. This slide emphasizes the important difference between these two different resistances.
R_{O} and $R_{\text {OUT }}$ are related. $R_{\text {OUT }}$ is R_{O} reduced by loop gain. This slide will define the op amp model used for the derivation of $R_{\text {OUT }}$ from R_{0}. This simplified op amp model focuses solely on the basic DC characteristics of an op amp. A high input resistance ($100 \mathrm{~m} \Omega$ to $G \Omega$), $\mathrm{R}_{\text {DIFF }}$ develops an error voltage across it, V_{E}, due to the voltage differences between $-\operatorname{IN}$ and +IN . The error voltage, V_{E}, is amplified by the open loop gain factor Aol and becomes V_{O}. In series with V_{O} to the output, $\mathrm{V}_{\text {OUT }}$, is R_{O}, the open loop output resistance.

Derivation of $R_{\text {OUT }}$ (Closed Loop Output Resistance)

```
1) \(\beta=V_{F B} / V_{\text {OUT }}=\left[V_{\text {OUT }}\left(R_{I} /\left\{R_{F}+R_{l}\right)\right] / V_{\text {OUT }}=R_{I} /\left(R_{F}+R_{I}\right)\right.\)
2) \(R_{\text {OUT }}=V_{\text {OUT }} / I_{\text {OUT }}\)
3) \(V_{D}=-V_{E} A O I\)
4) \(V_{E}=V_{\text {OUT }}\left[R_{I} /\left(R_{F}+R_{I}\right)\right]\)
```

5) $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{O}}+\mathrm{I}_{\text {OUT }} \mathrm{R}_{\mathrm{O}}$
6) $\mathrm{V}_{\text {OUT }}=-\mathrm{V}_{\mathrm{E}} A$ AOI $+\mathrm{I}_{\text {OUT }} \mathrm{R}_{\mathrm{O}}$ Substitute 3) into 5) for V_{O}
7) $V_{\text {OUT }}=-V_{\text {OUT }}\left[R_{I} /\left(R_{F}+R_{I}\right)\right]$ Aol $+I_{\text {OUT }} R_{O}$ Substitute 4) into 6) for V_{E}
8) $V_{\text {OUT }}+V_{\text {OUT }}\left[R_{l} /\left(R_{F}+R_{l}\right)\right]$ Aol $=I_{\text {OUT }} R_{O}$ Rearrange 7) to get $V_{\text {OUT }}$ terms on left
9) $\mathrm{V}_{\text {OUT }}=\mathrm{I}_{\text {OUT }} \mathrm{R}_{\mathrm{O}} /\left\{1+\left[\mathrm{R}_{\mathrm{l}} \mathrm{Aol} /\left(\mathrm{R}_{\mathrm{F}}+\mathrm{R}_{\mathrm{I}}\right)\right]\right\}$ Divide in 8) to get $\mathrm{V}_{\text {OUT }}$ on left
10) $\mathrm{R}_{\text {OUT }}=\mathrm{V}_{\text {OUT }} / \mathrm{I}_{\text {OUT }}=\left[\mathrm{I}_{\text {OUT }} \mathrm{R}_{\mathrm{O}} /\left\{1+\left[\mathrm{R}_{\mathrm{I}} \mathrm{AOI} /\left(\mathrm{R}_{\mathrm{F}}+\mathrm{R}_{1}\right)\right]\right\}\right] / \mathrm{I}_{\text {OUT }}$

Divide both sides of 9) by $I_{\text {OUT }}$ to get $\left.R_{\text {OUT }}[f r o m ~ 2)\right]$ on left
11) $R_{\text {OUT }}=R_{O} /(1+A o l \beta)$ Substitute 1) into 10)
$\longrightarrow R_{\text {OUT }}=R_{O} /(1+A o \mid \beta)$ \qquad

Using the op amp model in the previous slide we can solve for $\mathrm{R}_{\text {OUt }}$ as a function of R_{0} and Aol β. We see that $A o l \beta$, loop gain, reduces R_{0} so that the output resistance of the op amp with feedback, $\mathrm{R}_{\text {OUT }}$, will be much lower than R_{O}, for large values of Aol β.

```
R
> R
    is used
> R
        \checkmark ~ C l o s e d ~ L o o p ~ f e e d b a c k ~ ( ~ ) ~ f o r c e s ~ V ~ V ~ t o ~ i n c r e a s e ~ o r ~
        decrease as needed to accommodate \mp@subsup{V}{0}{}}\mathrm{ loading
        \checkmark ~ C l o s e d ~ L o o p ~ ( \beta ) ~ i n c r e a s e ~ o r ~ d e c r e a s e ~ i n ~ V ~ V ~ a p p e a r s ~ a t ~
        V OUT as a reduction in RO
    \checkmark R _ { \text { OUT } } \text { increases as Loop Gain (AoI } \beta \text { ) decreases}
```

This slide emphasizes the differences between R_{O} and $\mathrm{R}_{\text {OUT }}$.

When R_{0} is really Z_{0} !!

Note: Some op amps have Z_{o} characteristics other than pure resistance - consult data sheet / manufacturer

Some Data Sheets Specify $Z_{\text {out }}$ NOT $Z_{\text {o }}$

Point	frequency	Aol	$R_{\text {OUT }}\left(A_{V}=1\right)$ Datasheet	$R_{\text {OUT }}\left(A_{V}=1\right)$ Computed
-------1	$(\mathrm{~Hz})$	(dB)	(ohms)	(ohms)
1	10 M	0	100	$R_{\mathrm{O}}=200$
2	100 k	40	2	2
3	10 k	60	0.2	0.2

${ }_{93}$

2) Pole and Zero:
 Magnitude \& Phase on Bode Plots

Formulae for Pole and Zero Calculations

Pole Magnitude for \mathbf{f}
where :
$f=$ frequency of signal
fp = frequency of pole
Magnitude $(\mathrm{dB})=+20 \times \mathrm{LOG}_{10} \sqrt{\frac{1}{1+\frac{\mathrm{f}^{2}}{\mathrm{fp}^{2}}}}$

Pole Phase Shift for f
where:
$f=$ frequency of signal
$\mathbf{f p}=$ frequency of pole
Phase $(\operatorname{deg})=-\tan ^{-1}\left(\frac{f}{f p}\right)$

Zero Magnitude for \mathbf{f} where:
$f=$ frequency of signal
fz = frequency of pole
Magnitude $(\mathrm{dB})=+20 \times \mathrm{LOG}_{10} \sqrt{1+\frac{\mathrm{f}^{2}}{\mathrm{fz}^{2}}}$

Zero Phase Shift for f
where:
$f=$ frequency of signal
fz = frequency of pole
Phase $(\operatorname{deg})=+\tan ^{-1}\left(\frac{f}{f z}\right)$

Closed Loop Gain: Magnitude and Phase

Closed Loop Magnitude and Phase for frequency f :

where:
$\mathbf{f}=$ frequency of signal
$\mathrm{fp} 1=$ frequency of pole 1
fp2 $=$ frequency of pole 2
$\mathrm{fz1}$ = frequency of zero 1
fz2 $=$ frequency of zero 2
K = DC Gain in V/V
Magnitude $(\mathrm{dB})=20 \times \mathrm{LOG}_{10} \mathrm{~K}+20 \times \mathrm{LOG}_{10} \sqrt{\frac{1}{1+\frac{f^{2}}{f p 1^{2}}}}+20 \times \mathrm{LOG}_{10} \sqrt{\frac{1}{1+\frac{f^{2}}{f p 2^{2}}}}+20 \times \mathrm{LOG}_{10} \sqrt{1+\frac{\mathrm{f}^{2}}{f z 1^{2}}}+20 \times \mathrm{LOG}_{10} \sqrt{1+\frac{f^{2}}{f z 2^{2}}}$
Phase $(\operatorname{deg})=-\tan ^{-1}\left(\frac{f}{f p 1}\right)-\tan ^{-1}\left(\frac{f}{f p 2}\right)+\tan ^{-1}\left(\frac{f}{f z 1}\right)+\tan ^{-1}\left(\frac{f}{f z 1}\right)$

Closed Loop Gain: Magnitude and Phase

$\mathrm{fp1}=\frac{1}{2 \pi * \mathrm{R} 1 * \mathrm{C} 1}=\frac{1}{2 \pi * 1 \mathrm{k} \Omega * 15.9 \mu \mathrm{~F}}=10.00974485 \mathrm{~Hz}$
$\mathrm{fp} 2=\frac{1}{2 \pi * \mathrm{RF} * \mathrm{CF}}=\frac{1}{2 \pi 99 \mathrm{k} \Omega * 1.6 \mathrm{nF}}=1.004766055 \mathrm{kHz}$

Closed Loop Magnitude and Phase for frequency f:

where:

$\mathrm{f}=$ frequency of signal
fp1 = frequency of pole 1
fp2 $=$ frequency of pole2

K = DC Gain in V/V
Magnitude $(\mathrm{dB})=20 \times \mathrm{LOG}_{10} \mathrm{~K}+20 \times \mathrm{LOG}_{10} \sqrt{\frac{1}{1+\frac{f^{2}}{f \mathrm{f1}^{2}}}}+20 \times \mathrm{LOG}_{10} \sqrt{\frac{1}{1+\frac{f^{2}}{f p 2^{2}}}}$
Phase $(\operatorname{deg})=-\tan ^{-1}\left(\frac{f}{f p 1}\right)-\tan ^{-1}\left(\frac{f}{f p 2}\right)$

