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An important characteristic of noise is its spectral density. Voltage noise spectral density 
is a measurement of root-mean-square (rms) noise voltage per square root Hertz (or 
commonly: nV/√Hz). Power spectral density is given in W/Hz. In the previous article we 
learned that the thermal noise of a resistor can be computed using Equation 2.1. This 
equation can be rearranged into a spectral density form. One important characteristic of 
this noise is that it has a flat spectral density plot (ie it has uniform energy at all 
frequencies). For this reason, thermal noise is sometimes called broadband noise. Op 
amps also have broadband noise associated with them. Broadband noise is defined as 
noise that has a flat spectral density plot. 
 

     Eq 2.1 
 

 
 

Fig. 2.1: Op Amp Noise Spectral Density 
 
In addition to broadband noise, op amps often have a low-frequency noise region that 
does not have a flat spectral density plot. This noise is called 1/f noise, flicker noise, or 
low-frequency noise. Typically, the power spectrum of 1/f noise falls at a rate of 1/f. This 
means that the voltage spectrum falls at a rate of 1/f(½ ). In practice, however, the 
exponent of the 1/f function may deviate slightly. Fig. 2.1 shows a typical op amp 
spectrum with both a 1/f region and a broadband region. Note that the spectral density 
plot also shows current noise (given in fA/√Hz). 



It is important to note that 1/f noise also has a normal distribution and, consequently, the 
mathematics described in Part I still apply. Fig. 2.2 shows the time domain description of 
1/f noise. Notice that the x-axis of this graph is given in seconds; this slow change with 
time is typical for 1/f noise. 
 

 
 

Fig. 2.2: 1/f Noise Shown In The Time Domain And Statistically 
 
The standard model for op amp noise is shown in Fig. 2.3. It consists of two uncorrelated 
current noise sources and one voltage noise source connected to the op amp inputs. The 
voltage noise source can be thought of as time-varying input offset voltage component, 
and the current noise sources can be thought of time-varying bias current components. 

 
 

Fig. 2.3: Op Amp Noise Model 
 
 



Op Amp Noise Analysis Technique 
 
The goal of op amp noise analysis technique is to calculate the peak-to-peak output noise 
based on op amp data sheet information. As the technique is explained, we will use 
formulas that apply to most simple op amp circuits. For more complex circuits, the 
formulas can help to get a rough idea of the expected noise output. It is possible to 
develop more accurate formulas for these complex circuits; however, the math would be 
overly complex. For the complex circuits, it is probably best to use a three-step approach. 
First get a rough estimate using the formulas, second get a more accurate estimate using 
spice, and finally verify your results through measurements. 
 
As an example circuit, we will use a simple non-inverting amplifier with a TI OPA277 
(see Fig. 2.4). Our goal is to determine the peak-to-peak output noise and to do this we 
have to consider the op amp's current noise, voltage noise, and the resistor thermal noise. 
We will determine the value of these noise sources using the spectral density curves in 
the data sheet. Also, we will have to consider the gain and bandwidth of the circuit. 

 
Fig. 2.4: Example Circuit For Noise Analysis 

 
First, we must understand how to convert the noise spectral density curves to a noise 
source. In order to do this we will have to use some calculus. As a quick reminder, the 
integral function will give the area under a curve. Fig. 2.5 shows how a constant function 
can be integrated by simply multiplying the height times the width (ie the area of a 
rectangle). This simple relationship converts the spectral density curves to noise sources. 
 



 
 

Fig. 2.5: Integration Computes Area Under A Curve 
 
People will often say that you must integrate the voltage spectral density curve to get 
total noise. In reality, you must integrate the power spectral density curve. This curve is 
simply the voltage or current spectral density squared (remember P = V2/R and P = I2R). 
Fig. 2.6 shows the strange units that result when you attempt to integrate the voltage 
spectral density curve. Fig. 2.7 shows how you can integrate the power spectral density 
and convert back to voltage by taking the square root of the result. Note that we get the 
proper units. 
 

 
 

Fig. 2.6: Incorrect Way To Compute Noise 
 

 
 

Fig. 2.7: Correct Way To Compute Noise 
 
Integrating the power spectral density curve for the voltage and current spectrums will 
give us the rms magnitude of the sources in the op amp model (Fig. 2.3). However, the 
shape of the spectral density curve will contain a 1/f region and a broad band region with 
a low-pass filter (see Fig. 2.8). Calculating the total noise of these two sections will 



require the use of formulas that were derived using calculus. The results of these two 
computations are added using root-sum square (rss) addition for uncorrelated sources that 
was discussed in Part I. 

 
 

Fig. 2.8: Broadband Region With Filter 
 
First, we will integrate the broadband region with a low-pass filter. Ideally, the low-pass 
filter portion of this curve would be a straight vertical line. This is referred to as a brick-
wall filter. Solving the area under a brick-wall filter is easy because it is a rectangle 
(height × width). In the real world we cannot realize a brick-wall filter. However, there 
are a set of constants that can be used to convert real-world filter bandwidth to an 
equivalent brick-wall filter bandwidth for the purpose of the noise calculation. Fig. 2.9 
compares the theoretical brick-wall filter to first-, second- and third-order filters. 

