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TI Precision Designs Circuit Description

TI Precision Designs are analog solutions created by 
TI’s analog experts.  Verified Designs offer the theory, 
component selection, simulation, complete PCB 
schematic & layout, bill of materials, and measured 
performance of useful circuits.  Circuit modifications 
that help to meet alternate design goals are also 
discussed. 

This design note provides a passive RC filter design 
for PWM to analog conversion, as well as a test circuit 
for verifying that the filter meets the design goals. 
Methods for selecting the passive filter’s order, cutoff 
frequency, and component values for achieving a 
targeted resolution are described.  The design 
example shows a 12 bit filter but the method could be 
used for other resolutions.  The test circuit is needed 
to confirm that the output error (ripple) meets the 
design requirements because this cannot be directly 
measured using standard test equipment.
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1 Design Summary  

The design requirements for PWM filter are as follows: 

 Input: 3.3 Vpp square wave to simulate 50% duty cycle PWM 

 Filter output: DC with 12-bit resolution (Maximum ripple: 403uVpp)  

The design requirements for Post Amp are as follows: 

 Supply Voltage: ±15 V dc (for post amplifier) 

 Post amplifier gain: 1024 V/V, ac coupled 

The design goals and performance for 12bit, system resolution are summarized in Table 1. Figure 1 
depicts the measured ripple for 12bit system resolution with 1024 times gain of the RC low pass filter 
design.  

Table 1: Comparison of Design Goals, Simulated Performance, and Measured Results 

System Resolution 
Goal 

Max Ripple 
Simulated  

Ideal Components 
Measured Results 

12bit (filter out) 403uVpp 344.48uVpp 347.66uVpp 

12bit (post amp out) 412mVpp 396mVpp 404mVpp 

 

 

Figure 1: PWM Output Ripple Verification for 12 bit System (Gain = 1024V/V)  
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2 Theory of Operation 

2.1 Design Overview 

Pulse Width Modulation (PWM) is a technique where the width of digital pulses is adjusted to generate 
different average dc voltages.  Most microcontrollers have a built-in timer that can be used to generate a 
PWM signal.  PWM outputs can be converted to a dc voltage by using a series of RC low pass filters to 
average the pulses.  Thus, a filtered PWM circuit is a simple low cost method to convert digital to analog 
(i.e. create a DAC).  The main goal of this design is to convert PWM to analog output and achieve a 12 bit 
resolution with a ripple signal less than one half LSB.  A secondary goal is to develop a circuit that 
amplifies the output ripple (error) to a level that an oscilloscope can measure.  A system block diagram is 
shown in Figure 2. 

Square wave Signal 
Generator

(PWM 50% duty cycle)

4th order LPF
Post Amp

ac coupled
G = 1024 V/V

Scope
To Measure 

Ripple

PWM Filter Ripple Measurement Test 

 

Figure 2: System block diagram 
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The PWM output from a microcontroller is a square wave that has a programmable pulse width (duty 
cycle).  The output of a simple RC filter connected to the PWM output will charge to the average voltage of 
the PWM signal.  Figure 3 shows a 10% and 90% duty cycle PWM signal connected to a simple RC filter.  
Note that the output charges to approximately 90% of the square wave’s amplitude for a 90% duty cycle.  
In general, the ideal average dc output is PWM amplitude multiplied by the duty cycle (i.e. Vout = VPWM x 
Duty_Cycle).  The charge and discharge of the filter capacitor can also be seen in Figure 3.  The peak-to-
peak amplitude of the variations caused by the charge and discharge of the filter capacitor is called the 
ripple.  The objective is to convert the PWM signal to a dc voltage so ideally the ripple would be zero.  The 
results shown in Figure 3 are for a single pole RC filter; adding additional filter stages will further minimize 
the ripple.  The ripple can be thought of as an error that limits the resolution of the signal.  As a rule of 
thumb the ripple should be kept to half the voltage resolution.  To achieve our resolution objective (12 bits) 
we will have to determine the number of filter stages and the cutoff frequency required to reduce the ripple 
to half of the voltage resolution.    

