
Reference oscillator frequency 40MHz

Symbol rate 4ksps

Frequency deviation 1kHz

RF frequency 228.4MHz

#define IOCFG3_REG 0x00

#define IOCFG3 0x1A

#define IOCFG2_REG 0x01

#define IOCFG2 0x06

#define IOCFG0_REG 0x03

#define IOCFG0 0x02 //TXFIFO_THR

#define SYNC3_REG 0x04

#define SYNC3 0x93 //Sync word 3 = 0x93

#define SYNC2_REG 0x05

#define SYNC2 0x0B //Sync word 2 = 0x0B

#define SYNC1_REG 0x06

#define SYNC1 0x51 //Sync word 1 = 0x51

#define SYNC0_REG 0x07

#define SYNC0 0xDE //Sync word 0 = 0xDE

#define SYNC_CFG1_REG 0x08

#define SYNC_CFG1 0x18

#define DEVIATION_M_REG 0x0A

#define DEVIATION_M 0xD2 //Freq deviation 1kHz.

#define MODCFG_DEV_E_REG 0x0B

#define MODCFG_DEV_E 0x08 //2GFSK, normal mode. DEV_E = 0.

#define PREAMBLE_CFG1_REG 0x0D

#define PREAMBLE_CFG1 0x18 //Pattern 0xAA.Bytes = 4.

#define CHAN_BW_REG 0x11

#define CHAN_BW 0x08 //Decimation factor 20.

#define SYMBOL_RATE2_REG 0x14 //Data rate

#define SYMBOL_RATE2 0x5A //4ksps. SRATE_E = 5.

#define SYMBOL_RATE1_REG 0x15 //Data rate

#define SYMBOL_RATE1 0x36 //4ksps

#define SYMBOL_RATE0_REG 0x16 //Data rate

#define SYMBOL_RATE0 0xE2 //4ksps

#define FIFO_CFG_REG 0x1E

#define FIFO_CFG 0x78 //120bytes in TX FIFO.

#define FS_CFG_REG 0x21

#define FS_CFG 0x18 //205MHz to 240MHz. LO divider = 16.

#define PKT_CFG1_REG 0x27

#define PKT_CFG1 0x04 //CRC enabled. Status byte not appended.

#define PKT_CFG0_REG 0x28

#define PKT_CFG0 0x40 //Infinite packet length mode.

#define PA_CFG0_REG 0x2D

#define PA_CFG0 0x7E //Tx up sampler factor = 64.

#define PKT_LEN_REG 0x2E

#define PKT_LEN 0xF6 //246 bytes.

#define PKT_LEN_UNMODULATED 0x00

#define FREQ2_REG 0x0C //Extended register.

#define FREQ2 0x5B //228.4MHz

#define FREQ1_REG 0x0D //Extended register.

#define FREQ1 0x5C //228.4MHz

#define FREQ0_REG 0x0E //Extended register.

#define FREQ0 0x28 //228.4MHz

#define FS_SPARE_REG 0x22 //Extended register.

#define FS_SPARE 0xAC

#define TXFIRST_REG 0xD3 //Extended register.

#define TXFIRST 0x00 //Default.

#define TXLAST_REG 0xD5 //Extended register.

#define TXLAST 0x00 //Default.

#define PARTNUMBER 0x8F //Extended register.

#define PARTVERSION 0x90 //Extended register.

#define PACKET_LENGTH 126 //Bytes

#define EXTENDED_REG 0x2F

#define DIRECT_TX_FIFO_REG 0x3E //Tx FIFO direct access.

#define SRES 0x30 //Reset the frequency sysnthesiser.

#define SFSTXON 0x31 //Enable and calibrate frequency sysnthesiser.

#define SCAL 0x33 //Calibrate frequency synthesiser.

#define STX 0x35 //Enable TX.

#define SIDLE 0x36 //Disable TX.

#define SFTX 0x3B //Flush TX FIFO.

#define SNOP 0x3D //No operation. Get chip status byte.

