
Copyright 2015-2016 Texas Instruments, Inc. All rights reserved.

Network Processor Interface

User’s Guide

Texas Instruments, Inc.

San Diego, California USA

Network Processor Interface User’s Guide Version 1.1

2 Copyright 2015-2016 Texas Instruments, Inc. All rights reserved.

TABLE OF CONTENTS

1 OVERVIEW... 3
1.1 INTRODUCTION ... 3
1.2 SERIAL INTERFACE ... 2
1.3 COMMAND AND RESPONSE MESSAGE ROUTING ... 2

2 INTERFACING WITH A HOST PROCESSOR ... 2
2.1 PHYSICAL INTERFACE ... 2

2.1.1 UART ... 2
2.1.2 SPI ... 3
2.1.3 Configuration Management ... 3

2.2 NPI MESSAGES ... 4
2.2.1 Asynchronous Request (AREQ) ... 4
2.2.2 Asynchronous Indication (AIND) .. 5
2.2.3 Bidirectional Messaging .. 6
2.2.4 Fundamental Rules of MRDY and SRDY ... 7
2.2.5 Synchronous Request/Response (SREQ/SRESP) ... 7

2.3 NPI FRAMES ... 8
2.3.1 NPI SPI Frame .. 8
2.3.2 NPI UART Frame .. 8
2.3.3 Data Payload ... 9

3 INTEGRATING NPI WITHIN AN APPLICATION .. 9
3.1.1 NPI Frame Modules and Creating a Custom Frame ... 10
3.1.2 Routing Data through Application ... 11

REVISION HISTORY .. 12

REFERENCES .. 12

TABLE OF FIGURES

Figure 1: Network Processor Interface Framework ... 3
Figure 2: AREQ Order of Events ... 4
Figure 3: AREQ Timing Diagram ... 4
Figure 4: AIND Order of Events.. 5
Figure 5: AIND Timing Diagram .. 5
Figure 6: Bidirectional Messaging ... 7
Figure 7: NPI SPI Frame Format ... 8
Figure 8: NPI UART Frame Format .. 9
Figure 9: NPI Framework .. 10
Figure 10: NPI and Application Interface .. 11

 TABLE OF TABLES

Table 1: NPI UART Pin Assignments ... 3
Table 2: NPI SPI Pin Assignments .. 3
Table 3: AREQ Timings .. 5
Table 4: AIND Timings ... 6
Table 5: Technology Specific Files ... 10

Network Processor Interface User’s Guide Version 1.1

3 Copyright 2015-2016 Texas Instruments, Inc. All rights reserved.

1 Overview

A common system configuration is to use the Texas Instruments CC13xx/CC26xx as a network processor
(NP) where a host microcontroller (MCU) is able to control the CC13xx/CC26xx platform by sending serial
commands. This requires certain power domains of the NP to be on in order to receive and handle these
commands. It also requires translating serial packets into commands for the NP as well as translating
responses into serial packets to be sent to the Host. The handling of these messages along with
managing the power domains in an efficient manner is the responsibility of the network process interface
(NPI) framework of the CC13xx/CC26xx platform. The NPI framework enables the CC13xx/CC26xx to go
into low power modes when not being used and to be asynchronously woken up to respond to commands
from the host MCU.

The purpose of this document is to give an overview of the Network Processor Interface framework to
help with the development of software on the host MCU as well as aiding development of software on the
network processor itself.

1.1 Introduction

The NPI framework is shared among the following (insert marketing name) products:

 Bluetooth Smart

 Z-Stack ZigBee Network Processor (ZNP)

 TI-15.4-Stack MAC Co-Processor (MAC-CoP)

Between these different products, there are some differences in how data framed for serial
communication, as well as how messages are handled within the NP. Despite these minor differences,
shown in red, all products share the same basic NPI framework shown below:

NPI TI-RTOS TaskApp TI-RTOS Task

Stack TI-RTOS Task

NPI

Frame

Transport Layer

SPI UART

TI-RTOS Drivers

Application

ICall

Stack

Host MCU

SRDY MRDY Serial Bus

Network
Processor

Register

To Host Msg

Stack/Host Msg

Figure 1: Network Processor Interface Framework

Network Processor Interface User’s Guide Version 1.1

2 Copyright 2015-2016 Texas Instruments, Inc. All rights reserved.

NPI’s functionality can be broken down into three main components: managing the serial interface
between the NP and Host, managing command and responses to and from the stack, and optionally
routing stack or host messages to a registered application task.

