
1 Introduction

ECCN 5E002 TSPA – Technology / Software Publicly Available

Application Report
SLAA397A–July 2009–Revised March 2009

AES128 – A C Implementation for Encryption and
Decryption

Uli Kretzschmar.. MSP430 Systems

ABSTRACT
This application report describes the AES algorithm and the use of a suggested C
implementation for AES encryption and decryption with MSP430.

Note: This document may be subject to the export control policies of the local
government.

Contents
1 Introduction .. 1
2 C Implementation of AES 128 .. 6
3 Including the AES Algorithm In User Code ... 6
4 Performance... 7
5 Included Library Files .. 7
6 References .. 7

The Advanced Encryption Standard (AES) was announced by the National Institute of Standards and
Technology (NIST) in November 2001. [1] It is the successor of Data Encryption Standard (DES), which
cannot be considered as safe any longer, because of its short key with a length of only 56 bits.

To determine which algorithm would follow DES, NIST called for different algorithm proposals in a sort of
competition. The best of all suggestions would become the new AES. In the final round of this competition
the algorithm Rijndael, named after its Belgian inventors Joan Daemen and Vincent Rijmen, won because
of its security, ease of implementation, and low memory requirements.

There are three different versions of AES. All of them have a block length of 128 bits, whereas the key
length is allowed to be 128, 192, or 256 bits. In this application report, only a key length of 128 bits is
discussed.

SLAA397A–July 2009–Revised March 2009 AES128 – A C Implementation for Encryption and Decryption 1
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA397A

1.1 Basic Concept of the Algorithm

1.2 Structure of Key and Input Data

ECCN 5E002 TSPA – Technology / Software Publicly Available

Introduction www.ti.com

The AES algorithm consists of ten rounds of encryption, as can be seen in Figure 1. First the 128-bit key
is expanded into eleven so-called round keys, each of them 128 bits in size. Each round includes a
transformation using the corresponding cipher key to ensure the security of the encryption.

Figure 1. AES Algorithm Structure

After an initial round, during which the first round key is XORed to the plain text (Addroundkey operation),
nine equally structured rounds follow. Each round consists of the following operations:
• Substitute bytes
• Shift rows
• Mix columns
• Add round key

The tenth round is similar to rounds one to nine, but the Mix columns step is omitted. In the following
sections, these four operations are explained.

Both the key and the input data (also referred to as the state) are structured in a 4x4 matrix of bytes.
Figure 2 shows how the 128-bit key and input data are distributed into the byte matrices.

Figure 2. Structure of the Key and the State

AES128 – A C Implementation for Encryption and Decryption2 SLAA397A–July 2009–Revised March 2009
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA397A

1.3 Substitute Bytes (Subbytes Operation)

1.4 Shift Rows (Shiftrows Operation)

ECCN 5E002 TSPA – Technology / Software Publicly Available

www.ti.com Introduction

The Subbytes operation is a nonlinear substitution. This is a major reason for the security of the AES.
There are different ways of interpreting the Subbytes operation. In this application report, it is sufficient to
consider the Subbytes step as a lookup in a table. With the help of this lookup table, the 16 bytes of the
state (the input data) are substituted by the corresponding values found in the table (see Figure 3).

Figure 3. Subbytes Operation

As implied by its name, the Shiftrows operation processes different rows. A simple rotate with a different
rotate width is performed. The second row of the 4x4 byte input data (the state) is shifted one byte
position to the left in the matrix, the third row is shifted two byte positions to the left, and the fourth row is
shifted three byte positions to the left. The first row is not changed.

Figure 4 illustrates the working of Shiftrows.

Figure 4. Shiftrows Operation

SLAA397A–July 2009–Revised March 2009 AES128 – A C Implementation for Encryption and Decryption 3
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA397A

1.5 Mix Columns (Mixcolumns Operation)

1.6 Add Round Key (Addroundkey Operation)

ECCN 5E002 TSPA – Technology / Software Publicly Available

Introduction www.ti.com

Probably the most complex operation from a software implementation perspective is the Mixcolumns step.
The working method of Mixcolumns can be seen in Figure 5.

Figure 5. Mixcolumns Operation

Opposed to the Shiftrows operation, which works on rows in the 4x4 state matrix, the Mixcolumns
operation processes columns.

