MSP430 Optimizing C/C++ Compiler
v18.9.0.STS

User's Guide

I3 TExXAs

INSTRUMENTS

Literature Number: SLAU132S
October 2004—Revised September 2018

I3 TEXAS
INSTRUMENTS

Contents

L 5] =T = 9
1 Introduction to the Software Development TOOIS . ..cvii i 12
11 Software Development TOOIS OVEIVIEWuueiueeiiueirsersterss it santssisstass s rasiainssannss 13
1.2 (7] 141 o1 L= T Y (=T o - Tt N 15
1.3 N IS 1 ST @ 2] =T o 15
1.4 L 1H1 1 01U 15
15 LTSS 16
2 USING the C/CH+ COMPIlET .. ettt e e e e e e e e e e e e e eees 17
2.1 Y o To 10y £ LT @0 T3 g1 o 1= 18
2.2 INVOKING the C/CH+ COMPIIET . atttt ittt a s s s s s e ran e e anerans 18
2.3 Changing the Compiler's Behavior With OPtIONSu.eeiiiiiiiii i srraa s raanns 19
22 0 R IR 1312 @ o1 o 1= S 26

2.3.2 Frequently USEa OptiONS . .ueiussiseisesssissssssssssesasesssssastsssssassssasesasessanssanssansiannens 28

2.3.3 Miscellaneous USeful OPtiONS . ..uueiueseiiitseiaieteisaaate st e ssaar s ssaaane s saanassssannnsssannnesinn 29

2.3.4 RUN-TIME MOUEI OPtiONS . tttetesiiinttessaaneessaannessaanneesaasnnesaasnnessaannessssnnnessssnnessssnnnessns 31

RS TR TS} V001 oo 1ol D T=T o TH T T 1o @7 o] 170 0 L 34

2.3.6 SPECITYING FIlEBNAMES .. uuiti it r s e et s s e s tr s e et saaan e s sanan e s saannnernn 35

2.3.7 Changing How the Compiler Interprets Filenamescoviiiiiiiiiiiiii i sanee s sennneeaaannes 35

2.3.8 Changing How the Compiler Processes C FileSuuiiieiiiiiiriiiiiiiii i 35

2.3.9 Changing How the Compiler Interprets and Names EXtENSIONSvviiiiiiiiiiiieiiiieniiineeannas 36

b K Y o =Yo7/ g To T D =T (o] 1= S 36

P2 Tt R X7 g 1= @) o 37

pZ N A B 1= o1 (=Tt L (=0 [) o] S 38

2.4 Controlling the Compiler Through Environment VariablesSccvviiiiiieiiiiii i riiie e ssinne e snnnneenannns 38
2.4.1 Setting Default Compiler Options (MSP430_C_OPTION) 1.utuuteiiueireeiintsrinsiarisineraneisinesannss 38

2.4.2 Naming One or More Alternate Directories (MSP430_C_DIR)...iuuuiiiiiiiiiiiiiiieiniie s iniianesannnss 39

25 (0fe] g1 (o] [TaTo TR 1 g LT S £=] 0 £ ToT =T o] 40
2.5.1 Predefined Macro NAIMES ...uiuuiiieeiiteriseiass st rs s sar s asa s raneaaneans 40

2.5.2 The Search Path for #INClude FileSuuiii i s an e 41

2.5.3 Support for the #warning and #Warn DIrECHVES ...viuieeeiiiie it rainresraanrerrsannressannreraaannees 42

2.5.4 Generating a Preprocessed Listing File (--preproc_only Option)evveeiiseiiieriseinirinneines 42

2.5.,5 Continuing Compilation After Preprocessing (--preproc_with_compile Option)voveveviiinnnennns 42

2.5.6 Generating a Preprocessed Listing File with Comments (--preproc_with_comment Option) 42

2.5.7 Generating Preprocessed Listing with Line-Control Details (--preproc_with_line Option) 43

2.5.8 Generating Preprocessed Output for a Make Utility (--preproc_dependency Option)cccevenne. 43

2.5.9 Generating a List of Files Included with #include (--preproc_includes Option)ccvvivveriiinneennns 43

2.5.10 Generating a List of Macros in a File (--preproc_macros OPtioN)vveeeiiseiriseriseisieeriniiineines 43

2.6 Passing Arguments 10 MEAIN() «.uueeuuueeetiieteeiriete e ssan s e sraaase s aaaa s s saaaanessaansasssannnessannnnsssnn 43
2.7 Understanding DiagnNoStiC MESSa0ES ... uuuetieireertiantestaantesssannressasnnessasnneesassnnessssnnesssssnessssnnnenss 44
2.7.1 Controlling DiagnOStIC MESSAGES .utuutiuuteruseianeisneiastsrssranrsrase e saiesrassraisesaraaarsraneias 45

2.7.2 How You Can Use Diagnostic SUPPreSSioN OPLIONS ..ueeireeeirrineeeiriisssssiinssssaassssrannressannnes 46

2.8 (01 1= AV 1= ETSY= To =S a7
2.9 Generating Cross-Reference Listing Information (--gen_cross_reference Option)ovveevveivinriinnerineas 47
2.10 Generating a Raw Listing File (--gen_preprocessor_listing OPtion)vvveeeiriiieeiiiiineiriiaesiaiinnesianns a7
2.11 Using INline FUNCHON EXPANSION 1 tuttueteettistesssanteessaannessssnnessssnneesaasnnessesnnesssssnnessssnnessssnnnessnn 49
2 Contents SLAU132S-October 2004—Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

I3 TEXAS
INSTRUMENTS
www.ti.com
P22 0 R 1o 7o 1T T TN T T ES o3 @ o 1= = Lo 50
b2 5 0 1o 1 T o T L= T 1o N 50
2200 7 U 1= g T T (=3 [51
2.13 Controlling Application Binary INTEIrfaceevvreiieiiiiiiriiiiri i s ranns 52
2.14 Enabling Entry Hook and EXit HOOK FUNCHONSuueseiiiiiiiiiiee e iieee e e s e s ssn e e s snane s s nannenas 53
3 OPLIMIZING YOUTE GO ittt ettt ettt e ettt e et e e et et e ta s e et e e ea e ene e e e anananenens 54
3.1 LAY T aTo I @] o] 1132172 1o o 1 P 55
3.2 Controlling Code SiZe VErSUS SPEEA .uuuiuuiiiuteiineisteraissrar e tae s aaneaaness 56
3.3 Performing File-Level Optimization (--opt_level=3 Option)coooieiiiiiiiii i i rraeeeas 56
3.3.1 Creating an Optimization Information File (--gen_opt_info Option)cvviiieiiiiiie i innneennns 56
3.4 Program-Level Optimization (--program_level_compile and --opt_level=3 options).......c.oveviireiiinnrinninnnss 57
3.4.1 Controlling Program-Level Optimization (--call_assumptions Option)........ccevviveiririineririiinneiannns 57
3.4.2 Optimization Considerations When Mixing C/C++ and AsSsemblyccovviiiiiiiiii i iianneenns 58
3.5 Automatic Inline Expansion (--auto_inling OPtiON)ueuvieeiissirieii i raaeasnneraas 59
3.6 Link-Time Optimization (--0Opt_level=4 OPtiON)ueeiiiiei i i rr e rr i saann s aaanreaaans 60
1 705 20 @] o [0 o F= U Vo | T o P 60
RN ST [Tt . o F= L] o] (= 1Y 1= 61
3.7 Using Feedback Directed OptimiZation.....u. . .eseirieeeiiiieeersiaenesaainessaias s saaassssaansessaansssssannnesins 61
3.7.1 Feedback Directed OptimiZationuiiieerereiiesseieessaineesaaineessaanneessanneessannneessannnessannnes 61
BN A (011 I = L = T = oo T [63
3.7.3 Feedback Directed Optimization APiiuieiiiiii i rs e srias s raaar s saannenas 64
3.7.4 Feedback Directed Optimization SUMMAIY ...iiueeeiiiiesiiieesiasnressaanneessannressasnnessasnnessennns 64
3.8 Using Profile Information to Analyze Code COVEIAgE .. uuuueirustiinsersriiteriseiasesissransssisrsannssansiannens 65
S 0 R ©o To [@ 1Y Vo [S 65
3.8.2 Related Features and CapabilitieSviueeeeriiiesiiisrsi e seisseesassnnessaanneessannnessannnersennnes 66
3.9 Accessing Aliased Variables in Optimized COOE. ... uueiieiiistiiirii s raearaes 67
3.10 Use Caution With asm Statements in OptiMIized COdeueriiiiieiiiiiii i raannees 67
3.11 Using the Interlist Feature With Optimization.......cviiiereiiiisiiiereasne s seaneessannessaanneessannresrannnes 67
101 7 1= o 18 To o 1T @ o]] 0112 =0 X oo [0 69
3.13 What Kind of Optimization IS Being Performed?uuiiiiiiiiiiii i s rriae s s raneee s 70
3.13.1 Cost-Based Register AllOCAtiONuuiiierereiieessaineesaaineesaasnsessaannesssansressesnneesssnnresssnnnes 70
3.13.2 Alias DiSambigUAaLtION . .uu.ueeisssiseiieerssrrse st e e s s s e 70
3.13.3 Branch Optimizations and Control-Flow Simplificationoveieiiiiiiiiii e 70
3.13.4 Data FIOW OpPtimiZatiOnNS ...ueeiiieeeereianeesseinneesassneesaasnnessaanneessasnressasnnesssssnressssnneesesnnees 71
3.13.5 EXPression SimplifiCationve. i e 71
3.13.6 Inline EXpansion Of FUNCLONS ...t irie s r s iee s e s sa e s s sana e s ssanna s s sannnennn 71
3.13.7 FUNCtiON SYMDBOI AlIBSING . tvveinetereiinteeseieeesaasneesaasnnessaannesssannressaannesssannressssnneeessnnees 71
3.13.8 Induction Variables and Strength REAUCHIONiueiiieiiiiiiiiiie i 71
3.13.9 Loop-Invariant Code MOIONeeuieeeeiiietesraaateerraaresr e ssaane s ssaas s ssananessaannessaannnnssns 72
R 700 04 1 T o Yo o TN 0 - 11 o 72
3.13.11 INStruction SCEAUIING ... ut it s r e e aaanens 72
1 0 e 701 22 1= 1 1Y/ o1V S 72
3.13.13 Integer Division With CONStaNt DiViSOr....uuiiissesiiiesiianteesiannressaannessasnneesaasneesaasnnessennes 72
4 I 2] o T O O O 0T L 73
41 Invoking the Linker Through the Compiler (-2 OPLION)uueieiiiie i rr e s rranr e s ranneens 74
4.1.1 Invoking the Linker Separatelycuviieeiriiiiii i i e s s 74
4.1.2 Invoking the Linker as Part of the Compile Stepcvviiiiiiiiiiiii e 75
4.1.3 Disabling the Linker (--compile_only Compiler Option)cceeiiiiieiiiiiieiiiir e rannneeanas 75
4.2 Linker Code OptiMIZAtiONS «..u.ueseuisseseisistessssssesssasessaiasesssaaessaaassestsassnessasssesssannnessannnnessns 76
s R @7 o 11 o g F= L T] o 76
4.2.2 Generating Aggregate Data Subsections (--gen_data_subsections Compiler Option)ccevuuens 76
4.3 Controlling the LiNKING PrOCESS . .uuitiiiieiiiiiieiriie s ss et sr e s ssaar et saare s saans s saanressannes 76
4.3.1 Including the Run-Time-Support LIDraryc.evieiiiiiiii i ae s 77
SLAU132S-0October 2004—Revised September 2018 Contents 3

Submit Documentation Feedback

Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

I3 TEXAS
INSTRUMENTS
www.ti.com
4.3.2 RUN-TIME INItIAIHZALION 1. vt iaee ettt r s e s e s e s n s s e s r s anr e raneans 78
4.3.3 Initialization by the INtErrUPt VECION et r e e e raar e s sran e saanes 78
4.3.4 Initialization of the FRAM Memory Protection UNiteviiiiiieiiiiiieiiiiriiie i nnnineeenaas 78
4.3.5 Initialization of Cinit and Watchdog Timer HOldcviieiiiiiiiiiii i s 78
VG N I €110] o T= TN @ o 1T o A @ £1 1 {1 (] 79
4.3.7 Specifying the Type of Global Variable Initialization..........cooeiiiiiiiiiiiiii i 79
4.3.8 Specifying Where to Allocate SeCtions in MEMOIYuviiiiieiiiiiiiiiriir i raeaaaes 80
4.3.9 A Sample Linker Command Filecieeiiuiiiiiriiri s 81
C/C++ Language IMpPlementationt ettt e et e e e e e e e eaeaeneeaenaans 82
5.1 CharacteristiCS Of MSPA30 € .uuuiutisiseiseitinser st r e eraes 83
5.1.1 Implementation-Defined BEhavior.......c.evvuiiiieiiiiiiir i i s 83
5.2 CharacteriStiCsS Of MSPA30 Cr .. uuuiiiiiiieiiiit e sra e s s sr s et taaas e st aaan s st sanat e s saannessaannrssaanness 87
5.3 USING MISRA € 2004 1. utiutiutisestisestsssraerae sttt ae e s s s s et e s s et e s s et e s s saneraeanans 88
5.4 USING the ULP AGVISOr 4uuutiteiistiisessts st sas s s s et s s s s s s s e s s sa s e s a s aan e s nsanneans 89
55 Advice on Hardware ConfigUIation.veueeeiiieeeiiiiiesiiise s sare s saaass s s rs s saann s e saanrssaaannessnnns 89
5.6 DAL Ty DS 1 uusaeeenessssssssssssssssnnsssnesssssssssssssssssnnnneesssssssns 90
5.6.1 SizZe Of ENUM Ty PES 1 uttiittiitiite it s e st s s s e s s n e s s s e e rneaas 91
5.7 File ENcOdiNgs and CharaCter SEtSueiiietssiiieteiiaitteiriaetesraaate s saaasessaannssssannsssaannassaannnesinn 92
5.8 ST 0 o £ P 92
TR 700 A I =T o0 o £ A 1= AT o o 93
5.8.2 The __ interrupt KEYWOIueeieiiiiteiiietesrite s iae s sraas s ssaaae s saanan st saaan s s sannnassaannnesnn 93
5.8.3 The restriCt KEYWOITueseiiiiteiiiieeseeineessainse s saannesssanneessanneesssannnessannnessssnneessnnnnesnnns 94
5.8.4 The volatile KeYWOrd.iiueiiiiiiiiiii s e s r s n e rneaas 95
5.9 (O3 (o= [0 U g o |V 96
5.10 Register Variables and ParamelerS. .. .uueeuieeeeesiiaeeessaantessaanneesasaneessasnnessasnneessssnnessssnnessssnnnessns 96
ST I R I U= = 4 T = (] 0 0T 97
ST o S = o 0 T D =T ot 1Y 98
5.12.1 The BIS_IEL INTERRUPT ...ttt s ssassa e snassnnaess 99
5.12.2 The CALLS Pragma tuueueuesisteiseitesssisssssssaate et sasssassrasisisssasssasinnis 99
5.12.3 The CHECK_MISRA Pragmaueiueiueisestieisinsetiesssssssassssasssssssnssasssssnsinssansnns 100
5.12.4 The CHECK _ULP Pragma «ouieueeeiiiietesssinneessssneessasnneesaannessssnnesssssnnessssnnessssnnnessssnnes 100
5.12.5 The CLINK Pragma. . .ueuueeisseiseissesseiseissssasssssssissssse st sasssaisssanssannsrasiannens 100
5.12.6 The CODE_SECTION PragiMal . .uuueuuseuerutiussssnuerasisssessrsissasssssnsinssassirsnninnsaenns 101
5.12.7 The DATA _ALIGN Pragma. . ccueeeeeeseeesseaneeesaanneessasnnessssnnessssnnessesnnnessesnnessssnnnesmssnnes 103
5.12.8 The DATA_SECTION Pragma .. .ueueueerseisusissninassssssinssriseiasssisssasssissansiisiaiins 103
5.12.9 The DiagnostiC MeSSage Pragmasu.ee s iouiseirietesritteiraaatesrainsssssaiasessaannssiaansnsssnnnes 104
5.12.10 The FORCEINLINE Pragmaeiueiussrserseiueissnsiraereiissnsersissanssesrssansssrnsanans 104
5.12.11 The FORCEINLINE_RECURSIVE Pragma.....iuoeueieeiiueinnerinninssiissssinesisisisssinrasssns 105
5.12.12 The FUNC_ALWAYS_INLINE Pragma. ... cuueeeruerutisiinerneriniiniinsrnesnnrinsissrsannsinsansrnns 105
5.12.13 The FUNC_CANNOT_INLINE Pragmaoueeseiuereiisinseieiiniaserserrisiaserernnanassennnas 105
5.12.14 The FUNC_EXT_CALLED Pragma.....ueeeieussriseiaunerssinsssisssasssissianesnssrasssnsssannsrn 106
5.12.15 The FUNC_IS_PURE PragMa ...iueeuseuerutiueissnntrntinisssnsisissassatsininssasainniinsmmns 107
5.12.16 The FUNC_NEVER_RETURNS Pragma . ..iueevuerueiisinseruerninsiisereriinssnssnnnssnernas 107
5.12.17 The FUNC_NO_GLOBAL_ASG PragMa ...oueeieseisueerinsissesinrianssissianesassiasssinsansins 107
5.12.18 The FUNC_NO_IND_ASG Pragma.....uoeiueieersertiisiinerueiniissanssssnniansasssiesnniassasrinins 108
5.12.19 The FUNCTION_OPTIONS PragMa .uuueiuesuserserunissssernerinmmsmsserieminmsmassrimnsmernns 108
5.12.20 The INTERRUPT PragMa. .. .cuueueiutesentiaeissssansissassassansiassassanssnssnesanssssnsinnsaninns 108
5.12.21 The LOCATION PragMa tueuueuusiusiusesesnniuesssrsssasissssssssssssasssssstnssassasrnninnsanenns 109
5.12.22 The NOINIT and PERSISTENT Pragmaseeeveeseeesianneesresnneessssnnessssnneessssnnessssnnesssnnns 110
5.12.23 The NOINLINE PragiMa . .uuuueeiuseiuserseinuessnsiasssssssnsssssssasssisssassssisssansssnnssaeiannes 111
5.12.24 The NO_HOOKS Pragma. . ..uuueiueiusiserntiueissaseantissserssssiissassasrniissassasrisiinsanans 111
L 2 ST I L= o Tt - Vo o 1 - 111
5.12.26 The RESET_MISRA PragiMa .. .ciueitieestineitsseansiesateassasiassassansasiassassassnssnnsansnns 112
Contents SLAU132S-October 2004 —-Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

I3 TEXAS
INSTRUMENTS
www.ti.com
5.12.27 The RESET_ULP Pragma . uueiueiruteiseintesstinssssssatsrnssiasssisssasssisssanssnnsiansssines 112
5.12.28 The RETAIN Pragma ...cueieieieeieitisissstssssssssssssssssassssssassssssansassassssssnnsnns 112
5.12.29 The SET_CODE_SECTION and SET_DATA_SECTION Pragmasvevvevsserueinesisinsereiness 113
oI 7 {0 N TR F=Tox (o gl = = 1o |0 3= 114
o0 e O I U= o = TP T] 01T (o N 115
5.14 Application BiNary INTEIfACEueeiiieeiiiiiiii it s s s e e s s i e s saaa e r s ra s asanneaanas 116
5.15 Object File Symbol Naming Conventions (LINKNAMES)uutiruueiiueineeiineiiieesirissssinssannssanesanneaans 116
5.16 Changing the ANSI/ISO C/C++ Language MOcvvueiiuiiiieiiistiriisiaie i asesns 117
5.16.1 C99 SUPPOIt (--C99) 1 uuuuutttinunnessstesssnesssasaessaassestsaassessaastssssaastsssannnesssannnsssannnss 117
ST 0 @1 S T] o 0 o A o3t) 118
5.16.3 Strict ANSI Mode and Relaxed ANSI Mode (--strict_ansi and --relaxed_ansi)ccovvvvineinnenn. 118
5.17 GNU and Clang Language EXIENSIONS ...u.uuueeiriutssiiitreisinnsssainnssssisssssanssssssssesisannnsssasnnesins 119
ST 0 R 4 =T 1] T 0 119
Lo 7 U | Tod T o AN 1] o (= 120
5.17.3 Variable AtMDULES ... u ettt e e s s s s e s s s 122
ST S Y/ 0T N 1] o1 (= 122
5.17.5 BUIl-IN FUNCHONS Lttt i ittt a s e et ae e s s s e s sraane st san s e s saan s e s ssan e e s annnessaannness 123
S0 T @ o o 11T 0 01 124
6 RUN-TIME ENVIFONMENT .. iuiiieiii i e s ear e enres 125
6.1 Y= 00T 1Y o T 1= 126
L0 0 R @ To [/1T o T VY, [T 1= 126
L0 2 = = W 1Y =T 4 To VA 1 o Yo 1= 126
Lo G T 10 o] oL 0T G AN = o I - | - 127
G0 0 T o 1o g 127
6.1.5 C/CH+ SOftWArE SACK 4uuueiseiusiisinsertiiisrs s raes 128
6.1.6 Dynamic MemOry AllOCAtION .. uue ettt r e st 129
6.2 (O] o] 1= o L= o] == 1 =1 (0] o I 130
L0 R B - U= B I8/ 01T (] = o = 130
6.2.2 Character StriNg CONSIANTS . .. uttiuseiiterteiatr i r s raa st e aannens 131
6.3 LR ET0 RS (=T S @0 0= o1 (o] g N 132
6.4 Function Structure and Calling CONVENTIONS ..uuuiiiieeesiiieesiiineessaanneessannressaanneessasnressasnnessssnnness 133
6.4.1 How a Function Makes @ Callueeiiuiiieiiiiii i s e 134
6.4.2 How a Called FUNCLION RESPONASuuueteiiiitiiiit s iriiate s e sraiaee s sranae s ssaane s sannaassaannns 134
6.4.3 Accessing Arguments and Local Variables.cuuiiieeiiiii i i e s saneeessannnesaannnes 135
6.5 Accessing Linker Symbols in € and C.uuueiieiiiiiiiiie s s rs s raaeaas 135
6.6 Interfacing C and C++ With ASSEmbBIly LanQUAOEoviiieiiiiiiieiiiiie it rr s s s aranees 135
6.6.1 Using Assembly Language Modules With C/C++ COUE ...uuviiiiiieieiiiinnersiinessasneessnnnnessannes 135
6.6.2 Accessing Assembly Language FUuNnctions From C/CH+ . ..uiiiiiiieiiiiiineiaainessaannesssannnesannnes 136
6.6.3 Accessing Assembly Language Variables From C/CH+uiiiiiiiiiiiiiiiiiiie i ssnaae s nanns 137
6.6.4 Sharing C/C++ Header Files With ASSEmMDBIY SOUICE ...viiiieiiiiiii i i e rennee e annnns 138
6.6.5 Using Inline ASSEMDIY LANQUAGE ... uviuueiieiite it iarite s s s e aa s eranes 138
6.7 L 1= U o] F= 0 T |1 T 138
6.7.1 Saving Registers DUMNNG INterTUPLS .. useesieieesseantesssaneessasnressaanneesaannnessasnnessssnnnessnnnes 138
6.7.2 Using C/C++ INtErrupt ROULINES «.uuueiseiieeistssseiiseines s s s s s s ssn s raaeasnesannsanns 139
6.7.3 Using Assembly Language INterrupt ROULINESueeiiiiiieiiiiiee it srisrsssann e snannes 139
Lo 101 (T {07 0] =T o1 o] £ 139
6.7.5 Other Interrupt INfOrMAtIONuuiieeii s anens 139
6.8 Using Intrinsics to Access Assembly Language StatementS......oveeviiiieeiiiiei i rannresiaanns 140
6.8.1 MSPA30 INHNSICS tutuueiuserseruniusisersererssserae sttt sr e eareseraes 140
LR T2 I 1= o =Tt (=0 11100 141
6.8.3 The __delay_CyCle INtrNSIC. . u.uuuteiiiiet i r e s s aae s s st e s sa s r s s s anr e s aaannes 142
6.8.4 The __never_eXeCULEd INtIINSIC..uueriieeeerrantesseanneessasnnessaannessaaneessasnnesssanneessennnessennnes 142
6.9 53751 (=T N 1= 4= 14 o 144
SLAU132S-0October 2004—Revised September 2018 Contents 5

Submit Documentation Feedback

Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

I3 TEXAS
INSTRUMENTS
www.ti.com
6.9.1 Boot Hook Functions for System Pre-Initializationvveeviiiiiiiiiiiiiiri e 144
6.9.2 RUN-TIME STACK ... eiiii ittt rr e e s s n e e s r e e s sannn e s aanneess 144
6.9.3 Automatic Initialization of Variablescviiiiiiiiii i e 145
LI A [a1 = V1 o T = o] = 149
6.10 Compiling for 20-Bit MSP430X DEVICES +.uuutiuutirusriiaterneiastirissiassisisssisrssiss s 151
7 Using Run-Time-Support Functions and Building Librariescooooiiiiiiiiii e 152
7.1 C and C++ RUN-TIME SUPPOIt LIDIraries .uueiiiieeiisieesssineessaieesssannesssassessaannesssanneesssnnnesssnnnes 153
7.1.1 Linking Code With the ODBJeCt LIDIaryvueivssiisiiiiriiiri i raaes 153
5 O o 1= = T Lo T 153
7.1.3 Modifying a Library FUNCHONueiiiii i s s s e i e s e e e s sene s s sannee s senneesaannnesannnnes 153
7.1.4 Support for StriNG HandliNg.e e s s 154
7.1.5 Minimal Support for InternatioNaliZationcuviieeiiiiiii s aa e raaes 154
7.1.6 Allowable Number of Open FileS ..uuiiiieiiii i s r s e s s s e e s saneessannneeaannnes 154
7.1.7 Nonstandard Header Files in the SOUrCe Treecvvvvieeiiiirieiiiriiiri e aas 155
7.1.8 Library Naming CONVENLIONSueeiiietseiiitesriatsssaiaesssaaes s ssasss s ssannessaansasssannnessannnes 155
7.2 LI L= O 1O 2 U g Tox 1o 3 156
7.2.1 High-Level I/O FUNCHONS . .uuieeiiiiiee it e s s s s s s s s e e as e e nnes 157
7.2.2 Overview of Low-Level I/O Implementationocoeeeiiiiieiiiiiiiii i sriie s ssninne s ananes 158
7.2.3 Device-Driver Level /O FUNCHONS .. uuisirsertisiisinseriissnsssssrnnssnsssasrennssssssaesssansasenns 161
7.2.4 Adding a User-Defined Device DHVEr fOr C 1O ..uuiiuiiiiiiiiiiiiiiieini s ssne e anaes 165
7S T I 1 L= 0 oo o =Y 166
7.3 Handling Reentrancy (_register_lock() and _register_unlock() FUNCLONS)....vcvveeiiiiiiieiiiieriiineeenannees 168
7.4 I o = 1Y = 1010 o0 169
7.4.1 Required Non-Texas INStruments SOfWAIEueiiiiisiiiiit i r s sa e raanas 169
7.4.2 Using the Library-Build PrOCESS ..uuuiieeeesiiiteesiinstessaanneessannressasnnessssnneessssnnessssnnnessnnnes 169
7.4.3 EXtending MKID «o.ueee e 172
8 CH+ Name Demangler........c.oo e 173
8.1 INVOKINg the C++ Name Demangler......uiu ettt r i sr s ssaie s aaaanssaanaenss 174
8.2 C++ Name Demangler OPtiONS ...uueuueeiseiree st s st ar e as s s s saaasaanes 174
8.3 Sample Usage of the C++ Name DemangIerciiueiiieiiiiiiii i nnaas 174
A (€10 1T 7 TP 176
A.l JLICET 2 011 o] (oo)Y 176
B REVISTON HiSTOTY ettt et e e e e e e e e e e e e e e e e e enens 181
B.1 = Tod = LY/ T (o] 181
6 Contents SLAU132S-October 2004 —-Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

I3 TEXAS
INSTRUMENTS
www.ti.com
List of Figures
1-1. MSP430 Software DevelopmMENt FIOWue it s naas 13
[I /[T o g o] A = Y011 | o) Y - 1 131
6-2. Use of the Stack During a FUNCHION Call......ouiiiiiiiiiii i e e e nes 133
6-3. Autoinitialization at RUN TiMIE v e e r st a e n e e 146
LT 1011 =1 2= i o g = LA 0 T= Lo 0 1T 148
LSS T @0 1 {1t (o G 1= o 149
6-6. Format of Initialization Records in the .CiNit SECHON +...vuiisiiiii i e 149
6-7. Format of Initialization Records in the .pinit SECHONcvviiiiiiii 151
List of Tables

b2 I = o o7~ G @] oo 1 19
I © | o] 11001 2= Lo o 19
P T X0 \VZ= 1 (ot =T @ o)] .01 = Vo] g TN o] g I 20
B S 1= 10 o @ o] (o] o1 20
22 TR [T 13 T[N @ o] 10 oL 20
pZZ T O 1 0 1Y Y0 T o] 0] L 20
2-7. Hardware Configuration AdVIiSOr OPtIONSeeseiiieteeiiaetesraaaressaaanresaaannessaannsssaannsessaannessaannnessn 20
22 FR @ £] I o] 110} oL 21
P22 TR I U o 7= o =3 0) o0 21
2-10. Parser PreproCeSSiNGg OPtiONS uuueeeiretesaaaaseeaaaaneesaaanresaaanessaasssssaansestaannnsssannressmsnnsessnn 21
2 I R o =T =Y T =T IS} Y a1 0T S o] (o g 22
2-12. DiagnoStiC MESSAGE OPtIONS tuuuuuuteruseisetrnerats s erse st sia st s saastaarssasstansssasssannsranstannens 22
b2 e TR U | L I T 0 L= YT Yo 1= I @ o 1T L 23
I S = 01177 =01 S o 0 G 1[0 23
T = T= o | o =T S o] 170 o 23
b T ANt T= T g1 o] =T @ o 1T o 24
2-17. File TYpe SPECITIEr OPtiONS wuuuuueseieteiriaeeesaiere st ssiae s ssaaasessaassesssaassessanstessaannrsssannnsssnns 24
Pt T 1 (=Tt (0] VRS o 1= o3 11T @ o 1T o 24
2-19. Default File EXtENSIONS OPLIONS . .inettiiiieteeiaattersaantesaaaane s saan e s ssaaassssaannessaannnsssaanressaannnessnn 25
2-20. ComMMAN FilES OptiONS . uututiuttetiaateisaeeess e sr st ssaae s ssaaas et saaase st saas s et saantessaannnsssannnsssnns 25
P R V|1 T @007 @ o] 10 25
Py W | 1= gl = = TS o @) o] N 26
2-23. File Search Path OptionS.uesiieeiiiie s it sr et ss s et sas s et saaa s s e ssan s e s saannsessannrssnnns 26
2-24. Command File PreproCesSing OPLiONS .. .uuuusuruseiueirserseissessrerssrasesrinsrasssasssansssars e 26
2-25. DiagnostiC MESSAGE OPLIONS ... uuiiiintteiiaeteeraaateeraaane e saaaate s saaan s e ssaaanessaannessaannnsssaannessaannnessnn 26
2-26. LinKer OULPUL OPtIONS tuuuuteiuutessaseesssesssassesssassesssasaesssasssessassessaasssstsannnessasnnsesssnnnsisnns 27
2-27. Symbol Management OPLtiONS ...u.ueeueeiseireerats e srse e sss st raastaa s sras s e e ssrsssan s rarsiannans 27
2-28. RUN-TIME ENVIFONMENT OPtIONS .. ttinnttetiateesaaaeeesaaanesssaaanessaaneesaaannessaannesssannnsssannnesssannnessnn 27
P4 TR /1 Tod = | o 1= o 10 @ £ [] o 28
2-30. Predefined MSP430 MaCIrO NAIMES ...uuueiueiretiiate st sia s sats s sar s rasssasssas s sanrssanssannens 40
P i R = LY I o To 1L o U= o1 =T N 48
2-32. Raw Listing File DiagnoStiC 0eNtifiersuieuuesiiiteiriirsi s s s s s ssannaesas 48
3-1. Interaction Between Debugging and Optimization OPtiONSveseiiseiiieirieriie i iaieriraneerns 56
3-2. Options That You Can Use With --0pt_lEVEI=3 e r e s rraaee e 56
3-3. Selecting a Level for the --gen_opt_info OPtioN.....cv.eeiiiieeiiiie i saaneeas 57
3-4. Selecting a Level for the --call_assumptions OPtioN.uuveeiiieiieiiiriirir s sns 57
3-5. Special Considerations When Using the --call_assumptions Optionvvveeviriiiseiiinieisiriaes 58
SLAU132S-0October 2004—Revised September 2018 List of Figures 7

Submit Documentation Feedback

Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

I3 TEXAS
INSTRUMENTS
www.ti.com
3-6. Interaction Between Debugging and Optimization OPtiONSuueeiiseiiieerierii i ieraiesirranessnes 69
4-1. Initialized Sections Created by the COMPIIEEeeeiii i r s s rraar e s raanae e ranns 80
4-2 Uninitialized Sections Created by the COmMPIler.....c.ueiiiii i i s aa e 80
5-1. MSP430 C/CH+ DAtA TYPES tuuttuueiunnerusernetssssastsrss st tsiss st atssaretanstsissannsrnnsins 90
5-2. Data Sizes fOr MSPA30 POINTEIS . .uuttuuseiiseissessssrsesissssse st rasr e sasrsrarsrannans 90
S J €1 O O = g T 11 F= T oI 4 1= 1 o g 119
6-1. Summary of Sections and MemOry PlaCemMeENteiiie i s 128
6-2. Data Representation in RegiSters and MEMOIYeeiiiiiieiiiiie s iaaies i saaare s saanreesaaanressaanreesaanness 130
6-3. How Register Types Are Affected by the CONVENLIONSuueiiiiiiieiiiii i iaee s 132
6-4. Register Usage and Preservation CONVENTIONS. ireeiiueireerassissesiarsassrass s iasssnnssannssins 132
LG T 1V S 27 T I 1]] o 140
LG T I 1= o 1= o= U= 0 0]]] To0 142
P B U= 41 1o TN = (0o = L0 T o111 o 171
[O o=V o] o T 11 (o] Y2 N 181
8 List of Tables SLAU132S-October 2004—Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

Preface
I -{IE)S(’?IEUMENTS SLAU132S-0October 2004—Revised September 2018

Read This First

About This Manual
The MSP430 Optimizing C/C++ Compiler User's Guide explains how to use the following Texas
Instruments Code Generation compiler tools:
* Compiler
e Library build utility
* C++ name demangler
The TI compiler accepts C and C++ code conforming to the International Organization for Standardization

(ISO) standards for these languages. The compiler supports both the 1989 and 1999 versions of the C
language and the 2014 version of the C++ language.

This user's guide discusses the characteristics of the TI C/C++ compiler. It assumes that you already
know how to write C/C++ programs. The C Programming Language (second edition), by Brian W.
Kernighan and Dennis M. Ritchie, describes C based on the 1ISO C standard. You can use the Kernighan
and Ritchie (hereafter referred to as K&R) book as a supplement to this manual. References to K&R C (as
opposed to ISO C) in this manual refer to the C language as defined in the first edition of Kernighan and
Ritchie's The C Programming Language.

Notational Conventions

This document uses the following conventions:

» Program listings, program examples, and interactive displays are shown in a special typeface.
Interactive displays use a bold version of the special typeface to distinguish commands that you enter
from items that the system displays (such as prompts, command output, error messages, etc.).

Here is a sample of C code:
#include <stdio.h>

main()
{ printf(*"Hello World\n");
b

* In syntax descriptions, instructions, commands, and directives are in a bold typeface and parameters
are in an italic typeface. Portions of a syntax that are in bold should be entered as shown; portions of a
syntax that are in italics describe the type of information that should be entered.

e Square brackets ([and]) identify an optional parameter. If you use an optional parameter, you specify
the information within the brackets. Unless the square brackets are in the bold typeface, do not enter
the brackets themselves. The following is an example of a command that has an optional parameter:

‘cl430 [options] [filenames] [--run_linker [link_options] [object files]] ‘

» Braces ({and}) indicate that you must choose one of the parameters within the braces; you do not
enter the braces themselves. This is an example of a command with braces that are not included in the
actual syntax but indicate that you must specify either the --rom_maodel or --ram_model option:

cl430 --run_linker {--rom_model | --ram_model} filenames [--output_file= name.out]
--library= libraryname

SLAU132S-0October 2004—Revised September 2018 Read This First 9

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

Related Documentation www.ti.com

* In assembler syntax statements, the leftmost column is reserved for the first character of a label or
symbol. If the label or symbol is optional, it is usually not shown. If a label or symbol is a required
parameter, it is shown starting against the left margin of the box, as in the example below. No
instruction, command, directive, or parameter, other than a symbol or label, can begin in the leftmost
column.

symbol .usect "section name", size in bytes|, alignment]

» Some directives can have a varying number of parameters. For example, the .byte directive. This
syntax is shown as [, ..., parameter].

Related Documentation
You can use the following books to supplement this user's guide:

ANSI X3.159-1989, Programming Language - C (Alternate version of the 1989 C Standard), American
National Standards Institute

ISO/IEC 9899:1989, International Standard - Programming Languages - C (The 1989 C Standard),
International Organization for Standardization

ISO/IEC 9899:1999, International Standard - Programming Languages - C (The 1999 C Standard),
International Organization for Standardization

ISO/IEC 14882-2014, International Standard - Programming Languages - C++ (The 2014 C++
Standard), International Organization for Standardization

The C Programming Language (second edition), by Brian W. Kernighan and Dennis M. Ritchie,
published by Prentice-Hall, Englewood Cliffs, New Jersey, 1988

The Annotated C++ Reference Manual, Margaret A. Ellis and Bjarne Stroustrup, published by Addison-
Wesley Publishing Company, Reading, Massachusetts, 1990

C: A Reference Manual (fourth edition), by Samuel P. Harbison, and Guy L. Steele Jr., published by
Prentice Hall, Englewood Cliffs, New Jersey

Programming Embedded Systems in C and C++, by Michael Barr, Andy Oram (Editor), published by
O'Reilly & Associates; ISBN: 1565923545, February 1999

Programming in C, Steve G. Kochan, Hayden Book Company

The C++ Programming Language (second edition), Bjarne Stroustrup, published by Addison-Wesley
Publishing Company, Reading, Massachusetts, 1990

Tool Interface Standards (TIS) DWARF Debugging Information Format Specification Version 2.0,
TIS Committee, 1995

DWARF Debugging Information Format Version 3, DWARF Debugging Information Format Workgroup,
Free Standards Group, 2005 (http://dwarfstd.org)

DWARF Debugging Information Format Version 4, DWARF Debugging Information Format Workgroup,
Free Standards Group, 2010 (http://dwarfstd.org)

System V ABI specification (http://www.sco.com/developers/gabi/)

10 Read This First SLAU132S-October 2004—Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S
http://dwarfstd.org
http://dwarfstd.org
http://www.sco.com/developers/gabi/

13 TEXAS
INSTRUMENTS

www.ti.com Related Documentation From Texas Instruments

Related Documentation From Texas Instruments

See the following resources for further information about the Tl Code Generation Tools:
* Texas Instruments Wiki: Compiler topics
e Texas Instruments E2E Community: Compiler forum

You can use the following documents to supplement this user's guide:

SLAU131— MSP430 Assembly Language Tools User's Guide. Describes the assembly language tools
(the assembler, linker, and other tools used to develop assembly language code), assembler
directives, macros, object file format, and symbolic debugging directives for the MSP430 devices.

SLAA534— MSP430 Embedded Application Binary Interface Application Report. Specifies the ELF-
based ABI for MSP430 processors. The ABI is a broad standard that specifies the low-level
interface between tools, programs, and program components.

SLAU049— MSP430x1xx Family User's Guide. Describes the MSP430x1xx™ CPU architecture,
instruction set, pipeline, and interrupts for these ultra-low power microcontrollers.

SLAU144— MSP430x2xx Family User's Guide. Describes the MSP430x2xx™ CPU architecture,
instruction set, pipeline, and interrupts for these ultra-low power microcontrollers.

SLAU012— MSP430x3xx Family User's Guide. Describes the MSP430x3xx™ CPU architecture,
instruction set, pipeline, and interrupts for these ultra-low power microcontrollers.

SLAUO56— MSP430x4xx Family User's Guide. Describes the MSP430x4xx™ CPU architecture,
instruction set, pipeline, and interrupts for these ultra-low power microcontrollers.

SLAU208— MSP430x5xx Family User's Guide. Describes the MSP430x5xx™ CPU architecture,
instruction set, pipeline, and interrupts for these ultra-low power microcontrollers.

SLAU134— MSP430FE42x ESP30CE1 Peripheral Module User's Guide. Describes common
peripherals available on the MSP430FE42x and ESP430CE1 ultra-low power microcontrollers. This
book includes information on the setup, operation, and registers of the ESP430CEL1.

SPRAAB5 —The Impact of DWARF on Tl Object Files. Describes the Texas Instruments extensions to
the DWARF specification.

SPRUEX3— TI SYS/BIOS Real-time Operating System User's Guide. SYS/BIOS gives application
developers the ability to develop embedded real-time software. SYS/BIOS is a scalable real-time
kernel. It is designed to be used by applications that require real-time scheduling and
synchronization or real-time instrumentation. SYS/BIOS provides preemptive multithreading,
hardware abstraction, real-time analysis, and configuration tools.

Trademarks

MSP430x1xx, MSP430x2xx, MSP430x3xx, MSP430x4xx, MSP430x5xx, MSP430, Code Composer Studio
are trademarks of Texas Instruments.
All other trademarks are the property of their respective owners.