1.2 Serial Interface

In order to properly manage the power domains of CC13xx/CC26xx platforms, NPI must include a way for
an external host to wake the network processor from low power modes. This is done through inclusion of
“master ready”, MRDY, and “slave ready”, SRDY, signals. These two signals along with the respective
SPI or UART serial bus signals comprise the serial interface of NPI.

MRDY is an input pin on the network processor and when set by the Host will wake the device enabling it
to receive data over the serial bus. SRDY is an output pin on the network processor, and, when set by the
NP, signals to the host that it may begin data transfer. This sequence of setting MRDY and SRDY pins
comprises a “handshake” process to guarantee both devices are awake and ready to send and/or receive
data.

1.3 Command and Response Message Routing

The common use case of the NPI framework is a basic network processor. This means that the
framework is strictly acting as a sending and receiving mechanism between the host MCU and the stack
task. However, there also exist use cases that include some amount of “custom” application-dependent
processing. For these cases not all messages from the host should be delivered to the stack and not all
messages from the stack should be transferred directly to the host. To enable these types of applications,
a mechanism to easily change the paths of inbound and outbound messages is built into NPI.

In Figure 1, the possible message rerouting with the application task can be seen. An application can
easily interject messages to the host within the command and response traffic of the stack using the NPI
APIs. An application can also register with NPI to either “Intercept” or “Echo” all messages originating
from the host and/or all messages originating from the stack. This allows the application to modify
messages as needed or to even process certain application specific messages without sending them to
either the host or stack.

2 Interfacing with a Host Processor

The purpose of this section is to describe the expected behavior of host MCUs. This includes physical
interface, NPI message types, timing of interface pins, and different message framing requirements of
each software product. In order for a host MCU to properly interact with a CC13xx/CC26xx network
processor, the below specifications should be followed.

2.1 Physical Interface

The NPI framework currently supports two serial interfaces, SPI and UART. The CC13xx/CC26xx has two
SPI modules and only one UART module. When configured to use SPI, NPI will by default use the
second SPI module (SSI1) (Note: This is due to the SmartRF06 board using SSI0 for driving LCD). For
each serial interface, power management can be enabled and regardless of interface type MRDY and
SRDY pins remain consistent. There are three possible configurations:

 UART with Power Management

 UART without Power Management

 SPI with Power Management

2.1.1 UART

NPI supports two different configurations of UART. One configuration requires only two pins, UART TX
and UART RX. This is an always-on configuration that does not permit the CC13xx/CC26xx to enter into
low power modes. The second configuration does allow low power modes because of the inclusion of the
MRDY and SRDY pins for power management. Some UART interfaces include hardware flow control

Network Processor Interface User’s Guide Version 1.1

3 Copyright 2015-2016 Texas Instruments, Inc. All rights reserved.

pins, CTS and RTS, however we do not currently support hardware flow control. Instead the MRDY and
SRDY pins can be used for both power management and software flow control.

Table 1: NPI UART Pin Assignments

UART Signal Name 7x7: IOID 5x5: IOID 4x4: IOID EM Header ID SmartRF06 Port ID

RX 2 1 1 RF1.7 P408.14

TX 3 0 2 RF1.9 P408.12

MRDY 19 6 4 RF1.10 P403.12

SRDY 12 4 3 RF1.12 P403.16

2.1.2 SPI

There is only one SPI configuration which requires the use of MRDY and SRDY. The NPI framework
requires the ability to asynchronously send data from NP to Host. Because of this requirement it is not
possible to have a configuration with the traditional SPI signals alone (SCLK, MOSI, MISO, CS). The
SRDY signal is used to signal the SPI master that a slave to master transmission is pending so the
master should toggle the SPI SCLK signal to begin the transfer. Without this signal, an asynchronous NP
to Host transfer is not possible. The MRDY signal performs the chip select, CS, function among other
functions so the chip select signal is not needed with the SPI configuration.