Magnitude $(\mathrm{dB})=20 \times \mathrm{LOG}_{10}(100)+20 \times \mathrm{LOG}_{10} \sqrt{\frac{1}{1+\frac{f^{2}}{(10.00974485)^{2}}}}+20 \times$ LOG $_{10} \sqrt{\frac{1}{1+\frac{f^{2}}{(1.004766055 e 3)^{2}}}}$
Phase $(\operatorname{deg})=-\tan ^{-1}\left(\frac{f}{10.00974485}\right)-\tan ^{-1}\left(\frac{f}{1.004766055 e 3}\right)$

Spice Compared with Calculated Analysis

SPICE AC Analysis:
For best accuracy use highest resolution i.e. maximum "Number of Points"

\mathbf{f}	Magnitude	Magnitude		Phase	Phase
(Hz)	(dB)	(dB)		(deg)	(deg)
--------	Calculated	SPICE		Calculated	SPICE
$9.22017300 \mathrm{E}+01$	20.6263744	20.624635		-89.04706182	-89.067371
$3.92458800 \mathrm{E}+03$	-23.97775119	-24.084018		-165.49354967	-163.475026

Note:

1) SPICE analysis accounts for loop gain effects and closed loop phase shifts due to op amp Aol.
2) Calculated results do not account for loop gain effects and closed loop phase shifts due to op amp Aol.

Texas Instruments

Closed Loop Gain: Magnitude and Phase

SPICE Ideal Op Amp \& Poles: Equivalent Circuit

\mathbf{f}	Magnitude	Magnitude		Phase	Phase
(Hz)	$(\mathbf{d B})$	$(\mathbf{d B})$		$(\mathbf{d e g})$	$(\mathbf{d e g})$
--------	Calculated	SPICE - Ideal		Calculated	SPICE - Ideal
$9.22017300 \mathrm{E}+01$	20.6263744	20.626374		-89.04706182	-89.047062
$3.92458800 \mathrm{E}+03$	-23.97775119	-23.977751		-165.49354967	-165.49355

Note:

1) SPICE - Ideal Circuit analysis matches Calculated results.
2) No loop gain effect or closed loop phase shifts due to op amp Aol.

Closed Loop Gain: Magnitude and Phase

SPICE Ideal Op Amp \& Poles: Equivalent Circuit

保 Texas Instruments

3) Dual Feedback Paths and $1 / \beta$

In this slide we see an op amp circuit which uses two feedback paths. The first feedback path, FB\#1, is out of the op amp, through Riso and CL back through RF and RI to the -input of the op amp. The second feedback, FB\#2, is out of the op amp, through CF and back to the -input of the op amp. The equivalent $1 / \beta$ plots for each of these feedbacks are plotted separately. When more than one feedback path is used around an op amp the feedback path which feeds back the largest voltage to the op amp's input will become the dominant feedback path. This implies that if $1 / \beta$ is plotted for each feedback that the feedback with the lowest $1 / \beta$ at a given frequency will dominate at that point. Remember that the smallest $1 / \beta$ implies the largest β and since $\beta=\mathrm{V}_{F B} / \mathrm{V}_{\text {OUT }}$, the largest β implies the most voltage fed back to the input of the op amp. An easy analogy to remember is that if two people are talking to you in one ear which person do you hear the easiest - the one talking the loudest! So the op amp will "listen" to the feedback path with the largest β or smallest $1 / \beta$. The net $1 / \beta$ plot the op amp sees is the lower one at any frequency of FB\#1 or FB\#2.

When using dual feedback paths around op amp circuits the largest β path will dominate. An easy analogy to remember is that if two people are talking to you in one ear which person do you hear the easiest - the one talking the loudest! So the op amp will "listen" to the feedback path with the largest β or smallest $1 / \beta$. The net $1 / \beta$ plot the op amp sees is the lower one at any frequency of $\mathrm{FB} \# 1$ or FB\#2.

Dual Feedback and the BIG NOT

WARNING: This can be hazardous to your circuit!

Dual Feedback and the BIG NOT:
$1 / \beta$ Slope changes from $+20 \mathrm{db} /$ decade to $-20 \mathrm{~dB} /$ decade
$>$ Implies a "complex conjugate pole" in the $1 / \beta$ Plot with small damping ratio, ζ.
$>$ Implies a "complex conjugate zero" in the Aolß (Loop Gain Plot) with small damping ratio, ζ.
$>\quad+/-90^{\circ}$ phase shift at frequency of complex zero/complex pole.
$>$ Phase slope from $+/-90^{\circ} /$ decade slope to $+/-180^{\circ}$ in narrow band near frequency of complex zero/complex pole depending upon damping ratio, ζ.

- Complex zero/complex pole can cause severe gain peaking in closed loop response.

When using dual feedback paths around an op amp there is one extremely important case to avoid - the "BIG NOT". As demonstrated in this slide there op amp circuits which can result in feedback paths that create the BIG NOT, which is seen in the net $1 / \beta$ plot that contains a net $1 / \beta$ slope which changes from $+20 \mathrm{db} /$ decade to $-20 \mathrm{~dB} /$ decade abruptly. This rapid change implies a complex conjugate pole in the $1 / \beta$ plot with a small damping ratio, ζ, which is therefore a complex conjugate zero in the Loop Gain plot. Complex zeros and poles create a +/-90 degree phase shift at the frequency of the complex zero/complex pole. In addition the phase slope around a complex zero/complex pole can range from +/90 degrees to $+/-180$ degrees in a narrow frequency band around the frequency location of the occurrence. Complex zero/complex pole occurrences can cause severe gain peaking in the closed loop op amp response. This can be very undesirable especially in power op amp circuits.

Complex Conjugate Pole Phase Example

From: Dorf, Richard C. Modern Control Systems. Addison-Wesley Publishing Company. Reading, Massachusetts. Third Edition, 1981.

106
Texas Instruments

The phase plot for a complex conjugate pole is shown in this slide. It is clear that, depending upon the damping factor, the phase shift can be dramatically different than one for a simple double pole which we would expect to be -90 degree shift at the frequency and a -90 degree/decade slope (damping factor=1).

Dual Feedback and 1/ß Example

Dual Feedback:
FB\#1 through RF forces accurate Vout across CL
FB\#2 through CF dominates at high frequency for stability
Riso provides isolation between FB\#1 and FB\#2

This Dual Feedback and $1 / \beta$ example demonstrates the Riso w/Dual Feedback circuit. FB\#1, through RF, provides direct feedback across the load, CL, and thereby forces Vout to equal VREF. FB\#2, through CF, provides a second feedback path, which dominates at high frequency, to guarantee stable operation. Riso creates the isolation between FB\#1 and FB\#2.

Zo External Model for Dual Feedback Analysis

Zo External Model:
VCV1 ideally isolates U1 so U1 only provides data sheet Aol
Set Ro to match measured Ro
Analyze with unloaded Ro (largest Ro) which creates worst instability Use $1 / \beta$ on Aol stability analysis
$1 / \beta$, taken from VOA will include the effects of Zo, Riso and CL

The Zo External Model shown above allows for us to measure the effects of Zo interacting with Riso, CL, RF, and CF on 1/Beta. In our Zo External Model set Ro = Ro for OPA177, measured to be 60 ohms. The voltage-controlled-voltagesource, VCV1 isolated our op amp macromodel, U1, from Ro, Riso, CL, CF, and RF. VCV1 is set to $x 1$ to keep the data sheet Aol gain the same. Remove any large DC load since we want to analyze this circuit under worst case stability conditions which will be with CL only and our calculated unloaded Zo ($\mathrm{Ro}=60$ ohms for this case). VOA is an internal node to the op amp which in the real world cannot be measured. It is also not easy to access this internal node on many SPICE macromodels. 1/Beta is analyzed relative to VOA to include the effects of Ro, Riso, CL, CF, and RF. Final stability simulation in SPICE, without using the Zo External Model cannot plot 1/Beta but can plot Loop Gain to confirm our analysis using the ZO External Model.

Dual Feedback, FB\#1 And FB\#2

FB\#1 and FB\#2 1/ β Analysis:
There is only one net voltage fed back as β to the -input of the op amp β _net $=\beta$ _FB\#1 + β _FB\#2
This implies that the largest β will dominate \rightarrow smallest $1 / \beta$ will dominate
Analyze $\mathrm{FB} \# 1$ with $\mathrm{CF}=$ open since it will only dominate at high frequencies Analyze FB\#2 with $\mathrm{CL}=$ short since it is at least $10 \times \mathrm{CF}$

For this Riso with Dual Feedback topology can analyze each feedback path, FB\#1 and FB\#2 independently and plot their resulting $1 / \beta$ plots on the Aol curve of the op amp. The net $1 / \beta$ the op amp will respond to will be the lowest $1 / \beta$ of either FB\#1 or FB\#2 at any point in frequency.

For our Dual Feedback example we see the $1 / \beta$ plotted for each feedback path, FB\#1 and FB\#2, independently with the net $1 / \beta$ being the lower of the two that any point in frequency.