SLAU132S-0October 2004—Revised September 2018 Read This First 11

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S
http://processors.wiki.ti.com/index.php/Category:Compiler
http://e2e.ti.com/support/development_tools/compiler/f/343
http://www.ti.com/lit/pdf/slau131
http://www.ti.com/lit/pdf/slaa534
http://www.ti.com/lit/pdf/slau049
http://www.ti.com/lit/pdf/slau144
http://www.ti.com/lit/pdf/slau012
http://www.ti.com/lit/pdf/slau056
http://www.ti.com/lit/pdf/slau208
http://www.ti.com/lit/pdf/slau134
http://www.ti.com/lit/pdf/spraab5
http://www.ti.com/lit/pdf/SPRUEX3

1 Chapter 1
I -{IE)S(’?IEUMENTS SLAU132S-0October 2004—Revised September 2018

Introduction to the Software Development Tools

The MSP430™ is supported by a set of software development tools, which includes an optimizing C/C++
compiler, an assembler, a linker, and assorted utilities.

This chapter provides an overview of these tools and introduces the features of the optimizing C/C++
compiler. The assembler and linker are discussed in detail in the MSP430 Assembly Language Tools
User's Guide.

Topic Page
1.1 Software Development TOOIS OVEIVIEWueieeinieieieeeeeaen e eeeeaeeneneereaeaeaenenanens 13
0 @70] o1 = 1 1 =T = o 15
I I AN NS 1 IS @ IS = g (o - o PP 15
O @) f o 11 L 1 = PP 15
0 T =P 16
12 Introduction to the Software Development Tools SLAU132S-October 2004—Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

www.ti.com

Software Development Tools Overview

11

Software Development Tools Overview

Figure 1-1 illustrates the software development flow. The shaded portion of the figure highlights the most
common path of software development for C language programs. The other portions are peripheral
functions that enhance the development process.

Hex-conversion
utility

Figure 1-1. MSP430 Software Development Flow

C/IC++
source
files

Macro
source C/C++
files compiler

C/C++ name

Assembler

demanglin
source gling

11111137

Macro
library Assembler
Object Librat.nll_;build Delt)uglging
files utility ools
L Run-time-
Library of 4 support
object > library
files
Executable
object file

EPROM
programmer

Cross-reference
lister

Object file

Absolute lister i
utilities

The following list describes the tools that are shown in Figure 1-1:

The compiler accepts C/C++ source code and produces MSP430 assembly language source code.
See Chapter 2.

The assembler translates assembly language source files into machine language relocatable object
files. See the MSP430 Assembly Language Tools User's Guide.

The linker combines relocatable object files into a single absolute executable object file. As it creates
the executable file, it performs relocation and resolves external references. The linker accepts
relocatable object files and object libraries as input. See Chapter 4 for an overview of the linker. See
the MSP430 Assembly Language Tools User's Guide for details.

SLAU132S-0October 2004—Revised September 2018

Introduction to the Software Development Tools 13

Submit Documentation Feedback

Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

Software Development Tools Overview www.ti.com

The archiver allows you to collect a group of files into a single archive file, called a library. The
archiver allows you to modify such libraries by deleting, replacing, extracting, or adding members. One
of the most useful applications of the archiver is building a library of object files. See the MSP430
Assembly Language Tools User's Guide.

The run-time-support libraries contain the standard ISO C and C++ library functions, compiler-utility
functions, floating-point arithmetic functions, and C I/O functions that are supported by the compiler.
See Chapter 7.

The library-build utility automatically builds the run-time-support library if compiler and linker options
require a custom version of the library. See Section 7.4. Source code for the standard run-time-support
library functions for C and C++ is provided in the lib\src subdirectory of the directory where the
compiler is installed.

The hex conversion utility converts an object file into other object formats. You can download the
converted file to an EPROM programmer. See the MSP430 Assembly Language Tools User's Guide.

The absolute lister accepts linked object files as input and creates .abs files as output. You can
assemble these .abs files to produce a listing that contains absolute, rather than relative, addresses.
Without the absolute lister, producing such a listing would be tedious and would require many manual
operations. See the MSP430 Assembly Language Tools User's Guide.

The cross-reference lister uses object files to produce a cross-reference listing showing symbols,
their definitions, and their references in the linked source files. See the MSP430 Assembly Language
Tools User's Guide.

The C++ name demangler is a debugging aid that converts names mangled by the compiler back to
their original names as declared in the C++ source code. As shown in Figure 1-1, you can use the C++
name demangler on the assembly file that is output by the compiler; you can also use this utility on the
assembler listing file and the linker map file. See Chapter 8.

The disassembler decodes object files to show the assembly instructions that they represent. See the
MSP430 Assembly Language Tools User's Guide.

The main product of this development process is an executable object file that can be executed in a
MSP430 device.

14

Introduction to the Software Development Tools

SLAU132S-October 2004 —-Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

www.ti.com Compiler Interface

1.2 Compiler Interface

The compiler is a command-line program named cl430. This program can compile, optimize, assemble,
and link programs in a single step. Within Code Composer Studio™, the compiler is run automatically to
perform the steps needed to build a project.

For more information about compiling a program, see Section 2.1

The compiler has straightforward calling conventions, so you can write assembly and C functions that call
each other. For more information about calling conventions, see Chapter 6.

1.3 ANSI/ISO Standard

The compiler supports the 1989, 1999, and 2011 versions of the C language and the 2014 version of the
C++ language. The C and C++ language features in the compiler are implemented in conformance with
the following 1SO standards:

» ISO-standard C
The C compiler supports the 1989, 1999, and 2011 versions of the C language.
— C89. Compiling with the --c89 option causes the compiler to conform to the ISO/IEC 9899:1990 C
standard, which was previously ratified as ANSI X3.159-1989. The names "C89" and "C90" refer to
the same programming language. "C89" is used in this document.

— C99. Compiling with the --c99 option causes the compiler to conform to the ISO/IEC 9899:1999 C
standard.

— C11. Compiling with the --c11 option causes the compiler to conform to the ISO/IEC 9899:2011 C
standard.
The C language is also described in the second edition of Kernighan and Ritchie's The C Programming
Language (K&R).
* |1SO-standard C++

The compiler uses the C++14 version of the C++ standard. Previously, C++03 was used. See the C++
Standard ISO/IEC 14882:2014. For a description of unsupported C++ features, see Section 5.2.

» |ISO-standard run-time support

The compiler tools come with an extensive run-time library. Library functions conform to the ISO C/C++
library standard unless otherwise stated. The library includes functions for standard input and output,
string manipulation, dynamic memory allocation, data conversion, timekeeping, trigonometry, and
exponential and hyperbolic functions. Functions for signal handling are not included, because these
are target-system specific. For more information, see Chapter 7.

See Section 5.16 for command line options to select the C or C++ standard your code uses.

1.4 Output Files

The following types of output files are created by the compiler:

 ELF object files. Executable and Linking Format (ELF) enables supporting modern language features
like early template instantiation and exporting inline functions. ELF is part of the System V Application
Binary Interface (ABI). The ELF format used for MSP430 is extended by the MSP430 Embedded
Application Binary Interface (EABI), which is documented in SLAA534.

COFF object files are not supported in v15.6.0.STS and later versions of the TI Code Generation Tools. If
you would like to produce COFF output files, please use v4.4 of the MSP430 Code Generation Tools and
refer to SLAU132J for documentation.

SLAU132S-0October 2004—Revised September 2018 Introduction to the Software Development Tools 15

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S
http://www.sco.com/developers/gabi/
http://www.sco.com/developers/gabi/
http://www.ti.com/lit/pdf/SLAA534
http://www.ti.com/lit/pdf/slau132J

13 TEXAS
INSTRUMENTS

Utilities www.ti.com

1.5 Utilities

These features are compiler utilities:

» Library-build utility
The library-build utility lets you custom-build object libraries from source for any combination of run-
time models. For more information, see Section 7.4.

* C++ name demangler

The C++ name demangler (dem430) is a debugging aid that translates each mangled name it detects
in compiler-generated assembly code, disassembly output, or compiler diagnostic messages to its
original name found in the C++ source code. For more information, see Chapter 8.

e Hex conversion utility
For stand-alone embedded applications, the compiler has the ability to place all code and initialization
data into ROM, allowing C/C++ code to run from reset. The ELF files output by the compiler can be

converted to EPROM programmer data files by using the hex conversion utility, as described in the
MSP430 Assembly Language Tools User's Guide.

16 Introduction to the Software Development Tools SLAU132S-October 2004—Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

1 Chapter 2
I ’.{IE)S(’?IEUMENTS SLAU132S-0October 2004—Revised September 2018

Using the C/C++ Compiler
The compiler translates your source program into machine language object code that the MSP430 can

execute. Source code must be compiled, assembled, and linked to create an executable object file. All of
these steps are executed at once by using the compiler.

Topic Page
P22 A AN o Lo U | 0 1 = 0 171 1 = PP 18
2.2 Invoking the C/C++ COMPIIET ..ueneeie et ettt e e e e eeeae e e 18
2.3 Changing the Compiler's Behavior with OptioNSccccieieieiiiiiiiiiiii e eeeee e 19
2.4 Controlling the Compiler Through Environment Variablesc.cccooviiiiiiiiiiiiiiiiienans 38
2.5 CoNntrolliNg the PrepPrOCeS SOl .ttt it ittt ettt s ettt a e s e e et e aaaaaseeananannas 40
2.6 Passing Arguments t0 M@aIN() «.ucueueuenreeeeeanre e reeaeenre e e eaeaenrn e e aeaeenenrereaeaenenns 43
2.7 Understanding DiagnNOStiC MESSAQES uueuiuiuininieieeieneeieeeaeeenenre e aeeenensnaaaeenes 44
P T © 11 g =] gl 1Y 1SR S-S a7
2.9 Generating Cross-Reference Listing Information (--gen_cross_reference Option)...... 47
2.10 Generating a Raw Listing File (--gen_preprocessor_listing Option)cccocvevuviieenns 47
2.11 Using Inline FUNCLION EXPaANSIiON .. .iuiuiiititieieeieeteeees et ae s saseeaeaeeaaasneeneeennes 49
P22 172 O £ T o T 1 =T = 51
2.13 Controlling Application Binary INterfacecooeveiiiiiiiieiiiie e e 52
2.14 Enabling Entry Hook and Exit HOOK FUNCLIONScocviniiiiiiiiiieeieii e eeeee e 53

SLAU132S-0October 2004—Revised September 2018 Using the C/C++ Compiler 17

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

About the Compiler www.ti.com

2.1 About the Compiler
The compiler lets you compile, optimize, assemble, and optionally link in one step. The compiler performs
the following steps on one or more source modules:
e The compiler accepts C/C++ source code and assembly code. It produces object code.

You can compile C, C++, and assembly files in a single command. The compiler uses the filename
extensions to distinguish between different file types. See Section 2.3.9 for more information.

» The linker combines object files to create an executable object file. The link step is optional, so you
can compile and assemble many modules independently and link them later. See Chapter 4 for
information about linking the files.

Invoking the Linker

NOTE: By default, the compiler does not invoke the linker. You can invoke the linker by using the --
run_linker (-z)compiler option. See Section 4.1.1 for details.

For a complete description of the assembler and the linker, see the MSP430 Assembly Language Tools
User's Guide.

2.2 Invoking the C/C++ Compiler

To invoke the compiler, enter:

‘cl430 [options] [filenames] [--run_linker [link_options] object files]]

cl430 Command that runs the compiler and the assembler.

options Options that affect the way the compiler processes input files. The options are listed
in Table 2-8 through Table 2-29.

filenames One or more C/C++ source files and assembly language source files.

--run_linker (-z) Option that invokes the linker. The --run_linker option's short form is -z. See
Chapter 4 for more information.

link_options Options that control the linking process.
object files Names of the object files for the linking process.

The arguments to the compiler are of three types:
» Compiler options

* Link options

* Filenames

The --run_linker option indicates linking is to be performed. If the --run_linker option is used, any compiler
options must precede the --run_linker option, and all link options must follow the --run_linker option.

Source code filenames must be placed before the --run_linker option. Additional object file flenames can
be placed after the --run_linker option.

For example, if you want to compile two files named symtab.c and file.c, assemble a third file named
seek.asm, and link to create an executable program called myprogram.out, you will enter:

cl430 symtab.c file.c seek.asm --run_linker --library=Ink.cmd
--output_file=myprogram.out

18 Using the C/C++ Compiler SLAU132S-October 2004—Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

www.ti.com Changing the Compiler's Behavior with Options

2.3 Changing the Compiler's Behavior with Options

Options control the operation of the compiler. This section provides a description of option conventions
and an option summary table. It also provides detailed descriptions of the most frequently used options,
including options used for type-checking and assembling.

For a help screen summary of the options, enter cl430 with no parameters on the command line.

The following apply to the compiler options:

» There are typically two ways of specifying a given option. The "long form" uses a two hyphen prefix
and is usually a more descriptive name. The "short form" uses a single hyphen prefix and a
combination of letters and numbers that are not always intuitive.

* Options are usually case sensitive.
« Individual options cannot be combined.

» An option with a parameter should be specified with an equal sign before the parameter to clearly
associate the parameter with the option. For example, the option to undefine a constant can be
expressed as --undefine=name. Likewise, the option to specify the maximum amount of optimization
can be expressed as -O=3. You can also specify a parameter directly after certain options, for example
-0O3 is the same as -O=3. No space is allowed between the option and the optional parameter, so -O 3
is not accepted.

» Files and options except the --run_linker option can occur in any order. The --run_linker option must
follow all compiler options and precede any linker options.

You can define default options for the compiler by using the MSP430_C_OPTION environment variable.
For a detailed description of the environment variable, see Section 2.4.1.

Table 2-8 through Table 2-29 summarize all options (including link options). Use the references in the
tables for more complete descriptions of the options.

Table 2-1. Processor Options

Option Alias Effect Section

--silicon_version={msp|mspx} -V Selects the instruction set. Section 2.3.4
--code_model={small|large} Specifies the code memory model. Section 6.1.1
--data_model={small|large| Specifies the data memory model. Section 6.1.2

restricted}
--near_data={globals|none} Specifies what data must be near. Default is globals. Section 6.1.3

Table 2-2. Optimization Options®

Option Alias Effect Section

--opt_level=off Disables all optimization. Section 3.1

--opt_level=n -On Level 0 (-O0) optimizes register usage only (default). Section 3.1,
Level 1 (-O1) uses Level 0 optimizations and optimizes locally. Section 3.3,
Level 2 (-02) uses Level 1 optimizations and optimizes globally. Section 3.6

Level 3 (-O3) uses Level 2 optimizations and optimizes the file. ()
Level 4 (-O4) uses Level 3 optimizations and performs link-time
optimization. ()

--opt_for_speed[=n] -mf Controls the tradeoff between size and speed (0-5 range). If this Section 3.2
option is specified without n, the default value is 4. If this option is
not specified, the default setting is 1.

--fp_mode={relaxed|strict} Enables or disables relaxed floating-point mode. Section 2.3.3
--fp_reassoc={on|off} Enables or disables the reassociation of floating-point arithmetic. Section 2.3.3

@ Note: Machine-specific options (see Table 2-13) can also affect optimization.

SLAU132S-0October 2004—Revised September 2018 Using the C/C++ Compiler 19

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

I

Changing the Compiler's Behavior with Options

TEXAS
INSTRUMENTS

www.ti.com

Table 2-3. Advanced Optimization Options®

Option Alias Effect Section
--align_for_power Aligns all functions and loops to 4-byte boundaries. Power savings -
can be achieved if a small function or loop aligns to the 32-bit
buffer for fetching code from flash memory. Power savings is less
significant for larger functions and loops.
--auto_inline=[size] -oi Sets automatic inlining size (--opt_level=3 only). If size is not Section 3.5
specified, the default is 1.
--call_assumptions=n -opn Level O (-op0) specifies that the module contains functions and Section 3.4.1
variables that are called or modified from outside the source code
provided to the compiler.
Level 1 (-opl) specifies that the module contains variables modified
from outside the source code provided to the compiler but does not
use functions called from outside the source code.
Level 2 (-op2) specifies that the module contains no functions or
variables that are called or modified from outside the source code
provided to the compiler (default).
Level 3 (-op3) specifies that the module contains functions that are
called from outside the source code provided to the compiler but
does not use variables modified from outside the source code.
--gen_opt_info=n -onn Level O (-on0) disables the optimization information file. Section 3.3.1
Level 1 (-on2) produces an optimization information file.
Level 2 (-on2) produces a verbose optimization information file.
--optimizer_interlist -0s Interlists optimizer comments with assembly statements. Section 3.11
--program_level_compile -pm Combines source files to perform program-level optimization. Section 3.4
--aliased_variables -ma Assumes variables are aliased Section 3.9
@ Note: Machine-specific options (see Table 2-13) can also affect optimization.
Table 2-4. Debug Options
Option Alias Effect Section
--symdebug:dwarf -g Default behavior. Enables symbolic debugging. The generation of Section 2.3.5
debug information no longer impacts optimization. Therefore, Section 3.12
generating debug information is enabled by default. If you explicitly
use the -g option but do not specify an optimization level, no
optimization is performed.
--symdebug:none Disables all symbolic debugging. Section 2.3.5
Section 3.12
--symdebug:skeletal (Deprecated; has no effect.)
Table 2-5. Include Options
Option Alias Effect Section
--include_path=directory -1 Adds the specified directory to the #include search path. Section 2.5.2.1
--preinclude=filename Includes filename at the beginning of compilation. Section 2.3.3
Table 2-6. ULP Advisor Options
Option Alias Effect Section
--advice:power[={allnone|rulespec}] Enables checking the specified ULP Advisor rules. (Default is all.) Section 2.3.3
--advice:power_severity={error| Sets the diagnostic severity for ULP Advisor rules. Section 2.3.3
warning|remark|suppress}
Table 2-7. Hardware Configuration Advisor Options
Option Alias Effect Section
--advice:hw_config[={all|none| Enables checking the device configuration settings. (Default is none Section 2.3.3

rulespec}

if this option is not included on the command line. Default is all if this
option is used, but with no value specified.)

20 Using the C/C++ Compiler

SLAU132S-October 2004 —-Revised September 2018
Submit Documentation Feedback

Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

www.ti.com

Changing the Compiler's Behavior with Options

Table 2-8. Control Options

Option Alias Effect Section
--compile_only -C Disables linking (negates --run_linker). Section 4.1.3
--help -h Prints (on the standard output device) a description of the options Section 2.3.2
understood by the compiler.
--run_linker -z Causes the linker to be invoked from the compiler command line. Section 2.3.2
--skip_assembler -n Compiles C/C++ source file, producing an assembly language output Section 2.3.2
file. The assembler is not run and no object file is produced.
Table 2-9. Language Options
Option Alias Effect Section
--c89 Processes C files according to the ISO C89 standard. Section 5.16
--c99 Processes C files according to the ISO C99 standard. Section 5.16
--c11 Processes C files according to the ISO C11 standard. Section 5.16
--c++14 Processes C++ files according to the ISO C++14 standard. Section 5.16
The --c++03 option has been deprecated.
--cpp_default -fg Processes all source files with a C extension as C++ source files. Section 2.3.7
--enum_type={uppacked|packed} Designates the underlying type of an enumeration type. Section 2.3.4
--exceptions Enables C++ exception handling. Section 5.9
--extern_c_can_throw Allow extern C functions to propagate exceptions. -
--float_operations_allowed={none| Restricts the types of floating point operations allowed. Section 2.3.3
all|32|64}
--gen_cross_reference -px Generates a cross-reference listing file (.crl). Section 2.9
---gen_preprocessor_listing -pl Generates a raw listing file (.rl). Section 2.10
--plain_char={signed|unsigned} -mc Changes variables of type char from unsigned to signed. Default is Section 2.3.4
unsigned.
--relaxed_ansi -pr Enables relaxed mode; ignores strict ISO violations. This is on by Section 5.16.3
default. To disable this mode, use the --strict_ansi option.
--rtti -rtti Enables C++ run-time type information (RTTI). —
--strict_ansi -ps Enables strict ANSI/ISO mode (for C/C++, not for K&R C). In this Section 5.16.3
mode, language extensions that conflict with ANSI/ISO C/C++ are
disabled. In strict ANSI/ISO mode, most ANSI/ISO violations are
reported as errors. Violations that are considered discretionary may
be reported as warnings instead.
Table 2-10. Parser Preprocessing Options
Option Alias Effect Section
--preproc_dependency[=filename] -ppd Performs preprocessing only, but instead of writing preprocessed Section 2.5.8
output, writes a list of dependency lines suitable for input to a
standard make utility.
--preproc_includes[=filename] -ppi Performs preprocessing only, but instead of writing preprocessed Section 2.5.9
output, writes a list of files included with the #include directive.
--preproc_macros[=filename] -ppm Performs preprocessing only. Writes list of predefined and user- Section 2.5.10
defined macros to a file with the same name as the input but with a
.pp extension.
--preproc_only -ppo Performs preprocessing only. Writes preprocessed output to a file Section 2.5.4
with the same name as the input but with a .pp extension.
--preproc_with_comment -ppc Performs preprocessing only. Writes preprocessed output, keeping Section 2.5.6
the comments, to a file with the same name as the input but with a
.pp extension.
--preproc_with_compile -ppa Continues compilation after preprocessing with any of the -pp<x> Section 2.5.5
options that normally disable compilation.
--preproc_with_line -ppl Performs preprocessing only. Writes preprocessed output with line- Section 2.5.7

control information (#line directives) to a file with the same name as

the input but with a .pp extension.

SLAU132S-0October 2004—Revised September 2018

Submit Documentation Feedback

Copyright © 2004-2018, Texas Instruments Incorporated

Using the C/C++ Compiler

21

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS

INSTRUMENTS
Changing the Compiler's Behavior with Options www.ti.com
Table 2-11. Predefined Symbols Options
Option Alias Effect Section
--define=name[=def] -D Predefines name. Section 2.3.2
--undefine=name -U Undefines name. Section 2.3.2
Table 2-12. Diagnostic Message Options

Option Alias Effect Section
--compiler_revision Prints out the compiler release revision and exits. --
--diag_error=num -pdse Categorizes the diagnostic identified by num as an error. Section 2.7.1
--diag_remark=num -pdsr Categorizes the diagnostic identified by num as a remark. Section 2.7.1
--diag_suppress=num -pds Suppresses the diagnostic identified by num. Section 2.7.1
--diag_warning=num -pdsw Categorizes the diagnostic identified by nhum as a warning. Section 2.7.1
--diag_wrap={on|off} Wrap diagnostic messages (default is on). Note that this command-

line option cannot be used within the Code Composer Studio IDE.
--display_error_number -pden Displays a diagnostic's identifiers along with its text. Note that this Section 2.7.1

command-line option cannot be used within the Code Composer

Studio IDE.
--emit_warnings_as_errors -pdew Treat warnings as errors. Section 2.7.1
--issue_remarks -pdr Issues remarks (non-serious warnings). Section 2.7.1
--no_warnings -pdw Suppresses diagnostic warnings (errors are still issued). Section 2.7.1
--quiet -q Suppresses progress messages (quiet). -
--section_sizes={on|off} Generates section size information, including sizes for sections Section 2.7.1

containing executable code and constants, constant or initialized

data (global and static variables), and uninitialized data. (Default is

off if this option is not included on the command line. Default is on if

this option is used with no value specified.)
--set_error_limit=num -pdel Sets the error limit to num. The compiler abandons compiling after Section 2.7.1

this number of errors. (The default is 100.)
--super_quiet -qq Super quiet mode. --
--tool_version -version Displays version number for each tool. --
--verbose Display banner and function progress information. --
--verbose_diagnostics -pdv Provides verbose diagnostic messages that display the original Section 2.7.1

source with line-wrap. Note that this command-line option cannot be

used within the Code Composer Studio IDE.
--write_diagnostics_file -pdf Generates a diagnostic message information file. Compiler only Section 2.7.1

option. Note that this command-line option cannot be used within the

Code Composer Studio IDE.
22 Using the C/C++ Compiler SLAU132S-October 2004—Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

www.ti.com

Changing the Compiler's Behavior with Options

Table 2-13. Run-Time Model Options

Option Alias Effect Section
--common={on|off} On by default when compiling with EABI. When on, uninitialized file ~ Section 2.3.4
scope variables are emitted as common symbols. When off,
common symbols are not created.
--disable_interrupts_around_hw_mpy=off Setting this option to off leaves interrupts enabled during inlined Section 2.3.4
hardware multiply operations. This option can only be used if all
ISRs do not use multiplication or call other functions.
--gen_data_subsections={on|off} Place all aggregate data (arrays, structs, and unions) into Section 4.2.2
subsections. This gives the linker more control over removing
unused data during the final link step. The default is on.
--global_register={r4|r5} Reserves register for use by user.
--large_memory_model -ml Uses a large memory model when compiling for the MSP430X. Section 2.3.4
(Deprecated)
--printf_support={nofloat|full| Enables support for smaller, limited versions of the printf function Section 2.3.3
minimal} family (sprintf, fprintf, etc.) and the scanf function family (sscanf,
fscanf, etc.) run-time-support functions.
--ramfunc={on|off} If set to on, specifies that all functions should be placed in the Section 2.3.4
.Tl.ramfunc section, which is placed in RAM.
--silicon_errata={errata} Generates code to work around the specified silicon errata. The
errata value may be CPU12, CPU13, CPU15, CPU18, CPU19,
CPU21, CPU22, CPU23, or CPU40. See the corresponding device
errata sheet for details.
--symdebug:dwarf_version=2|3|4 Specifies the DWARF format version. Section 2.3.5
--use_hw_mpy[={16|32|F5|none}] If --opt_for_speed is set to 1 or higher, replaces all references to the Section 2.3.4
default integer/long multiply routine with the version of the multiply
routine that uses the hardware multiplier support. Additionally, if --
opt_for_speed is set to 4 or 5, hardware multiplication is inlined
during code generation.
Table 2-14. Entry/Exit Hook Options
Option Alias Effect Section
--entry_hook[=name] Enables entry hooks. Section 2.14
--entry_parm={none|name| Specifies the parameters to the function to the --entry_hook option. Section 2.14
address}
--exit_hook[=name] Enables exit hooks. Section 2.14
--exit_parm={none|name|address} Specifies the parameters to the function to the --exit_hook option. Section 2.14
--remove_hooks_when_inlining Removes entry/exit hooks for auto-inlined functions. Section 2.14
Table 2-15. Feedback Options
Option Alias Effect Section

--analyze={codecov|callgraph}
--analyze_only
--gen_profile_info
--use_profile_info=file1][, file2,...]

Generate analysis info from profile data.

Only generate analysis.

Generates instrumentation code to collect profile information.
Specifies the profile information file(s).

Section 3.8.2.2
Section 3.8.2.2
Section 3.7.1.3
Section 3.7.1.3

SLAU132S-0October 2004—Revised September 2018

Submit Documentation Feedback

Copyright © 2004-2018, Texas Instruments Incorporated

Using the C/C++ Compiler

23

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

I

Changing the Compiler's Behavior with Options

TEXAS

INSTRUMENTS

www.ti.com

Table 2-16. Assembler Options

Option Alias Effect Section
--keep_asm -k Keeps the assembly language (.asm) file. Section 2.3.11
--asm_listing -al Generates an assembly listing file. Section 2.3.11
--c_src_interlist -SS Interlists C source and assembly statements. Section 2.12
Section 3.11
--src_interlist -s Interlists optimizer comments (if available) and assembly source Section 2.3.2
statements; otherwise interlists C and assembly source statements.
--absolute_listing -aa Enables absolute listing. Section 2.3.11
--asm_define=name[=def] -ad Sets the name symbol. Section 2.3.11
--asm_dependency -apd Performs preprocessing; lists only assembly dependencies. Section 2.3.11
--asm_includes -api Performs preprocessing; lists only included #include files. Section 2.3.11
--asm_undefine=name -au Undefines the predefined constant name. Section 2.3.11
--asm_listing_cross_reference -ax Generates the cross-reference file. Section 2.3.11
--include_file=filename -ahi Includes the specified file for the assembly module. Section 2.3.11

Table 2-17. File Type Specifier Options

Option Alias Effect Section

--asm_file=filename -fa Identifies filename as an assembly source file regardless of its Section 2.3.7
extension. By default, the compiler and assembler treat .asm files as
assembly source files.

--c_file=filename -fc Identifies filename as a C source file regardless of its extension. By Section 2.3.7
default, the compiler treats .c files as C source files.

--cpp_file=filename -fp Identifies filename as a C++ file, regardless of its extension. By Section 2.3.7
default, the compiler treats .C, .cpp, .cc and .cxx files as a C++ files.

--obj_file=filename -fo Identifies filename as an object code file regardless of its extension. Section 2.3.7
By default, the compiler and linker treat .obj files as object code files.

Table 2-18. Directory Specifier Options

Option Alias Effect Section

--abs_directory=directory -fb Specifies an absolute listing file directory. By default, the compiler Section 2.3.10
uses the .obj directory.

--asm_directory=directory -fs Specifies an assembly file directory. By default, the compiler uses Section 2.3.10
the current directory.

--list_directory=directory -ff Specifies an assembly listing file and cross-reference listing file Section 2.3.10
directory By default, the compiler uses the .obj directory.

--obj_directory=directory -fr Specifies an object file directory. By default, the compiler uses the Section 2.3.10
current directory.

--output_file=filename -fe Specifies a compilation output file name; can override -- Section 2.3.10
obj_directory.

--pp_directory=dir Specifies a preprocessor file directory. By default, the compiler uses Section 2.3.10
the current directory.

--temp_directory=directory -ft Specifies a temporary file directory. By default, the compiler uses the Section 2.3.10

current directory.

24 Using the C/C++ Compiler

SLAU132S-October 2004 —-Revised September 2018

Copyright © 2004-2018, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

www.ti.com

Changing the Compiler's Behavior with Options

Table 2-19. Default File Extensions Options

Option Alias Effect Section
--asm_extension=[.]Jextension -ea Sets a default extension for assembly source files. Section 2.3.9
--Cc_extension=[.]extension -ec Sets a default extension for C source files. Section 2.3.9
--cpp_extension=[.]Jextension -ep Sets a default extension for C++ source files. Section 2.3.9
--listing_extension=[.Jextension -es Sets a default extension for listing files. Section 2.3.9
--obj_extension=[.]Jextension -eo Sets a default extension for object files. Section 2.3.9
Table 2-20. Command Files Options
Option Alias Effect Section
--cmd_file=filename -@ Interprets contents of a file as an extension to the command line. Section 2.3.2
Multiple -@ instances can be used.
Table 2-21. MISRA-C 2004 Options
Option Alias Effect Section
--check_misra[={all|required| Enables checking of the specified MISRA-C:2004 rules. Default is Section 2.3.3
advisory|none|rulespec}] all.
--misra_advisory={error|warning| Sets the diagnostic severity for advisory MISRA-C:2004 rules. Section 2.3.3
remark|suppress}
--misra_required={error|warning| Sets the diagnostic severity for required MISRA-C:2004 rules. Section 2.3.3

remark|suppress}

SLAU132S-0October 2004—Revised September 2018
Submit Documentation Feedback

Copyright © 2004-2018, Texas Instruments Incorporated

Using the C/C++ Compiler

25

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

Changing the Compiler's Behavior with Options

13 TEXAS
INSTRUMENTS

www.ti.com

2.3.1 Linker Options

The following tables list the linker options. See Chapter 4 of this document and the MSP430 Assembly
Language Tools User's Guide for details on these options.

Table 2-22. Linker Basic Options

Option Alias Description

--run_linker 4 Enables linking.

--output_file=file -0 Names the executable output file. The default filename is a .out file.

--map_file=file -m Produces a map or listing of the input and output sections, including holes, and places
the listing in file.

--stack_size=size [-]-stack Sets C system stack size to size bytes and defines a global symbol that specifies the
stack size. Default = 128 bytes.

--heap_size=size [-]-heap Sets heap size (for the dynamic memory allocation in C) to size bytes and defines a
global symbol that specifies the heap size. Default = 128 bytes.

Table 2-23. File Search Path Options

Option Alias Description

--library=file -l Names an archive library or link command file as linker input.

--disable_auto_rts Disables the automatic selection of a run-time-support library. See Section 4.3.1.1.

--priority -priority Satisfies unresolved references by the first library that contains a definition for that
symbol.

--reread_libs -X Forces rereading of libraries, which resolves back references.

--search_path=pathname

Alters library-search algorithms to look in a directory named with pathname before
looking in the default location. This option must appear before the --library option.

Table 2-24. Command File Preprocessing Options

Option

Alias

Description

--define=name=value
--undefine=name

Predefines name as a preprocessor macro.
Removes the preprocessor macro name.

--disable_pp Disables preprocessing for command files.
Table 2-25. Diagnostic Message Options
Option Alias Description
--diag_error=num Categorizes the diagnostic identified by num as an error.
--diag_remark=num Categorizes the diagnostic identified by num as a remark.
--diag_suppress=num Suppresses the diagnostic identified by num.
--diag_warning=num Categorizes the diagnostic identified by num as a warning.
--display_error_number Displays a diagnostic's identifiers along with its text.
--emit_warnings_as_errors -pdew Treat warnings as errors.
--issue_remarks Issues remarks (non-serious warnings).
--no_demangle Disables demangling of symbol names in diagnostic messages.
--no_warnings Suppresses diagnostic warnings (errors are still issued).
--set_error_limit=count Sets the error limit to count. The linker abandons linking after this number of errors. (The
default is 100.)
--verbose_diagnostics Provides verbose diagnostic messages that display the original source with line-wrap.
--warn_sections -w Displays a message when an undefined output section is created.

26 Using the C/C++ Compiler

SLAU132S-October 2004 —-Revised September 2018
Submit Documentation Feedback

Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS

INSTRUMENTS
www.ti.com Changing the Compiler's Behavior with Options
Table 2-26. Linker Output Options

Option Alias Description

--absolute_exe -a Produces an absolute, executable object file. This is the default; if neither --absolute_exe
nor --relocatable is specified, the linker acts as if --absolute_exe were specified.

--ecc={ on | off } Enable linker-generated Error Correcting Codes (ECC). The default is off.

--ecc:data_error Inject specified errors into the output file for testing.

--ecc:ecc_error Inject specified errors into the Error Correcting Code (ECC) for testing.

--mapfile_contents=attribute Controls the information that appears in the map file.

--relocatable -r Produces a nonexecutable, relocatable output object file.

--rom Creates a ROM object.

--run_abs -abs Produces an absolute listing file.

--xml_link_info=file I(_3-(?(nerates a well-formed XML file containing detailed information about the result of a
ink.

Table 2-27. Symbol Management Options

Option Alias Description

--entry_point=symbol -e If_DIefines a global symbol that specifies the primary entry point for the executable object
ile.

--globalize=pattern Changes the symbol linkage to global for symbols that match pattern.

--hide=pattern Hides symbols that match the specified pattern.

--localize=pattern Make the symbols that match the specified pattern local.

--make_global=symbol -g Makes symbol global (overrides -h).

--make_static -h Makes all global symbols static.

--no_symtable -s Strips symbol table information and line number entries from the executable object file.

--scan_libraries -scanlibs Scans all libraries for duplicate symbol definitions.

--symbol_map=refname=defname Specifies a symbol mapping; references to the refname symbol are replaced with
references to the defname symbol. The --symbol_map option is now supported when
used with --opt_level=4.

--undef_sym=symbol -u Adds symbol to the symbol table as an unresolved symbol.

--unhide=pattern Excludes symbols that match the specified pattern from being hidden.

Table 2-28. Run-Time Environment Options

Option Alias Description

--arg_size=size --args Reserve size bytes for the argc/argv memory area.

--cinit_hold_wdt={on|off} Link in an RTS auto-initialization routine that either holds (on) or does not hold (off) the
watchdog timer during cinit auto-initialization. See Section 4.3.5.

--cinit_compression[=type] Specifies the type of compression to apply to the C auto initialization data. The default if
this option is specified with no type is Izss for Lempel-Ziv-Storer-Szymanski
compression.

--copy_compression[=type] Compresses data copied by linker copy tables. The default if this option is specified with
no type is Izss for Lempel-Ziv-Storer-Szymanski compression.

--fill_value=value -f Sets default fill value for holes within output sections

--ram_model -cr Initializes variables at load time.

--rom_model -C Autoinitializes variables at run time.

--use_hw_mpy This option is now a compiler option. It should be placed on the command line before the
--run_linker or -z option. See Section 2.3.4.

SLAU132S-0October 2004—Revised September 2018 Using the C/C++ Compiler 27

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

Changing the Compiler's Behavior with Options www.ti.com

Table 2-29. Miscellaneous Options

Option Alias

Description

--linker_help [-]-help
--preferred_order=function
--strict_compatibility[=off|on]

Displays information about syntax and available options.
Prioritizes placement of functions.

Performs more conservative and rigorous compatibility checking of input object files.
Default is on.

2.3.2 Frequently Used Options

Following are detailed descriptions of options that you will probably use frequently:

--Cc_src_interlist

--cmd_file=filename

--compile_only

--define=name[=def]

--help

--include_path=directory

Invokes the interlist feature, which interweaves original C/C++ source
with compiler-generated assembly language. The interlisted C
statements may appear to be out of sequence. You can use the interlist
feature with the optimizer by combining the --optimizer_interlist and --
c_src_interlist options. See Section 3.11. The --c_src_interlist option can
have a negative performance and/or code size impact.

Appends the contents of a file to the option set. You can use this option
to avoid limitations on command line length or C style comments
imposed by the host operating system. Use a # or ; at the beginning of a
line in the command file to include comments. You can also include
comments by delimiting them with /* and */. To specify options, surround

hyphens with quotation marks. For example, "--"quiet.

You can use the --cmd_file option multiple times to specify multiple files.
For instance, the following indicates that file3 should be compiled as
source and filel and file2 are --cmd_file files:

cl430 --cmd_file=filel --cmd_file=File2 file3

Suppresses the linker and overrides the --run_linker option, which
specifies linking. The --compile_only option's short form is -c. Use this
option when you have --run_linker specified in the MSP430_C_OPTION
environment variable and you do not want to link. See Section 4.1.3.

Predefines the constant name for the preprocessor. This is equivalent to
inserting #define name def at the top of each C source file. If the
optional[=def] is omitted, the name is set to 1. The --define option's short
formis -D.

If you want to define a quoted string and keep the quotation marks, do
one of the following:

e For Windows, use --define=name="\"string def\"". For example, --
define=car="\"sedan\""
e For UNIX, use --define=name="'string def". For example, --

define=car="'sedan

» For Code Composer Studio, enter the definition in a file and include
that file with the --cmd_file option.

Displays the syntax for invoking the compiler and lists available options.
If the --help option is followed by another option or phrase, detailed
information about the option or phrase is displayed. For example, to see
information about debugging options use --help debug.

Adds directory to the list of directories that the compiler searches for
#include files. The --include_path option's short form is -I. You can use
this option several times to define several directories; be sure to
separate the --include_path options with spaces. If you do not specify a
directory name, the preprocessor ignores the --include_path option. See
Section 2.5.2.1.

28 Using the C/C++ Compiler

SLAU132S-October 2004 —-Revised September 2018
Submit Documentation Feedback

Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

www.ti.com

Changing the Compiler's Behavior with Options

--keep_asm

--quiet

--run_linker

--skip_assembler

--src_interlist

--tool_version

--undefine=name

--verbose

Retains the assembly language output from the compiler or assembly
optimizer. Normally, the compiler deletes the output assembly language
file after assembly is complete. The --keep_asm option's short form is -k.

Suppresses banners and progress information from all the tools. Only
source filenames and error messages are output. The --quiet option's
short form is -q.

Runs the linker on the specified object files. The --run_linker option and
its parameters follow all other options on the command line. All
arguments that follow --run_linker are passed to the linker. The --
run_linker option's short form is -z. See Section 4.1.

Compiles only. The specified source files are compiled but not
assembled or linked. The --skip_assembler option's short form is -n. This
option overrides --run_linker. The output is assembly language output
from the compiler.

Invokes the interlist feature, which interweaves optimizer comments or
C/C++ source with assembly source. If the optimizer is invoked (--
opt_level=n option), optimizer comments are interlisted with the
assembly language output of the compiler, which may rearrange code
significantly. If the optimizer is not invoked, C/C++ source statements are
interlisted with the assembly language output of the compiler, which
allows you to inspect the code generated for each C/C++ statement. The
--src_interlist option implies the --keep_asm option. The --src_interlist
option's short form is -s.

Prints the version number for each tool in the compiler. No compiling
occurs.

Undefines the predefined constant name. This option overrides any --
define options for the specified constant. The --undefine option's short
formis -U.

Displays progress information and toolset version while compiling.
Resets the --quiet option.

2.3.3 Miscellaneous Useful Options

Following are detailed descriptions of miscellaneous options:

--advice:hw_config={alllnone
rulespec}

--advice:power={allnone|
rulespec}

Enables checking the device configuration. For example, the FRAM
waitstate configuration is checked. Information about resolving a
device configuration issue can be found by clicking the link provided
in Code Composer Studio when one of these checks produces a
warning. See Section 5.5 for details.

Enables checking code against ULP (ultra low power) Advisor rules
for possible power inefficiencies. More detailed information can be
found at www.ti.com/ulpadvisor. The rulespec parameter is a comma-
separated list of specifiers. See Section 5.4 for details.

--advice:power_severity={error| Sets the diagnostic severity for ULP Advisor rules.

warning|remark|suppress}
--check_misra={all|required|
advisory|none|rulespec}

Displays the specified amount or type of MISRA-C documentation.
This option must be used if you want to enable use of the
CHECK_MISRA and RESET_MISRA pragmas within the source
code. The rulespec parameter is a comma-separated list of specifiers.
See Section 5.3 for details.