 

 

Figure 3: PWM Signal and dc Output for 10% and 90% Duty Cycle 
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Another factor that controls the resolution is the degree by which the width of the PWM signal can be 
adjusted.  A common method for generating PWM signals it to use a binary counter.  Figure 4 shows the 
generation of two different PWM signals with an 8 bit counter.  The counter output remains high until the 
desired duty cycle is met and then it is reset.  The MSP430 microcontroller uses this principle with a 16 bit 
counter.  The number of bits in the counter corresponds to the bits of resolution in the analog output if the 
signal is properly filtered. For this design our goal is 12 bit resolution, so a 12 bit counter is needed to 
achieve 12 bits of resolution.  Later in this document we will discuss the trade-offs associated with higher 
resolution systems. 
 

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

1/8 =0.125
12.5% duty cycle

2/8 =0.25
25% duty cycle

 

Figure 4: PWM for an 8 Bit Counter 
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Figure 5 illustrates the PWM (counter) output on the MSP430.  In this figure the full 16 bit (i.e. 65,536) 
counter is being used.  In Figure 5 the PWM output is configured for the minimum duty cycle (i.e. 1 count 
in 65,536 or 0.00153% duty cycle).  The period of one count is 62.5ns for the MSP430 at a master clock 
frequency of 16MHz.  The period of the entire 16 bit clock cycle is 4.096ms (62.5 ns x 65536).   The PWM 
frequency is 244Hz (TPWM_Cycle = 4.096ms).   
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Figure 5: PWM for a 16 bit Counter (Frequency, Period, and Duty Cycle shown) 

In the case of this design our resolution objective is 12 bits, so we only need 12 bits of the 16 bit counter in 
the MSP430.  Figure 6 shows the PWM signal where the counter is reset after 12 bits.  The resolution is 
now 1/4096 or a 0.0244% duty cycle.  Limiting the counter to 12 bits also affects the period and frequency 
of the PWM signal.  The frequency of the 12 bit PWM signal is 3.91kHz which is substantially higher than 
the 16 bit PWM frequency (244Hz).  The PWM frequency is the frequency by which analog output can be 
adjusted.  The PWM frequency also determines the cutoff frequency of the filter. 
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Figure 6: PWM for a 12 bit Counter (Frequency, Period, and Duty Cycle shown) 
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2.2 PWM Filter Design 

The PWM signal is a square wave with a different duty cycle depending on the dc output voltage target.  
The filter will convert the square wave to an average dc voltage.  Remember that a square wave is 
composed of a series of sinusoidal waveforms at odd harmonic intervals.  The objective of the filter is to 
attenuate all of the harmonics in the square wave and leave the dc average.  Figure 7 below shows the 
PWM waveform with a 50% duty cycle in the time domain and in the frequency domain.  In this design we 
will use a series of simple RC low pass filters to attenuate the fundamental and the harmonics.     
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Figure 7: PWM Signal Fourier Series (Odd Harmonics) 
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Figure 8 below illustrates how a fourth order low pass filter can be used to filter the harmonics in the PWM 
waveform.  Note that the higher frequency harmonics are attenuated to a greater degree. The filter design 
is covered later in this section. 

 

 

Figure 8: Attenuation of the harmonics in the PWM with a low pass filter 
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As a rule of thumb, the cutoff frequency needs to be at least 1 decade lower than the PWM frequency to 
achieve good attenuation of the fundamental.  Using this rule of thumb the fundamental will be attenuated 
by 20dB for a first order, and 40dB for a second order.  We need to determine the filter order required to 
minimize the ripple to one half of a least significant bit (LSB).  Equations (1) to (6) work towards the 
derivation of a general formula that finds the required filter order to achieve a given resolution.  These 
equations assume that the filter cutoff frequency is set one decade below the PWM frequency. 

 

            
    

  
 

(1) 

 

 

Where: 
 

 Resolution is the minimum incremental change in the analog output 
voltage with a change in PWM duty cycle. 

 VPWM is the amplitude of the PWM signal 

 n is the resolution in bits for the analog signal (12 in this case) 
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Where:  
 

 Minimum_Ripple is the minimum peak-to-peak amplitude left from the 
PWM waveform after filtering.  Ideally the ripple is zero. 