In principle, only a matrix multiplication needs to be executed. To make this operation reversible, the usual
addition and multiplication are not used. In AES, Galois field operations are used. This paper does not go
into the mathematical details, it is only important to know that in a Galois field, an addition corresponds to
an XOR and a multiplication to a more complex equivalent.

The fact that there are many instances of 01 in the multiplication matrix of the Mixcolumns operation
makes this step easily computable.

The Addroundkey operation is simple. The corresponding bytes of the input data and the expanded key
are XORed (see Figure 6).

Figure 6. Addroundkey Operation

AES128 – A C Implementation for Encryption and Decryption4 SLAA397A–July 2009–Revised March 2009
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA397A

1.7 Key Expansion (Keyexpansion Operation)

k
3,0

k
2,0

k 1,0

k 0,0

k
3,1

k
2,1

k 1,1

k 0,1

k
3,2

k
2,2

k 1,2

k 0,2

k
3,3

k
2,3

k 1,3

k 0,3

k
3,0

k
2,0

k 1,0

k 0,0

k
3,1

k
2,1

k 1,1

k 0,1

k
3,2

k
2,2

k 1,2

k 0,2

k
3,3

k
2,3

k 1,3

k 0,3

k0,3

k1,3

k2,3

k3,3

S-Box

S (k i,j)

t0,3

t1,3

t2,3

t3,3

k0,3

k1,3

k2,3

k3,3

S-Box

S (k i,j)

t0,3

t1,3

t2,3

t3,3

t 1,3

t 2,3

t 3,3

t 0,3
t
3,j

t
2,j

t1,j

t0,j

R otate
t 1,3

t 2,3

t 3,3

t 0,3
t
3,j

t
2,j

t1,j

t0,j

R otate

t
3,j

t
2,j

t1,j

t0,j

R otate

...

k0 ,0

k1 ,0

k2 ,0

k3 ,0

k0 ,4

k1 ,0

k2 ,0

k3 ,0

RC 1

0 0

0 0

0 0

k0 ,0

k1 ,0

k2 ,0

k3 ,0

k0 ,4

k1 ,0

k2 ,0

k3 ,0

RC 1

0 0

0 0

0 0

RK (n) RK(n+1)

k 3 , 4

k
2 , 4

k 1 , 4

k 0 , 4

k 3 , 1

k
2 , 1

k 1 , 1

k 0 , 1

k 3 , 4

k
2 , 4

k 1 , 4

k 0 , 4

k 3 , 1

k
2 , 1

k 1 , 1

k 0 , 1

k 3 , 0

k
2 , 0

k 1 , 0

k 0 , 0

k 3 ,1

k
2 ,1

k 1 ,1

k 0 ,1

k 3 , 2

k
2 , 2

k 1 , 2

k 0 , 2

k 3 , 3

k
2 , 3

k 1 , 3

k 0 , 3

k 3 , 0

k
2 , 0

k 1 , 0

k 0 , 0

k 3 ,1

k
2 ,1

k 1 ,1

k 0 ,1

k 3 , 2

k
2 , 2

k 1 , 2

k 0 , 2

k 3 , 3

k
2 , 3

k 1 , 3

k 0 , 3

k
0, 0

k 1, 0

k 2, 0

k 3, 0

k
0 ,4

k 1 ,4

k 2 ,4

k 3 ,4

R K (n) R K (n + 1)

k
0 ,5

k 1 ,5

k 2 ,5

k 3 ,5

ECCN 5E002 TSPA – Technology / Software Publicly Available

www.ti.com Introduction

As previously mentioned, Keyexpansion refers to the process in which the 128 bits of the original key are
expanded into eleven 128-bit round keys.

To compute round key (n+1) from round key (n) these steps are performed:
1. Compute the new first column of the next round key as shown in Figure 7:

Figure 7. Expanding First Column of Next Round Key

First all the bytes of the old fourth column have to be substituted using the Subbytes operation. These
four bytes are shifted vertically by one byte position and then XORed to the old first column.
The result of these operations is the new first column.

2. Columns 2 to 4 of the new round key are calculated as shown:
• [new second column] = [new first column] XOR [old second column]
• [new third column] = [new second column] XOR [old third column]
• [new fourth column] = [new third column] XOR [old fourth column]
Figure 8 illustrates the calculation of columns 2-4 of the new round key.

