Reference oscillator frequency 40MHz

Symbol rate 4ksps

Frequency deviation 1kHz

RF frequency 228 .4MHz

#define IOCFG3_ REG 0x00

#define IOCFG3 0x1A

#define IOCFG2 REG 0x01

#define IOCFG2 0x06

#define IOCFGO_REG 0x03

#define IOCFGO 0x02 //TXFIFO_THR
#define SYNC3 REG 0x04

#define SYNC3 0x93 //Sync word 3 = 0x93
#define SYNC2 REG 0x05

#define SYNC2 0x0B //Sync word 2 = 0xO0B
#define SYNC1 REG 0x06

#define SYNC1 0x51 //Sync word 1 = 0x51
#define SYNCO REG 0x07

#define SYNCO 0xDE //Sync word 0 = OxDE
#define SYNC CFG1l REG 0x08

#define SYNC CFG1 0x18

#define DEVIATION M REG 0x0A

#define DEVIATION M 0xD2 //Freq deviation 1kHz.
#define MODCFG DEV E REG 0x0B

#define MODCFG DEV_E 0x08 //2GFSK, normal mode. DEV E = 0.
#define PREAMBLE CFG1l REG 0x0D

#define PREAMBLE CFG1 0x18 //Pattern OxAA.Bytes = 4.



#define CHAN BW REG 0x11

#define CHAN BW 0x08 //Decimation factor 20.
#define SYMBOL RATE2 REG 0x14 //Data rate

#define SYMBOL RATE2 0x5A //4ksps. SRATE E = 5.

#define SYMBOL RATEl REG 0x15 //Data rate

#define SYMBOL RATEL 0x36 //4ksps

#define SYMBOL RATEO REG 0x16 //Data rate

#define SYMBOL RATEQ 0xXE2 //4ksps

#define FIFO CFG REG 0x1E

#define FIFO CFG 0x78 //120bytes in TX FIFO.

#define FS CFG REG 0x21

#define FS_CFG 0x18 //205MHz to 240MHz. LO divider = 16.
#define PKT CFGl REG 0x27

#define PKT CFG1 0x04 //CRC enabled. Status byte not appended.
#define PKT CFGO REG 0x28

#define PKT CFGO 0x40 //Infinite packet length mode.
#define PA CFGO_REG 0x2D

#define PA CFGO 0x7E //Tx up sampler factor = 64.
#define PKT LEN REG 0x2E

#define PKT LEN 0xF6 //246 bytes.

#define PKT LEN UNMODULATED 0x00

#define FREQ2 REG 0x0C //Extended register.

#define FREQ2 0x5B //228.4MHz

#define FREQ1 REG 0x0D //Extended register.

#define FREQI1 0x5C //228.4MHz

#define FREQO REG 0x0E //Extended register.

#define FREQO 0x28 //228.4MHz



#define FS SPARE REG 0x22 //Extended register.

#define FS SPARE 0xAC

#define TXFIRST REG 0xD3 //Extended register.

#define TXFIRST 0x00 //Default.

#define TXLAST REG 0xD5 //Extended register.

#define TXLAST 0x00 //Default.

#define PARTNUMBER 0x8F //Extended register.

#define PARTVERSION 0x90 //Extended register.

#define PACKET LENGTH 126 //Bytes

#define EXTENDED REG 0x2F

#define DIRECT TX FIFO REG 0x3E //Tx FIFO direct access.

#define SRES 0x30 //Reset the frequency sysnthesiser.
#define SFSTXON 0x31 //Enable and calibrate frequency sysnthesiser.
#define SCAL 0x33 //Calibrate frequency synthesiser.
#define STX 0x35 //Enable TX.

#define SIDLE 0x36 //Disable TX.

#define SFTX 0x3B //Flush TX FIFO.

#define SNOP 0x3D //No operation. Get chip status byte.



CY ISR(Tx FIFO thrshold isr Interrupt Handler)

{
Tx FIFO_threshold isr ClearPending();
RF _GPIO 0 ClearInterrupt();

SPI_ SpiUartPutArray (txBuffer, 122); //Load the data in the CC1125 TX FIFO.
RF Tx Start();

int main (void)
uint8 t result;
RF SPI Write(SIDLE, 0x00, 0x00, SPI TRANSACTION TYPE WRITE); //Set RF synthesiser in the IDLE state.

while(Initialise RF() == FALSE)
{
Fault_LED_Write(ILLUMINATED);
CyDelay (DELAY 250ms) ;
Debug UartPutString ("\n\rNon poi inizializzare sintetizzatore RF.\n\r");

}

Debug UartPutString("\n\rSintetizzatore RF inizializzato con successo.\n\r");

Manual Calibration();

result = RF SPI Read(EXTENDED REG, FS CHP REG, SPI TRANSACTION TYPE READ);
result = result + 0x0C;

RF SPI Write (EXTENDED REG, FS CHP REG, result, SPI TRANSACTION TYPE WRITE);
RF_SPI Write (EXTENDED REG, FS VCO4 REG, 0x0A, SPI TRANSACTION TYPE WRITE);
Tx FIFO_threshold isr StartEx(Tx FIFO thrshold isr Interrupt Handler);

while (TRUE)
{



uint8 t Initialise RF(void)

{

uintlo index;

RF Reset Write (RESET);
CyDelay (DELAY 10ms) ;

RF Reset Write (ACTIVE);

Status.flags = MODULATED CARRIER;

txBuffer[0] = DIRECT TX FIFO REG | 0x40;
txBuffer[1l] = 0x00;
txBuffer[2] = PACKET LENGTH;

for(index = 3; index < PACKET LENGTH + 4; index++)