Dual Feedback and $1 / \beta$ - Create the BIG NOT

111

We will use the circuit above to purposely create the BIG NOT.

By adjusting FB\#2 improperly we are able to create the BIG NOT in the net $1 / \beta$ plot.

SPICE analysis of our BIG NOT circuit confirms we have created the BIG NOT in the $1 / \beta$ plot.

Loop gain confirms that our BIG NOT circuit has a very abrupt phase shift around 2 kHz .

We will use this circuit to run a transient closed loop analysis to see how our BIG NOT circuit would perform in the real world.

A closed loop transient test of our BIG NOT circuit shows we do not end up with desirable results for a disturbance in the op amp circuit.

4) Non-Loop Stability Problems

Non-Loop Stability

- Loop Frequencies
- RB+
- PCB Traces
- Supply Bypass
- Ground Loops
- Output Stage Oscillations

Non-Loop Stability
Oscillations NOT predicted by Loop Gain (Aolß) Analysis or SPICE Simulations

There are common Non-Loop Stability issues we need to be aware of.

To clarify Non-Loop Stability issues we see above that oscillations at any frequency beyond fcl ARE NOT Loop Stability issues that are predictable by Loop Gain Analysis or SPICE simulations.

Non-Loop Stability: ? Diagnostic Questions ?
 > Frequency of oscillation (fosc)?
 > When does the oscillation occur?
 Oscillates Unloaded?
 (-) Oscillates with $\mathrm{V}_{\mathrm{IN}}=0$?

To help easily diagnose what the cause of instability is we need to know the answers to a few simple questions as shown above.

The infamous input bias impedance matching resistor can become a problem for AC frequencies if proper design considerations are not used.

When dealing with high current output traces we need to take the necessary precautions to keep low impedance output traces away from high impedances input traces.

Non-Loop Stability:
 Supply Lines

\checkmark fosc \leq fGBW
\checkmark oscillates unloaded? -- no
\checkmark oscillates with $V_{\mathbb{N}}=0$? -- may or may not

Load current, IL, flows through power supply resistance, Rs, due to PCB trace or wiring. Modulated supply voltages appear at Op Amp Power pins.
Modulated signal couples into amplifier which relies on supply pins as AC Ground.

123

Supply lines can present Non-Loop Stability problems as shown above.

Solutions to power supply line problems are easy and good design practice in general as shown above.

Grounding can also present Non-Loop Stability problems much like power supply line problems as we see here. Again the solution is good design practice.

Non-Loop Stability: Output Stages

Some Op Amps use composite output stages, usually on the negative output, that contain local feedback paths. Under reactive loads these output stages can oscillate.
\checkmark fosc $>$ fGBW
\checkmark oscillates unloaded? -- no
\checkmark oscillates with $V_{\mathbb{I N}}=0$? -- no

The Output R-C Snubber Network lowers the high frequency gain of the output stage preventing unwanted oscillations under reactive loads.

The last common Non-Loop stability problem has to do with Semiconductor IC output stage topologies in Op Amps as shown. Again the solution is fairly simple if it is designed in up front.

5) Riso (Output Cload)

A loop gain analysis circuit can be used to analyze the "Loaded Aol" due to CLoad. As shown here the "Loaded Aol" curve due to CLoad, 1uF, has an additional pole in it around $3 \mathrm{kHz}, \mathrm{fp} 2$. fp 1 is the original pole in the Aol curve of the op amp before CLoad is applied. Since the circuit is running as a unity gain follower $1 / \beta$ is 0 dB and at fcl, where $1 / \beta$ intersects the Loaded Aol curve we see a $40 \mathrm{~dB} /$ decade rate-of-closure which is UNSTABLE by our rate-of-closure criteria.

Our stability analysis of the effects of capacitive loading on an op amp will be simplified by the introduction of the "Loaded Aol Model". As shown in this slide the data sheet Aol curve is followed by the op amp output resistance, Ro. The capacitive load, CLoad, in conjunction with Ro will form an additional pole in the Aol plot and may be represented by a new "Loaded Aol" plot. The Ro-CLoad network form the "Aol Load" on the original op amp "Aol".

The data sheet Aol is loaded by the Ro-CLoad load network as shown here. The additional pole, fp2, due to Ro and CLoad is computed here.

The op amp original "Aol" is "multiplied" by the "Aol Load" to yield the resultant "Loaded Aol" curve. On dB plots linear multiplication is performed by adding the curves in dB. As shown above it becomes easy to see the resultant "Loaded Aol" by adding the op amp original "Aol" plus the "Aol Load" formed by Ro-CLoad.

The Loaded Aol caused by CLoad, 1uF, will result in Loop Gain phase margin at fcl of only 0.548 degrees. This is definitely and UNSTABLE circuit as it stands here.

Riso Compensation

Riso will add a zero in the Loaded Aol Curve

One way to compensate the op amp circuit for CLoad is to add Riso Compensation. Note the point of feedback for the circuit is still taken directly at the output of the op amp. The addition of Riso will add a zero into the "Loaded Aol" curve and stabilize the circuit.

The Riso Compensation will add $\mathfrak{f z 1}$ into the "Loaded Aol" which will result in a $20 \mathrm{~dB} / \mathrm{decade}$ slope crossing 0db at fcl. This will result in a stable circuit by our rate-of-closure criteria of $20 \mathrm{~dB} /$ decade indicating stability.

Our stability analysis using the "Loaded Aol Model" will be analyzed for the addition of the Riso Compensation. The data sheet Aol curve is followed by the op amp output resistance, Ro, Riso Compensation, Riso and load capacitance, CLoad. Note the point of feedback is between Ro and Riso. The capacitive load, CLoad, in conjunction with Ro and Riso will form an additional pole in the Loaded Aol plot. The capacitive load, CLoad, in conjunction with Riso will add a zero in the Loaded Aol plot.

The data sheet Aol is loaded by the Ro-Riso-CLoad load network as shown here. The additional pole, fp2, due to Ro + Riso and CLoad is computed here. Also we see a zero, fz1, formed by Riso and Cload.

The op amp original "Aol" is "multiplied" by the "Aol Load" with Riso Compensation to yield the resultant "Loaded Aol" curve. On dB plots linear multiplication is performed by adding the curves in dB . As shown above it becomes easy to see the resultant "Loaded Aol" by adding the op amp original "Aol" plus the "Aol Load" formed by the Ro-Riso-CLoad combination.

Riso Compensation Design Steps

1) Determine fp2 in Loaded Aol due to CLoad
A) Measure in SPICE with CLoad on Op Amp Output
2) Plot fp2 on original Aol to create new Loaded Aol
3) Add Desired fz2 on to Loaded Aol Plot for Riso Compensation
A) Keep $\mathrm{fz1} \leq 10^{\star} \mathrm{fp} 2$ (Case A)
B) Or keep the Loaded Aol Magnitude at $\mathrm{fz} 1 \geq 0 \mathrm{~dB}$ (Case B) ($\mathrm{fz} 1 \geq 10 \mathrm{~dB}$ will allow for Aol variation of $1 / 2$ Decade in Unity Gain Bandwidth)
4) Compute value for Riso based on plotted $f z 1$
5) SPICE simulation with Riso for Loop Gain (Aol β) Magnitude and Phase
6) Adjust Riso Compensation if greater Loop Gain (Aol β) phase margin desired
7) Check closed loop AC response for VOUT/VIN
A) Look for peaking which indicates marginal stability
B) Check if closed AC response is acceptable for end application
8) Check Transient response for VOUT/VIN
A) Overshoot and ringing in the time domain indicates marginal stability
B) Determine if settling time is acceptable for end application

Texas Instruments

The Riso Compensation design steps are outlined here. Two cases, Case A and Case B, will be presented. Rules-of-thumb will be presented to yield best stability on first pass analysis.

Two different CLoads will be analyzed to show rules-of-thumb to get the best stability using Riso Compensation. Case A will use CLoad $=1 u F$ and Case B will used CLoad $=2.9 \mathrm{nF}$. By setting Riso $=0$ ohms we can easily analyze the Loaded Aol for each case without Riso Compensation. From above Loaded Aol plots we can use the phase plots to determine the pole locations of fp2 for each of Case A, CLoad=1uF and Case B, CLoad=2.9nF.
From above we have completed Steps 1 and 2 for the Riso Compensation Design:

1) Determine fp2 in Loaded Aol due to CLoad A) Measure in SPICE with CLoad on Op Amp Output

2) Plot fp2 on original Aol to create new Loaded Aol

Our Loaded Aol curves for Case A, CLoad=1uF and Case B, CLoad=2.9nF, found using Step 1 and Step 2, are shown above. We can add straight line approximations to the magnitude plot (-20dB/decade slope) to indicate how and where we want to modify the Loaded Aol curve so the unity gain buffer ($1 / \beta=0 \mathrm{~dB}$) will be stable with each respective capacitive load. These lines are added per the recommended rules-ofthumb below in Step 3.

