

Figure 8-4. V_{HYST} (mV) vs R_{HYST} (kΩ), V_{CC} = 3.3V

8.2 Typical Application

8.2.1 Non-Inverting Comparator With Hysteresis

A way to implement external hysteresis to the TLV3604 is to add two resistors to the circuit: one in series between the reference voltage and the inverting pin, and another from the inverting pin to one of the differential output pins.

Figure 8-5. Non-Inverting Comparator with Hysteresis Circuit

8.2.1.1 Design Requirements

Table 8-1. Design Parameters	
PARAMETER	VALUE
V _{HYS}	20mV
V _{REF}	5V
V _{T1}	3.6V
V _{T2}	3.4V
Q	1.375V
Q	1.025V

(5)

8.2.1.2 Detailed Design Procedure

First, create an equation for V_T that covers both output voltages when the output is high or low.

$$V_{\text{INN}_{\text{LOW}}} = V_{\text{REF}} - (V_{\text{REF}} - V_{\text{OL}}) \times R_1 / (R_1 + R_2)$$
(1)
$$V_{\text{INN}_{\text{HI}}} = V_{\text{REF}} - (V_{\text{REF}} - V_{\text{OH}}) \times R_1 / (R_1 + R_2)$$
(2)
The hysteresis voltage in this network is equal to the difference in the two threshold voltage equations.

$$V_{HYS} = V_{INN_HI} - V_{INN_LOW}$$
(3)
After simplifying: $V_{HYS} = (V_{OH} - V_{OL}) \times R_1 / (R_1 + R_2)$
(4)

Since input bias is typically 1 μ A, it is best to choose a value for R₁ and then solve for the required R₂ to provided the needed amount of hysteresis. In this example, a value of 500 Ω was selected to minimize the impact of input bias current on circuit offset voltage. Solving for R₂ provides the equation below. Note that VOD is 350 mV from the EC Table.

$$R_2 = R_1 \times (V_{OD} - V_{HYS}) / V_{HYS}$$

VREF can now be solved for using the equation for VINN_LOW or VINN_HI. IN this example, VINN_HI was chosen.

$$V_{\text{REF}} = (V_{\text{INN}_{\text{HI}}} - k \times V_{\text{OH}}) / (1 - k) \text{ where } k = R_1 / (R_1 + R_2)$$
(6)

The external hysteresis design is now complete with R₁ = 500 Ω , R₂ = 8.25 k Ω , V_{REF} = 2.8 V.

8.2.1.3 Application Performance Plots

Figure 8-6. Hysteresis Curve for LVDS Comparator

8.2.2 Optical Receiver

The TLV3604, TLV3605, and TLV3607 can be used in conjunction with a high performance amplifier such as the OPA855 to create an optical receiver as shown in the Figure 8-7. The photo diode is connected to a bias voltage and is being driven with a pulsed laser. The OPA855 takes the current conducting through the diode and translates it into a voltage for a high speed comparator to detect. The TLV3604, TLV3605, and TLV3607 will then output the proper LVDS signal according to the threshold set (V_{RFF2}).

Copyright © 2023 Texas Instruments Incorporated