SLAU132S-0October 2004—Revised September 2018 Using the C/C++ Compiler 29

Submit Documentation Feedback

Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S
http://www.ti.com/ulpadvisor

Changing the Compiler's Behavior with Options

13 TEXAS
INSTRUMENTS

www.ti.com

--float_operations_allowed=
{noneJall|32|64}

--fp_mode={relaxed|strict}

--fp_reassoc={on|off}

--misra_advisory={error|
warning|remark|suppress}

--misra_required={error|
warning|remark|suppress}

Restricts the type of floating point operations allowed in the
application. The default is all. If set to none, 32, or 64, the application
is checked for operations that will be performed at runtime. For
example, if --float_operations_allowed=32 is specified on the
command line, the compiler issues an error if a double precision
operation will be generated. This can be used to ensure that double
precision operations are not accidentally introduced into an
application. The checks are performed after relaxed mode
optimizations have been performed, so illegal operations that are
completely removed result in no diagnostic messages.

The default floating-point mode is strict. To enable relaxed floating-
point mode use the --fp_mode=relaxed option. Relaxed floating-point
mode causes double-precision floating-point computations and
storage to be converted to single-precision floating-point or integers
where possible. This behavior does not conform with 1ISO, but it
results in faster code, with some loss in accuracy. The following
specific changes occur in relaxed mode:

« If the result of a double-precision floating-point expression is
assigned to a single-precision floating-point or an integer or
immediately used in a single-precision context, the computations in
the expression are converted to single-precision computations.
Double-precision constants in the expression are also converted to
single-precision if they can be correctly represented as single-
precision constants.

« Calls to double-precision functions in math.h are converted to their
single-precision counterparts if all arguments are single-precision
and the result is used in a single-precision context. The math.h
header file must be included for this optimization to work.

« Division by a constant is converted to inverse multiplication.

In the following examples, iN=integer variable, fN=float variable, and
dN=double variable:

il f1 + f2 * 5.0 -=> +, * are float, 5.0 is converted to 5.0F
il dl + d2 * d3 -> +, * are float

Tl f2 + f3 * 1.1; -> +, * are float, 1.1 is converted to 1.1F

To enable relaxed floating-point mode use the --fp_mode=relaxed
option, which also sets --fp_reassoc=on. To disable relaxed floating-
point mode use the --fp_mode=strict option, which also sets --
fp_reassoc=off.

If --strict_ansi is specified, --fp_mode=strict is set automatically. You
can enable the relaxed floating-point mode with strict ANSI mode by
specifying --fp_mode=relaxed after --strict_ansi.

Enables or disables the reassociation of floating-point arithmetic. If --
strict_ansi is set, --fp_reassoc=0ff is set since reassociation of
floating-point arithmetic is an ANSI violation.

Because floating-point values are of limited precision, and because
floating-point operations round, floating-point arithmetic is neither
associative nor distributive. For instance, (1 + 3e100) - 3e100 is not
equal to 1 + (3e100 - 3e100). If strictly following IEEE 754, the
compiler cannot, in general, reassociate floating-point operations.
Using --fp_reassoc=on allows the compiler to perform the algebraic
reassociation, at the cost of a small amount of precision for some
operations.

Sets the diagnostic severity for advisory MISRA-C:2004 rules.

Sets the diagnostic severity for required MISRA-C:2004 rules.

30 Using the C/C++ Compiler

SLAU132S-October 2004 —-Revised September 2018
Submit Documentation Feedback

Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

www.ti.com

Changing the Compiler's Behavior with Options

--preinclude=filename

--printf_support={full|
nofloat|minimal}

2.3.4 Run-Time Model Options

Includes the source code of filename at the beginning of the
compilation. This can be used to establish standard macro definitions.
The filename is searched for in the directories on the include search
list. The files are processed in the order in which they were specified.

Enables support for smaller, limited versions of the printf function
family (sprintf, fprintf, etc.) and the scanf function family (sscanf,
fscanf, etc.) run-time-support functions. The valid values are:

« full: Supports all format specifiers. This is the default.

 nofloat: Excludes support for printing and scanning floating-point
values. Supports all format specifiers except %a, %A, %f, %F, %g,
%G, %e, and %E.

e minimal: Supports the printing and scanning of integer, char, or
string values without width or precision flags. Specifically, only
the %%, %d, %0, %c, %s, and %x format specifiers are supported

There is no run-time error checking to detect if a format specifier is
used for which support is not included. The --printf_support option
precedes the --run_linker option, and must be used when performing
the final link.

These options are specific to the MSP430 toolset. See the referenced sections for more information.
MSP430-specific assembler options are listed in Section 2.3.11.

The MSP430 compiler now supports only the Embedded Application Binary Interface (EABI) ABI, which
uses the ELF object format and the DWARF debug format. If you want support for the legacy COFF ABI,
please use the MSP430 v4.4 Code Generation Tools and refer to SLAU132J and SLAU131J for

documentation.

--common={on|off}

--code_model={large|small}

--data_model={restricted|large|

When on (the default with EABI), uninitialized file scope variables are
emitted as common symbols. When off, common symbols are not
created. The benefit of allowing common symbols to be created is
that generated code can remove unused variables that would
otherwise increase the size of the .bss section. (Uninitialized variables
of a size larger than 32 bytes are separately optimized through
placement in separate subsections that can be omitted from a link.)
Variables cannot be common symbols if they are assigned to a
section other than .bss.

Specifies the code memory model: small (16-bit function pointers and
low 64K memory) or large (20-bit function pointers and 1MB address
space). See Section 6.1.1 for details.

Specifies the data memory model: small (16-bit data pointers and low

small} 64K memory), restricted (32-bit data pointers, objects restricted to
64K, and 1MB memory), and large (32-bit data pointers and 1MB
memory). See Section 6.1.2 for details.
SLAU132S-0October 2004—Revised September 2018 Using the C/C++ Compiler 31

Submit Documentation Feedback

Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S
http://www.ti.com/lit/pdf/slau132j
http://www.ti.com/lit/pdf/slau131j

Changing the Compiler's Behavior with Options

13 TEXAS
INSTRUMENTS

www.ti.com

--disable_interrupts_around_hw_mpy=off Setting this option to off leaves interrupts enabled

--enum_type={unpacked|packed}

--large_memory_model
--near_data={globals|none}

--plain_char={unsigned|signed}

--ramfunc={on|off}

--silicon_version

during inlined hardware multiplication. (Inlined
hardware multiplication is controlled by the --
use_hw_mpy and --opt_for_speed options.)

This option should only be used if all ISRs in the
application do not use multiplication and do not call
other functions. By default, if hardware multiplication
is inlined, interrupts are disabled during hardware
multiplication, because such operations are not re-
entrant.

If this option is set to off and an ISR uses
multiplication, the linker issues a warning that
multiplication within the ISR will use the RTS software
multiply routine instead of the RTS hardware multiply
routine.

If this option is set to off and an ISR calls other
functions, the linker generates a non-fatal error
diagnostic indicating that the option --
disable_interrupts_around_hw_mpy=off cannot be
used if the application includes ISRs with calls to
other functions. The reason for this is that if an ISR
calls a routine that does multiplication using the
hardware multiplier, then the inlined hardware
multipliers with interrupts left enabled are no longer
safe.

Designates the underlying type of an enumeration type. The default is
unpacked, which causes the underlying type to be an int, long, or
long long depending on the size of the enumeration constants.

Using --enum_type=packed, which causes the underlying type of the
enumeration to be the smallest integer that accommodates the
enumeration constants.

This option is deprecated. Use --data_model=large.

Specifies that global read/write data must be located in the first 64K
of memory. See Section 6.1.3 for details.

Specifies how to treat C/C++ plain char variables. Default is
unsigned.

If set to on, specifies that all functions should be placed in the
.TlL.ramfunc section, which is placed in RAM. If set to off, only
functions with the ramfunc function attribute are treated this way. See
Section 5.17.2.

Newer TI linker command files support the --ramfunc option
automatically by placing functions in the .Tl.ramfunc section. If you
have a linker command file that does not include a section
specification for the .Tl.ramfunc section, you can modify the linker
command file to place this section in RAM. See the MSP430
Assembly Language Tools User's Guide for details on section
placement.

Selects the instruction set version. Using --silicon_version=mspx
generates code for MSP430X devices (20-bit code addressing). Using
--silicon_version=msp generates code for 16-bit MSP430 devices.

Modules assembled/compiled for 16-bit MSP430 devices are not
compatible with modules that are assembled/compiled for 20-bit
MSPx devices. The linker generates errors if an attempt is made to
combine incompatible object files.

32 Using the C/C++ Compiler

SLAU132S-October 2004 —-Revised September 2018
Submit Documentation Feedback

Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

www.ti.com Changing the Compiler's Behavior with Options

--use_hw_mpy[= 16,32,F5,none] This option is now a compiler option. It should be placed on the
command line before the -z option.

MSP430 devices do not have a multiply instruction, and some
devices have no hardware multiply at all. Multiplication is performed
by a library function that either uses the hardware multiply capability
or simulates it in software. By default, the compiler generates
references to the version that does not use the hardware multiplier
peripheral that is available on some versions of the MSP430 device. If
your MSP430 device has multiply hardware, you can choose to use
the library routine matching your hardware for best performance.
When compiling for a device where the hardware multiplier is
available, use the --use_hw_mpy compiler option.

At compile time, using this option causes hardware multiply calls to
be inlined during code generation if --opt_for_speed is setto 4 or 5
and --opt_level is set to any value other than "off". See the --
disable_interrupts_around_hw_mpy=off option if you want to control
whether interrupts are enabled during inlined hardware multiplication.

If inlining is not enabled but other optimization is enabled (--
opt_for_speed is set to 1, 2, or 3), using this option causes the linker
to replace all references to the default multiply routine with the
version of the multiply routine that uses the hardware multiplier
support.

The optional argument indicates which version of the hardware
multiply is being used and must be one of the following:

» 16 uses the F1xx/2xx/4xx family 16-bit hardware multiplier (default)
» 32 uses the F4xx 32-bit hardware multiplier

* F5 uses the F5xx/6xx family 32-bit hardware multiplier

* none = does not use a hardware multiplier

For more information regarding the hardware multiplier, see the
Family User’s Guide for the MSP430x1xx, MSP430x3xX,
MSP430x4xx, and MSP430x5xXx.

SLAU132S-0October 2004—Revised September 2018 Using the C/C++ Compiler 33

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

Changing the Compiler's Behavior with Options www.ti.com

2.3.5 Symbolic Debugging Options

The following options are used to select symbolic debugging:

--symdebug:dwarf

--symdebug:dwarf_

version={2|3|4}

--symdebug:none

--symdebug:skeletal

(Default) Generates directives that are used by the C/C++ source-level
debugger and enables assembly source debugging in the assembler.
The --symdebug:dwarf option's short form is -g. See Section 3.12.

For more information on the DWARF debug format, see The DWARF
Debugging Standard.

Specifies the DWARF debugging format version (2, 3, or 4) to be
generated when --symdebug:dwarf (the default) is specified. By default,
the compiler generates DWARF version 3 debug information. DWARF
versions 2, 3, and 4 may be intermixed safely. When DWARF 4 is used,
type information is placed in the .debug_types section. At link time,
duplicate type information will be removed. This method of type merging
is superior to those used in DWARF 2 or 3 and will result in a smaller
executable. In addition, DWARF 4 reduces the size of intermediate
object files in comparison to DWARF 3. For more information on Tl
extensions to the DWARF language, see The Impact of DWARF on TI
Object Files (SPRAABS).

Disables all symbolic debugging output. This option is not recommended;
it prevents debugging and most performance analysis capabilities.

Deprecated. Has no effect.

34

Using the C/C++ Compiler

SLAU132S-October 2004 —-Revised September 2018
Submit Documentation Feedback

Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

I

TEXAS
INSTRUMENTS

www.ti.com Changing the Compiler's Behavior with Options

2.3.6 Specifying Filenames

2.3.7

The input files that you specify on the command line can be C source files, C++ source files, assembly
source files, or object files. The compiler uses filename extensions to determine the file type.

Extension File Type

.asm, .abs, or .s* (extension begins with s) Assembly source

.C C source

.C Depends on operating system
.Cpp, .CXX, .cC C++ source

.obj .o* .dll .so Object

NOTE: Case Sensitivity in Filename Extensions

Case sensitivity in filename extensions is determined by your operating system. If your
operating system is not case sensitive, a file with a .C extension is interpreted as a C file. If
your operating system is case sensitive, a file with a .C extension is interpreted as a C++ file.

For information about how you can alter the way that the compiler interprets individual filenames, see
Section 2.3.7. For information about how you can alter the way that the compiler interprets and names the
extensions of assembly source and object files, see Section 2.3.10.

You can use wildcard characters to compile or assemble multiple files. Wildcard specifications vary by
system; use the appropriate form listed in your operating system manual. For example, to compile all of
the files in a directory with the extension .cpp, enter the following:

cl430 *.cpp

NOTE: No Default Extension for Source Files is Assumed

If you list a filename called example on the command line, the compiler assumes that the
entire filename is example not example.c. No default extensions are added onto files that do
not contain an extension.

Changing How the Compiler Interprets Filenames

You can use options to change how the compiler interprets your filenames. If the extensions that you use
are different from those recognized by the compiler, you can use the filename options to specify the type
of file. You can insert an optional space between the option and the filename. Select the appropriate
option for the type of file you want to specify:

--asm_file=filename for an assembly language source file
--c_file=filename for a C source file
--cpp_file=filename for a C++ source file
--obj_file=filename for an object file

For example, if you have a C source file called file.s and an assembly language source file called assy,
use the --asm_file and --c_file options to force the correct interpretation:

cl430 --c_file=file.s --asm_file=assy

You cannot use the filename options with wildcard specifications.

2.3.8 Changing How the Compiler Processes C Files
The --cpp_default option causes the compiler to process C files as C++ files. By default, the compiler
treats files with a .c extension as C files. See Section 2.3.9 for more information about filename extension
conventions.

SLAU132S-0October 2004—Revised September 2018 Using the C/C++ Compiler 35

Submit Documentation Feedback

Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

Changing the Compiler's Behavior with Options www.ti.com

2.3.9 Changing How the Compiler Interprets and Names Extensions

You can use options to change how the compiler program interprets filename extensions and names the
extensions of the files that it creates. The filename extension options must precede the filenames they
apply to on the command line. You can use wildcard specifications with these options. An extension can
be up to nine characters in length. Select the appropriate option for the type of extension you want to

specify:

--asm_extension=new extension for an assembly language file
--C_extension=new extension for a C source file
--Ccpp_extension=new extension for a C++ source file
--listing_extension=new extension sets default extension for listing files
--0bj_extension=new extension for an object file

The following example assembles the file fit.rrr and creates an object file named fit.o:
cl430 --asm_extension=.rrr --obj_extension=.0 fit.rrr

The period (.) in the extension is optional. You can also write the example above as:
cl430 --asm_extension=rrr --obj_extension=o0 fit.rrr

2.3.10 Specifying Directories

By default, the compiler program places the object, assembly, and temporary files that it creates into the
current directory. If you want the compiler program to place these files in different directories, use the

following options:

--abs_directory=directory

--asm_directory=directory

--list_directory=directory

--0bj_directory=directory

--output_file=filename

--pp_directory=directory

--temp_directory=directory

Specifies the destination directory for absolute listing files. The default is
to use the same directory as the object file directory. For example:
cl430 --abs_directory=d:\abso_list

Specifies a directory for assembly files. For example:
cl430 --asm_directory=d:\assembly

Specifies the destination directory for assembly listing files and cross-
reference listing files. The default is to use the same directory as the
object file directory. For example:

cl430 --list_directory=d:\listing

Specifies a directory for object files. For example:
cl430 --obj_directory=d:\object
Specifies a compilation output file name; can override --obj_directory . For

example:
cl430 --output_file=transfer

Specifies a preprocessor file directory for object files (default is .). For
example:
cl430 --pp_directory=d:\preproc

Specifies a directory for temporary intermediate files. For example:
cl430 --temp_directory=d:\temp

36 Using the C/C++ Compiler

SLAU132S-October 2004 —-Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

www.ti.com Changing the Compiler's Behavior with Options
2.3.11 Assembler Options

Following are assembler options that you can use with the compiler. For more information, see the
MSP430 Assembly Language Tools User's Guide.

--absolute_listing Generates a listing with absolute addresses rather than section-
relative offsets.
--asm_define=name[=def] Predefines the constant name for the assembler; produces a .set

directive for a constant or an .arg directive for a string. If the optional
[=def] is omitted, the name is set to 1. If you want to define a quoted
string and keep the quotation marks, do one of the following:

e For Windows, use --asm_define=name="\"string def\"". For
example: --asm_define=car="\"sedan\""

¢ For UNIX, use --asm_define=name="'string def". For example: -
-asm_define=car="""sedan""

* For Code Composer Studio, enter the definition in a file and
include that file with the --cmd_file option.

--asm_dependency Performs preprocessing for assembly files, but instead of writing
preprocessed output, writes a list of dependency lines suitable for
input to a standard make utility. The list is written to a file with the
same name as the source file but with a .ppa extension.

--asm_includes Performs preprocessing for assembly files, but instead of writing
preprocessed output, writes a list of files included with the #include
directive. The list is written to a file with the same name as the
source file but with a .ppa extension.

--asm_listing Produces an assembly listing file.

--asm_undefine=name Undefines the predefined constant name. This option overrides any -
-asm_define options for the specified name.
--asm_listing_cross_reference Produces a symbolic cross-reference in the listing file.

--include_file=filename Includes the specified file for the assembly module; acts like an
.include directive. The file is included before source file statements.
The included file does not appear in the assembly listing files.

SLAU132S-0October 2004—Revised September 2018 Using the C/C++ Compiler 37

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

Changing the Compiler's Behavior with Options www.ti.com

2.3.12 Deprecated Options

24

241

Several compiler options have been deprecated, removed, or renamed. The compiler continues to accept
some of the deprecated options, but they are not recommended for use. See the Compiler Option Cleanup
wiki page for a list of deprecated and removed options, options that have been removed from CCS, and
options that have been renamed.

Controlling the Compiler Through Environment Variables

An environment variable is a system symbol that you define and assign a string to. Setting environment
variables is useful when you want to run the compiler repeatedly without re-entering options, input
filenames, or pathnames.

NOTE: C_OPTION and C_DIR -- The C_OPTION and C_DIR environment variables are
deprecated. Use device-specific environment variables instead.

Setting Default Compiler Options (MSP430_C_OPTION)

You might find it useful to set the compiler, assembler, and linker default options using the
MSP430_C_OPTION environment variable. If you do this, the compiler uses the default options and/or
input filenames that you name MSP430_C_OPTION every time you run the compiler.

Setting the default options with these environment variables is useful when you want to run the compiler
repeatedly with the same set of options and/or input files. After the compiler reads the command line and
the input filenames, it looks for the MSP430_C_OPTION environment variable and processes it.

The table below shows how to set the MSP430_C_OPTION environment variable. Select the command
for your operating system:

Operating System Enter
UNIX (Bourne shell) MSP430_C_OPTION=" option, [option, . . .]"; export MSP430_C_OPTION
Windows set MSP430_C_OPTION= option, [option, . . .]

Environment variable options are specified in the same way and have the same meaning as they do on
the command line. For example, if you want to always run quietly (the --quiet option), enable C/C++
source interlisting (the --src_interlist option), and link (the --run_linker option) for Windows, set up the
MSP430_C_OPTION environment variable as follows:

set MSP430_C_OPTION=--quiet --src_interlist --run_linker

38

Using the C/C++ Compiler SLAU132S-October 2004 —-Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S
http://processors.wiki.ti.com/index.php/Compiler_option_cleanup
http://processors.wiki.ti.com/index.php/Compiler_option_cleanup

I

TEXAS

INSTRUMENTS

www.ti.com Controlling the Compiler Through Environment Variables

2.4.2

In the following examples, each time you run the compiler, it runs the linker. Any options following --
run_linker on the command line or in MSP430_C_OPTION are passed to the linker. Thus, you can use the
MSP430_C_OPTION environment variable to specify default compiler and linker options and then specify
additional compiler and linker options on the command line. If you have set --run_linker in the environment
variable and want to compile only, use the compiler --compile_only option. These additional examples
assume MSP430_C_OPTION is set as shown above:

cl430 *c ; compiles and links
cl430 --compile_only *.c ; only compiles
cl430 *.c --run_linker Ink.cmd ; compiles and links using a command file

cl430 --compile_only *.c --run_linker Ink.cmd
; only compiles (--compile_only overrides --run_linker)

For details on compiler options, see Section 2.3. For details on linker options, see the Linker Description
chapter in the MSP430 Assembly Language Tools User's Guide.

Naming One or More Alternate Directories (MSP430_C_DIR)

The linker uses the MSP430_C_DIR environment variable to name alternate directories that contain object
libraries. The command syntaxes for assigning the environment variable are:

Operating System Enter
UNIX (Bourne shell) MSP430_C_DIR=" pathname, ; pathname, ;..."; export MSP430_C_DIR
Windows set MSP430_C_DIR= pathname, ; pathname, ;...

The pathnames are directories that contain input files. The pathnames must follow these constraints:
e Pathnames must be separated with a semicolon.

» Spaces or tabs at the beginning or end of a path are ignored. For example, the space before and after
the semicolon in the following is ignored:
set MSP430_C_DIR=c:\path\one\to\tools ; c:\path\two\to\tools
e Spaces and tabs are allowed within paths to accommodate Windows directories that contain spaces.
For example, the pathnames in the following are valid:
set MSP430_C_DIR=c:\first path\to\tools;d:\second path\to\tools

The environment variable remains set until you reboot the system or reset the variable by entering:

Operating System Enter
UNIX (Bourne shell) unset MSP430_C DIR
Windows set MSP430_C_DIR=
SLAU132S-0October 2004—Revised September 2018 Using the C/C++ Compiler 39

Submit Documentation Feedback

Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS

INSTRUMENTS
Controlling the Preprocessor www.ti.com
2.5 Controlling the Preprocessor
This section describes features that control the preprocessor, which is part of the parser. A general
description of C preprocessing is in section A12 of K&R. The C/C++ compiler includes standard C/C++
preprocessing functions, which are built into the first pass of the compiler. The preprocessor handles:
* Macro definitions and expansions
» #include files
» Conditional compilation
» Various preprocessor directives, specified in the source file as lines beginning with the # character
The preprocessor produces self-explanatory error messages. The line number and the filename where the
error occurred are printed along with a diagnostic message.
2.5.1 Predefined Macro Names
The compiler maintains and recognizes the predefined macro names listed in Table 2-30.
Table 2-30. Predefined MSP430 Macro Names
Macro Name Description
_ _DATE__ @ Expands to the compilation date in the form mmm dd yyyy
_ _FILE__® Expands to the current source filename
_ _LARGE_CODE_MODEL_ _ Defined if --code_model=large is specified
_ _LARGE_DATA_MODEL_ _ Defined if --data_model=large or ——data_model=restricted is specified
_ _LINE__® Expands to the current line number
_ _LONG_PTRDIFF_T_ _ Defined when --data_model=large is specified. Indicates ptrdiff_t is a long.
_ _MSP430_ _ Always defined
_ _MSP430X_ _ Defined if --silicon_version=mspx is specified
_ _MSP430X461X_ _ Defined if --silicon_version=mspx is specified
_ _PTRDIFF_T_TYPE_ _ Set to the type of ptrdiff_t. Determined by the --data_model option.
_ _signed_chars_ _ Defined if char types are signed by default (--plain_char=signed)
__SIZE_T_TYPE_ _ Set to the type of size_t. Determined by the --data_model option.
__STbCc__® Defined to indicate that compiler conforms to ISO C Standard. See Section 5.1 for
exceptions to ISO C conformance.
_ _STDC_VERSION_ _ C standard macro
_ _TI_COMPILER_VERSION_ _ Defined to a 7-9 digit integer, depending on if X has 1, 2, or 3 digits. The number does
not contain a decimal. For example, version 3.2.1 is represented as 3002001. The
leading zeros are dropped to prevent the number being interpreted as an octal.
__TILEABI_ _ Defined to 1 if the EABI is enabled (see Section 2.13); otherwise, it is undefined.
_ _TI_GNU_ATTRIBUTE_SUPPORT_ _ Defined if GCC extensions are enabled (which is the default)
_ _TI_STRICT_ANSI_MODE_ _ Defined to 1 if strict ANSI/ISO mode is enabled (the --strict_ansi option is used);
otherwise, it is defined as 0.
_ _TI_STRICT_FP_MODE_ _ Defined to 1 if --fp_mode=strict is used (default); otherwise, it is defined as 0.
__TIME__® Expands to the compilation time in the form "hh:mm:ss"
_ _unsigned_chars_ _ Defined if char types are unsigned by default (default or —— plain_char=unsigned)
_ _UNSIGNED_LONG_SIZE_T_ _ Defined when --data_model=large is specified. Indicates size_t is an unsigned long.
_INLINE Expands to 1 if optimization is used (--opt_level or -O option); undefined otherwise.
@ gspecified by the 1ISO standard
You can use the names listed in Table 2-30 in the same manner as any other defined name. For example,
printf ("%s %s" , _ TIME__ , _ DATE_);
translates to a line such as:
printf ("%s %s'" , "13:58:17", "Jan 14 1997");
40 Using the C/C++ Compiler SLAU132S-October 2004—Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

TEXAS
INSTRUMENTS

www.ti.com Controlling the Preprocessor

2.5.2 The Search Path for #include Files

The #include preprocessor directive tells the compiler to read source statements from another file. When
specifying the file, you can enclose the filename in double quotes or in angle brackets. The filename can
be a complete pathname, partial path information, or a filename with no path information.

» If you enclose the filename in double quotes (" "), the compiler searches for the file in the following
directories in this order:

1. The directory of the file that contains the #include directive and in the directories of any files that
contain that file.

2. Directories named with the --include_path option.
3. Directories set with the MSP430_C_DIR environment variable.

» If you enclose the filename in angle brackets (< >), the compiler searches for the file in the following
directories in this order:

1. Directories named with the --include_path option.
2. Directories set with the MSP430_C_DIR environment variable.

See Section 2.5.2.1 for information on using the --include_path option. See Section 2.4.2 for more
information on input file directories.

2.5.2.1 Adding a Directory to the #include File Search Path (--include_path Option)

The --include_path option names an alternate directory that contains #include files. The --include_path
option's short form is -I. The format of the --include_path option is:

--include_path=directoryl [--include_path= directory2 ...]

There is no limit to the number of --include_path options per invocation of the compiler; each --
include_path option names one directory. In C source, you can use the #include directive without
specifying any directory information for the file; instead, you can specify the directory information with the -
-include_path option.

For example, assume that a file called source.c is in the current directory. The file source.c contains the
following directive statement:

#include "alt.h"

Assume that the complete pathname for alt.h is:

UNIX ltools/files/alt.h
Windows c:\tools\files\alt.h

The table below shows how to invoke the compiler. Select the command for your operating system:

Operating System Enter
UNIX cl430 --include_path=/tools/files source.c
Windows cl430 --include_path=c:\tools\files source.c
SLAU132S-0October 2004—Revised September 2018 Using the C/C++ Compiler 41

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

Controlling the Preprocessor www.ti.com

253

254

255

2.5.6

NOTE: Specifying Path Information in Angle Brackets

If you specify the path information in angle brackets, the compiler applies that information
relative to the path information specified with --include_path options and the MSP430_C_DIR
environment variable.

For example, if you set up MSP430_C_DIR with the following command:

MSP430_C_DIR */usr/include;/usr/ucb™; export MSP430_C_DIR

or invoke the compiler with the following command:
cl430 --include_path=/usr/include file.c

and file.c contains this line:
#include <sys/proc.h>

the result is that the included file is in the following path:
/usr/include/sys/proc.h

Support for the #warning and #warn Directives

In strict ANSI mode, the TI preprocessor allows you to use the #warn directive to cause the preprocessor
to issue a warning and continue preprocessing. The #warn directive is equivalent to the #warning directive
supported by GCC, IAR, and other compilers.

If you use the --relaxed_ansi option (on by default), both the #warn and #warning preprocessor directives
are supported.

Generating a Preprocessed Listing File (--preproc_only Option)

The --preproc_only option allows you to generate a preprocessed version of your source file with an
extension of .pp. The compiler's preprocessing functions perform the following operations on the source
file:

e Each source line ending in a backslash (\) is joined with the following line.

» Trigraph sequences are expanded.

+ Comments are removed.

» #include files are copied into the file.

» Macro definitions are processed.

» All macros are expanded.

« All other preprocessing directives, including #line directives and conditional compilation, are expanded.

The --preproc_only option is useful when creating a source file for a technical support case or to ask a
guestion about your code. It allows you to reduce the test case to a single source file, because #include
files are incorporated when the preprocessor runs.

Continuing Compilation After Preprocessing (--preproc_with_compile Option)

If you are preprocessing, the preprocessor performs preprocessing only; it does not compile your source
code. To override this feature and continue to compile after your source code is preprocessed, use the --
preproc_with_compile option along with the other preprocessing options. For example, use --
preproc_with_compile with --preproc_only to perform preprocessing, write preprocessed output to a file
with a .pp extension, and compile your source code.

Generating a Preprocessed Listing File with Comments (--preproc_with_comment
Option)

The --preproc_with_comment option performs all of the preprocessing functions except removing
comments and generates a preprocessed version of your source file with a .pp extension. Use the --
preproc_with_comment option instead of the --preproc_only option if you want to keep the comments.

42

Using the C/C++ Compiler SLAU132S-October 2004 —-Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

I3 TEXAS
INSTRUMENTS
www.ti.com Controlling the Preprocessor
2.5.7 Generating Preprocessed Listing with Line-Control Details (--preproc_with_line Option)

258

2.5.9

By default, the preprocessed output file contains no preprocessor directives. To include the #line
directives, use the --preproc_with_line option. The --preproc_with_line option performs preprocessing only
and writes preprocessed output with line-control information (#line directives) to a file named as the
source file but with a .pp extension.

Generating Preprocessed Output for a Make Utility (--preproc_dependency Option)

The --preproc_dependency option performs preprocessing only. Instead of writing preprocessed output, it
writes a list of dependency lines suitable for input to a standard make utility. If you do not supply an
optional filename, the list is written to a file with the same name as the source file but a .pp extension.

Generating a List of Files Included with #include (--preproc_includes Option)

The --preproc_includes option performs preprocessing only, but instead of writing preprocessed output,
writes a list of files included with the #include directive. If you do not supply an optional filename, the list is
written to a file with the same name as the source file but with a .pp extension.

2.5.10 Generating a List of Macros in a File (--preproc_macros Option)

2.6

The --preproc_macros option generates a list of all predefined and user-defined macros. If you do not
supply an optional filename, the list is written to a file with the same name as the source file but with a .pp
extension.

The output includes only those files directly included by the source file. Predefined macros are listed first
and indicated by the comment /* Predefined */. User-defined macros are listed next and indicated by the
source filename.

Passing Arguments to main()

Some programs pass arguments to main() via argc and argv. This presents special challenges in an
embedded program that is not run from the command line. In general, argc and argv are made available
to your program through the .args section. There are various ways to populate the contents of this section
for use by your program.

To cause the linker to allocate an .args section of the appropriate size, use the --arg_size=size linker
option. This option tells the linker to allocate an uninitialized section named .args, which can be used by
the loader to pass arguments from the command line of the loader to the program. The size is the number
of bytes to be allocated. When you use the --arg_size option, the linker defines the __c_args__ symbol to
contain the address of the .args section.

It is the responsibility of the loader to populate the .args section. The loader and the target boot code can
use the .args section and the __c_args__ symbol to determine whether and how to pass arguments from
the host to the target program. The format of the arguments is an array of pointers to char on the target.
Due to variations in loaders, it is not specified how the loader determines which arguments to pass to the
target.

If you are using Code Composer Studio to run your application, you can use the Scripting Console tool to
populate the .args section. To open this tool, choose View > Scripting Console from the CCS menus.
You can use the loadProg command to load an object file and its associated symbol table into memory
and pass an array of arguments to main(). These arguments are automatically written to the allocated
.args section.

The loadProg syntax is as follows, where file is an executable file and args is an object array of
arguments. Use JavaScript to declare the array of arguments before using this command.

loadProg(file, args)

SLAU132S-0October 2004—Revised September 2018 Using the C/C++ Compiler 43
Submit Documentation Feedback

Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

Understanding Diagnostic Messages www.ti.com

2.7

The .args section is loaded with the following data for non-SYS/BIOS-based executables, where each
element in the argv[] array contains a string corresponding to that argument:

Int argc;
Char * argv[O];
Char * argv[1];

Char * argv[n];

For SYS/BIOS-based executables, the elements in the .args section are as follows:

Int argc;
Char ** argv; /* points to argv[0] */
Char * envp; /* ignored by loadProg command */

Char * argv[O];
Char * argv[1];

Char * argv[n];

For more details, see the "Scripting Console" topic in the Tl Processors Wiki.

Understanding Diagnostic Messages

One of the primary functions of the compiler and linker is to report diagnostic messages for the source
program. A diagnostic message indicates that something may be wrong with the program. When the
compiler or linker detects a suspect condition, it displays a message in the following format:

"file.c", line n : diagnostic severity : diagnostic message

"file.c" The name of the file involved

linen: The line number where the diagnostic applies

diagnostic severity ~ The diagnostic message severity (severity category descriptions follow)
diagnostic message The text that describes the problem

Diagnostic messages have a severity, as follows:

« Afatal error indicates a problem so severe that the compilation cannot continue. Examples of such
problems include command-line errors, internal errors, and missing include files. If multiple source files
are being compiled, any source files after the current one will not be compiled.

* An error indicates a violation of the syntax or semantic rules of the C/C++ language. Compilation may
continue, but object code is not generated.

* A warning indicates something that is likely to be a problem, but cannot be proven to be an error. For
example, the compiler emits a warning for an unused variable. An unused variable does not affect
program execution, but its existence suggests that you might have meant to use it. Compilation
continues and object code is generated (if no errors are detected).

* Aremark is less serious than a warning. It may indicate something that is a potential problem in rare
cases, or the remark may be strictly informational. Compilation continues and object code is generated
(if no errors are detected). By default, remarks are not issued. Use the --issue_remarks compiler option
to enable remarks.

e Advice provides information about recommended usage. It is not provided in the same way as the
other diagnostic categories described here. Instead, it is only available in Code Composer Studio in the
Advice area, which is a tab that appears next to the Problems tab. This advice cannot be controlled or
accessed via the command line. The advice provided includes suggested settings for the --opt_level
and --opt_for_speed options. In addition, messages about suggested code changes from the ULP
(Ultra-Low Power) Advisor are provided in this tab.

Diagnostic messages are written to standard error with a form like the following example:

"test.c", line 5: error: a break statement may only be used within a loop or switch

break;
N

By default, the source code line is not printed. Use the --verbose_diagnostics compiler option to display
the source line and the error position. The above example makes use of this option.

44

Using the C/C++ Compiler SLAU132S-October 2004 —-Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S
http://processors.wiki.ti.com/index.php/Scripting_Console

13 TEXAS
INSTRUMENTS

www.ti.com Understanding Diagnostic Messages

The message identifies the file and line involved in the diagnostic, and the source line itself (with the
position indicated by the * character) follows the message. If several diagnostic messages apply to one
source line, each diagnostic has the form shown; the text of the source line is displayed several times,
with an appropriate position indicated each time.

Long messages are wrapped to additional lines, when necessary.

You can use the --display_error_number command-line option to request that the diagnostic's numeric
identifier be included in the diagnostic message. When displayed, the diagnostic identifier also indicates
whether the diagnostic can have its severity overridden on the command line. If the severity can be
overridden, the diagnostic identifier includes the suffix -D (for discretionary); otherwise, no suffix is
present. For example:

"Test_name.c'", line 7: error #64-D: declaration does not declare anything
struct {};
N

"Test_name.c", line 9: error #77: this declaration has no storage class or type specifier

XXXXX 3
n

Because errors are determined to be discretionary based on the severity in a specific context, an error can
be discretionary in some cases and not in others. All warnings and remarks are discretionary.

For some messages, a list of entities (functions, local variables, source files, etc.) is useful; the entities are
listed following the initial error message:
"test.c", line 4: error: more than one instance of overloaded function "f"
matches the argument list:
function "f(int)"
function "f(float)"
argument types are: (double)
f(1.5);
N

In some cases, additional context information is provided. Specifically, the context information is useful
when the front end issues a diagnostic while doing a template instantiation or while generating a
constructor, destructor, or assignment operator function. For example:

"test.c", line 7: error: "A::A(Q)" is inaccessible

B Xx;
N

detected during implicit generation of "B::B()" at line 7

Without the context information, it is difficult to determine to what the error refers.

2.7.1 Controlling Diagnostic Messages

The C/C++ compiler provides diagnostic options to control compiler- and linker-generated diagnostic
messages. The diagnostic options must be specified before the --run_linker option.

--diag_error=num Categorizes the diagnostic identified by num as an error. To determine the
numeric identifier of a diagnostic message, use the --display_error_number
option first in a separate compile. Then use --diag_error=num to recategorize
the diagnostic as an error. You can only alter the severity of discretionary
diagnostic messages.

--diag_remark=num Categorizes the diagnostic identified by num as a remark. To determine the
numeric identifier of a diagnostic message, use the --display_error_number
option first in a separate compile. Then use --diag_remark=num to
recategorize the diagnostic as a remark. You can only alter the severity of
discretionary diagnostic messages.

--diag_suppress=num Suppresses the diagnostic identified by num. To determine the numeric
identifier of a diagnostic message, use the --display_error_number option first
in a separate compile. Then use --diag_suppress=num to suppress the
diagnostic. You can only suppress discretionary diagnostic messages.

SLAU132S-0October 2004—Revised September 2018 Using the C/C++ Compiler 45

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

Understanding Diagnostic Messages

13 TEXAS
INSTRUMENTS

www.ti.com

--diag_warning=num

--display_error_number

--emit_warnings_as_
errors

--issue_remarks

--no_warnings
--section_sizes={on|off}

--set_error_limit=num

--verbose_diagnostics

--write_diagnostics_file

Categorizes the diagnostic identified by num as a warning. To determine the
numeric identifier of a diagnostic message, use the --display_error_number
option first in a separate compile. Then use --diag_warning=num to
recategorize the diagnostic as a warning. You can only alter the severity of
discretionary diagnostic messages.

Displays a diagnostic's numeric identifier along with its text. Use this option in
determining which arguments you need to supply to the diagnostic
suppression options (--diag_suppress, --diag_error, --diag_remark, and --
diag_warning). This option also indicates whether a diagnostic is discretionary.
A discretionary diagnostic is one whose severity can be overridden. A
discretionary diagnostic includes the suffix -D; otherwise, no suffix is present.
See Section 2.7.

Treats all warnings as errors. This option cannot be used with the --
no_warnings option. The --diag_remark option takes precedence over this
option. This option takes precedence over the --diag_warning option.

Issues remarks (hon-serious warnings), which are suppressed by default.
Suppresses diagnostic warnings (errors are still issued).

Generates section size information, including sizes for sections containing
executable code and constants, constant or initialized data (global and static
variables), and uninitialized data. Section size information is output during
both the assembly and linking phases. This option should be placed on the
command line with the compiler options (that is, before the --run_linker or --z
option).

Sets the error limit to num, which can be any decimal value. The compiler
abandons compiling after this number of errors. (The default is 100.)

Provides verbose diagnostic messages that display the original source with
line-wrap and indicate the position of the error in the source line. Note that this
command-line option cannot be used within the Code Composer Studio IDE.

Produces a diagnostic message information file with the same source file
name with an .err extension. (The --write_diagnostics_file option is not
supported by the linker.) Note that this command-line option cannot be used
within the Code Composer Studio IDE.

2.7.2 How You Can Use Diagnostic Suppression Options

The following example demonstrates how you can control diagnostic messages issued by the compiler.
You control the linker diagnostic messages in a similar manner.

int one();
int I;
int mainQ)
{
switch (1){
case 1;
return one ();
break;
default:
return O;
break;
3
3

If you invoke the compiler with the --quiet option, this is the result:

"err.c", line 9: warning:

statement is unreachable

“err.c', line 12: warning: statement is unreachable

46

Using the C/C++ Compiler

SLAU132S-October 2004 —-Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

I

TEXAS

INSTRUMENTS

www.ti.com Other Messages

Because it is standard programming practice to include break statements at the end of each case arm to
avoid the fall-through condition, these warnings can be ignored. Using the --display_error_number option,
you can find out the diagnostic identifier for these warnings. Here is the result:

[err.c]

“err.c”, line 9: warning #111-D: statement is unreachable
“err.c'", line 12: warning #111-D: statement is unreachable

Next, you can use the diagnostic identifier of 111 as the argument to the --diag_remark option to treat this
warning as a remark. This compilation now produces no diagnostic messages (because remarks are
disabled by default).

NOTE: You can suppress any non-fatal errors, but be careful to make sure you only suppress
diagnostic messages that you understand and are known not to affect the correctness of
your program.