From above we have completed Step 3 for the Riso Compensation Design:
3) Add Desired fz2 on to Loaded Aol Plot for Riso Compensation
A) Keep fz1 $\leq 10^{*} \mathrm{fp} 2$ (Case A)
B) Or keep the Loaded Aol Magnitude at $\mathrm{fz1}$ $\geq 0 \mathrm{~dB}$ (Case B)
(fz $1 \geq 10 \mathrm{~dB}$ will allow for Aol variation of
$1 ⁄ 2$ Decade in Unity Gain Bandwidth)

4) Compute Value for Riso

> Case A, CLoad=1uF, fz $1=29.8 \mathrm{kHz}$
> Case B, CLoad=2.9nF, fz $1=4.07 \mathrm{MHz}$

Zero :
 $\mathrm{fz1}=\frac{1}{2 \pi * \text { Riso } * \text { CLoad }}$
 Riso $=\frac{1}{2 \pi * \mathrm{fz} 1 * \text { CLoad }}$

Zero, Case A, CLoad =1 $\mu \mathrm{F}, \mathrm{fz1}=29.8 \mathrm{kHz}$:
$\mathrm{fz} 1=\frac{1}{2 \pi * \text { Riso } * \text { CLoad }}$
Riso $=\frac{1}{2 \pi * 29.8 \mathrm{kHz} * 1 \mu \mathrm{~F}}=5.34 \Omega \rightarrow$ use 5.36Ω
Zero, Case B, CLoad = 2.9nF, fz1 = 4.07MHz :
$\mathrm{fz} 1=\frac{1}{2 \pi * \text { Riso } * \text { CLoad }}$
Riso $=\frac{1}{2 \pi * 4.07 \mathrm{MHz} * 2.9 \mathrm{nF}}=13.48 \Omega \rightarrow$ use 13.7Ω

From Riso Compensation Design Step 3 we know the respective locations we want for fz1. From that we can compute Riso and choose a standard resistor value.

From above we have completed Step 4 for the Riso Compensation Design:
4) Compute value for Riso based on plotted fz 1

Design Step 5 for Riso Compensation is to check the final Riso value chosen by a loop gain plot on the complete op amp circuit. We see from above that for Case A, CLoad=1uF, at fcl, where Loop Gain (Aol β) goes to zero, the phase margin is 87.5 degrees. Step 6 is to adjust Riso for more phase margin if we are not satisfied with our first analysis and re-run the loop gain and phase plot to check the final design. Here we are happy with 87.5 degrees of Loop Gain (Aol β) phase margin.
From above we have completed Steps 5 \& 6 for the Riso Compensation Design:
5) SPICE simulation with Riso for Loop Gain (Aolß) Magnitude and Phase
6) Adjust Riso Compensation if greater Loop Gain (Aol β) phase margin desired

Design Step 5 for Riso Compensation is to check the final Riso value chosen by a loop gain plot on the complete op amp circuit. We see from above that for Case B, CLoad=2.9nF, at fcl, where Loop Gain (Aol β) goes to zero, the phase margin is 54.2 degrees. Step 6 is to adjust Riso for more phase margin if we are not satisfied with our first analysis and re-run the loop gain and phase plot to check the final design. Here we are happy with 54.2 degrees of Loop Gain (Aol β) phase margin.

From above we have completed Steps 5 \& 6 for the Riso Compensation Design:
5) SPICE simulation with Riso for Loop Gain (Aol β) Magnitude and Phase
6) Adjust Riso Compensation if greater Loop Gain (Aolß) phase margin desired

Design Step 7 for Riso Compensation is to check the closed loop AC response over frequency. From above, for Case A, CLoad=1uF, we see the closed loop AC response for both the output of the op amp, VOA, and the output after Riso, VOUT. If this closed loop bandwidth is not acceptable for the final application we will need to consider other capacitive stability techniques (see Appendix) or a different op amp or different load capacitance value.
From above we have completed Step 7 for the Riso Compensation Design:
7) Check closed loop AC response for VOUT/VIN
A) Look for peaking which indicates marginal stability
B) Check if closed AC response is acceptable for end application

Design Step 8 for Riso Compensation is to check the closed loop transient response. From above, for Case A, CLoad=1uF, we see the closed loop Transient response for both the output of the op amp, VOA, and the output after Riso, VOUT show no signs of excessive overshoot or ringing before settling.
From above we have completed Step 7 for the Riso Compensation Design:
8) Check Transient response for VOUT/VIN
A) Overshoot and ringing in the time domain indicates marginal stability

Riso Compensation: Key Design Consideration

Accuracy of VOUT depends on Load Current

146
Texas Instruments

The Riso Compensation has one key design consideration with regards to accuracy at VOUT for heavy loads. The feedback for voltage accuracy is directly at the output of the op amp and the VOUT at the load is isolated by Riso. If output currents are large and depending upon the value of Riso the voltage at VOUT will not be the voltage at VIN for the unity gain follower shown above. If this is a problem in the end application a different compensation technique for the CLoad will need to be used (see Appendix for alternative compensation methods for output capacitive loads).

6) High Gain and CF (Output Cload)

High-Gain and CF Compensation Design Steps

1) Break the loop and plot Aol and $1 /$ Beta
A. Determine fp2 in Loaded Aol due to Cload
B. Determine fcl of original Aol and 1/Beta
C. Determine $\mathrm{f}(\mathrm{Aol}=0 \mathrm{~dB})$
$\mathbf{f}(\mathbf{A o l}=\mathbf{O d B})$: the frequency where the Loaded Aol Magnitude $=0 \mathrm{~dB}$
2) Add Desired fp3 to $1 /$ Beta for CF compensation
(fz1 will occur when $1 /$ Beta $=0 d B$)
A) Keep fp3 $\leq{ }^{*} \mathrm{fcl}$ and $\mathrm{fz} 1 \leq \mathrm{f}(\mathrm{Aol}=0 \mathrm{~dB})$
B) To prevent AolB phase dip, Keep fp $3 \leq 10^{*} \mathrm{fp} 2$
3) Select value for CF based $\mathrm{fp} 3, \mathrm{fcl}$, and $\mathrm{f}(\mathrm{Aol}=0 \mathrm{~dB})$
4) SPICE simulation with Riso for Loop Gain (Aol β) Magnitude and Phase
5) Adjust CF if greater Loop Gain (Aol β) phase margin desired
6) Check closed loop AC response for VOUT/VIN
A) Look for peaking which indicates marginal stability
B) Check if closed AC response is acceptable for end application
7) Check Transient response for VOUT/VIN
A) Overshoot and ringing in the time domain indicates marginal stability

3) 1/Beta Pole/Zero Equations

1/Beta Transfer Function:
$\frac{\mathrm{V}_{\text {out }}(\mathrm{s})}{\mathrm{V}_{\text {fb }}(\mathrm{s})}=\frac{\mathrm{R}_{\mathrm{F}}+\mathrm{R}_{1}+\left(\mathrm{C}_{1}+\mathrm{C}_{\mathrm{F}}\right) \cdot \mathrm{R}_{1} \cdot \mathrm{R}_{\mathrm{F}} \cdot \mathrm{s}}{\mathrm{R}_{\mathrm{l}}+\mathrm{C}_{\mathrm{F}} \cdot R_{i} \cdot R_{\mathrm{F}} \cdot \mathrm{s}}$
DC 1/Beta:
$s=0, \frac{V_{\text {out }}(s)}{V_{\text {tb }}(s)}=1+\frac{R_{F}}{R_{1}}$
1/Beta Pole Frequency:

$$
\begin{array}{r}
\mathrm{fp} 3=\frac{1}{2 \cdot \mathrm{pi} \cdot \mathrm{R}_{F} \cdot \mathrm{C}_{F}}=>\text { Solve for } \mathrm{CF} \\
\mathrm{C}_{\mathrm{F}}=\frac{1}{2 \cdot \mathrm{pi} \cdot \mathrm{R}_{F} \cdot f \mathrm{f} 3}
\end{array}
$$

Cl is the equivalent input capacitance of the op amp. (See Appendix \#7)

$$
\begin{aligned}
& f z 1=\frac{1}{2 \cdot p i \cdot\left(R_{I} \| R_{F}\right) \cdot\left(C_{F}+C_{I}\right)}=> \\
& C_{F}=\frac{1}{2 \cdot \pi \cdot\left(R_{I} \| R_{F}\right) \cdot f z 1}-C_{I}
\end{aligned}
$$

3) Select CF to Compensate Circuit

From Step 1:
fp2 $=2.98 \mathrm{kHz}$
$\mathrm{fcl}=22.67 \mathrm{kHz}$
$\mathrm{f}(\mathrm{Aol}=0 \mathrm{~dB})=222.7 \mathrm{kHz}$
For stability:
A) Keep fp3 $\leq{ }^{*} \mathrm{fcl}$ and $\mathrm{fz} 1 \leq \mathrm{f}(\mathrm{Aol}=0 \mathrm{~dB})$

Calculate $\mathrm{CF}(\mathrm{min})$ from $\mathrm{fp} 3<{ }^{*} \mathrm{fcl}$:
$\mathrm{C}_{\mathrm{F}} \min =\frac{1}{2 \cdot \pi \cdot \mathrm{R}_{\mathrm{F}} \cdot f \mathrm{f} 3}=\frac{1}{2 \cdot \pi \cdot 49.9 \mathrm{k} \Omega \cdot 22.67 \mathrm{kHz}}=141 \mathrm{pF}$
Calculate $\mathrm{CF}(\max)$ from $\mathrm{fz} 1<\mathrm{f}(\mathrm{Aol}=0 \mathrm{~dB})$:

$C_{F} \max =\frac{1}{2 \cdot \pi \cdot\left(\mathrm{R}_{1} \| \mathrm{R}_{\mathrm{F}}\right) \cdot \mathrm{fz1}}-\mathrm{C}_{1}==\frac{1}{2 \cdot \pi \cdot(49.9 \mathrm{k} \Omega \| 499 \Omega) \cdot 222.7 \mathrm{kHz}}-10 \mathrm{pF}=1.44 \mathrm{nF}$
B) To prevent AoIB phase dip, Keep fp3 $\leq 10^{*}$ fp2

High Gain and CF Summary

1) Select $C F$ between $C F(\min)$ and $C F(\max)$ for stability
2) $C F(\min)$ and $C F(\max)$ produce similar phase-margins
3) $\mathrm{CF}(\mathrm{min})$ will have the largest closed-loop bandwidth and fastest transient response
4) $\mathrm{CF}(\max)$ will produce the smallest closed-loop BW and the slowest transient response
5) Selecting a value between $\mathrm{CF}(\mathrm{min})$ and $\mathrm{CF}(\max)$ will produce the most robust design

7) CF Non-Inverting (Input Cload)

Op Amp Input Capacitance

PARAMETER	CONDITIONS	OPA140, OPA2140, OPA4140			UNIT		
		MIN	TYP	MAX			
INPUT IMPEDANCE							
Differential			$10^{13}\| \| 10$		$\Omega \\| p F$		
Common-Mode	$\mathrm{V}_{\mathrm{CM}}=(\mathrm{V}-)-0.1 \mathrm{~V}$ to $(\mathrm{V}+)-3.5 \mathrm{~V}$		$10^{13} \\|{ }^{1}$		$\Omega \\| p F$		

Equivalent Input Capacitance and 1/ß

```
1/\beta Computation :
```

$\frac{1}{\beta}=\frac{R F+\left(R I / / X_{\text {cineq }}\right)}{R I / / X_{\text {cin eq }}}$
$\frac{1}{\beta}=\frac{\left[s+\frac{1}{\mathrm{Cin}_{-} \mathrm{eq} *\left(\frac{\mathrm{RF} * \mathrm{RI}}{\mathrm{RF}+\mathrm{RI}}\right)}\right] *\left[\mathrm{Cin}_{-} \mathrm{eq} *(\mathrm{RF} * \mathrm{RI})\right]}{\mathrm{RI}} \underset{\overline{=}}{\bar{\sim}} \leftarrow$ (after simplification)
$\frac{1}{\beta} \mathrm{DC}=\frac{\mathrm{RF}+\mathrm{RI}}{\mathrm{RI}}=1+\frac{\mathrm{RF}}{\mathrm{RI}}=1+\frac{180 \mathrm{k}}{90 \mathrm{k}}=3 \rightarrow 9.54 \mathrm{~dB}$
$\frac{1}{\beta}$ zero: $\mathrm{fz1}=\frac{1}{2 \pi * \operatorname{Cin} _ \text {eq } *(\mathrm{RF} / / \mathrm{RI})}=\frac{1}{2 \pi * 17 \mathrm{pF} *(180 \mathrm{k} / / 90 \mathrm{k})}=156 \mathrm{kHz}{ }_{161}$ Texas Instruments

CF Compensation Design Steps

1) Determine fz 1 in $1 / \beta$ due to Cin_eq
A) Measure in SPICE

OR
B) Compute by Datasheet $\mathrm{C}_{\text {DIFF }}$ and C_{CM} and Circuit RF and RI
2) Plot $1 / \beta$ with $f z 1$ on original Aol
3) Add Desired fp1 on $1 / \beta$ for CF Compensation
A) Keep fp $\leq 10^{* f z}$
B) Keep $\mathrm{fp} \leq 1 / 10$ * fc
4) Compute value for CF based on plotted $f p$
5) Check CF Compensation by $1 / \beta$ plot on Aol
6) SPICE simulation with CF for Loop Gain (AoI β) Magnitude and Phase
7) Adjust CF Compensation if greater Loop Gain (Aol β) phase margin desired
8) Check closed loop AC response for VOUT/VIN
A) Look for peaking which indicates marginal stability
B) Check if closed AC response is acceptable for end application
9) Check Transient response for VOUT/VIN
A) Overshoot and ringing in the time domain indicates marginal stability

The CF Compensation design steps are outlined here. Rules-of-thumb are presented to yield best stability on first pass analysis.

4) Compute Value for CF based on location of $f p$

1/ β Computation :

Note: Location of fz
 changes when CF is added

$\frac{1}{\beta} \mathrm{DC}=\frac{\mathrm{RF}+\mathrm{RI}}{\mathrm{RI}}=1+\frac{\mathrm{RF}}{\mathrm{RI}}=1+\frac{180 \mathrm{k}}{90 \mathrm{k}}=3 \rightarrow 9.54 \mathrm{~dB}$
$\frac{1}{\beta}$ zero: $\mathrm{fz}=\frac{1}{2 \pi *\left(C i n _e q / / C F\right)(R F ~ / / ~ R I)}$

$\frac{1}{\beta}$ zero:fz	$\frac{1}{2 \pi *(25.5 \mathrm{pF})(180 \mathrm{k} / / 90 \mathrm{k})}=104 \mathrm{kHz}$

$\frac{1}{\beta}$ pole: $\mathrm{fp}=\frac{1}{2 \pi * \mathrm{CF} * \mathrm{RF}}$
$\frac{1}{\beta}$ pole: $\mathrm{fp}=\frac{1}{2 \pi * 8.5 \mathrm{pF} * 180 \mathrm{k}}=104 \mathrm{kHz}$

4) Compute Value for CF based on location of fp

Maximum Bandwidth CF Compensation for Cin

For maximum Closed Loop Bandwidth for VOUT / VIN:

1) CF needs to compensate input capacitance of Ccm - only since gain effects of Cdiff are nulled out (Similar to Non-Inverting Noise Gain op amp configuration)
2) Stability and phase margin are still determined by Cin_eq (Cdiff // Ccm-)

Complete Circuit

Loop Gain Model

Closed Loop VOUT / VIN Model

6),7) Loop Gain Check

9) Transient Analysis

信 Texas Instruments

8) CF Inverting (Input Cload)

We can use our SPICE Loop Gain Test circuit above to plot Aol and $1 / \beta$ for this Gain $=-1$ circuit. Note that the $1 / \beta$ curve has a zero in it at 104 kHz . At fcl, where Loop Gain (Aol β) goes to zero, we see that the $1 / \beta$ curve intersects the Aol at a rate-of-closure that is $40 \mathrm{~dB} /$ decade which by our criteria implies an UNSTABLE circuit.

Op Amp Input Capacitance

PARAMETER	CONDITIONS	OPA140, OPA2140, OPA4140			UNIT		
		MIN	TYP	MAX			
INPUT IMPEDANCE							
Differential			$10^{13}\| \| 10$		$\Omega \\| p F$		
Common-Mode	$\mathrm{V}_{\mathrm{CM}}=(\mathrm{V}-)-0.1 \mathrm{~V}$ to $(\mathrm{V}+)-3.5 \mathrm{~V}$		$10^{13} \\|{ }^{7}$		$\Omega \\| \mathrm{pF}$		

Texas Instruments

To properly analyze this circuit and thus properly compensate it for stability we first must analyze the OPA140 op amp input capacitance. The datasheet excerpt for the OPA140 is shown here with Input Impedance parameters for Differential and Common-Mode. The input capacitance model for the OPA140 is also shown. From the data sheet we can assign values for the capacitances shown, $\mathrm{Ccm}+$, Ccm-, and Cdiff.

From our input capacitance model for the OPA140 and the circuit topology it is configured in we see there is a net input capacitance, Cin_eq which will affect our feedback factor, β, over frequency. Since the Cin_eq capacitor is buffered by RF, 180k ohm resistor, there are no loading effects on Aol with this circuit topology and so the Aol remains unchanged.

Our β network is shown above. β is easy to compute if one sets VOUT $=1$. $\beta=$ (input impedance)/(feedback impedance + input impedance). Recall that $1 / \beta$ is just the reciprocal of β. From our derived and simplified equations above we see a zero, fz1, in the $1 / \beta$ plot due to RF, RI and Cin_eq. Note that although our closed loop gain is -1 our $1 / \beta$ is at 6 dB or x 2 . Remember our earlier discussion of noise gain and to view the op amp, from a loop gain view, to always be running in a noise gain equivalent to putting a noise source on the +input of the op amp and running in the non-inverting gain based on feedback and input impedances from output to -input.

CF Compensation Design Steps

1) Determine fz 1 in $1 / \beta$ due to Cin_eq
A) Measure in SPICE

OR
B) Compute by Datasheet $\mathrm{C}_{\text {DIFF }}$ and C_{CM} and Circuit RF and RI
2) Plot $1 / \beta$ with $f z 1$ on original Aol
3) Add Desired fp1 on $1 / \beta$ for CF Compensation
A) Keep fp $1 \leq 10^{*} f z 1$
B) Keep fp1 $\leq 1 / 10$ * fcl
4) Compute value for CF based on plotted fp1
5) SPICE simulation with CF for Loop Gain (Aol β) Magnitude and Phase
6) Adjust CF Compensation if greater Loop Gain (Aol β) phase margin desired
7) Check closed loop AC response for VOUT/VIN
A) Look for peaking which indicates marginal stability
B) Check if closed AC response is acceptable for end application
8) Check Transient response for VOUT/VIN
A) Overshoot and ringing in the time domain indicates marginal stability

The CF Compensation design steps are outlined here. Rules-of-thumb are presented to yield best stability on first pass analysis.

