

Figure 8-4. $\mathrm{V}_{\mathrm{HYST}}(\mathrm{mV})$ vs $\mathrm{R}_{\mathrm{HYST}}(\mathrm{k} \Omega), \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$

8.2 Typical Application

8.2.1 Non-Inverting Comparator With Hysteresis

A way to implement external hysteresis to the TLV3604 is to add two resistors to the circuit: one in series between the reference voltage and the inverting pin, and another from the inverting pin to one of the differential output pins.

Figure 8-5. Non-Inverting Comparator with Hysteresis Circuit

8.2.1.1 Design Requirements

Table 8-1. Design Parameters

PARAMETER	VALUE
$\mathrm{V}_{\mathrm{HYS}}$	20 mV
$\mathrm{V}_{\text {REF }}$	5 V
$\mathrm{~V}_{\mathrm{T} 1}$	3.6 V
$\mathrm{~V}_{\mathrm{T} 2}$	3.4 V
Q	1.375 V
$\overline{\mathrm{Q}}$	1.025 V

8.2.1.2 Detailed Design Procedure

First, create an equation for V_{T} that covers both output voltages when the output is high or low.

$$
\begin{align*}
& V_{\text {INN_LOW }}=V_{\text {REF }}-\left(V_{\text {REF }}-V_{O L}\right) \times R_{1} /\left(R_{1}+R_{2}\right) \tag{1}\\
& V_{\text {INN_HI }}=V_{\text {REF }}-\left(V_{\text {REF }}-V_{O H}\right) \times R_{1} /\left(R_{1}+R_{2}\right) \tag{2}
\end{align*}
$$

The hysteresis voltage in this network is equal to the difference in the two threshold voltage equations.

$$
\begin{equation*}
V_{\text {HYS }}=V_{\text {INN_HI }}-V_{\text {INN_LOW }} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\text { After simplifying: } \mathrm{V}_{\mathrm{HYS}}=\left(\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{OL}}\right) \times \mathrm{R}_{1} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right) \tag{4}
\end{equation*}
$$

Since input bias is typically $1 \mu A$, it is best to choose a value for R_{1} and then solve for the required R_{2} to provided the needed amount of hysteresis. In this example, a value of 500Ω was selected to minimize the impact of input bias current on circuit offset voltage. Solving for R_{2} provides the equation below. Note that VOD is 350 mV from the EC Table.

$$
\begin{equation*}
R_{2}=R_{1} \times\left(V_{O D}-V_{H Y S}\right) / V_{H Y S} \tag{5}
\end{equation*}
$$

VREF can now be solved for using the equation for VINN_LOW or VINN_HI. IN this example, VINN_HI was chosen.

$$
\begin{equation*}
V_{\text {REF }}=\left(V_{\text {INN_HI }}-k \times V_{\mathrm{OH}}\right) /(1-k) \text { where } k=R_{1} /\left(R_{1}+R_{2}\right) \tag{6}
\end{equation*}
$$

The external hysteresis design is now complete with $\mathrm{R}_{1}=500 \Omega, \mathrm{R}_{2}=8.25 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{REF}}=2.8 \mathrm{~V}$.

8.2.1.3 Application Performance Plots

Figure 8-6. Hysteresis Curve for LVDS Comparator

8.2.2 Optical Receiver

The TLV3604, TLV3605, and TLV3607 can be used in conjunction with a high performance amplifier such as the OPA855 to create an optical receiver as shown in the Figure 8-7. The photo diode is connected to a bias voltage and is being driven with a pulsed laser. The OPA855 takes the current conducting through the diode and translates it into a voltage for a high speed comparator to detect. The TLV3604, TLV3605, and TLV3607 will then output the proper LVDS signal according to the threshold set ($\mathrm{V}_{\text {REF2 }}$).