2.8 Other Messages
Other error messages that are unrelated to the source, such as incorrect command-line syntax or inability
to find specified files, are usually fatal. They are identified by the symbol >> preceding the message.
2.9 Generating Cross-Reference Listing Information (--gen_cross_reference Option)
The --gen_cross_reference option generates a cross-reference listing file that contains reference
information for each identifier in the source file. (The --gen_cross_reference option is separate from --
asm_listing_cross_reference, which is an assembler rather than a compiler option.) The cross-reference
listing file has the same name as the source file with a .crl extension.
The information in the cross-reference listing file is displayed in the following format:
sym-id name X filename line number column number
sym-id An integer uniquely assigned to each identifier
name The identifier name
X One of the following values:
D Definition
d Declaration (not a definition)
M Modification
A Address taken
U Used
C Changed (used and modified in a single operation)
R Any other kind of reference
E Error; reference is indeterminate
filename The source file
line number The line number in the source file
column number The column number in the source file
2.10 Generating a Raw Listing File (--gen_preprocessor_listing Option)
The --gen_preprocessor_listing option generates a raw listing file that can help you understand how the
compiler is preprocessing your source file. Whereas the preprocessed listing file (generated with the --
preproc_only, --preproc_with_comment, --preproc_with_line, and --preproc_dependency preprocessor
options) shows a preprocessed version of your source file, a raw listing file provides a comparison
between the original source line and the preprocessed output. The raw listing file has the same name as
the corresponding source file with an .rl extension.
SLAU132S-0October 2004—Revised September 2018 Using the C/C++ Compiler 47

Submit Documentation Feedback

Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

Generating a Raw Listing File (--gen_preprocessor_listing Option) www.ti.com

The raw listing file contains the following information:

» Each original source line
» Transitions into and out of include files
» Diagnostic messages

» Preprocessed source line if nontrivial processing was performed (comment removal is considered

trivial; other preprocessing is nontrivial)

Each source line in the raw listing file begins with one of the identifiers listed in Table 2-31.

Table 2-31. Raw Listing File Identifiers

Identifier Definition
N Normal line of source
X Expanded line of source. It appears immediately following the normal line of source

if nontrivial preprocessing occurs.

Skipped source line (false #if clause)

L Change in source position, given in the following format:

L line number filename key

Where line number is the line number in the source file. The key is present only
when the change is due to entry/exit of an include file. Possible values of key are:

1 = entry into an include file
2 = exit from an include file

The --gen_preprocessor_listing option also includes diagnostic identifiers as defined in Table 2-32.

Table 2-32. Raw Listing File Diagnostic Identifiers

Diagnostic Identifier Definition
E Error
F Fatal
R Remark
w Warning

Diagnostic raw listing information is displayed in the following format:

S filename line number column number diagnostic

S One of the identifiers in Table 2-32 that indicates the severity of the diagnostic
filename The source file

line number The line number in the source file

column number The column number in the source file

diagnostic The message text for the diagnostic

Diagnostic messages after the end of file are indicated as the last line of the file with a column number of
0. When diagnostic message text requires more than one line, each subsequent line contains the same
file, line, and column information but uses a lowercase version of the diagnostic identifier. For more
information about diagnostic messages, see Section 2.7.

48 Using the C/C++ Compiler

SLAU132S-October 2004 —-Revised September 2018
Submit Documentation Feedback

Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

www.ti.com Using Inline Function Expansion

2.11 Using Inline Function Expansion

When an inline function is called, a copy of the C/C++ source code for the function is inserted at the point
of the call. This is known as inline function expansion, commonly calledfunction inlining or just inlining.
Inline function expansion can speed up execution by eliminating function call overhead. This is particularly
beneficial for very small functions that are called frequently. Function inlining involves a tradeoff between
execution speed and code size, because the code is duplicated at each function call site. Large functions
that are called in many places are poor candidates for inlining.

NOTE: Excessive Inlining Can Degrade Performance

Excessive inlining can make the compiler dramatically slower and degrade the performance
of generated code.

Function inlining is triggered by the following situations:

* The use of built-in intrinsic operations. Intrinsic operations look like function calls, and are inlined
automatically, even though no function body exists.

* Use of the inline keyword or the equivalent __inline keyword. Functions declared with the inline
keyword may be inlined by the compiler if you set --opt_level=0 or greater. The inline keyword is a
suggestion from the programmer to the compiler. Even if your optimization level is high, inlining is still
optional for the compiler. The compiler decides whether to inline a function based on the length of the
function, the number of times it is called, your --opt_for_speed setting, and any contents of the function
that disqualify it from inlining (see Section 2.11.2). Functions can be inlined at --opt_level=0 or above if
the function body is visible in the same module or if -pm is also used and the function is visible in one
of the modules being compiled. Functions may be inlined at link time if the file containing the definition
and the call site were both compiled with --opt_level=4. Functions defined as both static and inline are
more likely to be inlined.

* When --opt_level=3 or greater is used, the compiler may automatically inline eligible functions even if
they are not declared as inline functions. The same list of decision factors listed for functions explicitly
defined with the inline keyword is used. For more about automatic function inlining, see Section 3.5.

» The pragma FUNC_ALWAYS_INLINE and the equivalent always_inline attribute force a function to
be inlined (where it is legal to do so) unless --opt_level=off. That is, the pragma
FUNC_ALWAYS_INLINE forces function inlining even if the function is not declared as inline and the --
opt_level=0 or --opt_level=1.

« The FORCEINLINE pragma forces functions to be inlined in the annotated statement. That is, it has no
effect on those functions in general, only on function calls in a single statement. The
FORCEINLINE_RECURSIVE pragma forces inlining not only of calls visible in the statement, but also
in the inlined bodies of calls from that statement.

* The --disable_inlining option prevents any inlining. The pragma FUNC_CANNOT_INLINE prevents a
function from being inlined. The NOINLINE pragma prevents calls within a single statement from being
inlined. (NOINLINE is the inverse of the FORCEINLINE pragma.)

NOTE: Function Inlining Can Greatly Increase Code Size

Function inlining increases code size, especially inlining a function that is called in a number
of places. Function inlining is optimal for functions that are called only from a small number
of places and for small functions.

The semantics of the inline keyword in C code follow the C99 standard. The semantics of the inline
keyword in C++ code follow the C++ standard.

The inline keyword is supported in all C++ modes, in relaxed ANSI mode for all C standards, and in
strict ANSI mode for C99 and C11. It is disabled in strict ANSI mode for C89, because it is a language
extension that could conflict with a strictly conforming program. If you want to define inline functions while
in strict ANSI C89 mode, use the alternate keyword __inline.

Compiler options that affect inlining are: --opt_level, --auto_inline, --remove_hooks_when_inlining, --
opt_for_speed, and --disable_inlining.

SLAU132S-0October 2004—Revised September 2018 Using the C/C++ Compiler 49

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

Using Inline Function Expansion www.ti.com

2.11.1 Inlining Intrinsic Operators

The compiler has a number of built-in function-like operations called intrinsics. The implementation of an
intrinsic function is handled by the compiler, which substitutes a sequence of instructions for the function
call. This is similar to the way inline functions are handled; however, because the compiler knows the code
of the intrinsic function, it can perform better optimization.

Intrinsics are inlined whether or not you use the optimizer. For details about intrinsics, and a list of the
intrinsics, see Section 6.8.1. In addition to those listed, abs and memcpy are implemented as intrinsics.

2.11.2 Inlining Restrictions

The compiler makes decisions about which functions to inline based on the factors mentioned in
Section 2.11. In addition, there are several restrictions that can disqualify a function from being inlined by
automatic inlining or inline keyword-based inlining.

The compiler will leave calls as they are if the function:

e Has a different number of arguments than the call site

» Has an argument whose type is incompatible with the corresponding call site argument
* Is not declared inline and returns void but its return value is needed

The compiler will also not inline a call if the function has features that create difficult situations for the
compiler:

» Has a variable-length argument list

* Never returns

* Is arecursive or nonleaf function that exceeds the depth limit

* Is not declared inline and contains an asm() statement that is not a comment

e Is an interrupt function

* Is the main() function

» Is not declared inline and will require too much stack space for local array or structure variables
» Contains a volatile local variable or argument

» Is a C++ function that contains a catch

* Is not defined in the current compilation unit and -O4 optimization is not used

A call in a statement that is annotated with a NOINLINE pragma will not be inlined, regardless of other
indications (including a FUNC_ALWAYS_INLINE pragma or always_inline attribute on the called function).

A call in a statement that is annotated with a FORCEINLINE pragma will always be inlined, if it is not
disqualified for one of the reasons above, even if the called function has a FUNC_CANNOT _INLINE
pragma or cannot_inline attribute.

In other words, a statement-level pragma overrides a function-level pragma or attribute. If both NOINLINE
and FORCEINLINE apply to the same statement, then the one that appears first will be used and the rest
will be ignored.

50 Using the C/C++ Compiler SLAU132S-October 2004—Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

www.ti.com

Using Interlist

2.12 Using Interlist

The compiler tools include a feature that interlists C/C++ source statements into the assembly language

output of the compiler. The interlist feature enables you to inspect the assembly code generated for each

C statement. The interlist behaves differently, depending on whether or not the optimizer is used, and

depending on which options you specify.

The easiest way to invoke the interlist feature is to use the --c_src_interlist option. To compile and run the

interlist on a program called function.c, enter:
cl430 --c_src_interlist function

The --c_src_interlist option prevents the compiler from deleting the interlisted assembly language output

file. The output assembly file, function.asm, is assembled normally.

When you invoke the interlist feature without the optimizer, the interlist runs as a separate pass between

the code generator and the assembler. It reads both the assembly and C/C++ source files, merges them,

and writes the C/C++ statements into the assembly file as comments.

Using the --c_src_interlist option can cause performance and/or code size degradation.

Example 2-1 shows a typical interlisted assembly file.

For more information about using the interlist feature with the optimizer, see Section 3.11.

Example 2-1. An Interlisted Assembly Language File

;* MSP430 C/C++ Codegen Unix v0.2.0
;* Date/Time created: Tue Jun 29 14:54:28 2004

*

*

-.compiler_opts --mem_model:code=flat --mem_model :data=flat --symdebug:
; acp430 -@/var/tmp/T1764/AAAV0aGVG

.sect " otext"

.align 2

.clink

-global main

none

FUNCTION NAME: main

Regs Used : SP,SR,r11,r12,r13,rl14,r15

*

*

3* Regs Modified : SP,SR,r11,r12,r13,r14,r15

*

;* Local Frame Size : 2 Args + O Auto + 0 Save = 2 byte

*ox X X

MOV . W #CSL1+0,0(SP) ; 151
CALL #printf ; 151

MOV . W #0,r12 ;171
ADD W #2,SP ;171
RET ;171
;171
:* STRINGS *

SLAU132S-0October 2004—Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

Using the C/C++ Compiler

51

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

Controlling Application Binary Interface www.ti.com

Example 2-1. An Interlisted Assembly Language File (continued)

.sect ' _const"
.align 2

CSL1: .string "Hello, world™,10,0

;* UNDEFINED EXTERNAL REFERENCES *

-global printf

2.13 Controlling Application Binary Interface

An Application Binary Interface (ABI) defines the low level interface between object files, and between an
executable and its execution environment. An ABI allows ABI-compliant object files to be linked together,

regardless of their source, and allows the resulting executable to run on any system that supports that
ABI.

Object files conforming to different ABIs cannot be linked together. The linker detects this situation and
generates an error.

The MSP430 compiler now supports only the Embedded Application Binary Interface (EABI) ABI, which
uses the ELF object format and the DWARF debug format. If you want support for the legacy COFF ABI,
please use the MSP430 v4.4 Code Generation Tools and refer to SLAU132J and SLAU131J for
documentation.

All code in an EABI application must be built for EABI. Make sure all your libraries are available in EABI
mode before migrating COFF ABI systems to MSP430 EABI.

For more details on the ABI, see Section 5.14.

52

Using the C/C++ Compiler SLAU132S-October 2004 —-Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S
http://www.ti.com/lit/pdf/slau132j
http://www.ti.com/lit/pdf/slau131j

13 TEXAS
INSTRUMENTS

www.ti.com Enabling Entry Hook and Exit Hook Functions

2.14 Enabling Entry Hook and Exit Hook Functions

An entry hook is a routine that is called upon entry to each function in the program. An exit hook is a
routine that is called upon exit of each function. Applications for hooks include debugging, trace, profiling,
and stack overflow checking.

Entry and exit hooks are enabled using the following options:

--entry_hook[=name] Enables entry hooks. If specified, the hook function is called name. Otherwise,
the default entry hook function name is __entry_hook.
--entry_parm{=name| Specify the parameters to the hook function. The name parameter specifies
address|none} that the name of the calling function is passed to the hook function as an

argument. In this case the signature for the hook function is: void hook(const
char *name);

The address parameter specifies that the address of the calling function is
passed to the hook function. In this case the signature for the hook function is:
void hook(void (*addr)());

The none parameter specifies that the hook is called with no parameters. This
is the default. In this case the signature for the hook function is: void

hook(void);
--exit_hook[=name] Enables exit hooks. If specified, the hook function is called name. Otherwise,
the default exit hook function name is __exit_hook.
--exit_parm{=name| Specify the parameters to the hook function. The name parameter specifies
address|none} that the name of the calling function is passed to the hook function as an

argument. In this case the signature for the hook function is: void hook(const
char *name);

The address parameter specifies that the address of the calling function is
passed to the hook function. In this case the signature for the hook function is:
void hook(void (*addr)());

The none parameter specifies that the hook is called with no parameters. This
is the default. In this case the signature for the hook function is: void
hook(void);

The presence of the hook options creates an implicit declaration of the hook function with the given
signature. If a declaration or definition of the hook function appears in the compilation unit compiled with
the options, it must agree with the signatures listed above.

In C++, the hooks are declared extern "C". Thus you can define them in C (or assembly) without being
concerned with name mangling.

Hooks can be declared inline, in which case the compiler tries to inline them using the same criteria as
other inline functions.

Entry hooks and exit hooks are independent. You can enable one but not the other, or both. The same
function can be used as both the entry and exit hook.

You must take care to avoid recursive calls to hook functions. The hook function should not call any
function which itself has hook calls inserted. To help prevent this, hooks are not generated for inline
functions, or for the hook functions themselves.

You can use the --remove_hooks_when_inlining option to remove entry/exit hooks for functions that are
auto-inlined by the optimizer.

See Section 5.12.24 for information about the NO_HOOKS pragma.

SLAU132S-0October 2004—Revised September 2018 Using the C/C++ Compiler 53

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

i Chapter 3

TE S SLAU132S-0October 2004—Revised September 2018

INSTRUMENTS
Optimizing Your Code

The compiler tools can perform many optimizations to improve the execution speed and reduce the size of
C and C++ programs by simplifying loops, rearranging statements and expressions, and allocating
variables into registers.

This chapter describes how to invoke different levels of optimization and describes which optimizations are
performed at each level. This chapter also describes how you can use the Interlist feature when
performing optimization and how you can debug optimized code.

Topic Page
3.1 INVOKING OPLIMIZALION . ..eeieeeie ettt et e e e e et e e e e a e e e e en e eens 55
3.2 Controlling Code Size VEersus SPEEAccociuiiiiiiiiiiinieitiiieaeenreieieaeaeenearareaeaenenns 56
3.3 Performing File-Level Optimization (--opt_level=3 0ption)ccoeveiiiiiiiiiiiiiieeens 56
3.4 Program-Level Optimization (--program_level compile and --opt_level=3 options)..... 57
3.5 Automatic Inline Expansion (--auto_inline OpPtioN)......c.ciieiiiiiiiiiieieii e eieaeeeeee 59
3.6 Link-Time Optimization (--opt_level=4 OPtioN)cuveieieiiieei e eene e 60
3.7 Using Feedback Directed OptimiZationcoeuveieieeeeninieieereenaeseeeeenenanranenenes 61
3.8 Using Profile Information to Analyze Code COVEIragecoeuvuieiereeiueniniereneieensnranes 65
3.9 Accessing Aliased Variables in Optimized COAeccoeieiiiiiiiiiiiiiiiiieee e 67
3.10 Use Caution With asm Statements in Optimized COdeviiiiiiiiiiiiiiiiiiieeens 67
3.11 Using the Interlist Feature With Optimization.........cccoviiiiiiiiiiii e eeaees 67
3.12 Debugging OptiMiZed COOE ... cucuinieie ittt ettt e e n e e e e e eeneareeeaeenenanns 69
3.13 What Kind of Optimization Is Being Performed?cccooiiiiiiiiiiiiinieieeeeene 70

54 Optimizing Your Code SLAU132S-October 2004—Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

I

TEXAS
INSTRUMENTS

www.ti.com Invoking Optimization

3.1

Invoking Optimization

The C/C++ compiler is able to perform various optimizations. High-level optimizations are performed in the
optimizer and low-level, target-specific optimizations occur in the code generator. Use high-level
optimization levels, such as --opt_level=2 and --opt_level=3, to achieve optimal code.

The easiest way to invoke optimization is to use the compiler program, specifying the --opt_level=n option
on the compiler command line. You can use -On to alias the --opt_level option. The n denotes the level of
optimization (0, 1, 2, 3, and 4), which controls the type and degree of optimization.

e --opt_level=off or -Ooff
Performs no optimization
» --opt_level=0 or -O0
— Performs control-flow-graph simplification
— Allocates variables to registers
— Performs loop rotation
— Eliminates unused code
— Simplifies expressions and statements
— Expands calls to functions declared inline
» --opt_level=1 or-O1
Performs all --opt_level=0 (-O0) optimizations, plus:
— Performs local copy/constant propagation
— Removes unused assignments
— Eliminates local common expressions
» --opt_level=2 or -02
Performs all --opt_level=1 (-O1) optimizations, plus:
Performs loop optimizations
Eliminates global common subexpressions
Eliminates global unused assignments
Performs loop unrolling
» --opt_level=3 or -O3
Performs all --opt_level=2 (-O2) optimizations, plus:
— Removes all functions that are never called
— Simplifies functions with return values that are never used
— Inlines calls to small functions

— Reorders function declarations; the called functions attributes are known when the caller is
optimized

— Propagates arguments into function bodies when all calls pass the same value in the same
argument position

— ldentifies file-level variable characteristics
If you use --opt_level=3 (-O3), see Section 3.3 and Section 3.4 for more information.
e --opt_level=4 or -O4
Performs link-time optimization. See Section 3.6 for details.

For information about how the --opt_level option along with the --opt_for_speed option and various
pragmas affect inlining, see Section 2.11.

By default, debugging is enabled and the default optimization level is unaffected by the generation of
debug information. However, the optimization level used is affected by whether or not the command line
includes the -g (--symdebug:dwarf) option and the --opt_level option as shown in the following table:

SLAU132S-0October 2004—Revised September 2018 Optimizing Your Code 55
Submit Documentation Feedback

Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS

INSTRUMENTS
Controlling Code Size Versus Speed www.ti.com
Table 3-1. Interaction Between Debugging and Optimization Options
Optimization no -g -g
no --opt_level --opt_level=0 --opt_level=0
--opt_level --opt_level=2 --opt_level=0
--opt_level=n optimized as specified optimized as specified

3.2

3.3

3.3.1

The levels of optimizations described above are performed by the stand-alone optimization pass. The
code generator performs several additional optimizations, particularly processor-specific optimizations. It
does so regardless of whether you invoke the optimizer. These optimizations are always enabled,
although they are more effective when the optimizer is used.

Controlling Code Size Versus Speed
To balance the tradeoff between code size and speed, use the --opt_for_speed option. The level of
optimization (0-5) controls the type and degree of code size or code speed optimization:
e --opt_for_speed=0
Optimizes code size with a high risk of worsening or impacting performance.
e --opt_for_speed=1
Optimizes code size with a medium risk of worsening or impacting performance.
e --opt_for_speed=2
Optimizes code size with a low risk of worsening or impacting performance.
e --opt_for_speed=3
Optimizes code performance/speed with a low risk of worsening or impacting code size.
e --opt_for _speed=4
Optimizes code performance/speed with a medium risk of worsening or impacting code size.
e --opt_for_speed=5
Optimizes code performance/speed with a high risk of worsening or impacting code size.

If you specify the --opt_for_speed option without a parameter, the default setting is --opt_for_speed=4. If
you do not specify the --opt_for_speed option, the default setting is 1

Performing File-Level Optimization (--opt_level=3 option)

The --opt_level=3 option (aliased as the -O3 option) instructs the compiler to perform file-level
optimization. You can use the --opt_level=3 option alone to perform general file-level optimization, or you
can combine it with other options to perform more specific optimizations. The options listed in Table 3-2
work with --opt_level=3 to perform the indicated optimization:

Table 3-2. Options That You Can Use With --opt_level=3

If You ... Use this Option See

Want to create an optimization information file --gen_opt_level=n Section 3.3.1
Want to compile multiple source files --program_level_compile Section 3.4

Creating an Optimization Information File (--gen_opt_info Option)

When you invoke the compiler with the --opt_level=3 option, you can use the --gen_opt_info option to
create an optimization information file that you can read. The number following the option denotes the
level (0, 1, or 2). The resulting file has an .nfo extension. Use Table 3-3 to select the appropriate level to
append to the option.

56

Optimizing Your Code SLAU132S-October 2004 —-Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS

INSTRUMENTS
www.ti.com Program-Level Optimization (--program_level_compile and --opt_level=3 options)
Table 3-3. Selecting a Level for the --gen_opt_info Option
If you... Use this option
Do not want to produce an information file, but you used the --gen_opt_level=1 or --gen_opt_level=2 --gen_opt_info=0
option in a command file or an environment variable. The --gen_opt_level=0 option restores the
default behavior of the optimizer.
Want to produce an optimization information file --gen_opt_info=1
Want to produce a verbose optimization information file --gen_opt_info=2
3.4 Program-Level Optimization (--program_level _compile and --opt_level=3 options)

3.4.1

You can specify program-level optimization by using the --program_level_compile option with the --
opt_level=3 option (aliased as -0O3). (If you use --opt_level=4 (-O4), the --program_level_compile option
cannot be used, because link-time optimization provides the same optimization opportunities as program
level optimization.)

With program-level optimization, all of your source files are compiled into one intermediate file called a
module. The module moves to the optimization and code generation passes of the compiler. Because the
compiler can see the entire program, it performs several optimizations that are rarely applied during file-
level optimization:

» If a particular argument in a function always has the same value, the compiler replaces the argument
with the value and passes the value instead of the argument.

» If a return value of a function is never used, the compiler deletes the return code in the function.
» If a function is not called directly or indirectly by main(), the compiler removes the function.

The --program_level_compile option requires use of --opt_level=3 or higher in order to perform these
optimizations.

To see which program-level optimizations the compiler is applying, use the --gen_opt_level=2 option to
generate an information file. See Section 3.3.1 for more information.

In Code Composer Studio, when the --program_level_compile option is used, C and C++ files that have
the same options are compiled together. However, if any file has a file-specific option that is not selected
as a project-wide option, that file is compiled separately. For example, if every C and C++ file in your
project has a different set of file-specific options, each is compiled separately, even though program-level
optimization has been specified. To compile all C and C++ files together, make sure the files do not have
file-specific options. Be aware that compiling C and C++ files together may not be safe if previously you
used a file-specific option.

Compiling Files With the --program_level_compile and --keep_asm Options

NOTE: If you compile all files with the --program_level_compile and --keep_asm options, the
compiler produces only one .asm file, not one for each corresponding source file.

Controlling Program-Level Optimization (--call_assumptions Option)

You can control program-level optimization, which you invoke with --program_level_compile --opt_level=3,
by using the --call_assumptions option. Specifically, the --call_assumptions option indicates if functions in
other modules can call a module's external functions or modify a module's external variables. The number
following --call_assumptions indicates the level you set for the module that you are allowing to be called or
modified. The --opt_level=3 option combines this information with its own file-level analysis to decide
whether to treat this module's external function and variable declarations as if they had been declared
static. Use Table 3-4 to select the appropriate level to append to the --call_assumptions option.

Table 3-4. Selecting a Level for the --call_assumptions Option

If Your Module ... Use this Option
Has functions that are called from other modules and global variables that are modified in other --call_assumptions=0
modules

SLAU132S-0October 2004—Revised September 2018 Optimizing Your Code 57

Submit Documentation Feedback

Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

Program-Level Optimization (--program_level_compile and --opt_level=3 options) www.ti.com

3.4.2

Table 3-4. Selecting a Level for the --call_assumptions Option (continued)

If Your Module ... Use this Option
Does not have functions that are called by other modules but has global variables that are modified in --call_assumptions=1
other modules

Does not have functions that are called by other modules or global variables that are modified in other --call_assumptions=2
modules

Has functions that are called from other modules but does not have global variables that are modified --call_assumptions=3

in other modules

In certain circumstances, the compiler reverts to a different --call_assumptions level from the one you
specified, or it might disable program-level optimization altogether. Table 3-5 lists the combinations of --
call_assumptions levels and conditions that cause the compiler to revert to other --call_assumptions
levels.

Table 3-5. Special Considerations When Using the --call_assumptions Option

Then the --call_assumptions

If --call_assumptions is... Under these Conditions... Level...

Not specified The --opt_level=3 optimization level was specified Defaults to --call_assumptions=2

Not specified The compiler sees calls to outside functions under the -- Reverts to --call_assumptions=0
opt_level=3 optimization level

Not specified Main is not defined Reverts to --call_assumptions=0

--call_assumptions=1 or No function has main defined as an entry point, and no interrupt Reverts to --call_assumptions=0

--call_assumptions=2 functions are defined, and no functions are identified by the

FUNC_EXT_CALLED pragma

--call_assumptions=1 or A main function is defined, or, an interrupt function is defined, ora Remains --call_assumptions=1
--call_assumptions=2 function is identified by the FUNC_EXT_CALLED pragma or --call_assumptions=2

--call_assumptions=3 Any condition Remains --call_assumptions=3

In some situations when you use --program_level _compile and --opt_level=3, you must use a --
call_assumptions option or the FUNC_EXT_CALLED pragma. See Section 3.4.2 for information about
these situations.

Optimization Considerations When Mixing C/C++ and Assembly

If you have any assembly functions in your program, you need to exercise caution when using the --
program_level_compile option. The compiler recognizes only the C/C++ source code and not any
assembly code that might be present. Because the compiler does not recognize the assembly code calls
and variable modifications to C/C++ functions, the --program_level _compile option optimizes out those
C/C++ functions. To keep these functions, place the FUNC_EXT_ CALLED pragma (see Section 5.12.14)
before any declaration or reference to a function that you want to keep.

Another approach you can take when you use assembly functions in your program is to use the --
call_assumptions=n option with the --program_level _compile and --opt_level=3 options. See Section 3.4.1
for information about the --call_assumptions=n option.

In general, you achieve the best results through judicious use of the FUNC_EXT_CALLED pragma in
combination with --program_level_compile --opt_level=3 and --call_assumptions=1 or --
call_assumptions=2.

If any of the following situations apply to your application, use the suggested solution:

Situation — Your application consists of C/C++ source code that calls assembly functions. Those
assembly functions do not call any C/C++ functions or modify any C/C++ variables.

Solution — Compile with --program_level_compile --opt_level=3 --call_assumptions=2 to tell the compiler
that outside functions do not call C/C++ functions or modify C/C++ variables.

58

Optimizing Your Code SLAU132S-October 2004 —-Revised September 2018
Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

I

TEXAS

INSTRUMENTS

www.ti.com Automatic Inline Expansion (--auto_inline Option)

3.5

If you compile with the --program_level_compile --opt_level=3 options only, the compiler reverts
from the default optimization level (--call_assumptions=2) to --call_assumptions=0. The compiler
uses --call_assumptions=0, because it presumes that the calls to the assembly language functions
that have a definition in C/C++ may call other C/C++ functions or modify C/C++ variables.

Situation — Your application consists of C/C++ source code that calls assembly functions. The assembly
language functions do not call C/C++ functions, but they modify C/C++ variables.

Solution — Try both of these solutions and choose the one that works best with your code:
e Compile with --program_level _compile --opt_level=3 --call_assumptions=1.

e Add the volatile keyword to those variables that may be modified by the assembly functions and
compile with --program_level_compile --opt_level=3 --call_assumptions=2.

Situation — Your application consists of C/C++ source code and assembly source code. The assembly
functions are interrupt service routines that call C/C++ functions; the C/C++ functions that the
assembly functions call are never called from C/C++. These C/C++ functions act like main: they
function as entry points into C/C++.

Solution — Add the volatile keyword to the C/C++ variables that may be modified by the interrupts. Then,
you can optimize your code in one of these ways:

* You achieve the best optimization by applying the FUNC_EXT_CALLED pragma to all of the
entry-point functions called from the assembly language interrupts, and then compiling with --
program_level _compile --opt_level=3 --call_assumptions=2. Be sure that you use the pragma
with all of the entry-point functions. If you do not, the compiler might remove the entry-point
functions that are not preceded by the FUNC_EXT_CALLED pragma.

» Compile with --program_level_compile --opt_level=3 --call_assumptions=3. Because you do not
use the FUNC_EXT_CALLED pragma, you must use the --call_assumptions=3 option, which is
less aggressive than the --call_assumptions=2 option, and your optimization may not be as
effective.

Keep in mind that if you use --program_level_compile --opt_level=3 without additional options, the
compiler removes the C functions that the assembly functions call. Use the FUNC_EXT_CALLED
pragma to keep these functions.

Automatic Inline Expansion (--auto_inline Option)

When optimizing with the --opt_level=3 option (aliased as -03), the compiler automatically inlines small
functions. A command-line option, --auto_inline=size, specifies the size threshold. Any function larger than
the size threshold is not automatically inlined. You can use the --auto_inline=size option in the following
ways:

» If you set the size parameter to O (--auto_inline=0), automatic inline expansion is disabled.

» If you set the size parameter to a nonzero integer, the compiler uses this size threshold as a limit to
the size of the functions it automatically inlines. The compiler multiplies the number of times the
function is inlined (plus 1 if the function is externally visible and its declaration cannot be safely
removed) by the size of the function.

The compiler inlines the function only if the result is less than the size parameter. The compiler measures
the size of a function in arbitrary units; however, the optimizer information file (created with the --
gen_opt_level=1 or --gen_opt_level=2 option) reports the size of each function in the same units that the --
auto_inline option uses.

The --auto_inline=size option controls only the inlining of functions that are not explicitly declared as inline.
If you do not use the --auto_inline=size option, the compiler inlines very small functions.

For information about interactions between command-line options, pragmas, and keywords that affect
inlining, see Section 2.11.

SLAU132S-0October 2004—Revised September 2018 Optimizing Your Code 59
Submit Documentation Feedback

Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

Link-Time Optimization (--opt_level=4 Option) www.ti.com

3.6

3.6.1

Optimization Level 3 and Inlining

NOTE: In order to turn on automatic inlining, you must use the --opt_level=3 option. If you desire the
--opt_level=3 optimizations, but not automatic inlining, use --auto_inline=0 with the --
opt_level=3 option.

Inlining and Code Size

NOTE: Expanding functions inline increases code size, especially inlining a function that is called in
a number of places. Function inlining is optimal for functions that are called only from a small
number of places and for small functions. To prevent increases in code size because of
inlining, use the --auto_inline=0 option. This option causes the compiler to inline intrinsics
only.

Link-Time Optimization (--opt_level=4 Option)

Link-time optimization is an optimization mode that allows the compiler to have visibility of the entire
program. The optimization occurs at link-time instead of compile-time like other optimization levels.

Link-time optimization is invoked by using the --opt_level=4 option. This option must be used in both the
compilation and linking steps. At compile time, the compiler embeds an intermediate representation of the
file being compiled into the resulting object file. At link-time this representation is extracted from every
object file which contains it, and is used to optimize the entire program.

If you use --opt_level=4 (-O4), the --program_level_compile option cannot also be used, because link-time
optimization provides the same optimization opportunities as program level optimization (Section 3.4).
Link-time optimization provides the following benefits:

» Each source file can be compiled separately. One issue with program-level compilation is that it
requires all source files to be passed to the compiler at one time. This often requires significant
modification of a customer's build process. With link-time optimization, all files can be compiled
separately.

» References to C/C++ symbols from assembly are handled automatically. When doing program-level
compilation, the compiler has no knowledge of whether a symbol is referenced externally. When
performing link-time optimization during a final link, the linker can determine which symbols are
referenced externally and prevent eliminating them during optimization.

» Third party object files can participate in optimization. If a third party vendor provides object files that
were compiled with the --opt_level=4 option, those files participate in optimization along with user-
generated files. This includes object files supplied as part of the Tl run-time support. Object files that
were not compiled with —opt_level=4 can still be used in a link that is performing link-time optimization.
Those files that were not compiled with —opt_level=4 do not participate in the optimization.

» Source files can be compiled with different option sets. With program-level compilation, all source files
must be compiled with the same option set. With link-time optimization files can be compiled with
different options. If the compiler determines that two options are incompatible, it issues an error.

Option Handling

When performing link-time optimization, source files can be compiled with different options. When
possible, the options that were used during compilation are used during link-time optimization. For options
which apply at the program level, --auto_inline for instance, the options used to compile the main function
are used. If main is not included in link-time optimization, the option set used for the first object file
specified on the command line is used. Some options, --opt_for_speed for instance, can affect a wide
range of optimizations. For these options, the program-level behavior is derived from main, and the local
optimizations are obtained from the original option set.

Some options are incompatible when performing link-time optimization. These are usually options which
conflict on the command line as well, but can also be options that cannot be handled during link-time
optimization.

60

Optimizing Your Code SLAU132S-October 2004 —-Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

www.ti.com Link-Time Optimization (--opt_level=4 Option)

3.6.2 Incompatible Types

During a normal link, the linker does not check to make sure that each symbol was declared with the
same type in different files. This is not necessary during a normal link. When performing link-time
optimization, however, the linker must ensure that all symbols are declared with compatible types in
different source files. If a symbol is found which has incompatible types, an error is issued. The rules for
compatible types are derived from the C and C++ standards.

3.7 Using Feedback Directed Optimization

Feedback directed optimization provides a method for finding frequently executed paths in an application
using compiler-based instrumentation. This information is fed back to the compiler and is used to perform
optimizations. This information is also used to provide you with information about application behavior.

3.7.1 Feedback Directed Optimization

Feedback directed optimization uses run-time feedback to identify and optimize frequently executed
program paths. Feedback directed optimization is a two-phase process.

3.7.1.1 Phase 1 -- Collect Program Profile Information

In this phase the compiler is invoked with the option --gen_profile_info, which instructs the compiler to add
instrumentation code to collect profile information. The compiler inserts a minimal amount of
instrumentation code to determine control flow frequencies. Memory is allocated to store counter
information.

The instrumented application program is executed on the target using representative input data sets. The
input data sets should correlate closely with the way the program is expected to be used in the end
product environment. When the program completes, a run-time-support function writes the collected
information into a profile data file called a PDAT file. Multiple executions of the program using different
input data sets can be performed and in such cases, the run-time-support function appends the collected
information into the PDAT file. The resulting PDAT file is post-processed using a tool called the Profile
Data Decoder or pdd430. The pdd430 tool consolidates multiple data sets and formats the data into a
feedback file (PRF file, see Section 3.7.2) for consumption by phase 2 of feedback directed optimization.

3.7.1.2 Phase 2 -- Use Application Profile Information for Optimization

In this phase, the compiler is invoked with the --use_profile_info=file.prf option, which reads the specified
PRF file generated in phase 1. In phase 2, optimization decisions are made using the data generated
during phase 1. The profile feedback file is used to guide program optimization. The compiler optimizes
frequently executed program paths more aggressively.

The compiler uses data in the profile feedback file to guide certain optimizations of frequently executed
program paths.

3.7.1.3 Generating and Using Profile Information
There are two options that control feedback directed optimization:

SLAU132S-0October 2004—Revised September 2018 Optimizing Your Code 61

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

Using Feedback Directed Optimization www.ti.com

--gen_profile_info tells the compiler to add instrumentation code to collect profile information. When
the program executes the run-time-support exit() function, the profile data is
written to a PDAT file. This option applies to all the C/C++ source files being
compiled on the command-line.

If the environment variable TI_PROFDATA on the host is set, the data is written
into the specified file. Otherwise, it uses the default filename: pprofout.pdat. The
full pathname of the PDAT file (including the directory name) can be specified
using the TI_PROFDATA host environment variable.

By default, the RTS profile data output routine uses the C I/O mechanism to write
data to the PDAT file. You can install a device handler for the PPHNDL device to

re-direct the profile data to a custom device driver routine. For example, this could
be used to send the profile data to a device that does not use a file system.

Feedback directed optimization requires you to turn on at least some debug
information when using the --gen_profile_info option. This enables the compiler to
output debug information that allows pdd430 to correlate compiled functions and
their associated profile data.

--use_profile_info specifies the profile information file(s) to use for performing phase 2 of feedback
directed optimization. More than one profile information file can be specified on the
command line; the compiler uses all input data from multiple information files. The
syntax for the option is:

--use_profile_info==filel], file2, ..., filen]
If no filename is specified, the compiler looks for a file named pprofout.prf in the
directory where the compiler in invoked.

3.7.1.4 Example Use of Feedback Directed Optimization

These steps illustrate the creation and use of feedback directed optimization.
1. Generate profile information.

cl430 --opt_level=2 --gen_profile_info foo.c --run_linker --output_file=foo.out
--library=Ink.cmd --library=rts430.1ib

2. Execute the application.

The execution of the application creates a PDAT file named pprofout.pdat in the current (host)
directory. The application can be run on on target hardware connected to a host machine.

3. Process the profile data.

After running the application with multiple data-sets, run pdd430 on the PDAT files to create a profile
information (PRF) file to be used with --use_profile_info.

pdd430 -e foo.out -o pprofout.prf pprofout.pdat
4. Re-compile using the profile feedback file.

cl430 --opt_level=2 --use_profile_info=pprofout.prf foo.c --run_linker
--output_file=foo.out --library=Ink.cmd --library=rts430.1lib

3.7.1.5 The .ppdata Section

The profile information collected in phase 1 is stored in the .ppdata section, which must be allocated into
target memory. The .ppdata section contains profiler counters for all functions compiled with --
gen_profile_info. The default Ink.cmd file in has directives to place the .ppdata section in data memory. If
the link command file has no section directive for allocating .ppdata section, the link step places the
.ppdata section in a writable memory range.

The .ppdata section must be allocated memory in multiples of 32 bytes. Please refer to the linker
command file in the distribution for example usage.

62

Optimizing Your Code SLAU132S-October 2004 —-Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

www.ti.com Using Feedback Directed Optimization

3.7.1.6 Feedback Directed Optimization and Code Size Tune

Feedback directed optimization is different from the Code Size Tune feature in Code Composer Studio
(CCS). The code size tune feature uses CCS profiling to select specific compilation options for each
function in order to minimize code size while still maintaining a specific performance point. Code size tune
is coarse-grained, since it is selecting an option set for the whole function. Feedback directed optimization
selects different optimization goals along specific regions within a function.

3.7.1.7 Instrumented Program Execution Overhead

During profile collection, the execution time of the application may increase. The amount of increase
depends on the size of the application and the number of files in the application compiled for profiling.

The profiling counters increase the code and data size of the application. Consider using the option when
using profiling to mitigate the code size increase. This has no effect on the accuracy of the profile data
being collected. Since profiling only counts execution frequency and not cycle counts, code size
optimization flags do not affect profiler measurements.

3.7.1.8 Invalid Profile Data

When recompiling with --use_profile_info, the profile information is invalid in the following cases:

» The source file name changed between the generation of profile information (gen-profile) and the use
of the profile information (use-profile).

« The source code was modified since gen-profile. In this case, profile information is invalid for the
modified functions.

» Certain compiler options used with gen-profile are different from those with used with use-profile. In
particular, options that affect parser behavior could invalidate profile data during use-profile. In general,
using different optimization options during use-profile should not affect the validity of profile data.

3.7.2 Profile Data Decoder

The code generation tools include a tool called the Profile Data Decoder or pdd430, which is used for post
processing profile data (PDAT) files. The pdd430 tool generates a profile feedback (PRF) file. See

Section 3.7.1 for a discussion of where pdd430 fits in the profiling flow. The pdd430 tool is invoked with
this syntax:

pdd430 -e exec.out -0 application.prf filename .pdat

-a Computes the average of the data values in the data sets instead of
accumulating data values

-e exec.out Specifies exec.out is the name of the application executable.

-0 application.prf Specifies application.prf is the formatted profile feedback file that is used as the

argument to --use_profile_info during recompilation. If no output file is specified,
the default output filename is pprofout.prf.

filename .pdat Is the name of the profile data file generated by the run-time-support function.
This is the default name and it can be overridden by using the host environment
variable TI_PROFDATA.

SLAU132S-0October 2004—Revised September 2018 Optimizing Your Code 63

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

Using Feedback Directed Optimization

13 TEXAS
INSTRUMENTS

www.ti.com

The run-time-support function and pdd430 append to their respective output files and do not overwrite
them. This enables collection of data sets from multiple runs of the application.

Profile Data Decoder Requirements

NOTE: Your application must be compiled with at least DWARF debug support to enable feedback
directed optimization. When compiling for feedback directed optimization, the pdd430 tool
relies on basic debug information about each function in generating the formatted .prf file.

The pprofout.pdat file generated by the run-time support is a raw data file of a fixed format
understood only by pdd430. You should not modify this file in any way.

3.7.3 Feedback Directed Optimization API

There are two user interfaces to the profiler mechanism. You can start and stop profiling in your
application by using the following run-time-support calls.

e _TI _start_pprof_collection()

This interface informs the run-time support that you wish to start profiling collection from this point on
and causes the run-time support to clear all profiling counters in the application (that is, discard old

counter values).

* _TI_stop_pprof_collection()

This interface directs the run-time support to stop profiling collection and output profiling data into the
output file (into the default file or one specified by the TI_ PROFDATA host environment variable). The
run-time support also disables any further output of profile data into the output file during exit(), unless
you call _TI_start_pprof_collection() again.

3.7.4 Feedback Directed Optimization Summary

Options
--gen_profile_info
--use_profile_info=file.prf
--analyze=codecov

--analyze_only

Adds instrumentation to the compiled code. Execution of the code results in
profile data being emitted to a PDAT file.

Uses profile information for optimization and/or generating code coverage
information.

Generates a code coverage information file and continues with profile-based
compilation. Must be used with --use_profile_info.

