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Analysis and Measurement of Intrinsic Noise in Op Amp Circuits 
Part XI: Photodiode Amplifier Noise 

by Art Kay and Bryan Zhao, Texas Instruments Incorporated 
 
 
This TechNote focuses on noise analysis and simulation of photodiode amplifier circuits. 
Additionally, the process for optimizing the feedback compensation capacitor for output 
noise and stability will be a key focus. 
 
 
Short Introduction to Photodiodes  
 
To understand how to properly configure and analyze a photodiode in an amplifier 
configuration, it is important to understand some basic fundamentals on photodiode 
operation. A photodiode is a semiconductor device that is used to convert light to 
electrical current or voltage. Fig. 11.1 shows a simple pn photodiode consisting of n and 
p doped semiconductor material. With no bias applied to the diode, the free electrons 
from the n region combine with the free holes in the p region to create a depletion region. 
The depletion region is charged positively in the n material and negatively in the p 
material, so it develops an e-field. 
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Fig. 11.1: Simplified Semiconductor Model of Photodiode 
 
The schematic shown overleaf in Fig. 11.2 is the model for a photodiode. The different 
components in the model are normally given in the photodiode’s data sheet. The junction 
capacitance (Cj), shunt resistance (Rsh), and dark current (Id) are key parameters used in 
noise analysis.  
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ID : Diode Current
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Rs : Series resistance
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Io : Output current
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Fig. 11.2: Photodiode Electrical Model 
 
The purpose of a photodiode is to convert light to current. Fig. 11.3 shows that the 
responsivity of a photodiode to light is affected by the wavelength. Different types of 
photodiodes are designed and optimized to respond at specific wavelengths. 
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Fig. 11.3: Photodiode Responsively Vs Wavelength 
 
The junction capacitance is a key parameter used in noise analysis. Typically smaller 
junction capacitance leads to lower output noise. Increasing the reverse bias voltage on 
the diode decreases the junction capacitance. Therefore, in some applications increasing 
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the reverse bias voltage is necessary to reduce the overall output noise. The equation 
shown in Fig. 11.4 illustrates the mathematical relationship between junction capacitance 
and reverse voltage. 
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Fig. 11.4: Photodiode Junction Capacitance Vs Reverse Bias Voltage 
 
Fig. 11.5 shows how the diode characteristic curves are shifted by applied light. With no 
light applied, the photodiode acts as a conventional rectifier. Increasing applied light 
shifts the curve downward on the current axis. 
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Fig. 11.5: Photodiode V–I Characteristics 
 
 
Simple Transimpedance Amplifier 
 
The circuit shown overleaf in Fig. 11.6 is referred to as a transimpedance amplifier and is 
the most commonly-used photodiode amplifier configuration. The analysis contained 
within this TechNote is based on this simple transimpedance topology.  
 
The output voltage is calculated by multiplying the input current from the photodiode by 
the feedback resistor Rf. 
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Fig. 11.6: Common Transimpedance Amplifier 
 
 
Bandwidth for Simple Transimpedance Amplifier 
 
The transimpedance amplifier noise bandwidth and noise gain shown in Fig. 11.6 are the 
two important factors that contribute to the overall output voltage noise. However, since 
the overall output signal resolution of a transimpedance amplifier is determined by the 
ratio of the output signal to the output noise or commonly known as the signal-to-noise 
ratio (SNR), it is important to understand the bandwidth limit for the photodiode signal 
(signal bandwidth). The signal bandwidth (fp) is shown in Fig. 11.7. Note that the signal 
bandwidth is limited by Rf and Cf. 
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Fig. 11.7: Bandwidth for Simple Transimpedance Amplifier 
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Noise Model for Simple Transimpedance Amplifier 
 
Analysis of the photodiode amplifier’s output noise can be broken into three subsections: 
the photodiode, op amp, and resistor. Each of these three subsections can be modeled as a 
separate noise source that will be combined to compute the total output noise. The input 
(Copa) and feedback (Cf) capacitance and the shunt (Rs) and feedback (Rf) resistance in 
this circuit significantly affect the noise because they shape the noise gain curve. 
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Fig. 11.8: Noise Model for Simple Transimpedance Amplifier 
 
 
Photodiode Current Noise 
 
The current noise of a photodiode is the root sum square of three different noise sources: 
the thermal (Johnson) noise of the shunt resistance, the dark current shot noise, and the 
shot noise of the light current. Normally we consider the thermal noise of a resistor to be 
a voltage noise. However, for the analysis of a photodiode, it is convenient to analyze the 
thermal noise as a current. 
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Fig. 11.9: Photodiode Thermal Current Noise Spectral Density 
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Photodiode noise also contains shot noise. Shot noise is proportionate to, and is only 
present, when dc current flows. Two types of shot noise are present in the photodiode 
circuit. One is caused by the current that flows when light is applied to the photodiode 
(IL). The other noise source is caused by the dark current (ID). Fig. 11.10 shows the 
photodiode shot noise equations. 
  