Using our Loop Gain Test circuit in SPICE we can plot the Aol and $1 / \beta$ for the uncompensated circuit as shown above. For best stability results on first pass we use the recommended rules-of-thumb shown and draw in what we want the final $1 / \beta$ curve to look like. Based on this graphical approach we see we need a pole, fp1, added into the $1 / \beta$ curve to allow the compensated $1 / \beta$ to intersect the Aol at a rate-of-closure which is 20db/decade and thus stable by our criteria.
From above we have completed Steps 1, 2, and 3 for the CF Compensation Design:

1) Determine fz1 in $1 / \beta$ due to Cin_eq
A) Measure in SPICE

B) Compute by Datasheet $\mathrm{C}_{\text {DIFF }}$ and C_{CM} and Circuit RF and RI

2) Plot $1 / \beta$ with fz 1 on original Aol

3) Add Desired fp1 on $1 / \beta$ for CF Compensation
A) Keep fp1 $\leq 10^{*}$ fz 1
B) Keep fp1 $\leq 1 / 10$ * fcl

Our β network is shown above. β is easy to compute if one sets VOUT $=1$. $\beta=$ (input impedance)/(feedback impedance + input impedance). Recall that $1 / \beta$ is just the reciprocal of β. From our derived and simplified equations above we see a zero, fz 1 , in the $1 / \beta$ plot due to RF, RI, Cin_eq, and CF. Note that although our closed loop gain is -1 our $1 / \beta$ is at 6 dB or x 2 . Remember our earlier discussion of noise gain and to view the op amp, from a loop gain view, to always be running in a noise gain equivalent to putting a noise source on the +input of the op amp and running in the non-inverting gain based on feedback and input impedances from output to -input. Note that with the addition of CF Compensation the $1 / \beta$ zero, fz1, is moved to a lower frequency since CF is in parallel with Cin_eq to determine the location of $\mathfrak{f z 1}$. However, to choose the CF Compensation pole, fp1, it is only dependent upon Rf and CF.
From above we have completed Step 4 for the CF Compensation Design:
4) Compute value for CF based on plotted fp1

Design Step 5 for CF Compensation is to check the final CF value chosen by a loop gain plot on the complete op amp circuit. We see from above that at fcl, where Loop Gain (Aol β) goes to zero, the phase margin is 68 degrees. Step 6 is to adjust CF for more phase margin if we are not satisfied with our first analysis and re-run the loop gain and phase plot to check the final design. Here we are happy with 68 degrees of Loop Gain (Aolß) phase margin.
From above we have completed Steps 5 \& 6 for the CF Compensation Design:
5) SPICE simulation with CF for Loop Gain (Aol β) Magnitude and Phase
6) Adjust CF Compensation if greater Loop Gain (Aol β) phase margin desired

Design Step 7 for CF Compensation is to check the closed loop AC response over frequency. From above, see the closed loop AC response for both the output of the op amp, VOUT. If this closed loop bandwidth is not acceptable for the final application we will need to consider other capacitive stability techniques (see Appendix) or a different op amp or different feedback and input resistor values of lower values.
From above we have completed Step 7 for the CF Compensation Design:
7) Check closed loop AC response for VOUT/VIN
A) Look for peaking which indicates marginal stability
B) Check if closed AC response is acceptable for end application

Design Step 8 for CF Compensation is to check the closed loop transient response. From above we see the closed loop Transient response for VOUT shows no signs of excessive overshoot or ringing before settling.

From above we have completed Step 7 for the CF Compensation Design:
8) Check Transient response for VOUT/VIN
A) Overshoot and ringing in the time domain indicates marginal stability

9) Noise Gain Inverting and
 Noise Gain Non-Inverting (Output Cload)

Original Circuit: Transient Response

Noise-Gain Compensation Circuit Configurations

Noise-Gain Circuit Equations

1/ β Transfer Function:
$1 / \beta$ Transfer function:
$\frac{V_{\text {out }}(s)}{V_{\text {fi }}(s)}=\frac{R_{F}+R_{1}+\left(R_{1} \cdot R_{F}+R_{N} \cdot R_{F}+R_{N} \cdot R_{1}\right) \cdot C_{N} \cdot s}{R_{1}+R_{N} \cdot R_{1} C_{N} \cdot s}$
DC $1 / \beta$ Magnitude:
$\mathrm{s}=0, \frac{\mathrm{~V}_{\text {out }}(\mathrm{s})}{\mathrm{V}_{\mathrm{fb}}(\mathrm{s})}=1+\frac{\mathrm{R}_{\mathrm{F}}}{\mathrm{R}_{1}}$
Hi-Freq $1 / \beta$ Magnitude:

$$
\begin{aligned}
& \hline s=00, \frac{V_{\text {out }}(s)}{V_{\text {fb }}(s)}=1 / \beta _H i-f=1+\frac{R_{F}}{R_{1} \| R_{N}} \\
& \text { 1/Beta Pole Frequency: }
\end{aligned} \quad \begin{aligned}
& R_{N}=-\frac{\text { Solve for } R N}{R_{i}+R_{F}-R_{i} 1 / \beta _H i-f} \\
& \hline
\end{aligned}
$$

$f p 3=\frac{1}{2 \cdot \pi \cdot R_{N} \cdot C_{N}}$ $\begin{array}{r}\Rightarrow \text { Solve for } C N \\ C_{N}=\frac{1}{2 \cdot \pi \cdot R_{N} \cdot f p 3}\end{array}$
1/Beta Zero Frequency:
$\mathrm{fz} 1=\frac{1}{2 \cdot \pi \cdot\left(\mathrm{R}_{\mathrm{N}}+\mathrm{R}_{\mathrm{l}} \mathrm{II} \mathrm{R}_{\mathrm{F}}\right) \cdot\left(\mathrm{C}_{\mathrm{N}}\right)}$

The op amp equivalent input capacitance, Cl , has been left out of these equations to simplify them. If Cl and $\mathrm{RF} \| \mathrm{RI}$ are causing a stability issue (Appendix 7), consider a different approach

解 Texas Instruments

Noise-Gain Compensation Design Steps

1) Break the loop and plot Aol and $1 / \beta$
A. Determine fp2 in Loaded Aol due to Cload
B. Determine Aol Magnitude at fp2, Aol(fp2)
2) Select RN so $1 / \beta$ Hi-f $\geq \mathrm{Aol}(\mathrm{fp} 2)+3 \mathrm{~dB}$
$1 / \beta$ _Hi-f: the High-Frequency $1 / \beta$ magnitude
A. Plot $1 / \beta$ Hi-f and determine new fcl
3) Select value for CN based on required fp3 frequency
A) Keep $\mathrm{fp} 3 \leq \mathrm{fcl} / 10$
B) To prevent AolB phase dip, Keep fp3 $\leq 10^{\star}$ fz1
4) SPICE simulation with Riso for Loop Gain (Aol β) Magnitude and Phase
5) Adjust CN if greater Loop Gain (Aol β) phase margin desired
6) Check closed loop AC response for VOUT/VIN
A) Look for peaking which indicates marginal stability
B) Check if closed AC response is acceptable for end application
7) Check Transient response for VOUT/VIN
A) Overshoot and ringing in the time domain indicates marginal stability

The Riso Compensation design steps are outlined here. Two cases, Case A and Case B, will be presented. Rules-of-thumb will be presented to yield best stability on first pass analysis.

2) Calculate RN

From Step 1:
Aol(fp2) $=25.9 \mathrm{~dB}$

For stability keep $1 / \beta \mathrm{Hi}-\mathrm{F}>\mathrm{Aol}(\mathrm{fp} 2)+3 \mathrm{~dB}$:
$1 / \beta$ _Hi-f $=$ Aol $(f p 2)+3 \mathrm{~dB}=28.9 \mathrm{~dB}$
Convert $1 / \beta \mathrm{Hi}-\mathrm{F}$ to V / V :

$28.9 \mathrm{~dB}=10^{\frac{28.9 \mathrm{~dB}}{20}} \mathrm{~V} / \mathrm{V}=27.86 \mathrm{~V} / \mathrm{V}$

Calculate $\mathrm{RN}(\max)$:

$$
R_{N}(\min)=-\frac{R_{i} \cdot R_{F}}{R_{i}+R_{F}-R_{i} \cdot 1 / \beta _H i-f}=-\frac{1 k \Omega \cdot 2 k \Omega}{1 k \Omega+2 k \Omega-1 k \Omega \cdot 27.86 V / V}=125.7 \Omega
$$

3) Select CN

From Steps 1 and 4:

$$
\begin{array}{|l}
\hline \mathrm{Aol}(\mathrm{fp} 2)=25.9 \mathrm{~dB} \\
\mathrm{fcl}=479.06 \mathrm{kHz} \\
\hline
\end{array}
$$