Generates only a code coverage information file. Must be used with --
use_profile_info. You must specify both --analyze=codecov and --
analyze_only to do code coverage analysis of the instrumented application.

Host Environment Variables

TI_PROFDATA
TI_COVDIR
TI_COVDATA

API

_TI_start_pprof_collection()
_TI_stop_pprof_collection()
PPHDNL

Writes profile data into the specified file
Creates code coverage files in the specified directory
Writes code coverage data into the specified file

Clears the profile counters to file
Writes out all profile counters to file

Device driver handle for low-level C I/O based driver for writing out profile
data from a target program.

64

Optimizing Your Code

SLAU132S-October 2004 —-Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

I

TEXAS
INSTRUMENTS

www.ti.com Using Profile Information to Analyze Code Coverage

3.8

3.8.1

Files Created

* pdat Profile data file, which is created by executing an instrumented program and
used as input to the profile data decoder
*.prf Profiling feedback file, which is created by the profile data decoder and

used as input to the re-compilation step

Using Profile Information to Analyze Code Coverage
You can use the analysis information from the Profile Data Decoder to analyze code coverage.

Code Coverage

The information collected during feedback directed optimization can be used for generating code coverage
reports. As with feedback directed optimization, the program must be compiled with the --gen_profile_info
option.

Code coverage conveys the execution count of each line of source code in the file being compiled, using
data collected during profiling.

3.8.1.1 Phasel -- Collect Program Profile Information

In this phase the compiler is invoked with the option --gen_profile_info, which instructs the compiler to add
instrumentation code to collect profile information. The compiler inserts a minimal amount of
instrumentation code to determine control flow frequencies. Memory is allocated to store counter
information.

The instrumented application program is executed on the target using representative input data sets. The
input data sets should correlate closely with the way the program is expected to be used in the end
product environment. When the program completes, a run-time-support function writes the collected
information into a profile data file called a PDAT file. Multiple executions of the program using different
input data sets can be performed and in such cases, the run-time-support function appends the collected
information into the PDAT file. The resulting PDAT file is post-processed using a tool called the Profile
Data Decoder or pdd430. The pdd430 tool consolidates multiple data sets and formats the data into a
feedback file (PRF file, see Section 3.7.2) for consumption by phase 2 of feedback directed optimization.

3.8.1.2 Phase 2 -- Generate Code Coverage Reports

In this phase, the compiler is invoked with the --use_profile_info=file.prf option, which indicates that the
compiler should read the specified PRF file generated in phase 1. The application must also be compiled
with either the --codecov or --onlycodecov option; the compiler generates a code-coverage info file. The --
codecov option directs the compiler to continue compilation after generating code-coverage information,
while the --onlycodecov option stops the compiler after generating code-coverage data. For example:

cl430 --opt_level=2 --use_profile_info=pprofout.prf --onlycodecov foo.c

You can specify two environment variables to control the destination of the code-coverage information file.

» The TI_COVDIR environment variable specifies the directory where the code-coverage file should be
generated. The default is the directory where the compiler is invoked.

« The TI_COVDATA environment variable specifies the name of the code-coverage data file generated
by the compiler. the default is filename.csv where filename is the base-name of the file being compiled.
For example, if foo.c is being compiled, the default code-coverage data file name is foo.csv.

If the code-coverage data file already exists, the compiler appends the new dataset at the end of the file.

Code-coverage data is a comma-separated list of data items that can be conveniently handled by data-
processing tools and scripting languages. The following is the format of code-coverage data:

"filename-with-full-path","funcname", line#,column#,exec-frequency,"comments”

SLAU132S-0October 2004—Revised September 2018 Optimizing Your Code 65
Submit Documentation Feedback

Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS

INSTRUMENTS

Using Profile Information to Analyze Code Coverage www.ti.com

"filename-with-full-path” Full pathname of the file corresponding to the entry

"funcname” Name of the function

line# Line number of the source line corresponding to frequency data

column# Column number of the source line

exec-frequency Execution frequency of the line

"comments” Intermediate-level representation of the source-code generated by the parser

The full filename, function name, and comments appear within quotation marks (*). For example:
""/some_dir/zlib/msp430/deflate.c”," _deflatelnit2_",216,5,1,"(strm->zalloc)"

Other tools, such as a spreadsheet program, can be used to format and view the code coverage data.

3.8.2 Related Features and Capabilities

The code generation tools provide some features and capabilities that can be used in conjunction with
code coverage analysis. The following is a summary:

3.8.2.1 Path Profiler

The code generation tools include a path profiling utility, pprof430, that is run from the compiler, cl430.
The pprof430 utility is invoked by the compiler when the --gen_profile or the --use_profile command is
used from the compiler command line:

cl430 --gen_profile ... file.c
cl430 --use_profile ... file.c

For further information about profile-based optimization and a more detailed description of the profiling
infrastructure, see Section 3.7.

3.8.2.2 Analysis Options

The path profiling utility, pprof430, appends code coverage information to existing CSV (comma separated
values) files that contain the same type of analysis information.

The utility checks to make sure that an existing CSV file contains analysis information that is consistent
with the type of analysis information it is being asked to generate. Attempts to mix code coverage and
other analysis information in the same output CSV file will be detected, and pprof430 will emit a fatal error

and abort.

--analyze=codecov Instructs the compiler to generate code coverage analysis information. This
option replaces the previous --codecov option.

--analyze_only Halts compilation after generation of analysis information is completed.

3.8.2.3 Environment Variables
To assist with the management of output CSV analysis files, pprof430 supports this environment variable:

TI_ANALYSIS_DIR Specifies the directory in which the output analysis file will be generated.

66 Optimizing Your Code SLAU132S-October 2004—Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

www.ti.com Accessing Aliased Variables in Optimized Code

3.9 Accessing Aliased Variables in Optimized Code

Aliasing occurs when a single object can be accessed in more than one way, such as when two pointers
point to the same object or when a pointer points to a named object. Aliasing can disrupt optimization
because any indirect reference can refer to another object. The optimizer analyzes the code to determine
where aliasing can and cannot occur, then optimizes as much as possible while still preserving the
correctness of the program. The optimizer behaves conservatively. If there is a chance that two pointers
are pointing to the same object, then the optimizer assumes that the pointers do point to the same object.

The compiler assumes that if the address of a local variable is passed to a function, the function changes
the local variable by writing through the pointer. This makes the local variable's address unavailable for
use elsewhere after returning. For example, the called function cannot assign the local variable's address
to a global variable or return the local variable's address. In cases where this assumption is invalid, use
the --aliased_variables compiler option to force the compiler to assume worst-case aliasing. In worst-case
aliasing, any indirect reference can refer to such a variable.

3.10 Use Caution With asm Statements in Optimized Code

You must be extremely careful when using asm (inline assembly) statements in optimized code. The
compiler rearranges code segments, uses registers freely, and can completely remove variables or
expressions. Although the compiler never optimizes out an asm statement (except when it is
unreachable), the surrounding environment where the assembly code is inserted can differ significantly
from the original C/C++ source code.

It is usually safe to use asm statements to manipulate hardware controls such as interrupt masks, but asm
statements that attempt to interface with the C/C++ environment or access C/C++ variables can have
unexpected results. After compilation, check the assembly output to make sure your asm statements are
correct and maintain the integrity of the program.

3.11 Using the Interlist Feature With Optimization

You control the output of the interlist feature when compiling with optimization (the --opt_level=n or -On
option) with the --optimizer_interlist and --c_src_interlist options.

» The --optimizer_interlist option interlists compiler comments with assembly source statements.

* The --c_src_interlist and --optimizer_interlist options together interlist the compiler comments and the
original C/C++ source with the assembly code.

When you use the --optimizer_interlist option with optimization, the interlist feature does not run as a
separate pass. Instead, the compiler inserts comments into the code, indicating how the compiler has
rearranged and optimized the code. These comments appear in the assembly language file as comments
starting with ;**. The C/C++ source code is not interlisted, unless you use the --c_src_interlist option also.

The interlist feature can affect optimized code because it might prevent some optimization from crossing
C/C++ statement boundaries. Optimization makes normal source interlisting impractical, because the
compiler extensively rearranges your program. Therefore, when you use the --optimizer_interlist option,
the compiler writes reconstructed C/C++ statements.

SLAU132S-0October 2004—Revised September 2018 Optimizing Your Code 67

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

Using the Interlist Feature With Optimization www.ti.com

Example 3-1 shows a function that has been compiled with optimization (--opt_level=2) and the --
optimizer_interlist option. The assembly file contains compiler comments interlisted with assembly code.

Impact on Performance and Code Size
NOTE: The --c_src_interlist option can have a negative effect on performance and code size.

When you use the --c_src_interlist and --optimizer_interlist options with optimization, the compiler inserts
its comments and the interlist feature runs before the assembler, merging the original C/C++ source into
the assembly file.

Example 3-2 shows the function from Example 3-1 compiled with the optimization (--opt_level=2) and the -
-c_src_interlist and --optimizer_interlist options. The assembly file contains compiler comments and C
source interlisted with assembly code.

Example 3-1. The Function From Example 2-1 Compiled With the -O2 and --optimizer_interlist Options

main
;* ___ *
SUB.W #2,SP
75 ———————-—- - printf((const unsigned char *)"Hello, world\n");
MOV . W #$CHSL1+0,0(SP) ;151
CALL #printf ; 151
151
e - B ittt return O;
MOV . W #0,rl12 ; 161
ADD W #2,SP
RET

Example 3-2. The Function From Example 2-1 Compiled with the --opt_level=2, --optimizer_interlist, and -
-c_src_interlist Options

main
SUB.W #2,SP
5 e printf((const unsigned char *)"Hello, world\n");

MOV.W #$CHSL1+0,0(SP) ; 151

CALL #printf ; 151

; 151

e B ettt return O;

MOV . W #0,r12 ;161
ADD . W #2,SP
RET
68 Optimizing Your Code SLAU132S-October 2004—Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

www.ti.com Debugging Optimized Code

3.12 Debugging Optimized Code

Generating symbolic debugging information no longer affects the ability to optimize code. The same
executable code is generated regardless of whether generation of debug information is turned on or off.
For this reason, debug information is now generated by default. You do not need to specify the -g option
in order to debug your application.

If you do not specify the -g option and allow the default generation of debug information to be used, the
default level of optimization is used unless you specify some other optimization level.

The --symdebug:dwarf option no longer disables optimization, because generation of debug information no
longer impacts optimization.

If you specify the -g option explicitly but do not specify an optimization level, no optimization is performed.
This is because while generating debug information does not affect the ability to optimize code, optimizing
code does make it more difficult to debug code. At higher levels of optimization, the compiler's extensive
rearrangement of code and the many-to-many allocation of variables to registers often make it difficult to
correlate source code with object code for debugging purposes. It is recommended that you perform
debugging using the lowest level of optimization possible.

If you specify an --opt_level (aliased as -O) option, that optimization level is used no matter what type of
debugging information you enabled.

The optimization level used if you do not specify the level on the command line is affected by whether or
not the command line includes the -g option and the --opt_level option as shown in the following table:

Table 3-6. Interaction Between Debugging and Optimization Options

Optimization no -g -g

no --opt_level --opt_level=0 --opt_level=0
--opt_level --opt_level=2 --opt_level=0

--opt_level=n optimized as specified optimized as specified

Debug information increases the size of object files, but it does not affect the size of code or data on the
target. If object file size is a concern and debugging is not needed, use --symdebug:none to disable the
generation of debug information.

SLAU132S-0October 2004—Revised September 2018 Optimizing Your Code 69

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

What Kind of Optimization Is Being Performed?

13 TEXAS
INSTRUMENTS

www.ti.com

3.13 What Kind of Optimization Is Being Performed?

The MSP430 C/C++ compiler uses a variety of optimization techniques to improve the execution speed of
your C/C++ programs and to reduce their size.

Following are some of the optimizations performed by the compiler:

Optimization

See

Cost-based register allocation
Alias disambiguation
Branch optimizations and control-flow simplification

Data flow optimizations
« Copy propagation
« Common subexpression elimination
¢ Redundant assignment elimination

Expression simplification

Inline expansion of functions

Function Symbol Aliasing

Induction variable optimizations and strength reduction
Loop-invariant code motion

Loop rotation

Section 3.13.1
Section 3.13.1
Section 3.13.3
Section 3.13.4

Section 3.13.5
Section 3.13.6
Section 3.13.7
Section 3.13.8
Section 3.13.9
Section 3.13.10

Instruction scheduling Section 3.13.11

MSP430-Specific Optimization See
Section 3.13.12
Section 3.13.13

Tail merging
Integer division with constant divisor

3.13.1 Cost-Based Register Allocation

The compiler, when optimization is enabled, allocates registers to user variables and compiler temporary
values according to their type, use, and frequency. Variables used within loops are weighted to have
priority over others, and those variables whose uses do not overlap can be allocated to the same register.

Induction variable elimination and loop test replacement allow the compiler to recognize the loop as a
simple counting loop and unroll or eliminate the loop. Strength reduction turns the array references into
efficient pointer references with autoincrements.

3.13.2 Alias Disambiguation

C and C++ programs generally use many pointer variables. Frequently, compilers are unable to determine
whether or not two or more | values (lowercase L: symbols, pointer references, or structure references)
refer to the same memory location. This aliasing of memory locations often prevents the compiler from
retaining values in registers because it cannot be sure that the register and memory continue to hold the
same values over time.

Alias disambiguation is a technique that determines when two pointer expressions cannot point to the
same location, allowing the compiler to freely optimize such expressions.

3.13.3 Branch Optimizations and Control-Flow Simplification

The compiler analyzes the branching behavior of a program and rearranges the linear sequences of
operations (basic blocks) to remove branches or redundant conditions. Unreachable code is deleted,
branches to branches are bypassed, and conditional branches over unconditional branches are simplified
to a single conditional branch.

70

Optimizing Your Code SLAU132S-October 2004 —-Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

www.ti.com What Kind of Optimization Is Being Performed?

When the value of a condition is determined at compile time (through copy propagation or other data flow
analysis), the compiler can delete a conditional branch. Switch case lists are analyzed in the same way as
conditional branches and are sometimes eliminated entirely. Some simple control flow constructs are
reduced to conditional instructions, totally eliminating the need for branches.

3.13.4 Data Flow Optimizations

Collectively, the following data flow optimizations replace expressions with less costly ones, detect and
remove unnecessary assignments, and avoid operations that produce values that are already computed.
The compiler with optimization enabled performs these data flow optimizations both locally (within basic
blocks) and globally (across entire functions).

« Copy propagation. Following an assignment to a variable, the compiler replaces references to the
variable with its value. The value can be another variable, a constant, or a common subexpression.
This can result in increased opportunities for constant folding, common subexpression elimination, or
even total elimination of the variable.

e Common subexpression elimination. When two or more expressions produce the same value, the
compiler computes the value once, saves it, and reuses it.

* Redundant assignment elimination. Often, copy propagation and common subexpression elimination
optimizations result in unnecessary assignments to variables (variables with no subsequent reference
before another assignment or before the end of the function). The compiler removes these dead
assignments.

3.13.5 Expression Simplification

For optimal evaluation, the compiler simplifies expressions into equivalent forms, requiring fewer
instructions or registers. Operations between constants are folded into single constants. For example, a =
(b+4)-(c+1) becomesa=hb-c+3.

3.13.6 Inline Expansion of Functions

The compiler replaces calls to small functions with inline code, saving the overhead associated with a
function call as well as providing increased opportunities to apply other optimizations.

For information about interactions between command-line options, pragmas, and keywords that affect
inlining, see Section 2.11.

3.13.7 Function Symbol Aliasing

The compiler recognizes a function whose definition contains only a call to another function. If the two

functions have the same signature (same return value and same number of parameters with the same
type, in the same order), then the compiler can make the calling function an alias of the called function.
For example, consider the following:

int bbb(int argl, char *arg2);

int aaa(int n, char *str)

{

}

For this example, the compiler makes aaa an alias of bbb, so that at link time all calls to function aaa
should be redirected to bbb. If the linker can successfully redirect all references to aaa, then the body of
function aaa can be removed and the symbol aaa is defined at the same address as bbb.

return bbb(n, str);

For information about using the GCC function attribute syntax to declare function aliases, see
Section 5.17.2
3.13.8 Induction Variables and Strength Reduction

Induction variables are variables whose value within a loop is directly related to the number of executions
of the loop. Array indices and control variables for loops are often induction variables.

SLAU132S-0October 2004—Revised September 2018 Optimizing Your Code 71

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

What Kind of Optimization Is Being Performed? www.ti.com

Strength reduction is the process of replacing inefficient expressions involving induction variables with
more efficient expressions. For example, code that indexes into a sequence of array elements is replaced
with code that increments a pointer through the array.

Induction variable analysis and strength reduction together often remove all references to your loop-
control variable, allowing its elimination.

3.13.9 Loop-Invariant Code Motion

This optimization identifies expressions within loops that always compute to the same value. The
computation is moved in front of the loop, and each occurrence of the expression in the loop is replaced
by a reference to the precomputed value.

3.13.10 Loop Rotation

The compiler evaluates loop conditionals at the bottom of loops, saving an extra branch out of the loop. In
many cases, the initial entry conditional check and the branch are optimized out.

3.13.11 Instruction Scheduling

The compiler performs instruction scheduling, which is the rearranging of machine instructions in such a
way that improves performance while maintaining the semantics of the original order. Instruction
scheduling is used to improve instruction parallelism and hide latencies. It can also be used to reduce
code size.

3.13.12 Tail Merging

If you are optimizing for code size, tail merging can be very effective for some functions. Tail merging finds
basic blocks that end in an identical sequence of instructions and have a common destination. If such a
set of blocks is found, the sequence of identical instructions is made into its own block. These instructions
are then removed from the set of blocks and replaced with branches to the newly created block. Thus,
there is only one copy of the sequence of instructions, rather than one for each block in the set.

3.13.13 Integer Division With Constant Divisor

The optimizer attempts to rewrite integer divide operations with constant divisors. The integer divides are
rewritten as a multiply with the reciprocal of the divisor. This occurs at optimization level 2 (--opt_level=2
or -O2) and higher. You must also compile with the --opt_for_speed option, which selects compile for
speed.

72 Optimizing Your Code SLAU132S-October 2004—Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

i Chapter 4

TE S SLAU132S-0October 2004—Revised September 2018

INSTRUMENTS
Linking C/C++ Code

The C/C++ Code Generation Tools provide two methods for linking your programs:

e You can compile individual modules and link them together. This method is especially useful when you
have multiple source files.

* You can compile and link in one step. This method is useful when you have a single source module.

This chapter describes how to invoke the linker with each method. It also discusses special requirements
of linking C/C++ code, including the run-time-support libraries, specifying the type of initialization, and
allocating the program into memory. For a complete description of the linker, see the MSP430 Assembly
Language Tools User's Guide.

Topic Page

4.1 Invoking the Linker Through the Compiler (-Z OptioN) «...o.veveieieieiiii e 74

4.2 Linker Code OptiMiZationse ettt ea e e e e e easare e e enenanreenn 76

4.3 Controlling the LiNKIiNG PrOCESSttt ettt et e e e e e e easeee e e es 76
SLAU132S-0October 2004—Revised September 2018 Linking C/C++ Code 73

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

Invoking the Linker Through the Compiler (-z Option) www.ti.com

4.1 Invoking the Linker Through the Compiler (-z Option)

This section explains how to invoke the linker after you have compiled and assembled your programs: as
a separate step or as part of the compile step.

4.1.1 Invoking the Linker Separately

This is the general syntax for linking C/C++ programs as a separate step:

¢l430 --run_linker {--rom_model | --ram_model} filenames
[options] [--output_file= name.out] --library= library [Ink.cmd]

cl430 --run_linker
--rom_model | --ram_model

filenames

options

--output_file= name.out
--library= library

Ink.cmd

The command that invokes the linker.

Options that tell the linker to use special conventions defined by the
C/C++ environment. When you use cl430 --run_linker, you must use -
-rom_model or --ram_model. The --rom_model option uses
automatic variable initialization at run time; the --ram_model option
uses variable initialization at load time.

Names of object files, linker command files, or archive libraries. The
default extension for all input files is .obj; any other extension must be
explicitly specified. The linker can determine whether the input file is
an object or ASCII file that contains linker commands. The default
output filename is a.out, unless you use the --output_file option to
name the output file.

Options affect how the linker handles your object files. Linker options
can only appear after the --run_linker option on the command line,
but otherwise may be in any order. (Options are discussed in detail in
the MSP430 Assembly Language Tools User's Guide.)

Names the output file.

Identifies the appropriate archive library containing C/C++ run-time-
support and floating-point math functions, or linker command files. If
you are linking C/C++ code, you must use a run-time-support library.
You can use the libraries included with the compiler, or you can
create your own run-time-support library. If you have specified a run-
time-support library in a linker command file, you do not need this
parameter. The --library option's short form is -I.

Contains options, filenames, directives, or commands for the linker.

When you specify a library as linker input, the linker includes and links only those library members that
resolve undefined references. The linker uses a default allocation algorithm to allocate your program into
memory. You can use the MEMORY and SECTIONS directives in the linker command file to customize
the allocation process. For information, see the MSP430 Assembly Language Tools User's Guide.

You can link a C/C++ program consisting of object files progl.obj, prog2.obj, and prog3.obj, with an
executable object file filename of prog.out with the command:

cl430 --run_linker --rom_model progl prog2 prog3 --output_file=prog.out

--library=rts430.1lib

74 Linking C/C++ Code

SLAU132S-October 2004 —-Revised September 2018
Submit Documentation Feedback

Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

I

WWW.1i

TEXAS
INSTRUMENTS

i.com Invoking the Linker Through the Compiler (-z Option)

4.1.2

Invoking the Linker as Part of the Compile Step
This is the general syntax for linking C/C++ programs as part of the compile step:

cl430 filenames [options] --run_linker {--rom_model | --ram_model} filenames
[options] [--output_file= name.out] --library= library [Ink.cmd]

The --run_linker option divides the command line into the compiler options (the options before --
run_linker) and the linker options (the options following --run_linker). The --run_linker option must follow all
source files and compiler options on the command line.

All arguments that follow --run_linker on the command line are passed to the linker. These arguments can
be linker command files, additional object files, linker options, or libraries. These arguments are the same
as described in Section 4.1.1.

All arguments that precede --run_linker on the command line are compiler arguments. These arguments
can be C/C++ source files, assembly files, or compiler options. These arguments are described in
Section 2.2.

You can compile and link a C/C++ program consisting of object files progl.c, prog2.c, and prog3.c, with an
executable object file filename of prog.out with the command:

cl430 progl.c prog2.c prog3.c --run_linker --rom_model --output_file=prog.out --library=rts430.1ib

NOTE: Order of Processing Arguments in the Linker

The order in which the linker processes arguments is important. The compiler passes
arguments to the linker in the following order:

1. Object filenames from the command line

2. Arguments following the --run_linker option on the command line

3. Arguments following the --run_linker option from the MSP430_C_OPTION environment
variable

4.1.3 Disabling the Linker (--compile_only Compiler Option)
You can override the --run_linker option by using the --compile_only compiler option. The -run_linker
option's short form is -z and the --compile_only option's short form is -c.
The --compile_only option is especially helpful if you specify the --run_linker option in the
MSP430_C_OPTION environment variable and want to selectively disable linking with the --compile_only
option on the command line.
SLAU132S-0October 2004—Revised September 2018 Linking C/C++ Code 75
Submit Documentation Feedback

Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

Linker Code Optimizations www.ti.com

4.2

421

422

4.3

Linker Code Optimizations

Conditional Linking

With ELF conditional linking, all sections are considered eligible for removal through conditional linking,
except the .reset section. Sections are not removed if they are referenced or if they are marked with the
.retain directive.

A section that is never referenced by any other section in the program is removed from the program
automatically, unless it is marked with .retain or is the .reset section. Conditional linking is disabled when
performing a partial link or when relocation information is kept with the output of the link.

Generating Aggregate Data Subsections (--gen_data_subsections Compiler Option)

Similarly to code sections described in the previous section, data can either be placed in a single section
or multiple sections. The benefit of multiple data sections is that the linker may omit unused data
structures from the executable. By default, the --gen_data_subsections option is on. This option causes
aggregate data—arrays, structs, and unions—to be placed in separate subsections of the data section.

Controlling the Linking Process

Regardless of the method you choose for invoking the linker, special requirements apply when linking
C/C++ programs. You must:

e Include the compiler's run-time-support library

» Specify the type of boot-time initialization

» Determine how you want to allocate your program into memory

This section discusses how these factors are controlled and provides an example of the standard default

linker command file. For more information about how to operate the linker, see the linker description in the
MSP430 Assembly Language Tools User's Guide.

76

Linking C/C++ Code SLAU132S-October 2004 —-Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

www.ti.com Controlling the Linking Process

4.3.1 Including the Run-Time-Support Library

You must link all C/C++ programs with a run-time-support library. The library contains standard C/C++
functions as well as functions used by the compiler to manage the C/C++ environment. The following
sections describe two methods for including the run-time-support library.

4.3.1.1 Automatic Run-Time-Support Library Selection

The linker assumes you are using the C and C++ conventions if either the --rom_model or --ram_model
linker option is specified, or if the link step includes the compile step for a C or C++ file, or if you link
against the index library libc.a.

If the linker assumes you are using the C and C++ conventions and the entry point for the program
(normally c_int00) is not resolved by any specified object file or library, the linker attempts to automatically
include the most compatible run-time-support library for your program. The run-time-support library chosen
by the compiler is searched after any other libraries specified with the --library option on the command line
or in the linker command file. If libc.a is explicitly used, the appropriate run-time-support library is included
in the search order where libc.a is specified.

You can disable the automatic selection of a run-time-support library by using the --disable_auto_rts
option.

If the --issue_remarks option is specified before the --run_linker option during the linker, a remark is
generated indicating which run-time support library was linked in. If a different run-time-support library is
desired than the one reported by --issue_remarks, you must specify the name of the desired run-time-
support library using the --library option and in your linker command files when necessary.

Example 4-1. Using the --issue_remarks Option

cl430 --issue_remarks main.c --run_linker --rom_model

<Linking>
remark: linking in "libc.a"
remark: linking in "rts430.1ib" in place of "libc.a"

4.3.1.2 Manual Run-Time-Support Library Selection

You can bypass automatic library selection by explicitly specifying the desired run-time-support library to
use. Use the --library linker option to specify the name of the library. The linker will search the path
specified by the --search_path option and then the MSP430_C_DIR environment variable for the named
library. You can use the --library linker option on the command line or in a command file.

¢l430 --run_linker {--rom_model | --ram_model} filenames --library= libraryname

4.3.1.3 Library Order for Searching for Symbols

Generally, you should specify the run-time-support library as the last name on the command line because
the linker searches libraries for unresolved references in the order that files are specified on the command
line. If any object files follow a library, references from those object files to that library are not resolved.
You can use the --reread_libs option to force the linker to reread all libraries until references are resolved.
Whenever you specify a library as linker input, the linker includes and links only those library members
that resolve undefined references.

By default, if a library introduces an unresolved reference and multiple libraries have a definition for it, then
the definition from the same library that introduced the unresolved reference is used. Use the --priority
option if you want the linker to use the definition from the first library on the command line that contains
the definition.

SLAU132S-0October 2004—Revised September 2018 Linking C/C++ Code 77

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

Controlling the Linking Process www.ti.com

4.3.2 Run-Time Initialization

You must link all C/C++ programs with a bootstrap routine, which will initialize the C/C++ environment
and begin the program. The bootstrap routine is responsible for the following tasks:
1. Set up the stack

2. Process the .cinit run-time initialization table to autoinitialize global variables (when using the --
rom_model option)

3. Call all global constructors (.init_array) for C++
4. Call the main() function
5. Call exit() when main() returns

NOTE: The _c_int00 Symbol

If you use the --ram_model or --rom_model link option, _c_int00 is automatically defined as
the entry point for the program. Otherwise, an entry point is not automatically selected and
you will receive a linker warning.

4.3.3 Initialization by the Interrupt Vector

If your C/C++ program begins running at RESET, you must set up the RESET vector to branch to a
suitable bootstrap routine, such as _c_int00. You must also make sure the interrupt vectors are included in
the project, typically by using the --undef_sym linker option to make a symbol at the start of the interrupt
vector a root linker object. The boot.obj object in the run-time support library provides a section named
.reset containing a reference to _c_int00 which is suitable to place in the RESET vector in the linker
command file.

4.3.4 Initialization of the FRAM Memory Protection Unit

The linker supports initialization of the FRAM memory protection unit (MPU). The linker uses a boot
routine that performs MPU initialization based on the definition of certain symbols. The Tl-provided linker
command files that are used by default for different devices define the necessary symbols so MPU
initialization happens automatically. Code and data sections are automatically given the correct access
permissions. If you want to manually adjust how the MPU is initialized you can modify the __mpuseg and
___mpusam definitions in the linker command file. The MPU-specific boot routine is used when these two
symbols are defined and it sets the value of the MPUSEG and MPUSAM registers based on these values.
If you do not want the MPU initialized you can remove these definitions from the linker command file.

4.3.5 Initialization of Cinit and Watchdog Timer Hold

You can use the --cinit_hold_wdt option to specify whether the watchdog timer should be held (on) or not
held (off) during cinit auto-initialization. Setting this option causes an RTS auto-initialization routine to be
linked in with the program to handle the desired watchdog timer behavior.

78 Linking C/C++ Code SLAU132S-October 2004—Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

www.ti.com Controlling the Linking Process

4.3.6 Global Object Constructors

Global C++ variables that have constructors and destructors require their constructors to be called during
program initialization and their destructors to be called during program termination. The C++ compiler
produces a table of constructors to be called at startup.

Constructors for global objects from a single module are invoked in the order declared in the source code,
but the relative order of objects from different object files is unspecified.

Global constructors are called after initialization of other global variables and before the main() function is
called. Global destructors are invoked during the exit run-time support function, similar to functions
registered through atexit.

Section 6.9.3.6 discusses the format of the global constructor table for EABI mode.

4.3.7 Specifying the Type of Global Variable Initialization

The C/C++ compiler produces data tables for initializing global variables. Section 6.9.3.4 discusses the
format of these initialization tables. The initialization tables are used in one of the following ways:

* Global variables are initialized at run time. Use the --rom_model linker option (see Section 6.9.3.3).
* Global variables are initialized at load time. Use the --ram_maodel linker option (see Section 6.9.3.5).

When you link a C/C++ program, you must use either the --rom_model or --ram_model option. These
options tell the linker to select initialization at run time or load time. When you compile and link programs,
the --rom_model option is the default. If used, the --rom_model option must follow the --run_linker option
(see Section 4.1). For details on linking conventions for EABI used with --rom_model and --ram_model,
see Section 6.9.3.3 and Section 6.9.3.5, respectively.

NOTE: Boot Loader

A loader is not included as part of the C/C++ compiler tools. See the "Program Loading and
Running" chapter of the MSP430 Assembly Language Tools User's Guide for more about
boot loading.

SLAU132S-0October 2004—Revised September 2018 Linking C/C++ Code 79

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

Controlling the Linking Process www.ti.com

4.3.8 Specifying Where to Allocate Sections in Memory

The compiler produces relocatable blocks of code and data. These blocks, called sections, are allocated

in memory in a variety of ways to conform to a variety of system configurations. See Section 6.1.4 for a
complete description of how the compiler uses these sections.

The compiler creates two basic kinds of sections: initialized and uninitialized. Table 4-1 summarizes the
initialized sections. Table 4-2 summarizes the uninitialized sections.

Table 4-1. Initialized Sections Created by the Compiler

Name

Contents

.binit

.mspabi.exidx
.mspabi.extab

Boot time copy tables (See the MSP430 Assembly Language Tools User's Guide for information on
BINIT in linker command files.)

Index table for exception handling; read-only (see --exceptions option).
Unwinded instructions for exception handling; read-only (see --exceptions option).

.data Global and static non-const variables that are explicitly initialized.

.init_array Table of constructors to be called at startup.

.name.load Compressed image of section name; read-only (See the MSP430 Assembly Language Tools User's
Guide for information on copy tables.)

.ovly Copy tables other than boot time (.binit) copy tables. Read-only data.

.rodata Global and static variables that have const qualifiers.

.Tl.crctab Generated CRC checking tables. Read-only data.

.Tl.noinit The pragma NOINIT causes a non-initailized variable to be placed in the .Tl.noinit section. The default

.Tl.persistent

linker command file places this section with .bss. See Section 5.12.22 for details about the NOINIT and
PERSISTENT pragmas.

The pragma PERSISTENT causes an initialized variable to be placed in the .Tl.persistent section. The
default linker command file places this section with .data.

Table 4-2. Uninitialized Sections Created by the Compiler

Name Contents

.args Linker-created section used to pass arguments from the command line of the loader to the program
.bss Uninitialized global and static variables

.cio Buffers for stdio functions from the run-time support library

.stack Function call frame stack

.sysmem Memory pool (heap) for dynamic memory allocation (malloc, etc)

When you link your program, you must specify where to allocate the sections in memory. In general,
initialized sections are linked into ROM or RAM; uninitialized sections are linked into RAM. With the
exception of .text, the initialized and uninitialized sections created by the compiler cannot be allocated into
internal program memory.

The linker provides MEMORY and SECTIONS directives for allocating sections. For more information
about allocating sections into memory, see the MSP430 Assembly Language Tools User's Guide.

Linking C/C++ Code

SLAU132S-October 2004 —-Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

www.ti.com Controlling the Linking Process

4.3.9 A Sample Linker Command File

Example 4-2 shows a typical linker command file that links a 32-bit C program. The command file in this
example is named Ink32.cmd and lists several link options:

——-rom_model Tells the linker to use autoinitialization at run time
--stack_size Tells the linker to set the C stack size at 0x140 bytes
--heap_size Tells the linker to set the heap size to 0x120 bytes
--library Tells the linker to use an archive library file, rts430.lib

To link the program, enter:
cl430 --run_linker object_file(s) --output_file= file --map_file= file Ink.cmd

Example 4-2. Linker Command File

--rom_model
--stack_size=0x0140
--heap_size=0x120
--library=rts430.1lib

/ /
/* SPECIFY THE SYSTEM MEMORY MAP */
/ /
MEMORY
{

SFR(R) : origin = 0x0000, length = 0x0010

PERIPHERALS_8BIT : origin = 0x0010, length = Ox00FO

PERIPHERALS_16BIT: origin = 0x0100, length = 0x0100
RAM(RW) : origin = 0x0200, length = 0x0800
INFOA : origin = 0x1080, length = 0x0080
INFOB : origin = 0x1000, length = 0x0080
FLASH : origin = 0x1100, length = OXEEEO
VECTORS(R) : origin = OxFFEO, length = Ox001lE
RESET : origin = OXFFFE, length = 0x0002

3

/ /

/* SPECIFY THE SECTIONS ALLOCATION INTO MEMORY */

/ /

SECTIONS

{
-bss : {} > RAM /* UNINITIALIZED GLOBAL, STATIC */
.sysmem : {3 > RAM /* DYNAMIC MEMORY ALLOCATION AREA */
.stack : {3 > RAM /* SOFTWARE SYSTEM STACK */
.cio : {} > RAM /* C 1/0 BUFFER */
-text : {3 > FLASH /* PROGRAM CODE */
.data : {3 > FLASH /* INITIALIZED GLOBAL, STATIC */
.const : {} > FLASH /* CONSTANT DATA */
.args : {3 > FLASH /* PROGRAM ARGUMENTS */
.cinit : {3 > FLASH /* GLOBAL INITIALIZATION DATA */
-init_array : {} > FLASH /* EABI C++ GLOBAL CONSTRUCTOR TABLE */
-mspabi.exidx : {} > FLASH /* EABI TDEH METADATA */
.mspabi.extab : {} > FLASH /* EABI TDEH METADATA */
-intvecs : {3 > VECTORS /* INTERRUPT VECTORS */
.reset : > RESET

SLAU132S-0October 2004—Revised September 2018 Linking C/C++ Code 81

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

i Chapter 5

TE S SLAU132S—-0October 2004 —Revised September 2018

INSTRUMENTS

C/C++ Language Implementation

The C/C++ compiler supports the C/C++ language standard that was developed by a committee of the
American National Standards Institute (ANSI) and subsequently adopted by the International Standards
Organization (1S0).

The C++ language supported by the MSP430 is defined by the ANSI/ISO/IEC 14882:2014 standard with
certain exceptions.

Topic Page
5.1 CharacteristiCS Of MSPA30 € ..ouvutitieiiiiietitee et e e et a e a s e e et eaenaasaeeananannas 83
5.2 CharacteriStiCs Of MSPA30 Crt iuiuiuitititiiieueaititt e eeeaea et e e eaeaea et st e e eaenes s aaaenenenns 87
5.3 USING MISRA € 2004cuieienieiuiiae e te e eeaa e e e e aa s e seaea s e eneeaesease e aeanaenennens 88
5.4 USING the ULP AQVISOr....uuiieiie ittt ettt e et e e et e e e e e e e enaaeneee e es 89
5.5 Advice on Hardware ConfiguIationcocveiuiuiuiiiiiiiieieieeetiaiseieneaeeasnsnsaeneneannnans 89
LT T - = T 157/ o 1= PP 90
5.7 File Encodings and Character SetSocicieiuieieiiiiiiieiei e eenennneeeenenes 92
SIS (=1 VAT (0 P 92
5.9 CH+ EXCeption HanAliNgccueuiuieieiiiiiiie ittt e e e e e e e e a s a e e eeaeaens 96
5.10 Register Variables and ParametersS.......couuiuiiiiiiiiiie et e e e 96
o0 T I o =T Y 4 TS = 1= =1 0 PP 97
5.12 Pragma DiFBCHIVES ..uiuiiititiiiie ettt ettt ettt et et ettt e a e a e e e et e aen e e eneees 98
oI e T I o = o = Vo g =@ o 1= = L | P 115
5.14 Application Binary INTerfaCe. et e e e e 116
5.15 Object File Symbol Naming Conventions (LiNnkNames)coceveviiiiiiiiiininiinieenen. 116
5.16 Changing the ANSI/ISO C/C++ Language MOceueiiiininiiiiiiiieiie e eeeee e 117
5.17 GNU and Clang Language EXTENSIONS . ..uiuiuiuiiiiiiiiiitieieiee e iee e e eaeasaseneneaeaaas 119
L0 S @Y 1Y oY1 =T I PP 124

82 C/C++ Language Implementation SLAU132S-October 2004—Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

I

WWW.1i

TEXAS
INSTRUMENTS

i.com Characteristics of MSP430 C

5.1

511

Characteristics of MSP430 C

The C compiler supports the 1989 and 1999 versions of the C language:

» (C89. Compiling with the --c89 option causes the compiler to conform to the ISO/IEC 9899:1990 C
standard, which was previously ratified as ANSI X3.159-1989. The names "C89" and "C90" refer to the
same programming language. "C89" is used in this document.

e (C99. Compiling with the --c99 option causes the compiler to conform to the ISO/IEC 9899:1999 C
standard.

e C11. Compiling with the --c11 option causes the compiler to conform to the ISO/IEC 9899:2011 C
standard.

The C language is also described in the second edition of Kernighan and Ritchie's The C Programming
Language (K&R). The compiler can also accept many of the language extensions found in the GNU C
compiler (see Section 5.17).

The compiler supports some features of C99 and C11 in the default relaxed ANSI mode with C89 support.
It supports all language features of C99 in C99 mode and all language features of C11 in C11 mode. See
Section 5.16.

The atomic operations in C11 are supported in the relaxed ANSI mode (on by default) and in C11 mode.
An atomic operation is implemented by disabling interrupts across the operation.

The ANSI/ISO standard identifies some features of the C language that may be affected by characteristics
of the target processor, run-time environment, or host environment. This set of features can differ among
standard compilers.

Unsupported features of the C library are:

e The run-time library has minimal support for wide characters. The type wchar_t is implemented as
unsigned int (16-bits). The wide character set is equivalent to the set of values of type char. The library
includes the header files <wchar.h> and <wctype.h>, but does not include all the functions specified in
the standard. See Section 5.7 for information about extended and multibyte character sets.

» The run-time library includes the header file <locale.h>, but with a minimal implementation. The only
supported locale is the C locale. That is, library behavior that is specified to vary by locale is hard-
coded to the behavior of the C locale, and attempting to install a different locale by way of a call to
setlocale() will return NULL.

» Some run-time functions and features in the C99/C11 specifications are not supported. See
Section 5.16.

Implementation-Defined Behavior

The C standard requires that conforming implementations provide documentation on how the compiler
handles instances of implementation-defined behavior.

The TI compiler officially supports a freestanding environment. The C standard does not require a
freestanding environment to supply every C feature; in particular the library need not be complete.
However, the TI compiler strives to provide most features of a hosted environment.

The section numbers in the lists that follow correspond to section numbers in Appendix J of the C99
standard. The numbers in parentheses at the end of each item are sections in the C99 standard that
discuss the topic. Certain items listed in Appendix J of the C99 standard have been omitted from this list.

