Single ended to differential
 $\pm 12 \mathrm{~V}$ single ended to 1.2 V differential 0 V to 10 V single $->1.2 \mathrm{~V}$ differential 0 V to 10 V single $->3.3 \mathrm{~V}$ single ended

Art Kay

6-20-2023

Single ended to differential $\pm 12 \mathrm{~V}$ to $\pm 1.2 \mathrm{~V}$ (dif)

Single ended to differential $\pm 12 \mathrm{~V}$ to $\pm 1.2 \mathrm{~V}$ (dif)

- Here is the DC sweep results for -12 V to +12 V .
- $-0.6 \mathrm{~V}<$ VoutP $<0.6 \mathrm{~V}$
- $-0.6 \mathrm{~V}<$ VoutN $<0.6 \mathrm{~V}$
- -1.2 V < Vdif < 1.2 V
- The ranges satisfy the absolute maximum, Absolute input voltage, and the differential input voltage.
- The two output amplifiers have $\pm 1.2 \mathrm{~V}$ supplies. This limits the output of these amplifiers to 1.2 V which is within the ABS MAX for the ADS121M03. Note that on startup you can get transient amplifier outputs equal to the supply regardless of input signals. This is why it is useful to limit the supplies to a level inside the absolute maximum.

0V to 10 V unipolar to 1.2 V differential

0 V to 10 V single, to 0 V to 3 V single ended