isD 2q ID!
Shot noise (dark)

isL 2q IL!
Shot noise (w. Light)

q Electron Charge 1.6*10 -19  C

ID Dark Current in photodiode

I
L
 Photo current in photodiode  

 
Fig. 11.10: Photodiode Shot Current Noise Spectral Density 

 
The three current sources from the diode can be added using the root sum of the square 
(see Fig. 11.11) to produce the overall noise of the photodiode, in_diode. The total noise 
current from the photodiode flows through the feedback resistor Rf and forms an overall 
rms voltage noise at the output of the transimpedance amplifier (see Fig. 11.12). It is 
important to note that the bandwidth limit for the current noise is the signal bandwidth of 
the transimpedance amplifier multiplied by the brick wall correction factor (noise 
bandwidth). 
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Fig. 11.11: Total Photodiode Current Noise Spectral Density 
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Fig. 11.12: Rms Noise Voltage from Photodiode Current Noise 
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Thermal Noise from Rf 
 
The thermal noise of the feedback resistor can be calculated using the equations shown in 
Fig. 11.13. Note that the bandwidth limit for the thermal noise is the signal bandwidth of 
the transimpedance amplifier multiplied by the brick wall correction factor (noise 
bandwidth). 
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Fig. 11.13: Thermal Noise from Feedback Resistor in Transimpedance Amplifier 

 
 
Noise from Op Amp Voltage Noise Source 
 
The final contribution to the output noise to consider is the intrinsic voltage noise of the 
op amp itself, which is complicated by the ac noise gain, ie, the gain seen by the noise 
voltage signal source. In this example, Cf and Cin cause a peak in the noise gain curve 
that significantly affects the total output noise. The circuit in Fig. 11.14 shows the key 
components that affect the noise gain. 
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Fig. 11.14: Noise from Op Amp Voltage Noise Source 
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To compute the noise gain for the photodiode amplifiers, we perform a nodal analysis at 
the summing junction of the inverting amplifier input yielding three current paths (red 
markers on Fig. 11.15). To complete this analysis we need to consider the impedance of 
the capacitors: we represent the impedance of a capacitor as 1/(sCf), where s is jω. 
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Fig. 11.15: Nodal Analysis for Noise Gain Vs Frequency 
 
Fig. 11.16 shows the algebra for the nodal analysis. The first equation in this figure is 
taken directly from the node. Note that the equation has three terms for each of the three 
current paths. The first equation is rearranged into the noise gain transfer function. The 
numerator of this transfer function contains a zero and the denominator contains a pole. 
The zero (fz) and pole (fp) have significant effects on the transfer function. The equations 
for the pole and zero are shown at the bottom of Fig. 11.16. 
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Fig. 11.16: Solve for Pole and Zero Using Nodal Analysis 
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Noise gain versus frequency is displayed in Fig. 11.17. Note that noise gain is 0 dB until 
the zero (fz). Between the zero (fz) and the pole (fp) the noise gain rises at 20 dB/decade. 
The pole and zero cancel so that the noise gain flattens out. The flat region continues 
until it intercepts the Aol curve at fi, then rolls off with Aol. The magnitude of the flat 
region between fp and fi is dependent on CIN and Cf. The flat region between fp and fi is 
called the noise gain peak. Each frequency transition point is useful in deriving equations 
for the total noise. 
 

 
 

Fig. 11.17: Noise Gain Vs Frequency 
 
Fig. 11.18 gives some of the key equations from the noise gain curve in Fig. 11.17. The 
equation for fi shows where the noise gain curve intercepts the Aol curve. The equation 
for GPM gives the magnitude of the noise gain peak. 
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Fig. 11.18: Key Equations for Noise Gain Curve 
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Fig. 11.19 shows the op amp voltage noise curve in red, the noise gain in blue, and the 
output noise in green. The key here is to understand that the op amp noise curve is 
multiplied by the noise gain curve to produce the output noise curve. To find the total rms 
output noise we must integrate the output noise curve. 
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Fig. 11.19: Output Noise Equals Input Noise x Noise Gain 
 
Fig. 11.20 shows a circuit that can be used to generate the noise gain, Aol, and current to 
voltage gain. A SPICE ac sweep is used to generate curves at the test points VF1, VF2, 
and VF3. These signals are post-processed using the formulas from Fig. 11.21. Note that 
the 1TH inductor is used to break the feedback loop from an ac perspective, but allows 
for a dc connection. The 1TF capacitor allows the signal source VG1 for ac coupling into 
the loop at extremely low frequencies. These values are not practical for any physical 
circuit, but work well for this SPICE curve generation technique. 
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Fig. 11.20: SPICE Circuit to Find Aol and Noise Gain 
 
Fig. 11.21 shows how to start an “ac transfer characteristic” using TINA SPICE. After 
starting the ac transfer characteristic you need to enter the start and end frequency as 
required for your application. The ac transfer characteristic will create a curve for each of 
the test points and meters in the circuit. 
 