J.3.1 Translation

» The compiler and related tools emit diagnostic messages with several distinct formats. Diagnostic
messages are emitted to stderr; any text on stderr may be assumed to be a diagnostic. If any errors
are present, the tool will exit with an exit status indicating failure (non-zero). (3.10, 5.1.1.3)

» Nonempty sequences of white-space characters are preserved and are not replaced by a single space
character in translation phase 3. (5.1.1.2)

J.3.2 Environment

* The compiler does not support multibyte characters in identifiers, string literals, or character constants.
There is no mapping from multibyte characters to the source character set. However, the compiler
accepts multibyte characters in comments. See Section 5.7 for details. (5.1.1.2)

SLAU132S-0October 2004—Revised September 2018 C/C++ Language Implementation 83
Submit Documentation Feedback

Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

Characteristics of MSP430 C www.ti.com

The name of the function called at program startup is "main” (5.1.2.1)

Program termination does not affect the environment; there is no way to return an exit code to the
environment. By default, the program is known to have halted when execution reaches the special
CSEXIT label. (5.1.2.1)

In relaxed ANSI mode, the compiler accepts "void main(void)" and "void main(int argc, char *argv[])" as
alternate definitions of main. The alternate definitions are rejected in strict ANSI mode. (5.1.2.2.1)

If space is provided for program arguments at link time with the --args option and the program is run
under a system that can populate the .args section (such as CCS), argv[0] will contain the filename of
the executable, argv[1] through argv[argc-1] will contain the command-line arguments to the program,
and argv[argc] will be NULL. Otherwise, the value of argv and argc are undefined. (5.1.2.2.1)

Interactive devices include stdin, stdout, and stderr (when attached to a system that honors CIO
requests). Interactive devices are not limited to those output locations; the program may access
hardware peripherals that interact with the external state. (5.1.2.3)

Signals are not supported. The function signal is not supported. (7.14) (7.14.1.1)

The library function getenv is implemented through the CIO interface. If the program is run under a
system that supports CIO, the system performs getenv calls on the host system and passes the result
back to the program. Otherwise the operation of getenv is undefined. No method of changing the
environment from inside the target program is provided. (7.20.4.5)

The system function is not supported. (7.20.4.6).

J.3.3. Identifiers

The compiler does not support multibyte characters in identifiers. See Section 5.7 for details. (6.4.2)
The number of significant initial characters in an identifier is unlimited. (5.2.4.1, 6.4.2)

J.3.4 Characters

The number of bits in a byte (CHAR_BIT) is 8. See Section 5.6 for details about data types. (3.6)
The execution character set is the same as the basic execution character set: plain ASCII. (5.2.1)
The values produced for the standard alphabetic escape sequences are as follows: (5.2.2)

Escape Sequence ASCII Meaning Integer Value
\a BEL (bell) 7

\b BS (backspace) 8

\f FF (form feed) 12

\n LF (line feed) 10

\r CR (carriage 13

return)
\t HT (horizontal tab) 9
\v VT (vertical tab) 11

The value of a char object into which any character other than a member of the basic execution
character set has been stored is the ASCII value of that character. (6.2.5)

Plain char is identical to unsigned char, but can be changed to signed char with the --
plain_char=signed option. (6.2.5, 6.3.1.1)

The source character set and execution character set are both plain ASCII, so the mapping between
them is one-to-one. The compiler accepts multibyte characters in comments. See Section 5.7 for
details. (6.4.4.4,5.1.1.2)

The compiler currently supports only one locale, "C". (6.4.4.4).
The compiler currently supports only one locale, "C". (6.4.5).

J.3.5 Integers

No extended integer types are provided. (6.2.5)

Negative values for signed integer types are represented as two's complement, and there are no trap
representations. (6.2.6.2)

No extended integer types are provided, so there is no change to the integer ranks. (6.3.1.1)

84

C/C++ Language Implementation SLAU132S-October 2004 —-Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

www.ti.com Characteristics of MSP430 C

When an integer is converted to a signed integer type which cannot represent the value, the value is
truncated (without raising a signal) by discarding the bits which cannot be stored in the destination
type; the lowest bits are not modified. (6.3.1.3)

Right shift of a signed integer value performs an arithmetic (signed) shift. The bitwise operations other
than right shift operate on the bits in exactly the same way as on an unsigned value. That is, after the
usual arithmetic conversions, the bitwise operation is performed without regard to the format of the
integer type, in particular the sign bit. (6.5)

J.3.6 Floating point

The accuracy of floating-point operations (+ - * /) is bit-exact. The accuracy of library functions that
return floating-point results is not specified. (5.2.4.2.2)

The compiler does not provide non-standard values for FLT_ROUNDS (5.2.4.2.2)
The compiler does not provide non-standard negative values of FLT_EVAL_METHOD (5.2.4.2.2)

The rounding direction when an integer is converted to a floating-point number is IEEE-754 "round to
even". (6.3.1.4)

The rounding direction when a floating-point number is converted to a narrower floating-point number
is IEEE-754 "round to even". (6.3.1.5)

For floating-point constants that are not exactly representable, the implementation uses the nearest
representable value. (6.4.4.2)

The compiler does not contract float expressions. (6.5)

The default state for the FENV_ACCESS pragma is off. (7.6.1)

The TI compiler does not define any additional float exceptions (7.6, 7.12)
The default state for the FP_CONTRACT pragma is off. (7.12.2)

The "inexact" floating-point exception cannot be raised if the rounded result equals the mathematical
result. (F.9)

The "underflow" and "inexact" floating-point exceptions cannot be raised if the result is tiny but not
inexact. (F.9)

J.3.7 Arrays and pointers

When converting a pointer to an integer or vice versa, the pointer is considered an unsigned integer of
the same size, and the normal integer conversion rules apply. Some pointers are not the same size as
any integral type, but the conversion proceeds as if such a type did exist, with the rules implied by
normal integer conversion.

When converting a pointer to an integer or vice versa, if the bitwise representation of the destination
can hold all of the bits in the bitwise representation of the source, the bits are copied exactly. (6.3.2.3)

The size of the result of subtracting two pointers to elements of the same array is the size of ptrdiff_t,
which is defined in Section 5.6. (6.5.6)

J.3.8 Hints

When the optimizer is used, the register storage-class specifier is ignored. When the optimizer is not
used, the compiler will preferentially place register storage class objects into registers to the extent
possible. The compiler reserves the right to place any register storage class object somewhere other
than a register. (6.7.1)

The inline function specifier is ignored unless the optimizer is used. For other restrictions on inlining,
see Section 2.11.2. (6.7.4)

J.3.9 Structures, unions, enumerations, and bit-fields

A "plain” int bit-field is treated as a signed int bit-field. (6.7.2, 6.7.2.1)

In addition to _Bool, signed int, and unsigned int, the compiler allows char, signed char, unsigned char,
signed short, unsigned shot, signed long, unsigned long, signed long long, unsigned long long, and
enum types as bit-field types. (6.7.2.1)

Bit-fields may not straddle a storage-unit boundary.(6.7.2.1)
Bit-fields are allocated in endianness order within a unit. (6.7.2.1)
Non-bit-field members of structures are aligned as specified in See Section 6.2. (6.7.2.1)

SLAU132S-0October 2004—Revised September 2018 C/C++ Language Implementation 85
Submit Documentation Feedback

Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

Characteristics of MSP430 C www.ti.com

The integer type underlying each enumerated type is described in Section 5.6.1. (6.7.2.2)

J.3.10 Qualifiers

The TI compiler does not shrink or grow volatile accesses. It is the user's responsibility to make sure
the access size is appropriate for devices that only tolerate accesses of certain widths. The Tl compiler
does not change the number of accesses to a volatile variable unless absolutely necessary. This is
significant for read-modify-write expressions such as +=; for an architecture which does not have a
corresponding read-modify-write instruction, the compiler will be forced to use two accesses, one for
the read and one for the write. Even for architectures with such instructions, it is not guaranteed that
the compiler will be able to map such expressions to an instruction with a single memory operand. It is
not guaranteed that the memory system will lock that memory location for the duration of the
instruction. In a multi-core system, some other core may write the location after a RMW instruction
reads it, but before it writes the result. The Tl compiler will not reorder two volatile accesses, but it may
reorder a volatile and a non-volatile access, so volatile cannot be used to create a critical section. Use
some sort of lock if you need to create a critical section. (6.7.3)

J.3.11 Preprocessing directives

Include directives may have one of two forms, " " or < >. For both forms, the compiler will look for a
real file on-disk by that name using the include file search path. See Section 2.5.2. (6.4.7).

The value of a character constant in a constant expression that controls conditional inclusion matches
the value of the same character constant in the execution character set (both are ASCII). (6.10.1).

The compiler uses the file search path to search for an included < > delimited header file. See
Section 2.5.2. (6.10.2).

he compiler uses the file search path to search for an included
Section 2.5.2. (6.10.2). (6.10.2).

There is no arbitrary nesting limit for #include processing. (6.10.2).
See Section 5.12 for a description of the recognized non-standard pragmas. (6.10.6).
The date and time of translation are always available from the host. (6.10.8).

delimited header file. See

J.3.12 Library functions

Almost all of the library functions required for a hosted implementation are provided by the Tl library,
with exceptions noted in Section 5.16.1. (5.1.2.1).

The format of the diagnostic printed by the assert macro is "Assertion failed, (assertion macro
argument), file file, line line". (7.2.1.1).

No strings other than "C" and ™
(7.12.1.2).

No signal handling is supported. (7.14.1.1).

The +INF, -INF, +inf, -inf, NAN, and nan styles can be used to print an infinity or NaN. (7.19.6.1,
7.24.2.1).

The output for %p conversion in the fprintf or fwprintf function is the same as %x of the appropriate
size. (7.19.6.1, 7.24.2.1).

The termination status returned to the host environment by the abort, exit, or _Exit function is not
returned to the host environment. (7.20.4.1, 7.20.4.3, 7.20.4.4).

The system function is not supported. (7.20.4.6).

may be passed as the second argument to the setlocale function

J.3.13 Architecture

The values or expressions assigned to the macros specified in the headers float.h, limits.h, and stdint.h
are described along with the sizes and format of integer types are described in Section 5.6. (5.2.4.2,
7.18.2,7.18.3)

The number, order, and encoding of bytes in any object are described in Section 6.2.1. (6.2.6.1)

The value of the result of the sizeof operator is the storage size for each type, in terms of bytes. See
Section 6.2. (6.5.3.4)

86

C/C++ Language Implementation SLAU132S-October 2004 —-Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

I

www.ti.com

TEXAS
INSTRUMENTS

Characteristics of MSP430 C++

5.2

Characteristics of MSP430 C++

The MSP430 compiler supports C++ as defined in the ANSI/ISO/IEC 14882:2014 standard (C++14),
including these features:

Complete C++ standard library support, with exceptions noted below.

Templates

Exceptions, which are enabled with the --exceptions option; see Section 5.9.
Run-time type information (RTTI), which can be enabled with the --rtti compiler option.

The compiler supports the 2014 standard of C++ as standardized by the 1ISO. However, the following
features are not implemented or fully supported:

The compiler does not support embedded C++ run-time-support libraries.

The library supports wide chars (wchar_t), in that template functions and classes that are defined for
char are also available for wchar_t. For example, wide char stream classes wios, wiostream,
wstreambuf and so on (corresponding to char classes ios, iostream, streambuf) are implemented.
However, there is no low-level file I/O for wide chars. Also, the C library interface to wide char support
(through the C++ headers <cwchar> and <cwctype>) is limited as described above in the C library.

The reinterpret_cast type does not allow casting a pointer-to-member of one class to a pointer-to-
member of another class if the classes are unrelated.

Constant expressions for target-specific types are only partially supported.

New character types (introduced in the C++11 standard) are not supported.

Unicode string literals (introduced in the C++11 standard) are not supported.

Universal character names in literals (introduced in the C++11 standard) are not supported.
Strong compare and exchange (introduced in the C++11 standard) are not supported.
Bidirectional fences (introduced in the C++11 standard) are not supported.

Memory model (introduced in the C++11 standard) is not supported.

Propagating exceptions (introduced in the C++11 standard) is not supported.

Thread-local storage (introduced in the C++11 standard) is not supported.

Dynamic initialization and destruction with concurrency (introduced in the C++11 standard) is not
supported.

The changes made in order to support C++14 may cause "undefined symbol" errors to occur if you link
with a C++ object file or library that was compiled with an older version of the compiler. If such linktime
errors occur, recompile your C++ code using the --no_demangle command-line option. If any undefined
symbol names begin with _Z or _ZVT, recompile the entire application, including object files and libraries.
If you do not have source code for the libraries, download a newly-compiled version of the library.

SLAU132S-0October 2004—Revised September 2018 C/C++ Language Implementation 87
Submit Documentation Feedback

Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS

INSTRUMENTS
Using MISRA C 2004 www.ti.com
5.3 Using MISRA C 2004

MISRA C is a set of software development guidelines for the C programming language. It promotes best

practices in developing safety-related electronic systems in road vehicles and other embedded systems.

MISRA C was originally launched in 1998 by the Motor Industry Software Reliability Association, and has

since been adopted across a wide variety of industries. A subsequent update to the guidelines was

publishes as MISRA C:2004

You can alter your code to work with the MISRA C:2004 rules. The following options and pragmas can be

used to enable/disable rules:

* The --check_misra option enables checking of the specified MISRA C:2004 rules. This compiler option
must be used if you want to enable further control over checking using the CHECK_MISRA and
RESET_MISRA pragmas.

» The CHECK_MISRA pragma enables/disables MISRA C:2004 rules at the source level. See
Section 5.12.3.

« The RESET_MISRA pragma resets the specified MISRA C:2004 rules to their state before any
CHECK_MISRA pragmas were processed. See Section 5.12.26.

The syntax of the option and the pragmas is:

--check_misra={all|required|advisory|none|rulespec}

#pragma CHECK _MISRA ("{all|required|advisory|none|rulespec}")

#pragma RESET_MISRA ("{all[required|advisory|rulespec}")

The rulespec parameter is a comma-separated list of rule numbers to enable or disable.

Example: --check _misra=1.1,1.4,1.5,2.1,2.7,7.1,7.2,8.4

» Enables checking of rules 1.1, 1.4, 1.5, 2.1, 2.7, 7.1, 7.2, and 8.4.

Example: #pragma CHECK_MISRA("-7.1,-7.2,-8.4")

» Disables checking of rules 7.1, 7.2, and 8.4.

A typical use case is to use the --check_misra option on the command line to specify the rules that should

be checked in most of your code. Then, use the CHECK_MISRA pragma with a rulespec to activate or

deactivate certain rules for a particular region of code.

Two options control the severity of certain MISRA C:2004 rules:

* The --misra_required option sets the diagnostic severity for required MISRA C:2004 rules.

» The --misra_advisory option sets the diagnostic severity for advisory MISRA C:2004 rules.

The syntax for these options is:

--misra_advisory={error|jwarning|remark|suppress}
--misra_required={error|warning|remark|suppress}
88 C/C++ Language Implementation SLAU132S-October 2004—Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

I3 TEXAS
INSTRUMENTS
www.ti.com Using the ULP Advisor
5.4 Using the ULP Advisor
You can get feedback about your code from the ULP (Ultra-Low Power) Advisor. For a list and
descriptions of the ULP rules, see www.ti.com/ulpadvisor. You can enable/disable the rules using any of
the following. Using multiple --advice options on the command line is permitted.
» The --advice:power option lets you specify which rules to check.
* The --advice:power_severity option lets you specify whether ULP Advisor rule violations are errors,
warnings, remarks, or not reported.
» The CHECK_ULP pragma enables/disables ULP Advisor rules at the source level. This pragma is
equivalent to using the --advice:power option. See Section 5.12.4.
e« The RESET_ULP pragma resets the specified ULP Advisor rules to their state before any
CHECK_ULP pragmas were processed. See Section 5.12.27.
The --advice:power option enables checking specified ULP Advisor rules. The syntax is:
--advice:power={alljnone|rulespec}
The rulespec parameter is a comma-separated list of rule numbers to enable. For example, --
advice:power=1.1,7.2,7.3,7.4 enables rules 1.1, 7.2, 7.3, and 7.4.
The --advice:power_severity option sets the diagnostic severity for ULP Advisor rules. The syntax is:
--advice:power_severity={error|warning|remark|suppress}
The syntax of the pragmas is:
#pragma CHECK_ULP ("{alllnone|rulespec}")
#pragma RESET_ULP ("{all[rulespec}")
5.5 Advice on Hardware Configuration
The --advice:hw_config option lets you enable, disable, or configure the checks to perform related to the
device's configuration settings. For example, the FRAM waitstate configuration is checked. Information
about resolving a device configuration issue can be found by clicking the link provided in Code Composer
Studio when one of these checks produces a warning.
The syntax is:
--advice:hw_config={alljnone|rulespec}
The rulespec parameter is a comma-separated list of rule numbers to enable.
SLAU132S-0October 2004—Revised September 2018 C/C++ Language Implementation 89

Submit Documentation Feedback

Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S
http://www.ti.com/ulpadvisor

13 TEXAS
INSTRUMENTS

Data Types www.ti.com

5.6 Data Types

Table 5-1 lists the size, representation, and range of each scalar data type for the MSP430 compiler.
Many of the range values are available as standard macros in the header file limits.h.

Table 5-1. MSP430 C/C++ Data Types

Range
Type Size Alignment Representation Minimum Maximum
signed char 8 bits 8 Binary -128 127
char 8 bits 8 ASCII Oor-128 @ 2550r 127 @
unsigned char 8 bits 8 Binary 0 255
bool (C99) 8 hits 8 Binary 0 (false) 1 (true)
_Bool (C99) 8 hits 8 Binary 0 (false) 1 (true)
bool (C++) 8 hits 8 Binary 0 (false) 1 (true)
short, signed short 16 bits 16 Binary -32 768 32767
unsigned short 16 bits 16 Binary 0 65 535
int, signed int 16 bits 16 Binary -32 768 32 767
unsigned int 16 bits 16 Binary 0 65 535
long, signed long 32 bits 16 Binary -2 147 483 648 2 147 483 647
unsigned long 32 bits 16 Binary 0 4 294 967 295
long long, signed long long 64 bits 16 Binary -9 223 372 036 854 9 223 372 036 854
775 808 775 807
unsigned long long 64 bits 16 Binary 0 18 446 744 073 709
551 615
enum varies @ 16 Binary varies varies
float 32 bits 16 IEEE 32-bit 1.175 494e-38® 3.40 282 346e+38
double 64 bits 16 IEEE 64-bit 2.22 507 385e-308® 1.79 769 313e+308
long double 64 bits 16 IEEE 64-bit 2.22 507 385e-308® 1.79 769 313e+308
function and data pointers varies (see 16
Table 5-2)

@ "Plain" char has the same representation as either signed char or unsigned char. The --plain_char option specifies whether
"plain” char is signed or unsigned. The default is unsigned.
For details about the size of an enum type, see Section 5.6.1.

Figures are minimum precision.

)
®)

The char type is unsigned by default. This is in contrast to the "signed char" and "unsigned char" types,
which specify their sign behavior. You can change the default for the "char" type using the --
plain_char=signed compiler option.

Negative values for signed types are represented using two's complement.

The additional types from C, C99 and C++ are defined as synonyms for standard types:

typedef unsigned int
typedef unsigned int

wchar_t;
wint_t;

MSP devices support multiple data and code memory models. The code and data model affects the size,
alignment, and storage space used for function pointers, data pointers, the size_t type, and the ptrdiff_t
type. Pointers with sizes that are not a power of 2 are always stored in a container with a size of a power
of 2 bits. That is, 20-bit types are stored in 32 bits.

Table 5-2. Data Sizes for MSP430 Pointers

Code or Data Model Type Size Storage Alignment
small code model function pointer 16 16 16
large code model function pointer 20 32 16
small data model data pointer 16 16 16

C/C++ Language Implementation

SLAU132S-October 2004 —-Revised September 2018
Submit Documentation Feedback

Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS

INSTRUMENTS
www.ti.com Data Types
Table 5-2. Data Sizes for MSP430 Pointers (continued)
Code or Data Model Type Size Storage Alignment
small data model size_t 16 16 16
small data model ptrdiff_t 16 16 16
restricted data model data pointer 20 32 16
restricted data model size_t 16 16 16
restricted data model ptrdiff_t 16 16 16
large data model @ data pointer 20 32 16
large data model size_t 32 32 16
large data model ptrdiff_t 32 32 16

@ MSP430X large-data model is specified by --silicon_version=mspx --data_model=large

5.6.1 Size of Enum Types

An enum type is represented by an underlying integer type. The size of the integer type and whether it is
signed is based on the range of values of the enumerated constants.

In strict C89/C99/C11 mode, the compiler allows only enumeration constants with values that will fit in "int"
or "unsigned int".

For C++ and relaxed C89/C99/C11, the compiler allows enumeration constants up to the largest integral
type (64 bits). The default, which is recommended, is for the underlying type to be the first type in the
following list in which all the enumerated constant values can be represented: int, unsigned int, long,
unsigned long, long long, unsigned long long.

If you use the --small_enum option, the smallest possible byte size for the enumeration type is used. The
underlying type is the first type in the following list in which all the enumerated constant values can be
represented: signed char, unsigned char, short, unsigned short, int, unsigned int, long, unsigned long, long
long, unsigned long long.

The following example uses 8 bits instead of 16 bits when the --small_enum option is used.

enum example_enum {
first = -128,
second = 0,
third = 127

};

NOTE: Do not link object files compiled with the --small_enum option with object files that were
compiled without it. If you use the --small_enum option, you must use it with all of your
C/C++ files; otherwise, you will encounter errors that cannot be detected until run time.

SLAU132S-0October 2004—Revised September 2018 C/C++ Language Implementation 91

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS

INSTRUMENTS
File Encodings and Character Sets www.ti.com
5.7 File Encodings and Character Sets

The compiler accepts source files with one of two distinct encodings:

» UTF-8 with Byte Order Marks (BOM). These files may contain extended (multibyte) characters in
C/C++ comments. In all other contexts—including string constants, identifiers, assembly files, and
linker command files—only 7-bit ASCII characters are supported.

» Plain ASCII files. These files must contain only 7-bit ASCII characters.

To choose the UTF-8 encoding in Code Composer Studio, open the Preferences dialog, select General >

Workspace, and set the Text File Encoding to UTF-8.

If you use an editor that does not have a "plain ASCII" encoding mode, you can use Windows-1252 (also

called CP-1252) or ISO-8859-1 (also called Latin 1), both of which accept all 7-bit ASCII characters.

However, the compiler may not accept extended characters in these encodings, so you should not use

extended characters, even in comments.

Wide character (wchar_t) types and operations are supported by the compiler. However, wide character

strings may not contain characters beyond 7-bit ASCII. The encoding of wide characters is 7-bit ASCII, 0

extended to the width of the wchar_t type.

5.8 Keywords

The MSP430 C/C++ compiler supports all of the standard C89 keywords, including const, volatile, and

register. It supports all of the standard C99 keywords, including inline and restrict. It supports all of the

standard C11 keywords. It also supports Tl extension keywords __interrupt, and __asm. Some keywords
are not available in strict ANSI mode.

The following keywords may appear in other target documentation and require the same treatment as the

interrupt and restrict keywords:

e ftrap

* reentrant

e cregister

92 C/C++ Language Implementation SLAU132S-October 2004—Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

I

WWW.1i

TEXAS
INSTRUMENTS

i.com Keywords

5.8.1

5.8.2

The const Keyword

The C/C++ compiler supports the ANSI/ISO standard keyword const in all modes. This keyword gives you
greater optimization and control over allocation for certain data objects. You can apply the const qualifier
to the definition of any variable or array to ensure that its value is not altered.

Global objects qualified as const are placed in the .const section. The linker allocates the .const section
from ROM or FLASH, which are typically more plentiful than RAM. The const data storage allocation rule
has the following exceptions:

« If volatile is also specified in the object definition. For example, volatile const int x. Volatile
keywords are assumed to be allocated to RAM. (The program is not allowed to modify a const volatile
object, but something external to the program might.)

» If the object has automatic storage (function scope).

e If the object is a C++ object with a "mutable" member.

« If the object is initialized with a value that is not known at compile time (such as the value of another
variable).

In these cases, the storage for the object is the same as if the const keyword were not used.

The placement of the const keyword is important. For example, the first statement below defines a
constant pointer p to a modifiable int. The second statement defines a modifiable pointer g to a constant
int:

int * const p
const int * q

&X;
&X;

Using the const keyword, you can define large constant tables and allocate them into system ROM. For
example, to allocate a ROM table, you could use the following definition:

const int digits[] = {0,1,2,3,4,5,6,7,8,9};

The __interrupt Keyword

The compiler extends the C/C++ language by adding the __interrupt keyword, which specifies that a
function is treated as an interrupt function. This keyword is an IRQ interrupt. The alternate keyword,
"interrupt"”, may also be used except in strict ANSI C or C++ modes.

Note that the interrupt function attribute described in Section 5.12.20 is the recommended syntax for
declaring interrupt functions.

Functions that handle interrupts follow special register-saving rules and a special return sequence. The
implementation stresses safety. The interrupt routine does not assume that the C run-time conventions for
the various CPU register and status bits are in effect; instead, it re-establishes any values assumed by the
run-time environment. When C/C++ code is interrupted, the interrupt routine must preserve the contents of
all machine registers that are used by the routine or by any function called by the routine. When you use
the __interrupt keyword with the definition of the function, the compiler generates register saves based on
the rules for interrupt functions and the special return sequence for interrupts.

You can only use the __interrupt keyword with a function that is defined to return void and that has no
parameters. The body of the interrupt function can have local variables and is free to use the stack or
global variables. For example:
__interrupt void int_handler()
{ unsigned int flags;

--}

The name c_int00 is the C/C++ entry point. This name is reserved for the system reset interrupt. This
special interrupt routine initializes the system and calls the main() function. Because it has no caller,
c_int00 does not save any registers.

Hwi Objects and the __interrupt Keyword

NOTE: The __interrupt keyword must not be used when SYS/BIOS Hwi objects are used in
conjunction with C functions. The Hwi_enter/Hwi_exit macros and the Hwi dispatcher already
contain this functionality, and the use of the C modifier can cause unwanted conflicts.

SLAU132S-0October 2004—Revised September 2018 C/C++ Language Implementation 93
Submit Documentation Feedback

Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

Keywords www.ti.com

Interrupt service routine (ISR) warning

NOTE: The linker emits a warning for any device specific interrupts that do not have an associated
interrupt service routine. However, a default vector handler is now provided by the run-time
support (RTS) library, so you should not see this error if you are linking with the provided
RTS library.

5.8.3 The restrict Keyword

To help the compiler determine memory dependencies, you can qualify a pointer, reference, or array with
the restrict keyword. The restrict keyword is a type qualifier that can be applied to pointers, references,
and arrays. Its use represents a guarantee by you, the programmer, that within the scope of the pointer
declaration the object pointed to can be accessed only by that pointer. Any violation of this guarantee
renders the program undefined. This practice helps the compiler optimize certain sections of code
because aliasing information can be more easily determined.

In Example 5-1, the restrict keyword is used to tell the compiler that the function funcl is never called with
the pointers a and b pointing to objects that overlap in memory. You are promising that accesses through
a and b will never conflict; therefore, a write through one pointer cannot affect a read from any other
pointers. The precise semantics of the restrict keyword are described in the 1999 version of the ANSI/ISO
C Standard.

The "restrict" keyword is a C99 keyword, and cannot be accepted in strict ANSI C89 mode. Use the
" restrict" keyword if the strict ANSI C89 mode must be used. See Section 5.16.

Example 5-1. Use of the restrict Type Qualifier With Pointers

void funcl(int * restrict a, int * restrict b)

{

/* funcl®s code here */

}

Example 5-2 illustrates using the restrict keyword when passing arrays to a function. Here, the arrays c
and d must not overlap, nor may ¢ and d point to the same array.

Example 5-2. Use of the restrict Type Qualifier With Arrays

void func2(int c[restrict], int d[restrict])

{

int i;

for(i = 0; 1 < 64; i++)
{
c[i] += d[i];
d[i] += 1;
b
3

For more information about restrict see http://processors.wiki.ti.com/index.php/Restrict_Type_Qualifier,
especially the Performance Tuning with the "Restrict" Keyword article.

94 C/C++ Language Implementation SLAU132S-October 2004—Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S
http://processors.wiki.ti.com/index.php/Restrict_Type_Qualifier
http://processors.wiki.ti.com/images/f/ff/Bartley%3DWiki_1.1%3DPerformance_Tuning_with_the_RESTRICT_Keyword.pdf

13 TEXAS
INSTRUMENTS

www.ti.com Keywords

584

The volatile Keyword

The C/C++ compiler supports the volatile keyword in all modes. In addition, the __volatile keyword is
supported in relaxed ANSI mode for C89, C99, C11, and C++,

The volatile keyword indicates to the compiler that there is something about how the variable is accessed
that requires that the compiler not use overly-clever optimization on expressions involving that variable.
For example, the variable may also be accessed by an external program, an interrupt, another thread, or a
peripheral device.

The compiler eliminates redundant memory accesses whenever possible, using data flow analysis to
figure out when it is legal. However, some memory accesses may be special in some way that the
compiler cannot see, and in such cases you should use the volatile keyword to prevent the compiler from
optimizing away something important. The compiler does not optimize out any accesses to variables
declared volatile. The number of volatile reads and writes will be exactly as they appear in the C/C++
code, no more and no less and in the same order.

Any variable which might be modified by something external to the obvious control flow of the program
(such as an interrupt service routine) must be declared volatile. This tells the compiler that an interrupt
function might modify the value at any time, so the compiler should not perform optimizations which will
change the number or order of accesses of that variable. This is the primary purpose of the volatile
keyword. In the following example, the loop intends to wait for a location to be read as OxFF:

unsigned int *ctrl;
while (*ctrl 1=0xFF);

However, in this example, *ctrl is a loop-invariant expression, so the loop is optimized down to a single-
memory read. To get the desired result, define ctrl as:
volatile unsigned int *ctrl;

Here the *ctrl pointer is intended to reference a hardware location, such as an interrupt flag.

The volatile keyword must also be used when accessing memory locations that represent memory-
mapped peripheral devices. Such memory locations might change value in ways that the compiler cannot
predict. These locations might change if accessed, or when some other memory location is accessed, or
when some signal occurs.

Volatile must also be used for local variables in a function which calls setjmp, if the value of the local
variables needs to remain valid if a longjmp occurs.

Example 5-3. Volatile for Local Variables With setjmp

#include <stdlib.h>
Jjmp_buf context;
void function()
{
volatile int x = 3;
switch(setjmp(context))
{
case 0: setup(); break;
defaul t:
{
printf(""'x == %d\n", x); /* We can only reach here if longjmp has occurred; because x"s
lifetime begins before the setjmp and lasts through the longjmp,
the C standard requires x be declared "volatile™ */
break;
}
}
}
SLAU132S-0October 2004—Revised September 2018 C/C++ Language Implementation 95

Submit Documentation Feedback

Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

C++ Exception Handling www.ti.com

5.9

5.10

C++ Exception Handling

The compiler supports all the C++ exception handling features as defined by the ANSI/ISO 14882 C++
Standard. More details are discussed in The C++ Programming Language, Third Edition by Bjarne
Stroustrup.

The compiler --exceptions option enables exception handling. The compiler’s default is no exception
handling support.

For exceptions to work correctly, all C++ files in the application must be compiled with the --exceptions
option, regardless of whether exceptions occur in a particular file. Mixing exception-enabled object files
and libraries with object files and libraries that do not have exceptions enabled can lead to undefined
behavior.

Exception handling requires support in the run-time-support library, which come in exception-enabled and
exception-disabled forms; you must link with the correct form. When using automatic library selection (the
default), the linker automatically selects the correct library Section 4.3.1.1. If you select the library
manually, you must use run-time-support libraries whose name contains _eh if you enable exceptions.

Using the --exceptions option causes the compiler to insert exception handling code. This code will
increase the size of the program, but the EABI implementation requires smaller code size overhead by
moving the information to const data sections.

See Section 7.1 for details on the run-time libraries.

Register Variables and Parameters

The C/C++ compiler treats register variables (variables defined with the register keyword) differently,
depending on whether you use the --opt_level (-O) option.

* Compiling with optimization

The compiler ignores any register definitions and allocates registers to variables and temporary values
by using an algorithm that makes the most efficient use of registers.

» Compiling without optimization
If you use the register keyword, you can suggest variables as candidates for allocation into registers.

The compiler uses the same set of registers for allocating temporary expression results as it uses for
allocating register variables.

The compiler attempts to honor all register definitions. If the compiler runs out of appropriate registers, it
frees a register by moving its contents to memory. If you define too many objects as register variables,
you limit the number of registers the compiler has for temporary expression results. This limit causes
excessive movement of register contents to memory.

Any object with a scalar type (integral, floating point, or pointer) can be defined as a register variable. The
register designator is ignored for objects of other types, such as arrays.

The register storage class is meaningful for parameters as well as local variables. Normally, in a function,
some of the parameters are copied to a location on the stack where they are referenced during the
function body. The compiler copies a register parameter to a register instead of the stack, which speeds
access to the parameter within the function.

For more information about register conventions, see Section 6.3.

96

C/C++ Language Implementation SLAU132S-October 2004 —-Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

www.ti.com The __asm Statement

5.11 The __asm Statement

The C/C++ compiler can embed assembly language instructions or directives directly into the assembly
language output of the compiler. This capability is an extension to the C/C++ language implemented
through the __asm keyword. The __asm keyword provides access to hardware features that C/C++
cannot provide.

The alternate keyword, "asm", may also be used except in strict ANSI C mode. It is available in relaxed C
and C++ modes.

Using __asm is syntactically performed as a call to a function named __asm, with one string constant
argument:

‘_asm(" assembler text ");

The compiler copies the argument string directly into your output file. The assembler text must be
enclosed in double quotes. All the usual character string escape codes retain their definitions. For
example, you can insert a .byte directive that contains quotes as follows:

__asm('STR: .byte \"abc\'""");

The inserted code must be a legal assembly language statement. Like all assembly language statements,
the line of code inside the quotes must begin with a label, a blank, a tab, or a comment (asterisk or
semicolon). The compiler performs no checking on the string; if there is an error, the assembler detects it.
For more information about the assembly language statements, see the MSP430 Assembly Language
Tools User's Guide.

The __asm statements do not follow the syntactic restrictions of normal C/C++ statements. Each can
appear as a statement or a declaration, even outside of blocks. This is useful for inserting directives at the
very beginning of a compiled module.

The __asm statement does not provide any way to refer to local variables. If your assembly code needs to
refer to local variables, you will need to write the entire function in assembly code.

For more information, refer to Section 6.6.5.

NOTE: Avoid Disrupting the C/C++ Environment With asm Statements

Be careful not to disrupt the C/C++ environment with __asm statements. The compiler does
not check the inserted instructions. Inserting jumps and labels into C/C++ code can cause
unpredictable results in variables manipulated in or around the inserted code. Directives that
change sections or otherwise affect the assembly environment can also be troublesome.

Be especially careful when you use optimization with __asm statements. Although the
compiler cannot remove __asm statements, it can significantly rearrange the code order near
them and cause undesired results.

SLAU132S-0October 2004—Revised September 2018 C/C++ Language Implementation 97

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

Pragma Directives www.ti.com

5.12

Pragma Directives

Pragma directives tell the compiler how to treat a certain function, object, or section of code. The MSP430
C/C++ compiler supports the following pragmas:

BIS_IE1_INTERRUPT (See Section 5.12.1)
CALLS (See Section 5.12.2)
CHECK_MISRA (See Section 5.12.3)
CHECK_ULP (See Section 5.12.4)

CLINK (See Section 5.12.5)
CODE_SECTION (See Section 5.12.6)
DATA_ALIGN (See Section 5.12.7)
DATA_SECTION (See Section 5.12.8)

diag_suppress, diag_remark, diag_warning, diag_error, diag_default, diag_push, diag_pop (See
Section 5.12.9)

FORCEINLINE (See Section 5.12.10)
FORCEINLINE_RECURSIVE (See Section 5.12.11)
FUNC_ALWAYS_INLINE (See Section 5.12.12)
FUNC_CANNOT_INLINE (See Section 5.12.13)
FUNC_EXT_CALLED (See Section 5.12.14)
FUNC_IS_PURE (See Section 5.12.15)
FUNC_NEVER_RETURNS (See Section 5.12.16)
FUNC_NO_GLOBAL_ASG (See Section 5.12.17)
FUNC_NO_IND_ASG (See Section 5.12.18)
FUNCTION_OPTIONS (See Section 5.12.19)
INTERRUPT (See Section 5.12.20)

LOCATION (See Section 5.12.21)

NOINIT (See Section 5.12.22)

NOINLINE (See Section 5.12.23)

NO_HOOKS (See Section 5.12.24)

pack (See Section 5.12.25)

PERSISTENT (See Section 5.12.22)
RESET_MISRA (See Section 5.12.26)
RESET_ULP (See Section 5.12.27)

RETAIN (See Section 5.12.28)
SET_CODE_SECTION (See Section 5.12.29)
SET_DATA_SECTION (See Section 5.12.29)
vector (See Section 5.12.30)

The arguments func and symbol cannot be defined or declared inside the body of a function. You must
specify the pragma outside the body of a function; and the pragma specification must occur before any
declaration, definition, or reference to the func or symbol argument. If you do not follow these rules, the
compiler issues a warning and may ignore the pragma.

For pragmas that apply to functions or symbols, the syntax differs between C and C++.

In C, you must supply the name of the object or function to which you are applying the pragma as the
first argument. Because the entity operated on is specified, a pragma in C can appear some distance
way from the definition of that entity.

In C++, pragmas are positional. They do not name the entity on which they operate as an argument.
Instead, they always operate on the next entity defined after the pragma.

98

C/C++ Language Implementation SLAU132S-October 2004 —-Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

www.ti.com Pragma Directives

5.12.1 The BIS_IE1_INTERRUPT

The BIS_IE1_INTERRUPT pragma treats the named function as an interrupt routine. Additionally, the
compiler generates a BIS operation on the IE1 special function register upon function exit. The mask
value, which must be an 8-bit constant literal, is logically ORed with the IE1 SFR, just before the RETI
instruction. The compiler assumes the IE1 SFR is mapped to address 0x0000.

The syntax of the pragma in C is:

‘#pragma BIS_IE1_INTERRUPT (func , mask)

The syntax of the pragma in C++ is:

‘#pragma BIS_IE1_INTERRUPT (mask)

In C, the argument func is the name of the function that is an interrupt. In C++, the pragma applies to the
next function declared.

5.12.2 The CALLS Pragma

The CALLS pragma specifies a set of functions that can be called indirectly from a specified calling
function.

The CALLS pragma is used by the compiler to embed debug information about indirect calls in object files.
Using the CALLS pragma on functions that make indirect calls enables such indirect calls to be included in
calculations for such functions' inclusive stack sizes. For more information on generating function stack
usage information, see the -cg option of the Object File Display Utility in the "Invoking the Object File
Display Utility" section of the MSP430 Assembly Language Tools User's Guide.

The CALLS pragma can precede either the calling function's definition or its declaration. In C, the pragma
must have at least 2 arguments—the first argument is the calling function, followed by at least one
function that will be indirectly called from the calling function. In C++, the pragma applies to the next
function declared or defined, and the pragma must have at least one argument.

The syntax for the CALLS pragma in C is as follows. This indicates that calling_function can indirectly call
function_1 through function_n.

‘#pragma CALLS (calling_function, function_1, function_2, ..., function_n)

The syntax for the CALLS pragma in C++ is:

‘#pragma CALLS (function_1_mangled_name, ..., function_n_mangled_name)

Note that in C++, the arguments to the CALLS pragma must be the full mangled names for the functions
that can be indirectly called from the calling function.

The GCC-style "calls" attribute syntax, which has the same effect as the CALLS pragma, is as follows:
__attribute__((calls("function_1","function_2", ..., “function_n"")))

SLAU132S-0October 2004—Revised September 2018 C/C++ Language Implementation 99

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

Pragma Directives www.ti.com

5.12.3 The CHECK_MISRA Pragma

The CHECK_MISRA pragma enables/disables MISRA C:2004 rules at the source level. The compiler
option --check _misra must be used to enable checking in order for this pragma to function at the source
level.

The syntax of the pragma in C is:

#pragma CHECK_MISRA (" {all[required|advisory|none|rulespec} ")

The rulespec parameter is a comma-separated list of rule numbers. See Section 5.3 for details.
The RESET_MISRA pragma can be used to reset any CHECK_MISRA pragmas; see Section 5.12.26.

5.12.4 The CHECK_ULP Pragma

The CHECK_ULP pragma enables/disables ULP Advisor rules at the source level. This pragma is
equivalent to using the --advice:power option.

The syntax of the pragma in C is:

#pragma CHECK_ULP (" {alljnone|rulespec} ")

The rulespec parameter is a comma-separated list of rule numbers. See Section 5.4 for the syntax. See
www.ti.com/ulpadvisor for a list of rules.

The RESET_ULP pragma can be used to reset any CHECK _ULP pragmas; see Section 5.12.27.

5.12.5 The CLINK Pragma

The CLINK pragma can be applied to a code or data symbol. It causes a .clink directive to be generated
into the section that contains the definition of the symbol. The .clink directive tells the linker that a section
is eligible for removal during conditional linking. Thus, if the section is not referenced by any other section
in the application being compiled and linked, it will not be included in the resulting output file.

The syntax of the pragma in C is:

]#pragma CLINK (symbol) ‘

The syntax of the pragma in C++ is:

‘#pragma CLINK

The RETAIN pragma has the opposite effect of the CLINK pragma. See Section 5.12.28 for more details.

100 C/C++ Language Implementation SLAU132S—-October 2004—-Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S
http://www.ti.com/ulpadvisor

13 TEXAS
INSTRUMENTS

www.ti.com Pragma Directives

5.12.6 The CODE_SECTION Pragma

The CODE_SECTION pragma allocates space for the symbol in C, or the next symbol declared in C++, in
a section named section name.

The syntax of the pragma in C is:

’#pragma CODE_SECTION (symbol , "section name ") ‘

The syntax of the pragma in C++ is:

‘#pragma CODE_SECTION (" section name ")

The CODE_SECTION pragma is useful if you have code objects that you want to link into an area
separate from the .text section.

The following example demonstrates the use of the CODE_SECTION pragma.