Figure 8. Expanding Other Columns of Next Round Key

SLAA397A–July 2009–Revised March 2009 AES128 – A C Implementation for Encryption and Decryption 5
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA397A

2 C Implementation of AES 128

2.1 Encrypting 128 Bit

2.2 Decrypting 128 Bit

3 Including the AES Algorithm In User Code

ECCN 5E002 TSPA – Technology / Software Publicly Available

C Implementation of AES 128 www.ti.com

The algorithm was implemented using C. The following sections show how an encryption or decryption
can be calculated using the functions provided by this application report.

The following code example shows how an AES encryption can be performed.

#include "msp430x26x.h"
#include "TI_aes.h"

int main(void)
{

unsigned char state[] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff};

unsigned char key[] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f};

aes_encrypt(state,key);

return 0;
}

This short program defines two arrays of the type unsigned character. Each array is 16 bytes long. The
first one contains the plaintext and the other one the key for the AES encryption.

After the function aes_encrypt returns, the encryption result is available in the array state.

Decryption can be done in a similar way to encryption. First two arrays are defined. When a decryption
needs to be performed, one array contains the key and the other one the cipher text.

After the function aes_decrypt returns, the decryption result is available in the array state.

#include "msp430x26x.h"
#include "TI_aes.h"

int main(void)
{

unsigned char state[] = { 0x69, 0xc4, 0xe0, 0xd8, 0x6a, 0x7b, 0x04, 0x30,
0xd8, 0xcd, 0xb7, 0x80, 0x70, 0xb4, 0xc5, 0x5a};

unsigned char key[] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f};

aes_decrypt(state,key);

return 0;
}

The AES encryption and decryption software is distributed as source code so that the user can compile
this software together with other code. To accomplish the inclusion, some steps should be taken:
• Add TI_aes.c to the project and including the header file TI_aes.h.
• Change the device-specific include file in the c-file of the library.
• Optional step: Change the compiler optimizations to High→Speed to decrease the cycle count of the

AES calculation.

AES128 – A C Implementation for Encryption and Decryption6 SLAA397A–July 2009–Revised March 2009
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA397A

4 Performance

5 Included Library Files

5.1 Function description

6 References

ECCN 5E002 TSPA – Technology / Software Publicly Available

www.ti.com Performance

In the following table, the performance metrics of the AES-implementation can be found. These values
correspond to the optimization setting High→Speed of the C-compiler in IAR.

Encryption Decryption
Clock cycles needed ~6600 ~8400
Flash usage (bytes) 1839 2423
RAM usage (bytes) 80 80

TI_aes.c – Contains all needed functions for AES en- and decryption

TI_aes.h – Includes the function definitions for AES en- and decryption.

void aes_encrypt(unsigned char *state, unsigned char *key)
This function is used for encryption using the AES algorithm. It has the following parameters:
• unsigned char *state

This is the 16-byte long array containing the plaintext that is to be encrypted. The user should
always pass a copy of the plaintext to the encrypt function, because data is overwritten by the
internal calculations.

• unsigned char *key
This 16-byte long array contains the 128-bit key for the AES encryption.

The state array is used for the calculation and contains the result of the encryption, the cipher text, on
return of the function.

void aes_decrypt(unsigned char *state, unsigned char *key)
This function is used for decryption using the AES algorithm. It has the following parameters:
• unsigned char *state

This is the 16-byte long array containing the cipher text that is to be decrypted. The user should
always pass a copy of the cipher text to the decrypt function, because data is overwritten by the
internal calculations.

• unsigned char *key
This 16-byte long array contains the 128-bit key for the AES decryption.

The state array is used for the calculation and contains the result of the decryption, the plaintext, on
return of the function.

1. Announcing the Advanced Encryption Standard (FIPS PUB 197)

SLAA397A–July 2009–Revised March 2009 AES128 – A C Implementation for Encryption and Decryption 7
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA397A

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	1 Introduction
	1.1 Basic Concept of the Algorithm
	1.2 Structure of Key and Input Data
	1.3 Substitute Bytes (Subbytes Operation)
	1.4 Shift Rows (Shiftrows Operation)
	1.5 Mix Columns (Mixcolumns Operation)
	1.6 Add Round Key (Addroundkey Operation)
	1.7 Key Expansion (Keyexpansion Operation)

	2 C Implementation of AES 128
	2.1 Encrypting 128 Bit
	2.2 Decrypting 128 Bit

	3 Including the AES Algorithm In User Code
	4 Performance
	5 Included Library Files
	5.1 Function description

	6 References