 
 

Fig. 2.9: Comparison Of Brick-Wall Filter To Real-World Filter 



The next equation is used to convert the real-world filter or the brick-wall equivalent. 
Table 2.1 lists the brick-wall conversion factors (Kn) for different filter orders. For 
example, a first-order filter bandwidth can be converted to a brick-wall filter bandwidth 
by multiplying by 1.57. The adjusted bandwidth is sometimes referred to as the noise 
bandwidth. Note that the conversion factor approaches one as the order increases. In 
other words, higher-order filters are a better approximation of a brick-wall filter. 
 

    Eq 2.2 
 

Number of Poles 
in Filter 

Kn 
Ac Noise Bandwidth Ratio 

1 1.57 
2 1.22 
3 1.16 
4 1.13 
5 1.12 

 
Table 2.1: Brick-Wall Correction Factor 

 
So now that we have a formula to convert a real-world filter to its brick-wall equivalent, 
it is a simple matter to integrate the power spectrum. Remember, integrating the power is 
the voltage spectrum squared. At the end of the integration, the square root is taken to 
convert back to voltage. The next equation was derived in this manor (see Appendix 2.1). 
This, and the last equation, are used in conjunction with the data sheet information to 
determine the broadband noise contribution. 

 Eq 2.3 
 



Recall that our goal is to determine the magnitude of the noise source Vn from Fig. 2.3. 
This noise source consists of both broadband noise and 1/f noise. Using the last two 
equations we were able to compute the broadband component. Now we need to compute 
the 1/f component. This is done by integrating the power spectrum of the 1/f region of the 
noise spectral density plot. Fig. 2.10 shows this region graphically. 
 

 
 

Fig. 2.10: 1/f Region 
 
The result of the integration is given by the two equations following, the first normalizing 
any noise measurement in the 1/f region to the noise at 1 Hz. In some cases this number 
can be read directly from the chart, in other cases it is more convenient to use this 
equation (see Fig. 2.11). The second computes the 1/f noise using the normalized noise, 
upper noise bandwidth, and lower noise bandwidth. The full derivation is given in 
Appendix 2.2. 

 Eq 2.4 
 

 



 
 

Fig. 2.11: Two 1/f Normalizing Cases 
 

   Eq 2.5 
 
When considering the 1/f noise you must choose a low-frequency cutoff. This is because 
the 1/f function is not defined at zero (ie 1/0 is undefined). In fact, the noise theoretically 
goes to infinity when you integrate back to zero Hertz. However, you should consider 
that very low frequencies correspond to long times. For example, 0.1 Hz corresponds to 
10 s, and 0.001 Hz corresponds to 1000 s. For extremely low frequencies the 
corresponding time could be years (eg 10 nHz = 3 years). The greater the frequency 
interval that you integrate over, the larger the resultant noise. Keep in mind, however, 
that extremely low-frequency noise measurements must be made over a long period of 
time. These phenomena will be discussed in greater detail in a later article. For now, 
please note that 0.1 Hz is often used for the lower cutoff frequency of the 1/f calculation. 
 
Now we have both the broadband and 1/f noise magnitude. We must add these noise 
sources using the formula for uncorrelated noise sources given in Part I (see equation 
below and Equation 1.8 in Part I of this TechNote series). 



      Eq 2.6 
 
A common concern that engineers have when considering this analysis technique is that 
they feel that the 1/f noise and broadband noise should be integrated in two separate 
regions. In other words, they believe that adding noise in this region will create an error 
because the 1/f noise will add with the broadband noise outside of the 1/f-region. The 
truth is that the 1/f-region extends across all frequencies as does the broadband-region. 
You must keep in mind that the noise spectrum is shown on a log chart and, so, the 1/f-
region has little impact after it drops below the broadband curve. The only region where 
the combination of the two curves is obvious is near where they combine (often called the 
1/f-corner frequency). In this region, you can see that the two sections combine as is 
described by our mathematical model. Fig. 2.12 illustrates how the two regions actually 
overlap as well as giving some relative magnitudes. 
 

 
 

Fig. 2.12: 1/f Noise Region and Broadband Noise Regions Overlap 
 
At this point we have developed all the equations necessary for converting a noise 
spectral density curve to a noise source. Note that the equations were derived for voltage 
noise, but the same technique works for current. In the next part of this article series, we 
will address the noise analysis of op amp circuits using these equations. 
 
 



Summary And Preview 
 
This part of the noise series introduced the op amp noise model and the noise spectral 
density curve. Also, some fundamental noise equations were introduced. Part III of this 
series will give examples of noise calculations using real world circuits. 
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