Example 5-4. Using the CODE_SECTION Pragma C Source File

#pragma CODE_SECTION(funcA,"codeA™)
int funcA(int a)

{
int i;
return (i = a);

Example 5-5. Generated Assembly Code From Example 5-4

.sect '"‘codeA"
.align 2
.clink
-global funcA

* FUNCTION NAME: funcA *
* *
;* Regs Modified : SP,SR,r12 *
;* Regs Used : SP,SR,r12 *
* Local Frame Size : 0 Args + 4 Auto + 0 Save = 4 byte *
funcA
e e e e e *

SUB.W #4 ,SP

MOV . W ri2,0(SP) ;141

MOV . W 0(SP),2(SP) ;161

MOV . W 2(SP),ri12 ;161

ADD . W #4,SP

RET

SLAU132S-0October 2004—Revised September 2018 C/C++ Language Implementation 101

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

Pragma Directives

13 TEXAS
INSTRUMENTS

www.ti.com

Example 5-6. Using the CODE_SECTION Pragma C++ Source File

#pragma CODE_SECTION("'codeB'™)
int i_arg(int x) { return 1; }
int ¥ arg(float x) { return 2; }

Example 5-7. Generated Assembly Code From Example 5-6

.sect '"'‘codeB"

.align
.clink
-global i_arg_ Fi
;* FUNCTION NAME: i_arg(int) *
-k *
3* Regs Modified : SP,SR,r12 *
;* Regs Used : SP,SR,ri12 *
;* Local Frame Size : O Args + 2 Auto + 0 Save = 2 byte *
i_arg_ Fi
e e e *
SUB.W #2,SP
MOV . W r12,0(SP) ;121
MOV .W #1,r12 ;121
ADD.W #2,SP
RET
.sect ".text"
.align 2
-clink
-global f_arg_ Ff
;* FUNCTION NAME: f_arg(float) *
-k *
;* Regs Modified : SP,SR,ri12 *
;* Regs Used : SP,SR,r12,r13 *
3* Local Frame Size : O Args + 4 Auto + 0 Save = 4 byte *

f_arg_ Ff

;*
SUB.W #4 ,SP
MOV . W r12,0(SP)
MOV .W ri3,2(SP)
MOV .W #2,rl12
ADD.W #4 ,SP
RET

;131
;131
;131

102 C/C++ Language Implementation

SLAU132S-October 2004 —-Revised September 2018

Copyright © 2004-2018, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

I

TEXAS
INSTRUMENTS

www.ti.com Pragma Directives

5.12.7 The DATA_ALIGN Pragma

The DATA_ALIGN pragma aligns the symbol in C, or the next symbol declared in C++, to an alignment
boundary. The alignment boundary is the maximum of the symbol's default alignment value or the value of
the constant in bytes. The constant must be a power of 2. The maximum alignment is 32768.

The DATA_ALIGN pragma cannot be used to reduce an object's natural alignment.
The syntax of the pragma in C is:

‘#pragma DATA_ALIGN (symbol , constant) ‘

The syntax of the pragma in C++ is:

[#pragma DATA_ALIGN (constant) |

5.12.8 The DATA_SECTION Pragma

The DATA_SECTION pragma allocates space for the symbol in C, or the next symbol declared in C++, in
a section named section name.

The syntax of the pragma in C is:

‘#pragma DATA_SECTION (symbol , " section name ") ‘

The syntax of the pragma in C++ is:

]#pragma DATA_SECTION (" section name ") ‘

The DATA_SECTION pragma is useful if you have data objects that you want to link into an area separate
from the .bss section.

Example 5-8 through Example 5-10 demonstrate the use of the DATA_SECTION pragma.

Example 5-8. Using the DATA_SECTION Pragma C Source File

#pragma DATA_SECTION(bufferB, "my_sect™)
char bufferA[512];
char bufferB[512];

Example 5-9. Using the DATA_SECTION Pragma C++ Source File

char bufferA[512];
#pragma DATA_SECTION("my_sect')
char bufferB[512];

Example 5-10. Using the DATA_SECTION Pragma Assembly Source File

-global bufferA
-bss bufferA,512,2
-global bufferB

bufferB: .usect "my_sect",512,2

SLAU132S—-October 2004—-Revised September 2018 C/C++ Language Implementation 103
Submit Documentation Feedback

Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

Pragma Directives www.ti.com

5.12.9 The Diagnostic Message Pragmas

The following pragmas can be used to control diagnostic messages in the same ways as the
corresponding command line options:

Pragma Option Description

diag_suppress num -pds=num][, num,, num,...] Suppress diagnostic num

diag_remark num -pdsr=num[, num,, numg...] Treat diagnostic num as a remark

diag_warning num -pdsw=num[, num,, nums...] Treat diagnostic num as a warning

diag_error num -pdse=num[, num,, nums...] Treat diagnostic num as an error

diag_default num n/a Use default severity of the diagnostic

diag_push n/a Push the current diagnostics severity state to store it for later use.
diag_pop n/a Pop the most recent diagnostic severity state stored with #pragma

diag_push to be the current setting.

The syntax of the diag_suppress, diag_remark, diag_warning, and diag_error pragmas in C is:

]#pragma diag_xxx [E]Jnum[, num,, nums...]

Notice that the names of these pragmas are in lowercase.

The diagnostic affected (num) is specified using either an error number or an error tag name. The equal
sign (=) is optional. Any diagnostic can be overridden to be an error, but only diagnostic messages with a
severity of discretionary error or below can have their severity reduced to a warning or below, or be
suppressed. The diag_default pragma is used to return the severity of a diagnostic to the one that was in
effect before any pragmas were issued (i.e., the normal severity of the message as modified by any
command-line options).

The diagnostic identifier number is output with the message when you use the -pden command line
option. The following example suppresses a diagnostic message and then restores the previous
diagnostics severity state:

#pragma diag_push

#pragma diag_suppress 551

#pragma CHECK_MISRA(*'-9.1")

#pragma diag_pop

5.12.10 The FORCEINLINE Pragma

The FORCEINLINE pragma can be placed before a statement to force any function calls made in that
statement to be inlined. It has no effect on other calls to the same functions.

The compiler only inlines a function if it is legal to inline the function. Functions are never inlined if the
compiler is invoked with the --opt_level=off option. A function can be inlined even if the function is not
declared with the inline keyword. A function can be inlined even if the compiler is not invoked with any --
opt_level command-line option.

The syntax of the pragma in C/C++ is:

#pragma FORCEINLINE |

For example, in the following example, the mytest() and getname() functions are inlined, but the error()
function is not.
#pragma FORCEINLINE
if (Imytest(getname(myvar))) {
error();

}
Placing the FORCEINLINE pragma before the call to error() would inline that function but not the others.

For information about interactions between command-line options, pragmas, and keywords that affect
inlining, see Section 2.11.

104 C/C++ Language Implementation SLAU132S—-October 2004—-Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

www.ti.com Pragma Directives

Notice that the FORCEINLINE, FORCEINLINE_RECURSIVE, and NOINLINE pragmas affect only the
C/C++ statement that follows the pragma. The FUNC_ALWAYS_INLINE and FUNC_CANNOT_INLINE
pragmas affect an entire function.

5.12.11 The FORCEINLINE_RECURSIVE Pragma

The FORCEINLINE_RECURSIVE can be placed before a statement to force any function calls made in
that statement to be inlined along with any calls made from those functions. That is, calls that are not
visible in the statement but are called as a result of the statement will be inlined.

The syntax of the pragma in C/C++ is:

#pragma FORCEINLINE_RECURSIVE

For information about interactions between command-line options, pragmas, and keywords that affect
inlining, see Section 2.11.

5.12.12 The FUNC_ALWAYS_INLINE Pragma
The FUNC_ALWAYS_INLINE pragma instructs the compiler to always inline the named function.

The compiler only inlines a function if it is legal to inline the function. Functions are never inlined if the
compiler is invoked with the --opt_level=off option. A function can be inlined even if the function is not
declared with the inline keyword. A function can be inlined even if the compiler is not invoked with any --
opt_level command-line option. See Section 2.11 for details about interaction between various types of
inlining.

This pragma must appear before any declaration or reference to the function that you want to inline. In C,
the argument func is the name of the function that will be inlined. In C++, the pragma applies to the next
function declared.

This pragma can be used to force inlining at link time across C files.
The syntax of the pragma in C is:

‘#pragma FUNC_ALWAYS_INLINE (func) ‘

The syntax of the pragma in C++ is:

| #pragma FUNC_ALWAYS_INLINE |

The following example uses this pragma:

#pragma FUNC_ALWAYS_INLINE(functionThatMustGetlinlined)
static inline void functionThatMustGetInlined(void) {
P10UT |= 0x01;
P10OUT &= ~O0x01;

Use Caution with the FUNC_ALWAYS_INLINE Pragma

NOTE: The FUNC_ALWAYS_INLINE pragma overrides the compiler's inlining decisions. Overuse of
this pragma could result in increased compilation times or memory usage, potentially enough
to consume all available memory and result in compilation tool failures.

5.12.13 The FUNC_CANNOT_INLINE Pragma

The FUNC_CANNOT _INLINE pragma instructs the compiler that the named function cannot be expanded
inline. Any function named with this pragma overrides any inlining you designate in any other way, such as
using the inline keyword. Automatic inlining is also overridden with this pragma; see Section 2.11.

SLAU132S—-October 2004—-Revised September 2018 C/C++ Language Implementation 105

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

Pragma Directives www.ti.com

The pragma must appear before any declaration or reference to the function that you want to keep. In C,
the argument func is the name of the function that cannot be inlined. In C++, the pragma applies to the
next function declared.

The syntax of the pragma in C is:

‘#pragma FUNC_CANNOT_INLINE (func)

The syntax of the pragma in C++ is:

‘#pragma FUNC_CANNOT_INLINE

5.12.14 The FUNC_EXT_CALLED Pragma

When you use the --program_level _compile option, the compiler uses program-level optimization. When
you use this type of optimization, the compiler removes any function that is not called, directly or indirectly,
by main(). You might have C/C++ functions that are called instead of main().

The FUNC_EXT_CALLED pragma specifies that the optimizer should keep these C functions or any
functions these C/C++ functions call. These functions act as entry points into C/C++. The pragma must
appear before any declaration or reference to the function to keep. In C, the argument func is the name of
the function to keep. In C++, the pragma applies to the next function declared.

The syntax of the pragma in C is:

‘#pragma FUNC_EXT_CALLED (func) ‘

The syntax of the pragma in C++ is:

| #pragma FUNC_EXT_CALLED |

Except for _c_int00, which is the name reserved for the system reset interrupt for C/C++programs, the
name of the interrupt (the func argument) does not need to conform to a naming convention.

When you use program-level optimization, you may need to use the FUNC_EXT_CALLED pragma with
certain options. See Section 3.4.2.

106 C/C++ Language Implementation SLAU132S—-October 2004—-Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

www.ti.com Pragma Directives

5.12.15 The FUNC_IS_PURE Pragma

The FUNC_IS_PURE pragma specifies to the compiler that the named function has no side effects. This
allows the compiler to do the following:
» Delete the call to the function if the function's value is not needed

» Delete duplicate functions

The pragma must appear before any declaration or reference to the function. In C, the argument func is
the name of a function. In C++, the pragma applies to the next function declared.

The syntax of the pragma in C is:

‘#pragma FUNC_IS_PURE (func) ‘

The syntax of the pragma in C++ is:

| #pragma FUNC_IS_PURE |

5.12.16 The FUNC_NEVER_RETURNS Pragma

The FUNC_NEVER_RETURNS pragma specifies to the compiler that the function never returns to its
caller.

The pragma must appear before any declaration or reference to the function that you want to keep. In C,
the argument func is the name of the function that does not return. In C++, the pragma applies to the next
function declared.

The syntax of the pragma in C is:

#pragma FUNC_NEVER_RETURNS (func) |

The syntax of the pragma in C++ is:

| #pragma FUNC_NEVER_RETURNS |

5.12.17 The FUNC_NO_GLOBAL_ASG Pragma

The FUNC_NO_GLOBAL_ASG pragma specifies to the compiler that the function makes no assignments
to named global variables and contains no asm statements.

The pragma must appear before any declaration or reference to the function that you want to keep. In C,
the argument func is the name of the function that makes no assignments. In C++, the pragma applies to
the next function declared.

The syntax of the pragma in C is:

| #pragma FUNC_NO_GLOBAL_ASG (func) |

The syntax of the pragma in C++ is:

[#pragma FUNC_NO_GLOBAL_ASG |

SLAU132S—-October 2004—-Revised September 2018 C/C++ Language Implementation 107

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

Pragma Directives www.ti.com
5.12.18 The FUNC_NO_IND_ASG Pragma

The FUNC_NO_IND_ASG pragma specifies to the compiler that the function makes no assignments
through pointers and contains no asm statements.

The pragma must appear before any declaration or reference to the function that you want to keep. In C,
the argument func is the name of the function that makes no assignments. In C++, the pragma applies to
the next function declared.

The syntax of the pragma in C is:

‘#pragma FUNC_NO_IND_ASG (func)

The syntax of the pragma in C++ is:

| #pragma FUNC_NO_IND_ASG

5.12.19 The FUNCTION_OPTIONS Pragma

The FUNCTION_OPTIONS pragma allows you to compile a specific function in a C or C++ file with
additional command-line compiler options. The affected function will be compiled as if the specified list of
options appeared on the command line after all other compiler options. In C, the pragma is applied to the
function specified. In C++, the pragma is applied to the next function.

The syntax of the pragma in C is:

‘#pragma FUNCTION_OPTIONS (func, "additional options")

The syntax of the pragma in C++ is:

| #pragma FUNCTION_OPTIONS("additional options") |

Supported options for this pragma are --opt_level, --auto_inline, --code_state, and --opt_for_speed. In
order to use --opt_level and --auto_inline with the FUNCTION_OPTIONS pragma, the compiler must be
invoked with some optimization level (that is, at least --opt_level=0).

5.12.20 The INTERRUPT Pragma

The INTERRUPT pragma enables you to handle interrupts directly with C code. In C, the argument func is
the name of a function. In C++, the pragma applies to the next function declared.

The syntax of the pragma in C is:

#pragma INTERRUPT (func)

The syntax of the pragma in C++ is:

#pragma INTERRUPT
void func(void)

The GCC interrupt attribute syntax, which has the same effects as the INTERRUPT pragma, is as follows.
Note that the interrupt attribute can precede either the function's definition or its declaration.

__attribute__ ((interrupt)) void func(void)

The return address of the interrupt function is placed on the stack.

108 C/C++ Language Implementation SLAU132S—-October 2004—-Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

www.ti.com Pragma Directives

The interrupt attribute syntax allows you to optionally specify a numeric argument that indicates the vector
location as specified for the vector pragma. For example:

#define TIMER_AO 20
#define TIMER_A1 10

__attribute__ ((interrupt(TIMER_A0))) void fool() {
int i;

for (i=1; i < 1000; i++)
global_ptr[i] = i;

Hwi Objects and the INTERRUPT Pragma

NOTE: The INTERRUPT pragma must not be used when SYS/BIOS Hwi objects are used in
conjunction with C functions. The Hwi_enter/Hwi_exit macros and the Hwi dispatcher contain
this functionality, and the use of the C modifier can cause negative results.

Interrupt service routine (ISR) warning

NOTE: The linker emits a warning for any device-specific interrupts with no associated interrupt
service routine. However, a default vector handler is provided by the run-time support (RTS)
library, so you should not see this error if you are linking with the provided RTS library.

5.12.21 The LOCATION Pragma

The compiler supports the ability to specify the run-time address of a variable at the source level. This can
be accomplished with the LOCATION pragma or attribute.

The syntax of the pragma in C is:

#pragma LOCATION(x , address)
int x

The syntax of the pragmas in C++ is:

#pragma LOCATION(address)
int x

The syntax of the pragma for IAR is:

#pragma location=address
int x

The syntax of the GCC attribute is:

int x __attribute__((location(address)))

The NOINIT pragma may be used in conjunction with the LOCATION pragma to map variables to special
memory locations; see Section 5.12.22.

SLAU132S—-October 2004—-Revised September 2018 C/C++ Language Implementation 109

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

Pragma Directives www.ti.com

5.12.22 The NOINIT and PERSISTENT Pragmas

Global and static variables are zero-initialized. However, in applications that use non-volatile memory, it
may be desirable to have variables that are not initialized. Noinit variables are global or static variables
that are not zero-initialized at startup or reset.

Persistent and noinit variables behave identically with the exception of whether or not they are initialized at
load time.

The NOINIT pragma may be used in conjunction with the LOCATION pragma to map variables to special
memory locations, like memory-mapped registers, without generating unwanted writes. The NOINIT
pragma may only be used with uninitialized variables.

The PERSISTENT pragma is similar to the NOINIT pragma, except that it may only be used with
statically-initialized variables. Persistent variables disable startup initialization; they are given an initial
value when the code is loaded, but are never again initialized.

NOTE: When using these pragmas in non-volatile FRAM memory, the memory region could be
protected against unintended writes through the device's Memory Protection Unit. Some
devices have memory protection enabled by default. Please see the information about
memory protection in the datasheet for your device. If the Memory Protection Unit is enabled,
it first needs to be disabled before modifying the variables.

If you are using non-volatile RAM, you can define a persistent variable with an initial value of zero loaded
into RAM. The program can increment that variable over time as a counter, and that count will not
disappear if the device loses power and restarts, because the memory is non-volatile and the boot
routines do not initialize it back to zero. For example:

#pragma PERSISTENT(X)

#pragma location = 0xC200 // memory address in RAM

int x = 0;

void main() {
run_initQ;

while (1) {
run_actions(x);
__delay_cycles(1000000);
X++

}
The syntax of the pragmas in C is:

#pragma NOINIT (x)
int x;

#pragma PERSISTENT (x)
int x=10;

110 C/C++ Language Implementation SLAU132S—-October 2004—-Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

www.ti.com Pragma Directives

The syntax of the pragmas in C++ is:

#pragma NOINIT
int x;

#pragma PERSISTENT
int x=10;

The syntax of the GCC attributes is:

‘ int x __attribute__((noinit));

‘ int x __attribute__ ((persistent)) = 0;

5.12.23 The NOINLINE Pragma

The NOINLINE pragma can be placed before a statement to prevent any function calls made in that
statement from being inlined. It has no effect on other calls to the same functions.

The syntax of the pragma in C/C++ is:

#pragma NOINLINE

For information about interactions between command-line options, pragmas, and keywords that affect
inlining, see Section 2.11.

5.12.24 The NO_HOOKS Pragma
The NO_HOOKS pragma prevents entry and exit hook calls from being generated for a function.

The syntax of the pragma in C is:

‘#pragma NO_HOOKS (func)

The syntax of the pragma in C++ is:

‘#pragma NO_HOOKS

See Section 2.14 for details on entry and exit hooks.

5.12.25 The pack Pragma

The pack pragma can be used to control the alignment of fields within a class, struct, or union type. The
syntax of the pragma in C/C++ can be any of the following.

#pragma pack (n)

The above form of the pack pragma affects all class, struct, or union type declarations that follow this
pragma in a file. It forces the maximum alignment of each field to be the value specified by n. Valid values
fornare 1, 2, 4, 8, and 16 bytes.

#pragma pack (push, n)
#pragma pack (pop)

SLAU132S-0October 2004—Revised September 2018 C/C++ Language Implementation 111

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

Pragma Directives www.ti.com

The above form of the pack pragma affects only class, struct, and union type declarations between push
and pop directives. (A pop directive with no prior push results in a warning diagnostic from the compiler.)
The maximum alignment of all fields declared is n. Valid values for n are 1, 2, 4, 8, and 16 bytes.

#pragma pack (show) ‘

The above form of the pack pragma sends a warning diagnostic to stderr to record the current state of the
pack pragma stack. You can use this form while debugging.

For more about packed fields, see Section 5.17.4.

5.12.26 The RESET_MISRA Pragma

The RESET_MISRA pragma resets the specified MISRA C:2004 rules to the state they were before any
CHECK_MISRA pragmas (see Section 5.12.3) were processed. For instance, if a rule was enabled on the
command line but disabled in the source, the RESET_MISRA pragma resets it to enabled. This pragma
accepts the same format as the --check_misra option, except for the "none" keyword.

The --check_misra compiler command-line option must be used to enable MISRA C:2004 rule checking in
order for this pragma to function at the source level.

The syntax of the pragma in C is:

#pragma RESET_MISRA (" {all[required|advisory|rulespec} ")

The rulespec parameter is a comma-separated list of rule numbers. See Section 5.3 for details.

5.12.27 The RESET_ULP Pragma

The RESET_ULP pragma resets the specified ULP Advisor rules to the state they were before any
CHECK_ULP pragmas (see Section 5.12.4) were processed. For instance, if a rule was enabled on the
command line but disabled in the source, the RESET_ULP pragma resets it to enabled. This pragma
accepts the same format as the --advice:power option, except for the "none" keyword.

The syntax of the pragma in C is:

#pragma RESET_ULP (" {alllrulespec} ")

The rulespec parameter is a comma-separated list of rule numbers. See Section 5.4 for details. See
www.ti.com/ulpadvisor for a list of rules.

5.12.28 The RETAIN Pragma

The RETAIN pragma can be applied to a code or data symbol. It causes a .retain directive to be
generated into the section that contains the definition of the symbol. The .retain directive indicates to the
linker that the section is ineligible for removal during conditional linking. Therefore, regardless whether or
not the section is referenced by another section in the application that is being compiled and linked, it will
be included in the output file result of the link.

The syntax of the pragma in C is:

‘#pragma RETAIN (symbol) ‘

The syntax of the pragma in C++ is:

| #pragma RETAIN |

The CLINK pragma has the opposite effect of the RETAIN pragma. See Section 5.12.5 for more details.

112 C/C++ Language Implementation SLAU132S—-October 2004—-Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S
http://www.ti.com/ulpadvisor

13 TEXAS
INSTRUMENTS

www.ti.com Pragma Directives
5.12.29 The SET_CODE_SECTION and SET_DATA_SECTION Pragmas

These pragmas can be used to set the section for all declarations below the pragma.

The syntax of the pragmas in C/C++ is:

‘#pragma SET_CODE_SECTION ("section name") ‘

| #pragma SET_DATA_SECTION (" section name") |

In Example 5-11 x and y are put in the section mydata. To reset the current section to the default used by
the compiler, a blank parameter should be passed to the pragma. An easy way to think of the pragma is
that it is like applying the CODE_SECTION or DATA_SECTION pragma to all symbols below it.

Example 5-11. Setting Section With SET_DATA_SECTION Pragma

#pragma SET_DATA_SECTION("mydata')
int x;

int y;

#pragma SET_DATA_SECTIONQ)

The pragmas apply to both declarations and definitions. If applied to a declaration and not the definition,
the pragma that is active at the declaration is used to set the section for that symbol. Here is an example:

Example 5-12. Setting a Section With SET_CODE_SECTION Pragma

#pragma SET_CODE_SECTION("'funcl™)
extern void funcl(Q);
#pragma SET_CODE_SECTIONQ)

void funciQ) { ... }

In Example 5-12 funcl is placed in section funcl. If conflicting sections are specified at the declaration
and definition, a diagnostic is issued.

The current CODE_SECTION and DATA_SECTION pragmas and GCC attributes can be used to override
the SET_CODE_SECTION and SET_DATA_SECTION pragmas. For example:

Example 5-13. Overriding SET_DATA_SECTION Setting

#pragma DATA_SECTION(x, ''x_data')
#pragma SET_DATA_SECTION("mydata')
int x;

int y;

#pragma SET_DATA_SECTIONQ)

In Example 5-13 x is placed in x_data and y is placed in mydata. No diagnostic is issued for this case.

The pragmas work for both C and C++. In C++, the pragmas are ignored for templates and for implicitly
created objects, such as implicit constructors and virtual function tables.

SLAU132S—-October 2004—-Revised September 2018 C/C++ Language Implementation 113
Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

Pragma Directives www.ti.com

5.12.30 The vector Pragma

The vector pragma indicates that the function that follows is to be used as the interrupt vector routine for
the listed vectors. The syntax of the pragma is:

#pragma vector = vecl][, vec2 , vecs, ...]

The vector pragma requires linker command file support. The command file must specify output sections
for each interrupt vector of the form .intxx where xx is the number of the interrupt vector. The output
sections must map to the physical memory location of the appropriate interrupt vector. The standard linker
command files are set up to handle the vector pragma. See Section 6.7.4.

If you do not specify an ISR routine for some interrupt vectors, an ISR routine will be provided for those
vectors from the RTS library and the RTS library will automatically be linked with your application. The
default ISR routine puts the device in low power mode. You can override the ISR provided by the RTS
with the unused_interrupts keyword as follows:

#pragma vector=unused_interrupts

interrupt void user_trap_function(void)

{
// code for handling all interrupts that do not have

// specific ISRs
b

The __even_in_range intrinsic provides a hint to the compiler when generating switch statements for
interrupt vector routines. The intrinsic is usually used as follows:

switch (__even_in_range(x , NUM))
{

}

The __even_in_range intrinsic returns the value x to control the switch statement, but also tells the
compiler that x must be an even value in the range of 0 to NUM, inclusive.

Interrupt service routine (ISR) warning

NOTE: The linker emits a warning for any device-specific interrupts that do not have an associated
interrupt service routine. However, a default vector handler is now provided by the run-time
support (RTS) library, so you should not see this error if you are linking with the provided

RTS library.
For more details, see the MSP430 Assembly Language Tools User's Guide section for the .intvec
directive.
114 C/C++ Language Implementation SLAU132S-October 2004 —-Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

www.ti.com The _Pragma Operator

5.13 The _Pragma Operator

The MSP430 C/C++ compiler supports the C99 preprocessor _Pragma() operator. This preprocessor
operator is similar to #pragma directives. However, _Pragma can be used in preprocessing macros
(#defines).

The syntax of the operator is:

’_Pragma (" string_literal ");

The argument string_literal is interpreted in the same way the tokens following a #pragma directive are
processed. The string_literal must be enclosed in quotes. A quotation mark that is part of the string_literal
must be preceded by a backward slash.

You can use the _Pragma operator to express #pragma directives in macros. For example, the
DATA_SECTION syntax:

#pragma DATA_SECTION(func ," section ")

Is represented by the _Pragma() operator syntax:

_Pragma ("DATA_SECTION(func \" section \")")

The following code illustrates using _Pragma to specify the DATA_SECTION pragma in a macro:

#define EMIT_PRAGMA(X) _Pragma(#x)
#define COLLECT_DATA(var) EMIT_PRAGMA(DATA_SECTION(var, ' mysection™))

COLLECT_DATA(X)

int x;

The EMIT_PRAGMA macro is needed to properly expand the quotes that are required to surround the
section argument to the DATA_SECTION pragma.

SLAU132S—-October 2004—-Revised September 2018 C/C++ Language Implementation 115

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

Application Binary Interface www.ti.com

5.14

5.15

Application Binary Interface

An Application Binary Interface (ABI) defines how functions that are compiled or assembled separately
(possibly by compilers from different vendors) can work together. This involves standardizing the data type
representation, register conventions, and function structure and calling conventions. An ABI defines
linkname generation from C symbol names. It defines the object file format and the debug format. It
defines how the system is initialized. In the case of C++, it defines C++ name mangling and exception
handling support.

The COFF ABI is not supported in v15.6.0.STS and later versions of the Tl Code Generation Tools. If you
would like to produce COFF output files, please use v4.4 of the MSP430 Code Generation Tools and refer
to SPRU132J for documentation.

MSP430 uses the EABI ABI, wheich requires the ELF object file format. This format supports modern
language features like early template instantiation and exporting inline functions.

Tl-specific information on EABI mode is described in Section 6.9.3.

To generate object files compatible with EABI, you must use MSP430 compiler version 4.0 or greater; see
Section 2.13.

The Tl _EABI__ predefined symbol is defined and set to 1 if compiling for EABI.

For low-level details about the MSP430 EABI, see The MSP430 Embedded Application Binary Interface
(SLAA534).

Object File Symbol Naming Conventions (Linknames)

Each externally visible identifier is assigned a unique symbol name to be used in the object file, a so-
called linkname. This name is assigned by the compiler according to an algorithm which depends on the
name, type, and source language of the symbol. This algorithm may add a prefix to the identifier (typically
an underscore), and it may mangle the name.

User-defined symbols in C code and in assembly code are in the same namespace, which means you are
responsible for making sure that your C identifiers do not collide with your assembly code identifiers. You
may have identifiers that collide with assembly keywords (for instance, register names); in this case, the
compiler automatically uses an escape sequence to prevent the collision. The compiler escapes the
identifier with double parallel bars, which instructs the assembler not to treat the identifier as a keyword.
You are responsible for making sure that C identifiers do not collide with user-defined assembly code
identifiers.

Name mangling encodes the types of the parameters of a function in the linkname for a function. Name
mangling only occurs for C++ functions which are not declared 'extern "C™. Mangling allows function
overloading, operator overloading, and type-safe linking. Be aware that the return value of the function is
not encoded in the mangled name, as C++ functions cannot be overloaded based on the return value.

For example, the general form of a C++ linkname for a function named func is:
func__F parmcodes
Where parmcodes is a sequence of letters that encodes the parameter types of func.

For this simple C++ source file:
int foo(int i){ } //global C++ function

This is the resulting assembly code:
foo__ Fi

The linkname of foo is foo__Fi, indicating that foo is a function that takes a single argument of type int. To
aid inspection and debugging, a name demangling utility is provided that demangles names into those
found in the original C++ source. See Chapter 8 for more information.

The mangling algorithm follows that described in the Itanium C++ ABI (http://www.codesourcery.com/cxx-
abi/abi.html).

int foo(int i) { } would be mangled " Z3fooi"

116

C/C++ Language Implementation SLAU132S-October 2004 —-Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S
http://www.ti.com/lit/pdf/spru132J
http://www.codesourcery.com/cxx-abi/abi.html
http://www.codesourcery.com/cxx-abi/abi.html

13 TEXAS
INSTRUMENTS

www.ti.com Changing the ANSI/ISO C/C++ Language Mode

5.16 Changing the ANSI/ISO C/C++ Language Mode

The language mode command-line options determine how the compiler interprets your source code. You
specify one option to identify which language standard your code follows. You can also specify a separate
option to specify how strictly the compiler should expect your code to conform to the standard.

Specify one of the following language options to control the language standard that the compiler expects
the source to follow. The options are:

e ANSI/ISO C89 (--c89, default for C files)

e ANSI/IISO C99 (--c99, see Section 5.16.1.)

* ANSI/ISO C11 (--cl11, see Section 5.16.2)

e ISO C++14 (--c++14, used for all C++ files, see Section 5.2.)

Use one of the following options to specify how strictly the code conforms to the standard:

* Relaxed ANSI/ISO (--relaxed_ansi or -pr) This is the default.

» Strict ANSI/ISO (--strict_ansi or -ps)

The default is relaxed ANSI/ISO mode. Under relaxed ANSI/ISO mode, the compiler accepts language
extensions that could potentially conflict with ANSI/ISO C/C++. Under strict ANSI mode, these language

extensions are suppressed so that the compiler will accept all strictly conforming programs. (See
Section 5.16.3.)

5.16.1 C99 Support (--c99)

The compiler supports the 1999 standard of C as standardized by the ISO. However, the following list of
run-time functions and features are not implemented or fully supported:

* complex.h

* ctype.h
— ishlank()
+ float.h
— DECIMAL_DIG
— FLT_EVAL_METHOD
* inttypes.h
— wecstoimax() / westoumax()
e stdarg.h
— va_copy macro
» stdio.h

— %a and %A format specifiers for hexadecimal float

— The %e specifier may produce "-0" when "0" is expected by the standard

— snprintf() does not properly pad with spaces when writing to a wide character array
+ stdlib.h

— strtof() atof() / strtod() / strtold() do not support hexadecimal float strings

— vfscanf() / vscanf() / vsscanf() return value on floating point matching failure is incorrect
» tgmath.h
» time.h

— strftime()
» wchar.h

— getws() / fputws()

— mbrlen()

— mbsrtowcs()

— wecscat()

SLAU132S-0October 2004—Revised September 2018 C/C++ Language Implementation 117
Submit Documentation Feedback

Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

Changing the ANSI/ISO C/C++ Language Mode www.ti.com

— weschr()

— wesemp() / wesnemp()

— wescepy() / wesnepy()

— wecsftime()

— wecesrtombs()

— wecsstr()

— wecstok()

— wesxfrm()

— Wide character print / scan functions
— Wide character conversion functions

5.16.2 C11 Support (--c11)

The compiler supports the 2011 standard of C as standardized by the ISO. However, in addition to the list
in Section 5.16.1, the following run-time functions and features are not implemented or fully supported in
C11 mode:

e threads.h

5.16.3 Strict ANSI Mode and Relaxed ANSI Mode (--strict_ansi and --relaxed_ansi)

Under relaxed ANSI/ISO mode (the default), the compiler accepts language extensions that could
potentially conflict with a strictly conforming ANSI/ISO C/C++ program. Under strict ANSI mode, these
language extensions are suppressed so that the compiler will accept all strictly conforming programs.

Use the --strict_ansi option when you know your program is a conforming program and it will not compile
in relaxed mode. In this mode, language extensions that conflict with ANSI/ISO C/C++ are disabled and
the compiler will emit error messages where the standard requires it to do so. Violations that are
considered discretionary by the standard may be emitted as warnings instead.

Examples:

The following is strictly conforming C code, but will not be accepted by the compiler in the default relaxed
mode. To get the compiler to accept this code, use strict ANSI mode. The compiler will suppress the
interrupt keyword language exception, and interrupt may then be used as an identifier in the code.

int mainQ)

{
int interrupt = 0;
return O;

The following is not strictly conforming code. The compiler will not accept this code in strict ANSI mode.
To get the compiler to accept it, use relaxed ANSI mode. The compiler will provide the interrupt keyword
extension and will accept the code

interrupt void isr(void);

int mainQ)
{

return O;
b

The following code is accepted in all modes. The __interrupt keyword does not conflict with the ANSI/ISO
C standard, so it is always available as a language extension.

__interrupt void isr(void);

int mainQ)

{
}

return O;

118

C/C++ Language Implementation SLAU132S-October 2004 —-Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

I

TEXAS
INSTRUMENTS

www.ti.com

GNU and Clang Language Extensions

5.17

The default mode is relaxed ANSI. This mode can be selected with the --relaxed_ansi (or -pr) option.
Relaxed ANSI mode accepts the broadest range of programs. It accepts all Tl language extensions, even
those which conflict with ANSI/ISO, and ignores some ANSI/ISO violations for which the compiler can do
something reasonable. Some GCC language extensions described in Section 5.17 may conflict with strict
ANSI/ISO standards, but many do not conflict with the standards.

GNU and Clang Language Extensions

The GNU compiler collection (GCC) defines a number of language features not found in the ANSI/ISO C
and C++ standards. The definition and examples of these extensions (for GCC version 4.7) can be found
at the GNU web site, http://gcc.gnu.org/onlinedocs/gcc-4.7.2/gcc/C-Extensions.html#C-Extensions. Most of
these extensions are also available for C++ source code.

The compiler also supports the following Clang macro extensions, which are described in the Clang 6

Documentation:

 _ has_feature (up to tests described for Clang 3.5)

» _ has_extension (up to tests described for Clang 3.5)
« _ has_include

e _ has_include_next

e has_builtin (see Section 5.17.5)

* _ has_attribute

5.17.1 Extensions

Most of the GCC language extensions are available in the TI compiler when compiling in relaxed ANSI
mode (--relaxed_ansi).

The extensions that the Tl compiler supports are listed in Table 5-3, which is based on the list of
extensions found at the GNU web site. The shaded rows describe extensions that are not supported.

Table 5-3. GCC Language Extensions

Extensions

Descriptions

Statement expressions

Putting statements and declarations inside expressions (useful for creating smart 'safe’ macros)

Local labels

Labels local to a statement expression

Labels as values

Pointers to labels and computed gotos

Nested functions

As in Algol and Pascal, lexical scoping of functions

Constructing calls

Dispatching a call to another function

Naming types®

Giving a name to the type of an expression

typeof operator

typeof referring to the type of an expression

Generalized Ivalues

Using question mark (?) and comma (,) and casts in Ivalues

Conditionals Omitting the middle operand of a ?: expression
Hex floats Hexadecimal floating-point constants

Complex Data types for complex numbers

Zero length Zero-length arrays

Variadic macros

Macros with a variable number of arguments

Variable length

Arrays whose length is computed at run time

Empty structures

Structures with no members

Subscripting

Any array can be subscripted, even if it is not an Ivalue.

Escaped newlines

Slightly looser rules for escaped newlines

Multi-line strings®

String literals with embedded newlines

Pointer arithmetic

Arithmetic on void pointers and function pointers

Initializers

Non-constant initializers

@ Feature defined for GCC 3.0; definition and examples at http://gcc.gnu.org/onlinedocs/gec-4.7.2/gcc/C-Extensions. html#C-

Extensions

SLAU132S-0October 2004—Revised September 2018
Submit Documentation Feedback

C/C++ Language Implementation 119

Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S
http://gcc.gnu.org/onlinedocs/gcc-4.7.2/gcc/C-Extensions.html#C-Extensions
https://clang.llvm.org/docs/LanguageExtensions.html
https://clang.llvm.org/docs/LanguageExtensions.html
http://gcc.gnu.org/onlinedocs/gcc-4.7.2/gcc/C-Extensions.html#C-Extensions
http://gcc.gnu.org/onlinedocs/gcc-4.7.2/gcc/C-Extensions.html#C-Extensions

GNU and Clang Language Extensions

13 TEXAS
INSTRUMENTS

www.ti.com

Table 5-3. GCC Language Extensions (continued)

Extensions

Descriptions

Compound literals

Compound literals give structures, unions, or arrays as values

Designated initializers

Labeling elements of initializers

Cast to union

Casting to union type from any member of the union

Case ranges

'‘Case 1 ... 9" and such

Mixed declarations

Mixing declarations and code

Function attributes

Declaring that functions have no side effects, or that they can never return

Attribute syntax

Formal syntax for attributes

Function prototypes

Prototype declarations and old-style definitions

C++ comments

C++ comments are recognized.

Dollar signs

A dollar sign is allowed in identifiers.

Character escapes

The character ESC is represented as \e

Variable attributes

Specifying the attributes of variables

Type attributes

Specifying the attributes of types

Alignment

Inquiring about the alignment of a type or variable

Inline

Defining inline functions (as fast as macros)

Assembly labels

Specifying the assembler name to use for a C symbol

Extended asm

Assembler instructions with C operands

Constraints

Constraints for asm operands

Wrapper headers

Wrapper header files can include another version of the header file using #include_next

Alternate keywords

Header files can use __const__, __asm__, etc

Explicit reg vars

Defining variables residing in specified registers

Incomplete enum types

Define an enum tag without specifying its possible values

Function names

Printable strings which are the name of the current function

Return address

Getting the return or frame address of a function (limited support)

Other built-ins

Other built-in functions (see Section 5.17.5)

Vector extensions

Using vector instructions through built-in functions

Target built-ins

Built-in functions specific to particular targets

Pragmas

Pragmas accepted by GCC

Unnamed fields

Unnamed struct/union fields within structs/unions

Thread-local

Per-thread variables

Binary constants

Binary constants using the 'Ob' prefix.

5.17.2 Function Attributes

The following GCC function attributes are supported:

» alias

* always_inline
e call_conv

e const

e constructor

e deprecated

» format

» format_arg
* interrupt
 malloc

e noinline

120

C/C++ Language Implementation

SLAU132S-October 2004 —-Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS

INSTRUMENTS
www.ti.com GNU and Clang Language Extensions
e noreturn
* pure
* ramfunc
e section
e unused
* used

e warn_unused_result

The following additional TI-specific function attribute is supported:

* retain

For example, this function declaration uses the alias attribute to make "my_alias" a function alias for the
"myFunc” function:

void my_alias() _ attribute__((alias('myFunc'™)));

The call_conv attribute can be used to modify the calling conventions to allow both the IAR and Tl
compilers to link against the same ROM image. This function attribute allows functions compiled with the

TI compiler to be linked with a ROM image generated by the IAR compiler. Note that the TI compiler does
not generate ROM images.

The call_conv attribute can be specified with "cc_rom" (for IAR/TI compatibility) or "cc_norm" (the default
calling convention). Use "cc_rom" if you want to share a ROM image compiled with IAR. The following
example uses the call_conv attribute in several ways:

#define _ _cc_rom __ attribute__((call_conv(*'cc_rom™)))

__cc_rom void rom_func(void)

{
3
typedef _ _cc_rom void (rom_func_t)(void);

int main()

{
rom_func(Q);
rom_func_t *fp = (rom_func_t*)0x1234;
pO:
((void (__cc_rom *)(void))0x2468)();
void (__cc_rom *rom_func_ptr)(void);
rom_func_ptr = &rom_func;
rom_func_ptr();

}

If you want IAR/TI compatibility with your calling conventions, be aware of the following restrictions on
parameter passing.

» All parameters combined must fit in registers. Registers may not be passed on the stack.
* Only scalar parameters are allowed. Do not pass structs.

» Do not pass function pointers, enums, or doubles.

» For single registers, use R12,13,14,15 in that order.

» For register pairs, use R12:R13 or R14:R15 in that order.

» For register quads, use R12:R13:R14:R15.

» For MSP430, always use CALL/RET.

* For MSP430x always uses CALLA/RETA.

» For save-on-call registers, use R11-R15.

» For save-on-entry registers, use R4-R10.

SLAU132S-0October 2004—Revised September 2018 C/C++ Language Implementation 121

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

GNU and Clang Language Extensions www.ti.com

The format attribute is applied to the declarations of printf, fprintf, sprintf, snprintf, vprintf, vfprintf, vsprintf,
vsnprintf, scanf, fscanf, vfscanf, vscanf, vsscanf, and sscanf in stdio.h. Thus when GCC extensions are
enabled, the data arguments of these functions are type checked against the format specifiers in the
format string argument and warnings are issued when there is a mismatch. These warnings can be
suppressed in the usual ways if they are not desired.