 

 
 

Fig. 11.21: Running Ac Transfer Character in TINA SPICE 
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The post-processing feature of SPICE enables the creation of the key transimpedance 
curves (Fig. 11.22) using math on the curves generated by the ac transfer characteristic. 
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Fig. 11.22: Noise Gain and Aol in Ac Plot 
 
Fig. 11.23 shows the Aol, noise gain, and current-to-voltage curves generated by entering 
the equation into the post processor. 
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Fig. 11.23: Creating Noise Gain and Aol with Post Processor 
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The output noise spectral density is the product of the noise gain and the voltage noise 
spectral density (see Fig. 11.24). Note that region 2 is a constant between regions 1 and 3 
where no term dominates. 

 

Fig. 11.24: Noise Gain Transfer Function 
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Fig. 11.25: Total Rms Noise from Noise Voltage in Transimpedance Amplifier 
 
We integrate the power spectral density in each of the five regions and combine the 
results (rms of the noise components) to get the total noise (see Fig. 11.25). 
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Fig. 11.26 shows the output noise spectral density with logarithmic and linear x-axes. The 
linear scale is intended to emphasize that regions 3, 4, and 5 dominate the total noise. 
Looking at the log scale it is easy to be misled into believing that the 1/f region (R1) 
could be the dominant source of noise. 
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Fig. 11.26: Different Regions in Voltage Noise Curve on Logarithmic/Linear Scales 
 
 
Total Noise (Op Amp, Diode, and Resistance) 
 
At this point we have determined relationships for all three noise sources in the 
transimpedance circuit: resistor noise, current noise, and voltage noise. To compute the 
total output noise we combine these three results using the root sum of the square. 
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Fig. 11.27: Total Rms Output Noise for Transimpedance Amplifier 

 
 
Stability of Transimpedance Amplifier  
 
In addition to shaping the output noise, the impedances connected at the summing node 
and the photodiode itself determine the transimpedance amplifier’s stability. In fact, a 
photodiode amplifier without feedback capacitance is an inherent differentiator and will 
not be stable (see Fig. 11.28, overleaf) because the rate of closure (ROC) between the 
feedback network (1/beta) and the Aol curve is equivalent to 40 dB/decade. From 
stability/feedback theory, any system that has an ROC >20 dB/decade will not be stable. 
This description is shown more precisely in Fig. 11.29. 
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Fig. 11.28: Transimpedance Amplifier Without Cf is Not Stable 
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Fig. 11.29: Not Stable with 40 dB Rate of Closure 
 
Another approach to testing stability is to apply a small signal step in photodiode current 
to the input of the photodiode amplifier circuit. In this case a step input current produces 
a substantial amount of ringing which in practical circumstances might induce sustained 
oscillations.  
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Fig. 11.30: Step Input Shows Stability Issue 
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The key to stabilizing the photodiode amplifier is to reduce the rate of closure between 
the noise gain curve and the Aol curve to 20 dB/decade by introducing a pole that flattens 
out the increasing noise gain before it intersects the Aol curve (see Fig. 11.31). One 
potential pitfall of this example is that a small change in capacitance, or Aol, can cause 
the amplifier to become unstable. As a rule of thumb it is advisable to set fp to a 
frequency at least half to one decade lower for good design margin. 
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Fig. 11.31: Pole from Cf Stabilizes Circuit 
 
Fig. 11.32 gives the equations for selecting a feedback capacitance that ensure stability. 
There are two formulas for Cf. The simplified formula assumes that CIN is much greater 
then Cf. The second equation gives a more exact value that is not dependent on this 
assumption. Note that these formulas compute the minimum capacitance required for 
stability. Increasing Cf beyond the minimum ensures design margin. 

 

fc 150MHz Op-amp Unity Gain Bandwidth

Cin 70pF Total input capacitance 

Rf 1M! Feedback resistance

Simplified equation for

minimum feedback cap

Assumes Cin >> Cf
Cf

Cin

2" Rf# fc#
272.5fF

Cc
1

2" Rf# fc#
Intermediate calculation used

in more exact formula

More exact

formula for

feedback

capacitance

Cfe

Cc

2
1 1

4Cin

Cc

++
$%
%&

'(
()

# 273.1fF

 
 

Fig. 11.32: Equations for Selecting Minimum Cf for Stability 
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Summary  
 
In this TechNote, we have introduced the key equations required for analyzing a 
photodiode transimpedance amplifier. Special emphasis has been placed on noise peaking 
caused by interaction from the voltage noise source with the input capacitance. 
Photodiode basics have also been discussed with emphasis on factors effecting noise. 
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