{
txBuffer[index] = 0x5A;

}

RF _SPI Write(SFTX, 0x00, 0x00, SPI TRANSACTION TYPE WRITE);

SPI SpiUartPutArray (txBuffer, PACKET LENGTH + 3);

RF _SPI Write (IOCFG3 REG, IOCFG3, 0x00, SPI TRANSACTION TYPE WRITE);
RF SPI Write (IOCFG2 REG, IOCFG2, 0x00, SPI TRANSACTION TYPE WRITE);
RF _SPI Write (IOCFGO REG, IOCFGO, 0x00, SPI TRANSACTION TYPE WRITE);
RF _SPI Write(SYNC3 REG, SYNC3, 0x00, SPI TRANSACTION TYPE WRITE);
RF _SPI Write (SYNC2 REG, SYNC2, 0x00, SPI TRANSACTION TYPE WRITE);
RF_SPI Write(SYNC1 REG, SYNC1, 0x00, SPI TRANSACTION TYPE WRITE);

RF _SPI Write(SYNCO REG, SYNCO, 0x00, SPI TRANSACTION TYPE WRITE);

//Use CC1125

default values for registers that are not listed below.

//Reset the CC1125.

//Burst mode.
//FIFO address 0.

//Generate the data to be transmitted.

//Load the data in the CC1125 TX FIFO.

RF_SPI Write (SYNC CFGl REG, SYNC CFGl, 0x00, SPI_TRANSACTION TYPE WRITE);



RF_SPI Write (DEVIATION M REG, DEVIATION M, 0x00, SPI_ TRANSACTION TYPE WRITE);
RF_SPI Write (MODCFG DEV E REG, MODCFG DEV E, 0x00, SPI TRANSACTION TYPE WRITE); //2GFSK.
RF_SPI Write (PREAMBLE CFGl REG, PREAMBLE CFGl, 0x00, SPI_TRANSACTION TYPE WRITE);

RF_SPI Write (CHAN BW REG, CHAN BW, 0x00, SPI_TRANSACTION TYPE WRITE);

RF_SPI Write (SYMBOL RATE2 REG, SYMBOL RATE2, 0x00, SPI TRANSACTION TYPE WRITE); //Symbol rate.
RF_SPI Write (SYMBOL RATEl REG, SYMBOL RATEl, 0x00, SPI TRANSACTION TYPE WRITE); //Symbol rate.
RF_SPI Write (SYMBOL RATEO REG, SYMBOL RATEO, 0x00, SPI TRANSACTION TYPE WRITE); //Symbol rate.

RF_SPI Write(FIFO CFG REG, FIFO CFG, 0x00, SPI TRANSACTION TYPE WRITE);

RF_SPI Write(FS CFG REG, FS CFG, 0x00, SPI_ TRANSACTION TYPE WRITE); //205MHz to 240MHz.
RF_SPI_Write(PKT_CFGI_REG, PKT_CFGI, 0x00, SPI_TRANSACTION_TYPE_WRITE);

RF _SPI Write(PKT CFGO REG, PKT CFGO, 0x00, SPI TRANSACTION TYPE WRITE);
RF_SPI_Write(PKT_LEN_REG, PKT LEN, 0x00, SPI_TRANSACTION_TYPE_WRITE);

RF SPI Write (EXTENDED REG, FREQ2 REG, FREQ2, SPI TRANSACTION TYPE WRITE);

RF SPI Write (EXTENDED REG, FREQl1 REG, FREQl, SPI TRANSACTION TYPE WRITE);
RF_SPI_Write(EXTENDED_REG, FREQO_REG, FREQO, SPI_TRANSACTION_TYPE_WRITE);

RF SPI Write (EXTENDED REG, FS SPARE REG, FS SPARE, SPI TRANSACTION TYPE WRITE);
RF_SPI_Read(EXTENDED_REG, PARTVERSION, SPI_TRANSACTION_TYPE_READ);

sprintf (Debug message array, "\n\rVersione sintetizzatore RF 0Ox%x\n\r", SPI RX datal[2]);

Debug UartPutString (Debug message array);

RF_SPI Read (EXTENDED REG, PARTNUMBER, SPI TRANSACTION TYPE READ);



if (SPI_RX data[2] == CCl125 PARTNUMBER)
{
return TRUE;

return FALSE;

void RF Tx Start (void)

if (Status.flags == MODULATED CARRIER)
{

RF_SPI Write (EXTENDED REG, TXFIRST REG, 0x00, SPI_TRANSACTION TYPE WRITE);

RF_SPI Write (EXTENDED REG, TXLAST REG, PACKET LENGTH+1, SPI_TRANSACTION TYPE WRITE);
}

RF_SPI_Write(STX, 0x00, 0x00, SPI TRANSACTION TYPE WRITE) ;
Debug UartPutString("\n\rLa trasmissione RF e iniziata.\n\r");

void RF Tx Stop(void)
{
RF_SPI_Write(SIDLE, 0x00, 0x00, SPI_TRANSACTION_TYPE_WRITE); //Ferma Tx.
RF_SPI Write (PKT CFG2 REG, PKT CFG2, 0x00, SPI TRANSACTION TYPE WRITE); //Setup for data transmission.

Different for unmodulated carrier.

RF_SPI Write (EXTENDED REG, CFM DATA CFG REG, CFM DATA CFG, SPI_ TRANSACTION TYPE WRITE); //Setup for data
transmission. Different for unmodulated carrier.

Status.flags = MODULATED_CARRIER;

Debug UartPutString("\n\rLa trasmissione RF e fermata.\n\r");