For stability keep $\mathrm{fp} 3 \leq \mathrm{fcl} / 10$:
$\mathrm{fp} 3=\mathrm{fcl} / 10=47.906 \mathrm{kHz}$
$\mathrm{C}_{\mathrm{N}}=\frac{1}{2 \cdot \pi \cdot \mathrm{R}_{\mathrm{N}} \cdot f \mathrm{p} 3}=\frac{1}{2 \cdot \pi \cdot 125.7 \cdot 47.906 \mathrm{kHz}}=26.4 \mathrm{nF}$

6) Plot Compensated Closed-Loop Gain

保 Texas Instruments

Watch Out for Source Impedance

坞 Texas Instruments

Noise-Gain Compensation Summary

1) Set $1 / \beta$ Hi-f \geq Aol $(f p 2)$
2) Determine the new fcl
3) Set CN so fp3 $\leq \mathrm{fcl} / 10$
4) Avoid using this circuit in instances where fp3 $\geq \mathrm{fz} 1^{*} 10$ or large Loop Gain (Aolß) phase dipping will occur which minimizes phase buffer for frequencies $<\mathrm{fcl}$

10) Noise Gain and CF (Output Cload)

Original Transient Analysis

性 Texas Instruments

Noise Gain and CF Compensation Design Steps

1) Define min and max load condition
2) SPICE simulation for Loaded Aol curves (min and max load)
3) Plot Desired $1 / \beta$ on Loaded Aol curves (min and max load)
A) Use Noise Gain and CF Compensation
4) From Desired $1 / \beta$ detemine $f p 3$, fp4, and Mid-Band Gain
5) Compute values for RF, CF, Rn, Cn based on plotted fp3, fp4, Mid-Band Gain
6) SPICE simulation w/final compensation for Loop Gain (Aol β) Magnitude and Phase
7) Adjust Compensation if greater Loop Gain (Aol β) phase margin desired
8) Check closed loop AC response for VOUT/VIN
A) Look for peaking which indicates marginal stability
B) Check if closed AC response is acceptable for end application
9) Check Transient response for VOUT/VIN
A) Overshoot and ringing in the time domain indicates marginal stability

The CF Compensation design steps are outlined here. Rules-of-thumb will be present to yield best stability on first pass analysis.

2) Loop Gain Check for Loaded Aol

1) Loaded Aol_A Curve:

fp1_A is low frequency pole from op amp unloaded Aol down around 1 Hz . fp2_A is second pole in Loaded Aol_A due to Zo and CLoad.

2) Loaded Aol_B Curve:

fp1_B is low frequency pole in Loaded Aol due to lower resistive loading of 1.25 ohms on CMOS output. fp2_B is second pole in Loaded Aol_A due to Zo and CLoad.

3) Desired $1 / \beta$ Curve:

fz 1 and fp 3 are a zero and pole due t noise gain set by Rn and Cn . We do not need to know exact location of fz 1 since once we set fp 3 , fz 1 can be seen graphically by using a $+20 \mathrm{~dB} /$ decade slope from $f p 3$ down in frequency to the DC gain of 0 dB . Noise gain fp 3 is easy to find and compute.
fp 4 is due to CF.
fz 1 is the result of high frequency $1 / \beta$ going to 0 dB due to CF acting as a short at high frequencies.
All we need from our drawn, Desired $1 / \beta$ curve is $f p 3$, Mid-Band Gain and $f p 4$.
The other $1 / \beta$ zeroes will occur as plotted by the nature of the input and feedback networks containing only one reactive element.

General considerations:

Because of the large difference between the two loaded Aol curves at high frequency it is necessary to plot the Desired $1 / \beta$ as the best compromise to keep
most phase margin for the two cases. This is shown here. We will strive for better than 45 degrees phase margin for each case to allow for Aol shifts in the real world. A worst case Aol frequency shift at the Unity Gain Bandwidth (UGBW), over process and temperature, can be estimated as $1 / 2^{*}$ UGBW to 1.5^{*} UGBW. For best "Phase Buffer" we prefer to keep fp 3 and $\mathrm{fz1}$ one decade apart. We cannot quite do that here so we compromise as shown.

5) Noise Gain and CF Compensation

Texas Instruments

5) Final Compensation: $1 / \beta$ \& Loaded Aol

Texas Instruments

7) Final Compensation: Vout/Vin AC Closed Loop

11) Output Pin Compensation (Output Cload)

Output Pin Compensation - Design Example

INA152 Aol

INA152 Aol

朝 Texas Instruments

Output Pin Compensation Design Steps

1) SPICE simulation for Loaded Aol curves (min and max load)
2) Measure Zo in SPICE
3) Determine if CLoad is on resistive portion of Zo
4) Plot Loaded Aol Original and Loaded Aol New for Ouptut Pin Compensation
5) Compute Rco and Cco and check Loaded Aol New in SPICE
6) SPICE simulation w/final compensation for Loop Gain (Aol β) Magnitude and Phase
7) Adjust Compensation if greater Loop Gain (Aol β) phase margin desired
8) Check closed loop AC response for VOUT/VIN
A) Look for peaking which indicates marginal stability
B) Check if closed AC response is acceptable for end application
9) Check Transient response for VOUT/VIN
A) Overshoot and ringing in the time domain indicates marginal stability

The CF Compensation design steps are outlined here. Rules-of-thumb will be present to yield best stability on first pass analysis.

1) INA152 Loaded Aol

1) INA152 Loaded Aol

219
析 Texas Instruments

2) INA152 Z_{o} Test

2) TINA SPICE Z_{o} Test Circuit

2) INA152 Z_{o} Magnitude

222
性 Texas Instruments

2) INA152 Z_{o} Pole and Zero

4) INA152 Loaded Aol: Original and New

Add $C c o=10 x C L$ then $f p 3$ will move one decade to the left of $f p 2$
Add Rco to create fz1
Keep fz1 $\leq 10^{*}$ fp3 for overall best loop gain phase margin

5) Compute Rco and Cco

$\mathrm{fp} 3=\frac{1}{2 * \pi *\left(\mathrm{Zo} _\mathrm{Hif}+\mathrm{Rco}\right) * \mathrm{Cco}}$
fp3 $=\frac{1}{2 * \pi *(638.74 \Omega+150 \Omega) * 100 \mathrm{nF}}=2.02 \mathrm{kHz}$
$\mathrm{fz1}=\frac{1}{2 * \pi * \mathrm{Rco} * \mathrm{Cco}}$
$\mathrm{fz1}=\frac{1}{2 * \pi * 150 \Omega * 100 \mathrm{nF}}=10.6 \mathrm{kHz}$

5) Compute Rco and Cco and check in SPICE

5) Compute Rco and Cco and check in SPICE

保 Texas Instruments

6),7) Loop Gain Check

6),7) Loop Gain Check

230
挴 Texas Instruments

8) Closed Loop AC Response

朝 Texas Instruments
8) Closed Loop AC Response

232
极 Texas Instruments

9) Transient Analysis

9) Transient Analysis

9) Transient Analysis

12) Riso with Dual Feedback (Output Cload) - Zo, $1 / \beta$, Aol Technique

Riso with Dual Feedback- Zo, $1 / \beta$, Aol Technique

1) Given: Op Amp and Cload
2) Determine Op Amp Zo
A) Measure in SPICE OR Data Sheet Curve
3) Create External Zo Model for Loop Gain Analysis only
4) If large RF value to be used model Cin_eq
5) Set Riso $=1 / 10 *$ Ro $\rightarrow 1 / \beta$ Hif $\approx 20 \mathrm{~dB}$
6) SPICE simulation: Aol, $1 / \beta$ FB\#1
A) FB\#1 gives: $1 / \beta$ _Lof and fz 1
7) Draw $1 / \beta$ FB\#2 $\left(1 / \beta _\right.$Hif $\approx 20 \mathrm{~dB}$ from Step 4)
A) $\mathrm{fp} 1=10 * \mathrm{fz} 1$
B) $\mathrm{fz} 3=1 / 10^{*} \mathrm{fp} 1$
C) $\mathrm{fp} 1 \leq 1 / 10^{*} \mathrm{fcl}$
8) Choose RF and CF so standard values yield fz3
9) SPICE simulation: Loop Gain (Aol β) Magnitude \& Phase
A) Adjust compensation for more Loop Gain (Aol β) phase margin if needed 9) Check closed loop AC response for VOUT/VIN
A) Look for peaking which indicates marginal stability
B) Check if closed AC response is acceptable for end application
10) Check Transient response for VOUT/VIN
A) Overshoot and ringing in the time domain indicates marginal stability

Texas Instruments

The Riso Compensation design steps are outlined here. Two cases, Case A and Case B, will be presented. Rules-of-thumb will be presented to yield best stability on first pass analysis.

1) Riso w/Dual Feedback

FB\#1 through RF forces accurate Vout across CL
FB\#2 through CF dominates at high frequency for stability
Riso provides isolation between FB\#1 and FB\#2

For many op amp application circuits is will be necessary to know the op amp Open Loop Small Signal AC Output Impedance, Zo. Often this can be obtained from the op amp data sheet. Many op amp SPICE macromodels properly model Zo. If the data sheet contains a Zo curve we can easily check the macromodel for Zo accuracy. The test circuit here uses inductor, LT, in the feedback path to act as a short for the DC Operating Point analysis. The capacitor, CT, on the input to ground is open for DC Analysis and will be a short for all frequencies of interest during the AC Analysis. Current Generator, IG1, is set to DC Current =0 and selected as AC Current of 1. During the AC Analysis IG1 injects current into the output, Vout, and the op amp is open loop. AC Analysis reports Vout in dB over frequency as a ratio of Vout/IG1 which is Zo, in dB. To convert Zo in dB to Zo in ohms simply change the y-axis scaling from dB-Linear to logarithmic.