CY_ISR(Tx_FIFO_thrshold_isr_Interrupt_Handler)

{

 Tx_FIFO_threshold_isr_ClearPending();

 RF_GPIO_0_ClearInterrupt();

 SPI_SpiUartPutArray(txBuffer, 122); //Load the data in the CC1125 TX FIFO.

 RF_Tx_Start();

}

int main(void)

{

 uint8_t result;

 RF_SPI_Write(SIDLE, 0x00, 0x00, SPI_TRANSACTION_TYPE_WRITE); //Set RF synthesiser in the IDLE state.

 while(Initialise_RF() == FALSE)

 {

 Fault_LED_Write(ILLUMINATED);

 CyDelay(DELAY_250ms);

 Debug_UartPutString("\n\rNon poi inizializzare sintetizzatore RF.\n\r");

 }

 Debug_UartPutString("\n\rSintetizzatore RF inizializzato con successo.\n\r");

 Manual_Calibration();

 result = RF_SPI_Read(EXTENDED_REG, FS_CHP_REG, SPI_TRANSACTION_TYPE_READ);

 result = result + 0x0C;

 RF_SPI_Write(EXTENDED_REG, FS_CHP_REG, result, SPI_TRANSACTION_TYPE_WRITE);

 RF_SPI_Write(EXTENDED_REG, FS_VCO4_REG, 0x0A, SPI_TRANSACTION_TYPE_WRITE);

 Tx_FIFO_threshold_isr_StartEx(Tx_FIFO_thrshold_isr_Interrupt_Handler);

 while(TRUE)

 {

 }

uint8_t Initialise_RF(void) //Use CC1125 default values for registers that are not listed below.

{

 uint16 index;

 RF_Reset_Write(RESET); //Reset the CC1125.

 CyDelay(DELAY_10ms);

 RF_Reset_Write(ACTIVE);

 Status.flags = MODULATED_CARRIER;

 txBuffer[0] = DIRECT_TX_FIFO_REG | 0x40; //Burst mode.

 txBuffer[1] = 0x00; //FIFO address 0.

 txBuffer[2] = PACKET_LENGTH;

 for(index = 3; index < PACKET_LENGTH + 4; index++) //Generate the data to be transmitted.

 {

 txBuffer[index] = 0x5A;

 }

 RF_SPI_Write(SFTX, 0x00, 0x00, SPI_TRANSACTION_TYPE_WRITE);

 SPI_SpiUartPutArray(txBuffer, PACKET_LENGTH + 3); //Load the data in the CC1125 TX FIFO.

 RF_SPI_Write(IOCFG3_REG, IOCFG3, 0x00, SPI_TRANSACTION_TYPE_WRITE);

 RF_SPI_Write(IOCFG2_REG, IOCFG2, 0x00, SPI_TRANSACTION_TYPE_WRITE);

 RF_SPI_Write(IOCFG0_REG, IOCFG0, 0x00, SPI_TRANSACTION_TYPE_WRITE);

 RF_SPI_Write(SYNC3_REG, SYNC3, 0x00, SPI_TRANSACTION_TYPE_WRITE);

 RF_SPI_Write(SYNC2_REG, SYNC2, 0x00, SPI_TRANSACTION_TYPE_WRITE);

 RF_SPI_Write(SYNC1_REG, SYNC1, 0x00, SPI_TRANSACTION_TYPE_WRITE);

 RF_SPI_Write(SYNC0_REG, SYNC0, 0x00, SPI_TRANSACTION_TYPE_WRITE);

 RF_SPI_Write(SYNC_CFG1_REG, SYNC_CFG1, 0x00, SPI_TRANSACTION_TYPE_WRITE);

 RF_SPI_Write(DEVIATION_M_REG, DEVIATION_M, 0x00, SPI_TRANSACTION_TYPE_WRITE);

 RF_SPI_Write(MODCFG_DEV_E_REG, MODCFG_DEV_E, 0x00, SPI_TRANSACTION_TYPE_WRITE); //2GFSK.