NOTE: The signals highlighted in the table below suggest an alternative pin assignment for SPI using
SSI1 to avoid a conflict with the LCD control signals on the SmartRF06.

Table 2: NPI SPI Pin Assignments

SPI Signal Name 7x7:IOID 5x5:IOID 4x4:IOID EM Header ID SmartRF06 Port ID

MOSI 9 11 9 RF1.18 P404.8

MISO 8 12 0 RF1.20 P404.10

SCLK 10 10 8 RF1.16 P404.4

MOSI 23 n/a n/a RF2.5 P404.12

MISO 24 n/a n/a RF2.10 P404.18

SCLK 30 n/a n/a RF2.12 P405.2

MRDY 19 6 4 RF1.10 P403.12

SRDY 12 4 3 RF1.12 P403.16

2.1.3 Configuration Management

With any network processor project that uses the NPI framework, switching between configurations can
be easily managed. There are only two preprocessor defines that are needed.

 POWER_SAVING – If defined, MRDY/SRDY as well as low power modes are used. If

not defined, the device will be always on and NPI must use UART.

 NPI_USE_SPI/NPI_USE_UART – Only one of these can be defined at a time. Each

define corresponds to the underlying serial interface that will be used by NPI

 NPI_SREQRSP – If defined, support for synchronous REQ/RSP messaging is included.

This is currently only relevant for MT-based NPI functionality.

Network Processor Interface User’s Guide Version 1.1

4 Copyright 2015-2016 Texas Instruments, Inc. All rights reserved.

2.2 NPI Messages

NPI messages describe an ordering of events on the interface pin, not the content of the data that is sent
or received. NPI frames define data content that is sent or received. In this section, the focus will first be
to describe messaging and the behavior of the physical interface and then to describe how data content,
or frames, are then sent over these messages.

When using power management pins, MRDY and SRDY, there are only two events whose order
determines the message: assertion of MRDY and the assertion of SRDY (Note: MRDY and SRDY are
active low, thus “assertion” refers to a logic value of 0). Before any data can be sent, a “handshake” must
occur and this handshake can be initiated by either Host or NP. There for two messages exist:
Asynchronous Request – transfer initiated by Host, and Asynchronous Indication – transfer initiated by
NP. When not using power management pins, the two events that define an Asynchronous Request or
Asynchronous Indication is the beginning of a data transfer on the UART Master TX pin or the UART
Slave TX pin respectively.

2.2.1 Asynchronous Request (AREQ)

An asynchronous request is a message that is sent from Host to NP. The host must initiate the
handshake by asserting MRDY, once SRDY has been asserted, then data can be transferred Host to NP.
MRDY is de-asserted by the Host once all data has been transferred and then NP de-asserts SRDY
notifying the Host that it may be in a low power mode. The order of events is shown below:

Host -> NP MRDY SRDY

Idle

!MRDY !SRDY

Handshake

Figure 2: AREQ Order of Events

2.2.1.1 AREQ Timings

An AREQ message is presented in Figure 3. In this figure there is one AREQ message which ends once
SRDY is de-asserted and a subsequent AREQ is initiated when MRDY is asserted. The following timings
provided are based on testing. These do not represent absolute values but instead are values that were
tested and shown to be functional.

MRDY

SRDY

MISO/
Slave TX

MOSI/
Slave RX

Δt0

Δt1

Δt2

Δt3 Δt4

Figure 3: AREQ Timing Diagram

Network Processor Interface User’s Guide Version 1.1

5 Copyright 2015-2016 Texas Instruments, Inc. All rights reserved.

Table 3: AREQ Timings

Interval Minimum (µs) Average (µs)

∆𝑡0 48 90

∆𝑡1 41 46

∆𝑡2 - 510

∆𝑡3 4.1 4.5

∆𝑡4 - 101

2.2.2 Asynchronous Indication (AIND)

An asynchronous indication is a message that is sent from NP to Host. The only difference between this
message and AREQ is that SRDY is asserted first and the direction of the data transfer is inverted. The
order of events can be seen below:

!SRDY !MRDY NP -> Host MRDY SRDY

Idle

Handshake

Figure 4: AIND Order of Events

2.2.2.1 AIND Timings

An AIND message is presented in Figure 3. In this figure there is one AIND message which ends once
SRDY is de-asserted and a subsequent AIND is initiated when SRDY is asserted. The following timings
provided are based on testing. These do not represent absolute values but instead are values that were
tested and shown to be functional.