3) Riso w/Dual Feedback - Zo External Model

Zo External Model:
VCVS1 ideally isolates U1 so U1 only provides data sheet Aol at VOA Set Ro to match measured Ro
Analyze with unloaded Ro (largest Ro) which creates worst instability Use $1 / \beta$ on Aol stability analysis
$1 / \beta$, taken from VOA, will include the effects of Zo, Riso, and CL

3) Zo External Model, FB\#1 and FB\#2 Analysis

FB\#1 and FB\#2 1/ β Analysis:
There is only one net voltage fed back as β to the -input of the op amp β _net $=\beta$ _FB\#1 + β _FB\#2
This implies that the largest β will dominate \rightarrow smallest $1 / \beta$ will dominate
Analyze $\mathrm{FB} \# 1$ with $\mathrm{CF}=$ open since it will only dominate at high frequencies
Analyze FB\#2 with CL = short since it is at least 10x CF
4) OPA177 Input Capacitance

* OPA177 "E" - ENHANCEMENTS

* OUTPUT SUPPLY MIRROR

FQ3 020 POLY(1) VLIM 01
DQ1 2021 DX
DQ2 2220 DX
VQ1 2100
VQ2 2200
FQ1 30 POLY(1) VQ1 0.976E-3 1
FQ2 04 POLY(1) VQ2 0.976E-3-1

* QUIESCIENT CURRENT

RQ 34 3.0E4

* DIFF INPUT CAPACITANCE

CDIF 12 1.0E-12

* COMMON MODE INPUT CAPACITANCE

C1CM 199 1.5E-12
C2CM 299 1.5E-12

OPA177 Input Capacitance:
Ccm - and $\mathrm{Ccm}+$ are common mode input capacitance
Cdiff is differential input capacitance
Ccm and Cdiff can usually be found in op amp data sheet
For OPA177 Ccm and Cdiff are found inside the SPICE macromodel

4) Cin_eq \rightarrow Equivalent Input Capacitance for Loop Gain Analysis

Input Capacitance and Loop Gain Analysis:
Final Loop Gain circuit break needs to break both FB\#1 and FB\#2
Loop Gain circuit break will need to be made on op amp -input
For some op amps feedback elements can interact with input capacitance and add zero or pole to $1 / \beta$
For Loop Gain analysis break loop at -input but add Cin_eq

For : RF > 10*(Ro + Riso)
$\mathrm{fpz2}=\frac{1}{2 * \pi * \mathrm{Cin}_{_} \mathrm{eq} * \mathrm{RF}}=\frac{1}{2 * \pi * 2.5 \mathrm{pF} * 10 \mathrm{k} \Omega}=6.4 \mathrm{MHz}$

$\frac{1}{\beta}$ _Lof $=1 \rightarrow 0 \mathrm{~dB}$

7) $1 / \beta$ FB\#2 Analysis

$\frac{1}{\beta}$ FB\#2 Analysis:
For CL > 10*CF then CL will look like low impedance for FB\#2 CF can be viewed as short for analysis of FB\#2

$\frac{1}{\beta}-\text { Hif }=\frac{\text { Ro }+ \text { Riso }}{\text { Riso }}=$	$=\frac{60 \Omega+6 \Omega}{6 \Omega}=11 \rightarrow 20.8 \mathrm{~dB} \leftarrow \mathbf{C F}=\text { short at Hif }$	$\begin{aligned} & \text { Set Riso }=1 / 10^{*} \text { Ro } \\ & \rightarrow 1 / \beta _ \text {Hif } \approx 20 \mathrm{~dB} \\ & \hline \end{aligned}$
$\mathrm{fz} 3=\frac{1}{2 * \pi * \mathrm{CF} * \mathrm{RF}}$	$=\frac{1}{2 * \pi * 82 \mathrm{nF} *(10 \mathrm{k} \Omega)}=194 \mathrm{~Hz}$	

7) 1/ß FB\#2 SPICE Results

居 Texas Instruments

9) SPICE AC Closed Loop

13) Riso with Dual Feedback (Output Cload)
 - $1 / \beta$, Loaded Aol Technique

Riso with Dual FB Topology (OPA330 Example)

Zo Test

Modified Aol

Zo and CL

Modified Aol will have Complex Poles with sharp phase shifts anywhere CL Crosses Zo in Zo "Inductive" region.

Modified Aol with CL

Modified Aol with CL

261
析 Texas Instruments

Zo, CL, Riso

Modified Aol with CL=1uF, Riso=400ohms

Texas Instruments

FB\#1 with CL=1uF, Riso=400ohms

FB\#1 with CL=1uF, Riso=400ohms

Note:

1) At fcl, where loop gain goes to zero, there is a $40 \mathrm{~dB} /$ decade rate-of-closure indicating INSTABILITY for FB\#1 alone 2) We will add $\mathrm{FB} \# 2 \mathrm{~s}$ shown for a Net $1 /$ Beta which will be stable at new fcl

FB\#2 with $C L=1 u F$, Riso $=4000 \mathrm{hms}, R F=100 k, C F=82 n F$

Loop Gain for CL=1uF, Riso=400ohms Final Compensation

14) Riso with Dual Feedback plus RFx (Output Cload)
 - $1 / \beta$, Loaded Aol Technique

Riso with Dual FB plus RFx Topology

Zo Test

Zo Test

Zload on Aol

性 Texas Instruments

Modified Aol

Modified Aol

FB\#1 with CL=10uF, Riso=37.4ohms

FB\#1 with CL=10uF, Riso=37.4ohms

FB\#1 with CL=10uF, Riso=37.4ohms Add FB\#2 for Stability

280
朝 Texas Instruments

FB\#2 with CL=10uF, Riso=37.4ohms, RF=1k, RFx=10k

Loop Gain for CL=10uF, Riso=37.4ohms, RF=1k, RFx=10k

Transient for CL=10uF, Riso=37.4ohms, RF=1k, RFx=10k

15) Discrete Difference Amplifier (Output Cload)

Difference Amp w/CLoad: No Compensation

Discrete Difference Amplifier Compensation Design Steps

1) SPICE simulation for Loaded Aol curves
2) Plot Desired $1 / \beta$ on Loaded Aol curves
A) Use Noise Gain Compensation
3) From Desired $1 / \beta$ determine $f p$ and $1 / \beta$ _Hif
4) Compute values for Rn, Cn based on fp and $1 / \beta_{-}$Hif
5) SPICE simulation w/final compensation for Loop Gain (Aol β) Magnitude and Phase
6) Adjust Compensation if greater Loop Gain (Aol β) phase margin desired
7) Add Rnp-Cnp to +input of Difference Amplifier for flat VOUT/VIN Response
A) Look for peaking which indicates marginal stability
B) Check if closed AC response is acceptable for end application
8) Check Transient response for VOUT/VIN
A) Overshoot and ringing in the time domain indicates marginal stability

The CF Compensation design steps are outlined here. Rules-of-thumb will be present to yield best stability on first pass analysis.

1) Loaded Aol: No Compensation

1) Loaded Aol: No Compensation

4) Compute Rn and Cn

From Noise Gain Compensation 1/ β :

$1 / \beta _$Lof $=6 \mathrm{~dB}=2$
$1 / \beta _$Hif $=26 \mathrm{~dB}=19.95$
$\mathrm{fp}=30 \mathrm{kHz}$

From Noise Gain Compensation Analysis :
$1 / \beta_{-} \mathrm{Lof}=\frac{\mathrm{RF}+\mathrm{RI}}{\mathrm{RI}}=1+\frac{\mathrm{RF}}{\mathrm{RI}}=1+\frac{18 \mathrm{k} \Omega}{18 \mathrm{k} \Omega}=2$
$1 / \beta _$Hif $\approx \frac{\mathrm{RF}}{\mathrm{Rn}}=\frac{18 \mathrm{k} \Omega}{\mathrm{Rn}}=19.95 \rightarrow \mathrm{Rn}=902.25 \Omega$
Use $\mathbf{R n}=\mathbf{9 0 9 \Omega} \boldsymbol{\rightarrow}$ standard value resistor
$\mathrm{fp}=\frac{1}{2 \pi \mathrm{RnCn}}=\frac{1}{2 \pi(909 \Omega) \mathrm{Cn}}=30 \mathrm{kHz} \rightarrow \mathrm{Cn}=5.84 \mathrm{nF}$
Use $\mathbf{C n}=\mathbf{5 . 6 n F} \rightarrow$ standard value capacitor
294

5),6) Loop Gain Check

解 Texas Instruments

7) VOUT/Vin_diff: Noise Gain Compensation

7) Rnp-Cnp Compensation plus Noise Gain Compensation = Improved CMRR

7) Rnp-Cnp Compensation plus Noise Gain Compensation = Improved CMRR

8) Transient Analysis:

 Rnp-Cnp Compensation plus Noise Gain Compensation