 RF_SPI_Write(PREAMBLE_CFG1_REG, PREAMBLE_CFG1, 0x00, SPI_TRANSACTION_TYPE_WRITE);

 RF_SPI_Write(CHAN_BW_REG, CHAN_BW, 0x00, SPI_TRANSACTION_TYPE_WRITE);

 RF_SPI_Write(SYMBOL_RATE2_REG, SYMBOL_RATE2, 0x00, SPI_TRANSACTION_TYPE_WRITE); //Symbol rate.

 RF_SPI_Write(SYMBOL_RATE1_REG, SYMBOL_RATE1, 0x00, SPI_TRANSACTION_TYPE_WRITE); //Symbol rate.

 RF_SPI_Write(SYMBOL_RATE0_REG, SYMBOL_RATE0, 0x00, SPI_TRANSACTION_TYPE_WRITE); //Symbol rate.

 RF_SPI_Write(FIFO_CFG_REG, FIFO_CFG, 0x00, SPI_TRANSACTION_TYPE_WRITE);

 RF_SPI_Write(FS_CFG_REG, FS_CFG, 0x00, SPI_TRANSACTION_TYPE_WRITE); //205MHz to 240MHz.

 RF_SPI_Write(PKT_CFG1_REG, PKT_CFG1, 0x00, SPI_TRANSACTION_TYPE_WRITE);

 RF_SPI_Write(PKT_CFG0_REG, PKT_CFG0, 0x00, SPI_TRANSACTION_TYPE_WRITE);

 RF_SPI_Write(PKT_LEN_REG, PKT_LEN, 0x00, SPI_TRANSACTION_TYPE_WRITE);

 RF_SPI_Write(EXTENDED_REG, FREQ2_REG, FREQ2, SPI_TRANSACTION_TYPE_WRITE);

 RF_SPI_Write(EXTENDED_REG, FREQ1_REG, FREQ1, SPI_TRANSACTION_TYPE_WRITE);

 RF_SPI_Write(EXTENDED_REG, FREQ0_REG, FREQ0, SPI_TRANSACTION_TYPE_WRITE);

 RF_SPI_Write(EXTENDED_REG, FS_SPARE_REG, FS_SPARE, SPI_TRANSACTION_TYPE_WRITE);

 RF_SPI_Read(EXTENDED_REG, PARTVERSION, SPI_TRANSACTION_TYPE_READ);

 sprintf(Debug_message_array, "\n\rVersione sintetizzatore RF 0x%x\n\r", SPI_RX_data[2]);

 Debug_UartPutString(Debug_message_array);

 RF_SPI_Read(EXTENDED_REG, PARTNUMBER, SPI_TRANSACTION_TYPE_READ);

 if(SPI_RX_data[2] == CC1125_PARTNUMBER)

 {

 return TRUE;

 }

 return FALSE;

}

void RF_Tx_Start(void)

{

 if(Status.flags == MODULATED_CARRIER)

 {

 RF_SPI_Write(EXTENDED_REG, TXFIRST_REG, 0x00, SPI_TRANSACTION_TYPE_WRITE);

 RF_SPI_Write(EXTENDED_REG, TXLAST_REG, PACKET_LENGTH+1, SPI_TRANSACTION_TYPE_WRITE);

 }

 RF_SPI_Write(STX, 0x00, 0x00, SPI_TRANSACTION_TYPE_WRITE);

 Debug_UartPutString("\n\rLa trasmissione RF e iniziata.\n\r");

}

void RF_Tx_Stop(void)

{

 RF_SPI_Write(SIDLE, 0x00, 0x00, SPI_TRANSACTION_TYPE_WRITE); //Ferma Tx.

 RF_SPI_Write(PKT_CFG2_REG, PKT_CFG2, 0x00, SPI_TRANSACTION_TYPE_WRITE); //Setup for data transmission.

Different for unmodulated carrier.

 RF_SPI_Write(EXTENDED_REG, CFM_DATA_CFG_REG, CFM_DATA_CFG, SPI_TRANSACTION_TYPE_WRITE); //Setup for data

transmission. Different for unmodulated carrier.

 Status.flags = MODULATED_CARRIER;

 Debug_UartPutString("\n\rLa trasmissione RF e fermata.\n\r");

}