MRDY

SRDY

MISO/TX

MOSI/RX

Δt5

Δt6

Δt7

Δt8

Δt9

Figure 5: AIND Timing Diagram

Network Processor Interface User’s Guide Version 1.1

6 Copyright 2015-2016 Texas Instruments, Inc. All rights reserved.

Table 4: AIND Timings

Interval Minimum (µs) Average (µs)

∆𝑡5 45 -

∆𝑡6 30 46

∆𝑡7 270 450

∆𝑡8 .5 -

∆𝑡9 50 -

2.2.2.2 AIND Dependencies

The timing diagram in Figure 5 shows that MRDY is de-asserted only after the transfer on the serial bus
has completed. This behavior however, is dependent on which underlying serial bus is being used.

For SPI, the NP has no concept of when the SPI transfer has finished because the Host is in control of
SCLK and determines how many bytes are clocked. It is the Host’s job then, to clock the correct amount
of bytes and then de-assert MRDY which signals to the NP that the transfer has indeed completed. The
correct amount of bytes is determined by a length field that is present with the SPI frame that is being
transferred.

For UART, the NP is in control of when the data is transferred and has knowledge of when it has
completed a transfer to the Host. Thus, the host can de-assert MRDY prior to the actual end of the data
transfer because NP is not waiting to be signaled. This reduces the amount of processing required to
receive each message since the packet is not parsed during the actual transmission. The Host will know
that is has received a full message once SRDY is de-asserted

2.2.3 Bidirectional Messaging

With any protocol that allows asynchronous messaging, where a signal transition denotes the start of a
message as with MRDY and SRDY, there are inherent collisions between messages. Instead of requiring
intricate collision handling, the NPI framework allows for bidirectional messaging to occur. This means
that data can be sent from the Host to NP and from NP to the Host in the same message window
regardless of the handshake order.

While reducing collision handling, bidirectional messaging adds some complexity to what operations must
be performed or initiated by each device. For every AIND the NP initiates, it must prepare to read as well
as write when MRDY is asserted. For every AREQ, the Host must prepare to read as well as write once
SRDY is asserted. Each device will also need to handle any FIFOs that could potentially be overrun
during a message and check at the end of every message to see what, if anything, has been received.

The scenario where bidirectional messaging will occur is when a device’s input pin (SRDY wrt Host) has
been asserted, and prior to asserting its output pin (MRDY wrt Host) the device gets a pending message
to write. Below is the modified ordering of events where there exists now a partial order on the MRDY and
SRDY assertions.

Network Processor Interface User’s Guide Version 1.1

7 Copyright 2015-2016 Texas Instruments, Inc. All rights reserved.

!SRDY !MRDY

NP -> Host,
Host -> NP

MRDY SRDY

Idle

Handshake

!MRDY !SRDY

Figure 6: Bidirectional Messaging

As seen in Figure 6, it is still the responsibility of the Host to de-assert MRDY first. This again presents a
serial bus dependent solution.

For SPI, MRDY can only be de-asserted after both enough bytes have been clocked out to transfer the
message from Host to NP and the full message from NP to Host has been received. Again, the length of
the message from NP can be found in the length field of the frame that is being sent.

For UART, MRDY can be de-asserted after the Host to NP transfer has completed. The NP will de-assert
SRDY after MRDY has been de-asserted and the NP to Host transfer has been completed.