 

 

 

 

        
    

       
  

(4) 

 

 

Where:  
 

 Ripple is the ripple out of the filter assuming the cutoff frequency is one 
decade lower than the PWM frequency (i.e. fcuttoff = fpwm / 10) 

 order: is the filter order (e.g. first order 1/10 or -20dB, second order 
1/100 or -40dB) 
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Substituting (3) into (4), we get Equation (5).  Rearranging Equation (5), we get Equation (6).  Equation (5) 
can be used to calculate the required filter order given the PWM resolution.  In Equation (7) we determine 
the order needed for our design (i.e. 4th order filter is needed for a 12 bit PWM). 
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order = 4 round up to next highest integer 

to achieve performance better than the goal. 

(7) 

 

 

From Equation (7) we determined that a fourth order filter is required for 12 bit PWM.  Now we need to 
select the component values for this filter.  A simple first order low pass RC filter is shown in Figure 9.  The 
equation that sets the cutoff frequency is given in Equation (8).   

 

 

Figure 9: First Order 391Hz Low Pass Filter 
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Where: 

 fcutoff = fpwm/10 = (3.91kHz) / 10 = 391Hz 

 R1 and C1 = first stage low pass RC filter 

 C1 is selected arbitrarily as a standard value.  Choose near 1uF as the 
capacitance in each subsequent stage is divided by 10. 
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The RC filter will load the microcontroller.  The load current is at a maximum when the PWM signal makes 
a logic level transition (i.e. low to high or high to low).  The transient current can be estimated by Equation 
(9).  Using the initial filter values calculated in Equation (9) the transient current is 3.8mA.  This is a 
reasonable load for the MSP430.  

            
   

  

 
    

    
       

(9) 

 

To obtain a higher order filter we can cascade additional stages of the filter.  However, it is important to 
ensure that subsequent stages do not load the initial stage.  A simple approach to prevent the loading is to 
increase the impedance of each subsequent stage by a factor of ten.  Equation (10) and (11) show the 
calculation of the second stage.  Subsequent stages follow the same procedure.  The final filter is shown in 
Figure 10.   
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Figure 10: Cascading four RC Filters for 4
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Finally, consider the noise contribution of the resistors in the filter.  The noise density plot shown in Figure 
11 can be used to determine the noise for the filter resistors.  The expected noise is 16uVpp, from 
Equation (12) and (13), which is significantly less than the required minimum ripple 403uVpp, so noise is 
not an issue for this design.  However, in other designs (e.g. higher order filter) the noise may be 
significant.     

 

Figure 11: Noise Spectral Density vs. Resistance 
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2.3 Filter Post Amplifier Design 

The purpose of this design is to filter the PWM signal to a dc voltage that has a ripple that is less than one 
half the LSB of the required analog output resolution.  Equation (14) calculates the minimum ripple to be 
403 Vpp for this design.  Most oscilloscopes have a minimum resolution of 1mV/div and cannot directly 
measure the filter output ripple.  The post amplifier amplifies the ripple to a level where the oscilloscope 
can measure the ripple to allow confirmation of filter performance. 
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Figure 12 shows the filter post amplifier used to amplify the ripple to a level where it can be easily read by 
an oscilloscope.  The first stage (U1a) has a dc gain of 1 if you consider the capacitor (C5) acts as an 
open to dc.  C5 was selected as a large capacitance (100uF) so that it would act as a short (negligible 
reactance) at very low frequencies.  The cutoff frequency for C5 and R5 is 0.159Hz.  So for frequencies 
above 0.159Hz you can consider C5 a short.  For frequencies above 0.159Hz the gain of U1a is 32 (R6/R5 
+1).  At high frequencies R6 and C6 will attenuate the gain (for f > 513kHz).  In summary, U1a amplifies 
the ac ripple from the filter by a factor of 32 but only amplifies the dc by a factor of 1.  This topology was 
used because the high input impedance of the non-inverting amplifier does not affect the filter.   

 

The filter, C7 and R7, between U1a and U1b is used to ac couple the two stages (i.e. eliminate the dc 
output of U1a).  U1b is a non-inverting amplifier with a gain of 32 (Gain = R9/R8 +1).  Thus, the total ac 
gain of the cascaded amplifier (U1a and U1b) is 1024.  In this example we should expect to see less than 
412mVpp of ripple on the oscilloscope (403 Vpp x 1024 = 412mVpp). 

 
   

 

Figure 12: Post Filter Amplifier for Ripple Verification  
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3 Component Selection 

3.1 Passive Component Selection 

Standard 1% 100ppm/C resistors and are sufficient for the accuracy required. The capacitors used should 
be 5% COG or NP0 type for best accuracy and lowest distortion.   

3.2 Amplifier Selection 

Use a low noise op amp for the post filter amplifier (U1a and U1b) to insure that the noise contributed by 
the amplifier should be minimal compared to the ripple signal.  The OPA2209 (dual OPA209) was used for 
this design. 

4 Simulation 

Figure 13 shows the forth order filter used to filter the PWM signal.  Figure 14 shows the response of each 
stage in the filter.  The fourth stage has the expected attenuation of 80dB at the PWM frequency. 

 

Figure 13: 12 bit PWM filter design (fcutoff  = 391Hz, 4
th

 order) 

 

Figure 14: Frequency Response for PWM filter (80dB attenuation for 3.91kHz) 
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Figure 16 shows the ac frequency sweep for the circuit shown in Figure 15.  In Figure 16 the Monte Carlo 
analysis option was also used to show that the gain is reasonably accurate at 3.91kHz (i.e. gain variation 
is 1020.9 to 1025.6V/V, Ideal Gain = 1024 V/V).   

 

Figure 15: Post Filter Amplifier for Ripple Verification (simulation circuit) 
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Figure 16: Monte Carlo Analysis for Post Amplifier Frequency Response 
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Figure 17 shows the total noise for the post amplifier (7.18mVrms).  The peak-to-peak noise, at 
Vout_scope, can be estimated as six times the rms (6 x 7.18mVrms = 43mVpp).  The expected ripple 
amplitude can be calculated from Equation (3) and the post filter amplifier gain to be 412mVpp (403 Vpp x 
1024 = 412mVpp).  Since the output signal is 412mVpp, the 43mVpp of noise should not be a significant 
error source.     

 

Figure 17: Total noise (Vrms) at the output of the Post Amplifier 
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Figure 18 shows the TINA-TI™ SPICE circuit used to simulate the entire circuit. Figure 19 shows the 
expected result out of the filter (386uVpp) and out of the post amplifier (396mV).  The post amplifier 
properly amplifies the ripple with minimal error (see Equation (15)).  

 

Figure 18: TINA-TI™ – Schematic for 12bit system 
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Figure 19:  TINA-TI™ – Schematic for 12bit System Simulation 
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4.1 Simulated Results Summary 

The simulation results are shown in Table 2 as below. 

 

Table 2: Comparison of Design Goals, Simulation Performance, and Measured Results 

System Resolution 
Goal 

Max Ripple 
Simulated  

Ideal Components 
Measured Results 

12bit (filter out) 403uVpp 344.48uVpp 347.66uVpp 

12bit (post amp out) 412mVpp 396mVpp 404mVpp 
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5 PCB Design 

The PCB schematic and Bill of Materials can be found in Appendix A. 

5.1 PCB Layout 

The general guidelines for precision PCB layout were used on this design.  For example, trace lengths are 
kept to minimum length especially input signals. 
 

  

Figure 20: PCB Layout 
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6 Verification & Measured Performance 

6.1 Low Pass Filter Ripple Measurement 

The ripple of the low pass filter output is in level of uV which cannot be read directly with an oscilloscope. 
Therefore, the post amplifier is used to amplify the signal to a milivolt level. The test results are shown in 
Figure 21 as below. 

 

Figure 21: 12bit system resolution with 1024 times gain output ripple 
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6.2 Post amplifier Filter Frequency Response 

Figure 22 illustrates the frequency responses of the post amplifier.    
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Figure 22:  Post Amplifier Bandwidth Measurement 

6.3 Measured Result Summary 

The measurement results are shown in Table 3 as below.  Note that the output ripple and cutoff 
frequencies are close to the goal.  The accuracy of the cutoff frequencies is not critical.  The main goal is 
to ensure that the PWM frequency (3.91kHz) is in the passband. 

Table 3: Comparison of Design Goal and Measured Performance 

System Requirement Goal Measurement 

Output Ripple 412mVpp 404mVpp 

Lower Cutoff Freq (-6dB) 0.125Hz 0.2Hz 

Upper Cutoff Freq (-6dB) 513kHz 400kHz 
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7 Modifications 

This design is for a 12 bit PWM system.  The same design methods can be used for higher resolution 
system; however, you will be confronted with several limitations. 