When power management pins are not used, the only allowed serial interface is UART. UART inherently
is capable of handling bidirectional transfers because there are two dedicated and independent channels
for sending data between Host and NP. In this situation, AIND and AREQ can be sent independently
without the need for handshaking, so the above technique for handling handshaking collisions does not
apply. Instead, AIND and AREQ messages should be sent and handled independently.

2.2.4 Fundamental Rules of MRDY and SRDY

With handshaking and bidirectional messaging, there are two basic rules to the operation of the serial
bus:

1. Each device must always initiate a read prior to asserting its respective output pin (MRDY wrt

Host) regardless of the state of the its respective input pin (SRDY wrt Host)

2. Each device can only begin to write (or clock data in the case of SPI) once both MRDY and

SRDY are asserted

2.2.5 Synchronous Request/Response (SREQ/SRESP)

As mentioned previously, the NPI framework is common across multiple CC13xx/CC26xx software
products and protocol stacks. Some of these products, such as TI-MAC and Z-Stack, require
synchronous requests and responses.

A Synchronous Request (SREQ) is a frame, defined by data content instead of the ordering of events of
the physical interface, which is sent from the Host to NP where the next frame sent from NP to Host must
be the Synchronous Response (SRESP) to that SREQ. Because these are not messages but frames,
they can be sent over AREQ and AIND messages. The NPI framework then does the proper handling to
guarantee the next AIND message contains the SRESP frame, thus enforcing the synchronous behavior.

In the next section, NPI frames will be discussed in greater depth.

Network Processor Interface User’s Guide Version 1.1

8 Copyright 2015-2016 Texas Instruments, Inc. All rights reserved.

2.3 NPI Frames

An NPI frame defines the content of the data being sent. In order to assure reliable transmission of data
over messaging, specific frame types are used for each underlying serial interface. This is done to help
overcome some short comings of bidirectional communication for each.

Not only is there framing for NPI messages, there is also technology specific framing which defines the
format of the data payload sent within NPI Frames. The following are examples of technology specific
framing specifications:

 TI-15.4-Stack, TIMAC, and Z-Stack, Monitor/Test (MT)

 Bluetooth Smart, Host Command Interface (HCI)

In this section, the specific frame for each serial communication bus will be discussed as well as how
technology specific frames can be sent over these NPI frames.

2.3.1 NPI SPI Frame

There are a few limitations of SPI that must be addressed by defining data fields of each NPI message.
The first limitation is that the SPI master must trigger the clock (SCLK) signal in order to receive bytes
from the slave. If the slave is sending an AIND message, then the master must know how long this
message is in order to receive the complete message.

The other limitation of SPI is that if the clock signal is triggered, the master or slave must transmit empty
bytes if they have nothing to send. The simple scenario when this occurs is during either an AIND or
AREQ where either the master or slave receives only empty bytes. These messages of strictly empty
bytes could be easily ignored but the bidirectional message scenario requires more complex handling. If
the slave and master are both transmitting non-empty bytes then the shorter message will have to be
padded with empty bytes so that the longer message can be fully transmitted. Determining which bytes of
message bytes versus empty bytes in this scenario requires message delimitation.

In order to handle these limitations of SPI, the NPI SPI Frame is used for all NPI messages sent over SPI.
The NPI SPI Frame has four fields: start of frame (SOF), length, data payload, and frame check sequence
(FCS):

SOF
1 Byte
(0xFE)

Length
1 Byte

Data Payload
0 - 255 Bytes

FCS
1 Byte

Figure 7: NPI SPI Frame Format

The SOF byte always has the value of 0xFE. The length byte describes the length of the data payload
field and the FCS byte is calculated from the length and payload field bytes. The FCS byte is calculated

using the following where 𝐿𝑒𝑛 is the one byte length field and 𝐷𝑛 is the 𝑛𝑡ℎ byte of the data payload:

𝐹𝐶𝑆 = 𝐿𝑒𝑛 ⊕ 𝐷0 ⊕ … ⊕ 𝐷𝑛

This NPI SPI Frame handles both the delimitation of empty vs non empty data bytes as well as having a
fixed length field allowing the SPI master to know how many times the SCLK signal must be toggled to
receive a complete AIND message from the SPI slave.