 The higher resolution PWM requires a lower peak-to-peak ripple.  This will require an additional filter 
stage.  If you use the same passive filter design, the additional filter stage will have an 8.6M  resistor 
in it.  The 8.6M resistor adds excessive intrinsic noise and increases extrinsic noise pick-up.  An 
active filter approach may be a better choice for higher order filters. 

 Assuming you are using the same clock for both the high and low resolution PWM signal, the higher 
resolution PWM signal has a lower PWM frequency than the lower resolution PWM signal. In this 
example the 12 bit PWM signal had a frequency of 3.91kHz.  A 13 bit PWM signal would have a 
PWM frequency of 1.955kHz (3.91kHz / 2), and a 16 bit PWM frequency would be 244Hz (3.91kHz / 
( 2

4
 ) ). 

 In this example, we set the cutoff frequency of the PWM filter one decade below the PWM frequency.  
Additional filter attenuation could be achieved by moving the filter cutoff frequency even lower.  If we 
move the filter two decades below from the PWM frequency the attenuation in decibels will double 
compared to the current filter.  For a fourth order filter the attenuation will change from 80db to 160dB.  
This is a huge improvement but it makes the PWM update rate very slow (2.4Hz for a 16 bit system).  
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Appendix A.  

A.1 Electrical Schematic  

 

Figure A-1: Electrical Schematic  
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A.2 Bill of Materials 

 

Item # Quantity Value Designator Footprint LibRef 

1 6 5000 +15V, -15V, S1_IN, S1_OUT, S2_IN, S2_OUT Keystone5000 5000 

2 1 470n C1 1210 Capacitor 

3 1 47n C2 1210 Capacitor 

4 1 4.7n C3 1210 Capacitor 

5 1 470p C4 1210 Capacitor 

6 2 NU C5, C6 1210 Capacitor 

7 2 0.1u C7, C9 0603 Capacitor 

8 2 10u C8, C10 1210 Capacitor 

9 2 100u C11, C13 1210 Capacitor 

10 1 1p C12 0603 Capacitor 

11 1 10p C14 0603 Capacitor 

12 6 5001 GND0, GND3, GND4, GND5, GND6, GND7 Keystone5001 5001 

13 4 108-0740-001 GND1, GND2, V+, V- Johnson_108-0740-001 108-0740-001 

14 4 NY PMS 440 0025 PH H1, H2, H3, H4 NY PMS 440 0025 PH NY PMS 440 0025 PH 

15 2 901-143 Input, Output Amphenol_901-143 901-143 

16 1 TSW-106-07-G-D J1 TSW-106-07-G-D TSW-106-07-G-D 

17 1 50 R1 0603 Resistor 

18 1 866 R2 0603 Resistor 

19 1 8.66k R3 0603 Resistor 

20 1 86.6k R4 0603 Resistor 

21 1 866k R5 0603 Resistor 

22 2 NU R6, R7 0603 Resistor 

23 1 310k R8 0603 Resistor 

24 2 10k R9, R10 0603 Resistor 

25 1 1k R11 0603 Resistor 

26 1 31k R12 0603 Resistor 

27 1 OPA2209 U1 D0008A_M OPA2209 
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Appendix B.  

B.1 Adjustable PWM Signal Source 

To test our final design we will create an easy to adjust and use PWM signal generator shown in Figure B-
1.  This generator has adjustable frequency, duty cycle, Voh (output high voltage level), and Vol (output 
high voltage level).   This will allow us to easily test all corner conditions of our specification for our final 
circuit implementation compliance. Figure B-2 shows the subcircuits used inside of the PWM Macromodel.   
VCO is a SPICE standard voltage-controlled-oscillator out of which we will use the triangle wave output 
scaled for 0V to 1V.  Frequency is scaled for 1V=1Hz.  External to the macromodel, duty cycle is scaled 
0V to 100V for 0% to 100% respectively.  Internally we scale this from 0 to 1V by VCVS2.  An ideal 
comparator, VCVS1, compares the triangle waveform (0V to 1V) to the duty cycle setting (0V to 1V).  The 
output high and low limits, Voh and Vol, are set externally and become the limit values of U2, a voltage-
controlled-voltage source with clamp limits. 

 

Figure B-1: Transient Analysis PWM Source 
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Figure B-2:  PWM Macromodel Details 
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