2.3.2 NPI UART Frame

UART does not have the same inherent qualities as SPI. Thus, a much simpler frame format can be
used. Since UART RX and TX channels are independent of each other there is no need for a predefined
fixed length field and since there are no empty bytes that must be transmitted each frame does not need

Network Processor Interface User’s Guide Version 1.1

9 Copyright 2015-2016 Texas Instruments, Inc. All rights reserved.

to be delimited. This allows one to treat every byte received over UART RX or TX channels as a valid
byte of data payload thus the NPI UART Frame consists of only a data payload field.

Data Payload
0 - N Bytes

Figure 8: NPI UART Frame Format

2.3.3 Data Payload

All topics discussed to this point have been NPI Transport Layer specific implementation from the
messaging to the frame format. These components are completely agnostic to what is being sent within
the data payloads and simply create a stream of data bytes that are sent to the technology dependent
frame parsers. As shown in Figure 1, the Frame module receives these bytes and interprets them
according to a technology dependent specification so that these commands can be routed to the stack
and/or application.

The fact that the NPI Transport Layer provides basically a byte stream of data from the Host and a byte
stream to the Host allows for some flexibility with respect to how technology dependent commands or
responses must be transferred. The main benefit or feature is that this allows for fragmentation of these
commands or responses over the serial interface. For example, one HCI command does not need to be
sent by the host over one message. In some cases, HCI or MT commands can even be larger than an
NPI SPI frame so these must be sent as fragments.

For brevity’s sake, the technology dependent messaging will not be covered in this document. However,
the following references will provide such information:

 TI-15.4-Stack – Monitor/Test (MT): [2]

 TIMAC and ZigBee – Monitor/Test (MT): [4]

 Bluetooth Low Energy – Host Controller Interface (HCI): [3]

3 Integrating NPI within an application

The intent of this section is to provide information on how to integrate NPI within an already existing
CC13xx/CC26xx application. NPI can be used when implementing a custom network processor or as the
backbone for a generic communication link with a host processor.

To begin, all NPI framework files are located within the following directories:

- Source: <install directory>\components\common\src\npi

- Headers: <install directory>\components\common\src\npi\inc

There are also a couple basic pre-processor defines which can be used to customize how the NPI
interface behaves:

- POWER_SAVING – Allows the device to enter low power modes. If defined then

MRDY/SRDY are used.

- NPI_USE_UART – Use UART for serial interface. Can be used with or without

POWER_SAVING defined

- NPI_USE_SPI – Use SPI for serial interface. Can be used only with POWER_SAVING

defined

- NPI_SREQRSP – Synchronous Response and Requests enabled

- NPI_TL_BUF_SIZE – The maximum size of an NPI message

Network Processor Interface User’s Guide Version 1.1

10 Copyright 2015-2016 Texas Instruments, Inc. All rights reserved.

There are more customizations possible, including changing which pins function as MRDY and SRDY,
available in npi_config.h. Serial interface specific customizations, such as baud rate, are defined in serial
interface specific files: npi_tl_uart.c/h or npi_tl_spi.c/h.

3.1.1 NPI Frame Modules and Creating a Custom Frame

Any project using NPI must include the <install directory>\components\common\npi\src path. Almost all
components in this NPI directory are common files that implement the transport layer or routing
mechanism for messages. In Figure 9, these common components are shown in blue while the
technology specific components are shown in red. These technology specific components are the frame
parsers and constructors used to handle and prepare all data that will be sent over the NPI serial
interface. These files are listed below. For all technologies there are also projects included in the SDK
that take care of basic NPI integration into a network processor type application.

Table 5: Technology Specific Files

HCI MT

<install dir>\components\common\npi\src\inc\npi_ble.h <install dir>\components\common\npi\src\npi_frame_mt.c

<install dir>\components\common\npi\src\npi_frame_hci.c <install dir>\components\common\npi\src\npi_client_mt.c

 <install dir>\components\common\npi\src\\inc\npi_client.h

As mentioned previously, it is possible to implement a custom frame. Using a custom frame can decrease

implementation overhead and greatly increase flexibility and adaptability of the NPI framework to any

application. The technology specific files above are a good starting point to understand what is necessary

to implement a custom frame. The next few paragraphs will discuss the APIs used and how to properly

hook into the over NPI structure.

NPI TI-RTOS Task

NPI

Frame

Transport Layer

SPI UART

TI-RTOS Drivers

Figure 9: NPI Framework

Network Processor Interface User’s Guide Version 1.1

11 Copyright 2015-2016 Texas Instruments, Inc. All rights reserved.

There are two APIs that comprise most of a frame module:

- NPIFrame_collectFrameData(void)

- NPIFrame_frameMsg(uint8 *pMsg)

NPIFrame_collectFrameData() is called after every NPI message is received. This function must parse
through the received data and determine whether a complete frame has been collected. If a complete
frame has been collected then that frame is translated into an NPIMSG_msg_t which is a specific type
used for all messages routed through the NPI framework. The NPIMSG_msg_t consists of three fields:
length, data, and type. Data is the frame that was collected and length is the length of that frame. Type
can either by synchronous or asynchronous. If a frame is determined to be synchronous then no
messages will be routed through NPI until the response to that synchronous message is sent back to the
host. Asynchronous messages are routed in the order they are received. This function will invoke a call
back registered by the NPI task indicated that a complete frame has been received and the NPI task then
en-queues the message to be routed.

NPIFrame_frameMsg() receives a pointer to an array of raw bytes which must be translated into an
NPIMSG_msg_t. This function is called any time there is a message that must be sent to the host. Again,
if synchronous messages are used then determining the type of the message to be framed is important
otherwise the asynchronous messages will be blocked awaiting a synchronous response to be sent to the
host.

The basic implementation of a frame module can be seen in more detail in npi_frame_hci.c or
npi_frame_mt.c. HCI only uses asynchronous messages while MT uses both synchronous and
asynchronous messages. These files also give an example of how to implement the initialization function
so that the NPI task can register to receive found frames.

3.1.2 Routing Data through Application

NPI TI-RTOS TaskApp TI-RTOS Task

NPI

Frame

Transport Layer

SPI UART

TI-RTOS Drivers

Application

Register

To Host Msg

Stack/Host Msg

Figure 10: NPI and Application Interface

There are many cases where not all messages received from the host should be routed directly to the
stack. There may be custom commands handled and required by the application. In order to handle such
requirements, the NPI framework allows for an application to register for both incoming and outgoing
messages.

Network Processor Interface User’s Guide Version 1.1

12 Copyright 2015-2016 Texas Instruments, Inc. All rights reserved.

There are two APIs provided to register for such messages:

- NPITask_registerIncomingRXEventAppCB()

- NPITask_registerIncomingTXEventAppCB()

Incoming RX events are messages that are being sent from the Host to NP while incoming TX events are
messages that are being sent from the stack task to Host. The application registers by passing a function
pointer to the above APIs. This function is then invoked passing the message as a parameter to this call
back function. There are two different ways that messages are currently allowed to be routed. They can
be routed as either ECHO or INTERCEPT. As ECHO, the application receives a copy of the message and
another copy of the message is also sent to the stack. As INTERCEPT, the application will receive all
messages and can choose to reroute them to the stack or to handle directly.

Registering for messages provides an NPI-to-Application routing of messages but there are also APIs
which allow an application to send messages to the stack task or to Host.

- NPITask_sendToHost() – Send a message from Application to the Host

- NPITask_sendBufToStack() – Send a message from the Application to Stack task

These APIs to send messages to Host or Stack, and registering to receive incoming messages, give the
application the complete flexibility to determine how all messages are handled and/or routed between the
stack and the Host processor.

Revision History

Version Description Date

1.0 Initial release 03/23/2015

1.1 Added CC13xx and TI-15.4-Stack 06/22/2016

References

[1] TI-RTOS User’s Guide

[2] TI-15.4-Stack MAC-CoP Interface Guide

[3] TI BLE Vendor Specific HCI Reference Guide

[4] Z-Stack ZNP Interface Specification

http://www.ti.com/lit/ug/spruhd4f/spruhd4f.pdf