See Section 5.12.20 for more about using the interrupt function attribute.
The malloc attribute is applied to the declarations of malloc, calloc, realloc and memalign in stdlib.h.

The ramfunc attribute specifies that a function will be placed in and executed from RAM. The ramfunc
attribute allows the compiler to optimize functions for RAM execution, as well as to automatically copy
functions to RAM on flash-based devices. For example:

__attribute__ ((ramfunc))
void f(void) {

}

The --ramfunc=on option specifies that all functions compiled with this option are placed in and executed
from RAM, even if this function attribute is not used.

Newer Tl linker command files support the ramfunc attribute automatically by placing functions with this
attribute in the .Tl.ramfunc section. If you have a linker command file that does not include a section
specification for the .Tl.ramfunc section, you can modify the linker command file to place this section in
RAM. See the Placing functions in RAM wiki page for more about the ramfunc attribute and option. See
the MSP430 Assembly Language Tools User's Guide for details on section placement.

The retain attribute has the same effect as the RETAIN pragma (Section 5.12.28). That is, the section that
contains the function will not be omitted from conditionally linked output even if it is not referenced
elsewhere in the application.

5.17.3 Variable Attributes

The following variable attributes are supported:

» aligned

» deprecated
* mode

* noinit

e persistent

e retain

e section

e transparent_union
e unused

e used

e weak

The packed attribute may be applied to individual fields within a struct or union. The behavior of the
packed attribute for structure and union fields is described in Section 5.17.4.

The retain attribute has the same effect as the RETAIN pragma (Section 5.12.28). That is, the section that
contains the variable will not be omitted from conditionally linked output even if it is not referenced
elsewhere in the application.

The used attribute is defined in GCC 4.2 (see http://gcc.gnu.org/onlinedocs/gcc-4.2.4/gcc/Variable-
Attributes.html#Variable-Attributes).
5.17.4 Type Attributes

The following type attributes are supported:
» aligned

122 C/C++ Language Implementation SLAU132S—-October 2004—-Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S
http://processors.wiki.ti.com/index.php/Placing_functions_in_RAM
http://gcc.gnu.org/onlinedocs/gcc-4.2.4/gcc/Variable-Attributes.html#Variable-Attributes
http://gcc.gnu.org/onlinedocs/gcc-4.2.4/gcc/Variable-Attributes.html#Variable-Attributes

13 TEXAS
INSTRUMENTS

www.ti.com GNU and Clang Language Extensions

e deprecated

» packed
e transparent_union
e unused

The packed attribute is supported for struct and union types if the --relaxed_ansi option is used.

Members of a packed structure are stored as closely to each other as possible, omitting additional bytes of
padding usually added to preserve word-alignment. For example, assuming a word-size of 4 bytes
ordinarily has 3 bytes of padding between members cl1 and i, and another 3 bytes of trailing padding after
member c2, leading to a total size of 12 bytes:

struct unpacked_struct { char cl; int i; char c2;};
However, the members of a packed struct are byte-aligned. Thus the following does not have any bytes of
padding between or after members and totals 6 bytes:
struct __ attribute_ ((__packed_)) packed_struct { char cl; int i; char c2; };

Subsequently, packed structures in an array are packed together without trailing padding between array
elements.

Bit fields of a packed structure are bit-aligned. The byte alignment of adjacent struct members that are not
bit fields does not change. However, there are no bits of padding between adjacent bit fields.

The packed attribute can only be applied to the original definition of a structure or union type. It cannot be
applied with a typedef to a non-packed structure that has already been defined, nor can it be applied to
the declaration of a struct or union object. Therefore, any given structure or union type can only be packed
or non-packed, and all objects of that type will inherit its packed or non-packed attribute.

The packed attribute is not applied recursively to structure types that are contained within a packed
structure. Thus, in the following example the member s retains the same internal layout as in the first
example above. There is no padding between ¢ and s, so s falls on an unaligned boundary:

struct _ attribute_ ((__packed_)) outer_packed_struct { char c; struct unpacked_struct s; };
It is illegal to implicitly or explicitly cast the address of a packed struct member as a pointer to any non-
packed type except an unsigned char. In the following example, p1, p2, and the call to foo are all illegal.

void foo(int *param);

struct packed_struct ps;

int *pl = &ps.i;

int *p2 = (int *)&ps.i;

foo(&ps-i);

However, it is legal to explicitly cast the address of a packed struct member as a pointer to an unsigned
char:

unsigned char *pc = (unsigned char *)é&ps.i;

The packed attribute can also be applied to enumerated types. On an enum, packed indicates that the
smallest integral type should be used.

The Tl compiler also supports an unpacked attribute for an enumeration type to allow you to indicate that
the representation is to be an integer type that is no smaller than int; in other words, it is not packed.

5.17.5 Built-In Functions

The following built-in functions are supported:
e builtin_abs()

e builtin_constant_p()

e builtin_expect()

__builtin_fabs()

e builtin_fabsf()

e builtin_frame_address()

SLAU132S—-October 2004—-Revised September 2018 C/C++ Language Implementation 123

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

Compiler Limits www.ti.com

5.18

e builtin_labs()
e _ builtin_memcpy()
e _ builtin_return_address()

The _ builtin_frame_address function always returns zero.
The __ builtin_return_address() function always returns zero.

Compiler Limits

Due to the variety of host systems supported by the C/C++ compiler and the limitations of some of these
systems, the compiler may not be able to successfully compile source files that are excessively large or
complex. In general, exceeding such a system limit prevents continued compilation, so the compiler aborts
immediately after printing the error message. Simplify the program to avoid exceeding a system limit.

Some systems do not allow filenames longer than 500 characters. Make sure your filenames are shorter
than 500.

The compiler has no arbitrary limits but is limited by the amount of memory available on the host system.
On smaller host systems such as PCs, the optimizer may run out of memory. If this occurs, the optimizer
terminates and the shell continues compiling the file with the code generator. This results in a file compiled
with no optimization. The optimizer compiles one function at a time, so the most likely cause of this is a
large or extremely complex function in your source module. To correct the problem, your options are:

» Don't optimize the module in question.
» Identify the function that caused the problem and break it down into smaller functions.

» Extract the function from the module and place it in a separate module that can be compiled without
optimization so that the remaining functions can be optimized.

124

C/C++ Language Implementation SLAU132S-October 2004 —-Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

I3 TEXAS
INSTRUMENTS

This chapter describes the MSP430 C/C++ run-time environment. To ensure successful execution of
C/C++ programs, it is critical that all run-time code maintain this environment. It is also important to follow

Chapter 6

Run-Time Environment

the guidelines in this chapter if you write assembly language functions that interface with C/C++ code.

Topic Page
LG A |V =T g o 20 1Y o o = P 126
(ST ©] o [= A S =T o1 =TT =T] = 11 [0 o 130
LRSI S (=T o |] (=T ol @0] V4= 1 4 o] B 132
6.4 Function Structure and Calling CoNVENTIONS....cuiuiiiiiiiiiieieire e eaeeaeeaeens 133
6.5 Accessing Linker Symbols in C and CH+..ociiiuiiiiiiiii i et eaeens 135
6.6 Interfacing C and C++ With Assembly Languagec..veveieiiieiiiiieiieieieieeeeeeeenen 135
L A 1 1 =T O 0 = T g P 138
6.8 Using Intrinsics to Access Assembly Language StatementsS........cccoviiiieiiieininnene. 140
6.9 System INItIAliZAtiONeeee e 144
6.10 Compiling for 20-Bit MSPA30X DEVICES ...ueuiuiititiuinieitiietisineieseaeasinssesieaeanenansneaens 151

SLAU132S-0October 2004—Revised September 2018 Run-Time Environment 125

Submit Documentation Feedback

Copyright © 2004-2018, Texas Instruments Incorporated

SLAU132S-0October 2004—Revised September 2018

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

Memory Model www.ti.com

6.1

6.1.1

6.1.2

Memory Model

The MSP430 compiler treats memory as a single linear block that is partitioned into subblocks of code and
data. Each subblock of code or data generated by a C program is placed in its own continuous memory
space. The compiler assumes that the full 16-bit (for MSP430) or 20-bit (for MSP430X) address space is
available in target memory.

Code Memory Models

The MSP430 compiler supports two different code memory models, small and large, which are controlled
by the --code_model option.

» The small code model uses 16-bit function pointers and requires all code and all text sections to be
placed in the low 64K of memory. This is the only valid code model for 16-bit MSP430 devices.

» The large code model provides a 1 MB address space for code and uses 20-bit function pointers. It is
the default for MSP430X devices, including the MSP430F5xxx and MSP430F6xxx families. Interrupt
service routines must still be placed in the low 64 KB of memory (see Section 6.7.5).

The small code model is slightly more efficient in terms of run-time performance and memory usage when
compared to the large code model. Therefore, it is beneficial to use the small code model when all code
and text sections will fit in the low 64K of memory. Modules assembled/compiled using the small-code
model are not compatible with modules that are assembled/compiled using large-code model. The linker
generates an error if any attempt is made to combine object files that use different code memory models.
An appropriate run-time library must be used as well.

Data Memory Models

The MSP430 compiler supports three different data memory models: small, restricted and large. The data
model used is controlled by the --data_model option. The 16-bit MSP430 devices always use the small
data memory model. The 20-bit MSP430X devices can use any data memory model and use the small
data model by default.

« The small data model requires that all data sections be located in the low 64K of memory. Data
pointers are 16-bits in size. This is the most efficient data model in terms of performance and
application size.

» The restricted data model allows data to be located throughout the entire 1MB address space available
on MSP430X devices with only a minimal efficiency penalty over the small data model. It is restricted
because individual objects (structures, arrays, etc.) cannot be larger than 64K in size. Data pointers
are 32-bits in size.

e The large data model also allows data to be located throughout the entire 1IMB address space and also
places no restriction on the maximum size of an individual object. Permitting individual objects to be
greater than 64K in size causes code generated for the large data model to be less efficient than code
generated for the restricted data model.

Data memory is also affected by the --near_data option as described in Section 6.1.3.

The maximum size of an object (size_t) and the maximum difference between two pointers (ptrdiff_t) are
increased from 16-bits to 32-bits in the large data model. Applications that rely on size _t or ptrdiff t to be a
specific size may need to be updated.

Object files built with different data models are not compatible. All files in an application must be built with
the same data model. Additionally, a run-time-support library matching that data model must be used.
When using automatic library selection (the default), the linker will automatically select the correct library
Section 4.3.1.1. If you select the library manually, you must select the matching library according to
Section 7.1.8.

126

Run-Time Environment SLAU132S-October 2004 —-Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

www.ti.com Memory Model

6.1.3 Support for Near Data

Most MSP430X devices do not have any writeable memory above the 64K boundary. However, most
FRAM MSP430x devices and a few non-FRAM devices have writeable memory above 64k boundary.

For those few non-FRAM devices with high RAM (above 64K), non-constant data may be placed above
the 64K boundary by the linker command file.

For all other devices, which have no writeable memory above the 64K boundary even when the restricted
or large data models are used, only constant data will be placed above 64K. The compiler can take
advantage of this knowledge to produce more efficient code. The --near_data option controls this
optimization.

When --near_data=globals is specified, this option tells the compiler that all global read/write data must be
located in the first 64K of memory. This is the default behavior. Global read/write data is placed by default
in the .bss and .data sections.

If --near_data=none is specified, this option tells the compiler that it cannot rely on this assumption to
generate more efficient code.

The Linker Defines the Memory Map

NOTE: The linker, not the compiler, defines the memory map and allocates code and data into
target memory. The compiler assumes nothing about the types of memory available, about
any locations not available for code or data (holes), or about any locations reserved for 1/0 or
control purposes. The compiler produces relocatable code that allows the linker to allocate
code and data into the appropriate memory spaces. For example, you can use the linker to
allocate global variables into on-chip RAM or to allocate executable code into external ROM.
You can allocate each block of code or data individually into memory, but this is not a
general practice (an exception to this is memory-mapped I/O, although you can access
physical memory locations with C/C++ pointer types).

6.1.4 Sections

The compiler produces relocatable blocks of code and data called sections. The sections are allocated
into memory in a variety of ways to conform to a variety of system configurations. For more information
about sections and allocating them, see the introductory object file information in the MSP430 Assembly
Language Tools User's Guide.

There are two basic types of sections:

» Initialized sections contain data or executable code. Initialized sections are usually, but not always,
read-only. The C/C++ compiler creates the following initialized sections:

— The .binit section contains boot time copy tables. This is a read-only section. For details on BINIT,
see the MSP430 Assembly Language Tools User's Guide.

— The .cinit section contains tables for initializing variables and constants. This is a read-only
section. The compiler does not create this section; instead, the linker does.

— The .init_array section contains the table of pointers to initialization routines for global C++
objects.

— The .ovly section contains copy tables other than boot time (.binit) copy tables. This is a read-only
section.

— The .data section contains initialized global and static variables.

— For EABI only, the .mspabi.exidx section contains the index table for exception handling. The
.mspabi.extab section contains unwinding instructions for exception handling. These sections are
read-only. See the --exceptions option for details.

— The .const section contains string constants, string literals, switch tables, and data defined with
the C/C++ qualifier const (provided the constant is not also defined as volatile or one of the
exceptions described in Section 5.8.1). This is a read-only section. String literals are placed in the
.const:.string subsection to enable greater link-time placement control.

— The .text section contains all the executable code and compiler-generated constants. This section
is usually read-only.

SLAU132S-0October 2004—Revised September 2018 Run-Time Environment 127

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

Memory Model www.ti.com

— The .Tl.crctab section contains CRC checking tables. This is a read-only section.

» Uninitialized sections reserve space in memory (usually RAM). A program can use this space at run
time to create and store variables. The compiler creates the following uninitialized sections:

— The .bss section reserves space for global and static variables. At boot or load time, the C/C++
boot routine or the loader copies data out of the .cinit section (which can be in ROM) and stores it
in the .bss section.

— For EABI only, the .bss section reserves space for uninitialized global and static variables.
Uninitialized variables that are also unused are usually created as common symbols (unless you
specify --common=off) instead of being placed in .bss so that they can be excluded from the
resulting application.

— The .stack section reserves memory for the C/C++ software stack.

— The .sysmem section reserves space for dynamic memory allocation. The reserved space is used
by dynamic memory allocation routines, such as malloc(), calloc(), realloc(), or new(). If a C/C++
program does not use these functions, the compiler does not create the .sysmem section.

The assembler creates the default sections .text, .bss, and .data. You can instruct the compiler to create
additional sections by using the CODE_SECTION and DATA_SECTION pragmas (see Section 5.12.6 and
Section 5.12.8).

The linker takes the individual sections from different object files and combines sections that have the
same name. The resulting output sections and the appropriate placement in memory for each section are
listed in Table 6-1. You can place these output sections anywhere in the address space as needed to
meet system requirements.

Table 6-1. Summary of Sections and Memory Placement

Section Type of Memory Section Type of Memory

.bss RAM .pinit or ROM or RAM
.init_array

.cinit ROM or RAM .stack RAM

.const ROM or RAM .sysmem RAM

.data RAM text ROM or RAM

You can use the SECTIONS directive in the linker command file to customize the section-allocation
process. For more information about allocating sections into memory, see the linker description chapter in
the MSP430 Assembly Language Tools User's Guide.

6.1.5 C/C++ Software Stack
The C/C++ compiler uses a function frame stack to:
» Allocate local variables
e Pass arguments to functions
» Save register contents
The run-time stack grows from the high addresses to the low addresses. The compiler uses the R1
register to manage this stack. R1 is the stack pointer (SP), which points to the next unused location on the
stack.
The linker sets the stack size, creates a global symbol, _ TI_STACK_SIZE, and assigns it a value equal
to the stack size in bytes. The default stack size is 80 bytes. You can change the stack size at link time by
using the --stack_size option with the linker command. For more information on the --stack _size option,
see the linker description chapter in the MSP430 Assembly Language Tools User's Guide.

128 Run-Time Environment SLAU132S-October 2004—Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS

www.ti

INSTRUMENTS

.com Memory Model

6.1.6

Save-On-Entry Registers and C/C+ Stack Size

NOTE: Since register sizes increase for MSP430X devices (specified with --silicon_version=mspXx),
saving and restoring save-on-entry registers requires 32-bits of stack space for each register
saved on the stack. When you are porting code originally written for 16-bit MSP430 devices,
you may need to increase the C stack size from previous values.

At system initialization, SP is set to a designated address for the top of the stack. This address is the first
location past the end of the .stack section. Since the position of the stack depends on where the .stack
section is allocated, the actual address of the stack is determined at link time.

The C/C++ environment automatically decrements SP at the entry to a function to reserve all the space
necessary for the execution of that function. The stack pointer is incremented at the exit of the function to
restore the stack to the state before the function was entered. If you interface assembly language routines
to C/C++ programs, be sure to restore the stack pointer to the same state it was in before the function
was entered.

For more information about using the stack pointer, see Section 6.3; for more information about the stack,
see Section 6.4.

Stack Overflow

NOTE: The compiler provides no means to check for stack overflow during compilation or at run
time. A stack overflow disrupts the run-time environment, causing your program to fail. Be
sure to allow enough space for the stack to grow. You can use the --entry_hook option to
add code to the beginning of each function to check for stack overflow; see Section 2.14.

Dynamic Memory Allocation

The run-time-support library supplied with the MSP430 compiler contains several functions (such as
malloc, calloc, and realloc) that allow you to allocate memory dynamically for variables at run time.

Memory is allocated from a global pool, or heap, that is defined in the .sysmem section. You can set the
size of the .sysmem section by using the --heap_size=size option with the linker command. The linker also
creates a global symbol, _ SYSMEM_SIZE, and assigns it a value equal to the size of the heap in bytes.
The default size is 128 bytes. For more information on the --heap_size option, see the linker description
chapter in the MSP430 Assembly Language Tools User's Guide.

If you use any C I/O function, the RTS library allocates an I/O buffer for each file you access. This buffer
will be a bit larger than BUFSIZ, which is defined in stdio.h and defaults to 256. Make sure you allocate a
heap large enough for these buffers or use setvbuf to change the buffer to a statically-allocated buffer.

Dynamically allocated objects are not addressed directly (they are always accessed with pointers) and the
memory pool is in a separate section (.sysmem); therefore, the dynamic memory pool can have a size
limited only by the amount of available memory in your system. To conserve space in the .bss section,
you can allocate large arrays from the heap instead of defining them as global or static. For example,
instead of a definition such as:

struct big table[100];

Use a pointer and call the malloc function:
struct big *table
table = (struct big *)malloc(100*sizeof(struct big));

When allocating from a heap, make sure the size of the heap is large enough for the allocation. This is
particularly important when allocating variable-length arrays.

SLAU132S-0October 2004—Revised September 2018 Run-Time Environment 129
Submit Documentation Feedback

Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

Object Representation

13 TEXAS
INSTRUMENTS

www.ti.com

6.2

Object Representation

For general information about data types, see Section 5.6. This section explains how various data objects
are sized, aligned, and accessed.

6.2.1 Data Type Storage

Table 6-2 lists register and memory storage for various data types:

Table 6-2. Data Representation in Registers and Memory

Data Type

Register Storage

Memory Storage

char
unsigned char
short
unsigned short

Bits 0-7 of register
Bits 0-7 of register
Bits 0-15 of register
Bits 0-15 of register

8 bits aligned to 8-bit boundary
8 bits aligned to 8-bit boundary
16 bits aligned to 16-bit boundary
16 bits aligned to 16-bit boundary

int Entire register 16 bits aligned to 16-bit boundary
unsigned int Entire register 16 bits aligned to 16-bit boundary
enum @ Entire register 16 bits aligned to 16-bit boundary
float Two registers, which need not be adjacent 32 bits aligned to 16-bit boundary
long Two registers, which need not be adjacent 32 bits aligned to 16-bit boundary

unsigned long
long long

unsigned long long

Two registers, which need not be adjacent
Four registers, which need not be adjacent
Four registers, which need not be adjacent

32 bits aligned to 16-bit boundary
64 bits aligned to 16-bit boundary
64 bits aligned to 16-bit boundary

double Four registers, which need not be adjacent 64 bits aligned to 16-bit boundary
long double Four registers, which need not be adjacent 64 bits aligned to 16-bit boundary
struct Members are stored as their individual types Multiple of 8 bits aligned to boundary of largest
require. member type; members are stored and aligned as
their individual types require.
array Members are stored as their individual types Members are stored as their individual types

pointer to data member

pointer to member function

require.

Bits 0-15 of register for MSP430. Bits 0-19 of
register for MSP430X.

Components stored as their individual types
require

require. All arrays inside a structure are aligned
according to the type of each element in the
array.

varies, see Table 5-2

64 bits aligned to 32-bit boundary

@ The size of an enum varies by the size of the largest enum value and by whether it is packed or not. For details about the size of

an enum type, see Section 5.6.1.

6.2.1.1 Pointer to Member Function Types

Pointer to member function objects are stored as a structure with three members, and the layout is
equivalent to:
struct {
short int d;
short int i;
union {
void () O;
long O;
¥
}:
The parameter d is the offset added to the beginning of the class object for this pointer. The parameter | is
the index into the virtual function table, offset by 1. The index enables the NULL pointer to be represented.

Its value is -1 if the function is nonvirtual. The parameter f is the pointer to the member function if it is
nonvirtual, when | is 0. The 0 is the offset to the virtual function pointer within the class object.

130

Run-Time Environment SLAU132S-October 2004 —-Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

www.ti.com Object Representation

6.2.1.2 Structure and Array Alignment

Structures are aligned according to the member with the most restrictive alignment requirement.
Structures do not contain padding after the last member. Elements of arrays are stored in the same
manner as if they were individual objects.

The minimum alignment for arrays is that required by the type of its elements.

6.2.1.3 Field/Structure Alignment

When the compiler allocates space for a structure, it allocates as many words as are needed to hold all of
the structure's members and to comply with alignment constraints for each member.

When a structure contains a 32-bit (long) member, the long is aligned to a 1-word (16-bit) boundary. This
may require padding before, inside, or at the end of the structure to ensure that the long is aligned
accordingly and that the sizeof value for the structure is an even value.

All non-field types are aligned on word or byte boundaries. Fields are allocated as many bits as requested.
Adjacent fields are packed into adjacent bits of a word, but they do not overlap words. If a field would
overlap into the next word, the entire field is placed into the next word.

Fields are packed as they are encountered; the least significant bits of the structure word are filled first.
Example 6-1 shows the C code definition of var while Figure 6-1 shows the memory layout of var.

Example 6-1. C Code Definition of var
struct example { char c; long I; int bfl:1; int bf2:2; int bf3:3; int bf4:4; int bf5:5; int bf6:6; };

Figure 6-1. Memory Layout of var
16 15141312110 9 8 7 6 5 4 3 2 1 0
L 1 1 1 |

var+0 <pad> char c

var + 2 long (low)

var + 4 long (high)

var+6[1| 5 4 3 [2[4
var + 8 <pad 10 bits> 6

6.2.2 Character String Constants

In C, a character string constant is used in one of the following ways:

* To initialize an array of characters. For example:
char s[] = "abc";
When a string is used as an initializer, it is simply treated as an initialized array; each character is a
separate initializer. For more information about initialization, see Section 6.9.

* In an expression. For example:
strcpy (s, "abc™);
When a string is used in an expression, the string itself is defined in the .const section with the .string
assembler directive, along with a unique label that points to the string; the terminating 0 byte is

included. For example, the following lines define the string abc, and the terminating 0 byte (the label
SL5 points to the string):

.sect ".const"”
SL5: _string "abc",0
String labels have the form SLn, where n is a number assigned by the compiler to make the label
unigue. The number begins at 0 and is increased by 1 for each string defined. All strings used in a
source module are defined at the end of the compiled assembly language module.
The label SLn represents the address of the string constant. The compiler uses this label to reference
the string expression.

SLAU132S-0October 2004—Revised September 2018 Run-Time Environment 131

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

Register Conventions

13 TEXAS
INSTRUMENTS

www.ti.com

Because strings are stored in the .const section (possibly in ROM) and shared, it is bad practice for a
program to modify a string constant. The following code is an example of incorrect string use:

const char *a = "abc"
a[1] = "x"; /* Incorrect! undefined behavior */
6.3 Register Conventions
Strict conventions associate specific registers with specific operations in the C/C++ environment. If you
plan to interface an assembly language routine to a C/C++ program, you must understand and follow
these register conventions.
The register conventions dictate how the compiler uses registers and how values are preserved across
function calls. Table 6-3 shows the types of registers affected by these conventions. Table 6-4
summarizes how the compiler uses registers and whether their values are preserved across calls. For
information about how values are preserved across calls, see Section 6.4.
Table 6-3. How Register Types Are Affected by the Conventions
Register Type Description
Argument register Passes arguments during a function call
Return register Holds the return value from a function call
Expression register Holds a value
Argument pointer Used as a base value from which a function's parameters (incoming
arguments) are accessed
Stack pointer Holds the address of the top of the software stack
Program counter Contains the current address of code being executed
Table 6-4. Register Usage and Preservation Conventions
Register Alias Usage Preserved by Function®
RO PC Program counter N/A
R1 SP Stack pointer N/A®
R2 SR Status register N/A
R3 Constant generator N/A
R4-R10 Expression register Child
R11 Expression register Parent
R12 Expression register, argument pointer, return register Parent
R13 Expression register, argument pointer, return register Parent
R14 Expression register, argument pointer, return register Parent
R15 Expression register, argument pointer, return register Parent
@ The parent function refers to the function making the function call. The child function refers to the function being called.
@ The SP is preserved by the convention that everything pushed on the stack is popped off before returning.
132 Run-Time Environment SLAU132S-October 2004—Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

I

www.ti.com

TEXAS
INSTRUMENTS

Function Structure and Calling Conventions

6.4

Function Structure and Calling Conventions

The C/C++ compiler imposes a strict set of rules on function calls. Except for special run-time support
functions, any function that calls or is called by a C/C++ function must follow these rules. Failure to adhere
to these rules can disrupt the C/C++ environment and cause a program to fail.

The following sections use this terminology to describe the function-calling conventions of the C/C++
compiler:

e Argument block. The part of the local frame used to pass arguments to other functions. Arguments
are passed to a function by moving them into the argument block rather than pushing them on the
stack. The local frame and argument block are allocated at the same time.

* Register save area. The part of the local frame that is used to save the registers when the program
calls the function and restore them when the program exits the function.

» Save-on-call registers. Registers R11-R15. The called function does not preserve the values in these
registers; therefore, the calling function must save them if their values need to be preserved.

e Save-on-entry registers. Registers R4-R10. It is the called function's responsibility to preserve the
values in these registers. If the called function modifies these registers, it saves them when it gains
control and preserves them when it returns control to the calling function.

Figure 6-2 illustrates a typical function call. In this example, arguments are passed to the function, and the
function uses local variables and calls another function. The first four arguments are passed to registers

R12-R15. This example also shows allocation of a local frame and argument block for the called function.
Functions that have no local variables and do not require an argument block do not allocate a local frame.

Figure 6-2. Use of the Stack During a Function Call

Move arguments to

argument block; Allocate new frame and

Before call call function argument block
Low Low Low
Callee’s +— gp
argument
block
Callee’s
local variables
Register
save area
Caller’s ¢ SP A &SP
argument rgument ...\ Argument 1 - register R12 | Argument 5...
block argument n Argument 2 » register R13 | argument n
] , Argument 3 » register R14 ¢
Calle_rs Calle_rs Argument 4 - register R15 Callers
local variables local variables local variables
) Register) Register) Register
High | save area High | save area High save area

Legend: SP: stack pointer

SLAU132S-0October 2004—Revised September 2018
Submit Documentation Feedback

Copyright © 2004-2018, Texas Instruments Incorporated

Run-Time Environment

133

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

Function Structure and Calling Conventions www.ti.com

6.4.1 How a Function Makes a Call

A function (parent function) performs the following tasks when it calls another function (child function).

1.

The calling function (parent) is responsible for preserving any save-on-call registers across the call that
are live across the call. (The save-on-call registers are R11-R15.)

If the called function (child) returns a structure, the caller allocates space for the structure and passes
the address of that space to the called function as the first argument.

The caller places the first arguments in registers R12-R15, in that order. The caller moves the
remaining arguments to the argument block in reverse order, placing the leftmost remaining argument
at the lowest address. Thus, the leftmost remaining argument is placed at the top of the stack. An
argument with a type larger than 16 bits that would start in a save-on-call register may be split between
R15 and the stack.

The caller calls the function.

Functions defined in C++ that must be called in asm must be defined extern "C", and functions defined
in asm that must be called in C++ must be prototyped extern "C" in the C++ file.

6.4.2 How a Called Function Responds

A called function (child function) must perform the following tasks:

1. If the function is declared with an ellipsis, it can be called with a variable number of arguments. The
called function pushes these arguments on the stack if they meet both of these criteria:

e The argument includes or follows the last explicitly declared argument.
e The argument is passed in a register.

2. The called function pushes register values of all the registers that are modified by the function and that
must be preserved upon exit of the function onto the stack. Normally, these registers are the save-on-
entry registers (R4-R10) if the function contains calls. If the function is an interrupt, additional registers
may need to be preserved. For more information, see Section 6.7.

3. The called function allocates memory for the local variables and argument block by subtracting a
constant from the SP. This constant is computed with the following formula:
size of all local variables + max = constant
The max argument specifies the size of all parameters placed in the argument block for each call.

4. The called function executes the code for the function.

5. If the called function returns a value, it places the value in R12, R12 and R13, or R12 through R15,
depending on the size of the return type.

6. If the called function returns a structure, it copies the structure to the memory block that the first
argument, R12, points to. If the caller does not use the return value, R12 is set to 0. This directs the
called function not to copy the return structure.

Structures and unions with size 32 bits or less are passed by value, either in registers or on the stack.
Structures and unions larger than 32 bits are passed by reference.

In this way, the caller can be smart about telling the called function where to return the structure. For
example, in the statement s = func(x), where s is a structure and f is a function that returns a structure,
the caller can simply pass the address of s as the first argument and call f. The function f then copies
the return structure directly into s, performing the assignment automatically.

You must be careful to properly declare functions that return structures, both at the point where they
are called (so the caller properly sets up the first argument) and at the point where they are declared
(so the function knows to copy the result).

7. The called function deallocates the frame and argument block by adding the constant computed in
Step 3.

8. The called function restores all registers saved in Step 2.

9. The called function (func) returns.

134 Run-Time Environment SLAU132S-October 2004—Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

www.ti.com Function Structure and Calling Conventions

The following example is typical of how a called function responds to a call:

func: ; Called function entry point
PUSH.W rio
PUSH.W ro ; Save SOE registers

SUB.W #2,SP ; Allocate the frame
; Body of function

ADD.W #2,SP ; Deallocate the frame

POP ro ; Restore SOE registers
POP rio
RET ; Return

6.4.3 Accessing Arguments and Local Variables

A function accesses its local nonregister variables and stack arguments indirectly through the stack
pointer (SP or R1). The SP always points to the top of the stack (the most recently pushed value).

Since the stack grows toward smaller addresses, the local data on the stack for the C/C++ function is
accessed with a positive offset from the SP register.

6.5 Accessing Linker Symbols in C and C++

See the section on "Using Linker Symbols in C/C++ Applications" in the MSP430 Assembly Language
Tools User's Guide for information about referring to linker symbols in C/C++ code.

6.6 Interfacing C and C++ With Assembly Language

The following are ways to use assembly language with C/C++ code:

» Use separate modules of assembled code and link them with compiled C/C++ modules (see
Section 6.6.1).

» Use assembly language variables and constants in C/C++ source (see Section 6.6.3).
» Use inline assembly language embedded directly in the C/C++ source (see Section 6.6.5).

6.6.1 Using Assembly Language Modules With C/C++ Code

Interfacing C/C++ with assembly language functions is straightforward if you follow the calling conventions
defined in Section 6.4, and the register conventions defined in Section 6.3. C/C++ code can access
variables and call functions defined in assembly language, and assembly code can access C/C++
variables and call C/C++ functions.
Follow these guidelines to interface assembly language and C:
* You must preserve any dedicated registers modified by a function. Dedicated registers include:

— Save-on-entry registers (R4-R10)

— Stack pointer (SP or R1)

If the SP is used normally, it does not need to be explicitly preserved. In other words, the assembly
function is free to use the stack as long as anything that is pushed onto the stack is popped back off
before the function returns (thus preserving SP).

Any register that is not dedicated can be used freely without first being saved.
e Interrupt routines must save all the registers they use. For more information, see Section 6.7.

* When you call a C/C++ function from assembly language, load the designated registers with
arguments and push the remaining arguments onto the stack as described in Section 6.4.1.

Remember that a function can alter any register not designated as being preserved without having to
restore it. If the contents of any of these registers must be preserved across the call, you must
explicitly save them.

e Functions must return values correctly according to their C/C++ declarations. Double values are
returned in R12 and R13, and structures are returned as described in Step 2 of Section 6.4.1. Any
other values are returned in R12.

SLAU132S-0October 2004—Revised September 2018 Run-Time Environment 135

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

Interfacing C and C++ With Assembly Language www.ti.com

» No assembly module should use the .cinit section for any purpose other than autoinitialization of global
variables. The C/C++ startup routine assumes that the .cinit section consists entirely of initialization
tables. Disrupting the tables by putting other information in .cinit can cause unpredictable results.

» The compiler assigns linknames to all external objects. Thus, when you write assembly language code,
you must use the same linknames as those assigned by the compiler. See Section 5.15 for details.

« Any object or function declared in assembly language that is accessed or called from C/C++ must be
declared with the .def or .global directive in the assembly language modifier. This declares the symbol
as external and allows the linker to resolve references to it.

Likewise, to access a C/C++ function or object from assembly language, declare the C/C++ object with
the .ref or .global directive in the assembly language module. This creates an undeclared external
reference that the linker resolves.

» Any assembly routines that interface with MSP430x C programs are required to conform to the large-
code model:

— Use CALLA/RETA instead of CALL/RET

— Use PUSHM.A/POPM.A to save and restore any used save-on-entry registers. The entire 20-bit
register must be saved/restored.

— Manipulation of function pointers requires 20-bit operations (OP.A)

— If interfacing with C code compiled for the large-data model, data pointer manipulation must be
performed using 20-bit operations (OP.A).

6.6.2 Accessing Assembly Language Functions From C/C++

Functions defined in C++ that will be called from assembly should be defined as extern "C" in the C++ file.
Functions defined in assembly that will be called from C++ must be prototyped as extern "C" in C++.

Example 6-2 illustrates a C++ function called main, which calls an assembly language function called
asmfunc, Example 6-3. The asmfunc function takes its single argument, adds it to the C++ global variable
called gvar, and returns the result.

Example 6-2. Calling an Assembly Language Function From a C/C++ Program

extern "C" {
extern int asmfunc(int a); /* declare external asm function */
int gvar = 0; /* define global variable */

}

void main()

{

int var = 5;

var = asmfunc(var); /* call function normally */

Example 6-3. Assembly Language Program Called by Example 6-2

-global asmfunc
-global gvar

asmfunc:

MoV &gvar,R11
ADD R11,R12
RET

In the C++ program in Example 6-2, the extern "C" declaration tells the compiler to use C naming
conventions (i.e., no name mangling). When the linker resolves the .global asmfunc reference, the
corresponding definition in the assembly file will match.

The parameter var is passed in R12, and the result is returned in R12.

136

Run-Time Environment SLAU132S-October 2004 —-Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

www.ti.com Interfacing C and C++ With Assembly Language

6.6.3 Accessing Assembly Language Variables From C/C++

It is sometimes useful for a C/C++ program to access variables or constants defined in assembly
language. There are several methods that you can use to accomplish this, depending on where and how
the item is defined: a variable defined in the .bss section, a variable not defined in the .bss section, or a
linker symbol.

6.6.3.1 Accessing Assembly Language Global Variables
Accessing variables from the .bss section or a section named with .usect is straightforward:
1. Use the .bss or .usect directive to define the variable.
2. Use the .def or .global directive to make the definition external.
3. Use the appropriate linkname in assembly language.
4. In C/C++, declare the variable as extern and access it normally.

Example 6-5 and Example 6-4 show how you can access a variable defined in .bss.

Example 6-4. Assembly Language Variable Program

.bss var,4,4 ; Define the variable
.global var ; Declare it as external

Example 6-5. C Program to Access Assembly Language From Example 6-4

extern int var; /* External variable */
var = 1; /* Use the variable */

6.6.3.2 Accessing Assembly Language Constants

You can define global constants in assembly language by using the .set directive in combination with
either the .def or .global directive, or you can define them in a linker command file using a linker
assignment statement. These constants are accessible from C/C++ only with the use of special operators.

For variables defined in C/C++ or assembly language, the symbol table contains the address of the value
contained by the variable. When you access an assembly variable by name from C/C++, the compiler gets
the value using the address in the symbol table.

For assembly constants, however, the symbol table contains the actual value of the constant. The
compiler cannot tell which items in the symbol table are addresses and which are values. If you access an
assembly (or linker) constant by name, the compiler tries to use the value in the symbol table as an
address to fetch a value. To prevent this behavior, you must use the & (address of) operator to get the
value (_symval). In other words, if x is an assembly language constant, its value in C/C++ is &x. See the
section on "Using Linker Symbols in C/C++ Applications" in the MSP430 Assembly Language Tools User's
Guide for more examples that use _symval.

For more about symbols and the symbol table, refer to the section on "Symbols" in the MSP430 Assembly
Language Tools User's Guide.

You can use casts and #defines to ease the use of these symbols in your program, as in Example 6-6 and
Example 6-7.

Example 6-6. Accessing an Assembly Language Constant From C

extern int table_size; /*external ref */
#define TABLE_SIZE ((int) _symval(&table_size)) /* use cast to hide address-of */

for (1=0; i<TABLE_SIZE; ++1) /* use like normal symbol */

SLAU132S-0October 2004—Revised September 2018 Run-Time Environment 137

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

Interfacing C and C++ With Assembly Language www.ti.com

Example 6-7. Assembly Language Program for Example 6-6

table_size .set 10000 ; define the constant

6.6.4

6.6.5

6.7

6.7.1

-global _table_size ; make it global

Because you are referencing only the symbol's value as stored in the symbol table, the symbol's declared
type is unimportant. In Example 6-6, int is used. You can reference linker-defined symbols in a similar
manner.

Sharing C/C++ Header Files With Assembly Source

You can use the .cdecls assembler directive to share C headers containing declarations and prototypes
between C and assembly code. Any legal C/C++ can be used in a .cdecls block and the C/C++
declarations will cause suitable assembly to be generated automatically, allowing you to reference the
C/C++ constructs in assembly code. For more information, see the C/C++ header files chapter in the
MSP430 Assembly Language Tools User's Guide.

Using Inline Assembly Language

Within a C/C++ program, you can use the asm statement to insert a single line of assembly language into
the assembly language file created by the compiler. A series of asm statements places sequential lines of
assembly language into the compiler output with no intervening code. For more information, see

Section 5.11.

The asm statement is useful for inserting comments in the compiler output. Simply start the assembly
code string with a semicolon (;) as shown below:

asm(*';*** this is an assembly language comment™);

NOTE: Using the asm Statement

Keep the following in mind when using the asm statement:

¢ Be extremely careful not to disrupt the C/C++ environment. The compiler does not check
or analyze the inserted instructions.

¢ Avoid inserting jumps or labels into C/C++ code because they can produce
unpredictable results by confusing the register-tracking algorithms that the code
generator uses.

« Do not change the value of a C/C++ variable when using an asm statement. This is
because the compiler does not verify such statements. They are inserted as is into the
assembly code, and potentially can cause problems if you are not sure of their effect.

* Do not use the asm statement to insert assembler directives that change the assembly
environment.

¢ Avoid creating assembly macros in C code and compiling with the --symdebug:dwarf (or
-g) option. The C environment’s debug information and the assembly macro expansion
are not compatible.

Interrupt Handling

As long as you follow the guidelines in this section, you can interrupt and return to C/C++ code without
disrupting the C/C++ environment. When the C/C++ environment is initialized, the startup routine does not
enable or disable interrupts. If the system is initialized by way of a hardware reset, interrupts are disabled.
If your system uses interrupts, you must handle any required enabling or masking of interrupts. Such
operations have no effect on the C/C++ environment and are easily incorporated with asm statements or
calling an assembly language function.

Saving Registers During Interrupts

When C/C++ code is interrupted, the interrupt routine must preserve the contents of all machine registers
that are used by the routine or by any functions called by the routine. Register preservation must be
explicitly handled by the interrupt routine.

138

Run-Time Environment SLAU132S-October 2004 —-Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

I

TEXAS
INSTRUMENTS

www.ti.com Interrupt Handling

6.7.2

6.7.3

6.7.4

6.7.5

Using C/C++ Interrupt Routines

A C/C++ interrupt routine is like any other C/C++ function in that it can have local variables and register
variables. Except for software interrupt routines, an interrupt routine must be declared with no arguments
and must return void. For example:

__interrupt void example (void)

{

If a C/C++ interrupt routine does not call any other functions, only those registers that the interrupt handler
uses are saved and restored. However, if a C/C++ interrupt routine does call other functions, these
functions can modify unknown registers that the interrupt handler does not use. For this reason, the
routine saves all the save-on-call registers if any other functions are called. (This excludes banked
registers.) Do not call interrupt handling functions directly.

Interrupts can be handled directly with C/C++ functions by using the INTERRUPT pragma or the
__interrupt keyword. For information, see Section 5.12.20 and Section 5.8.2, respectively.

Using Assembly Language Interrupt Routines

You can handle interrupts with assembly language code as long as you follow the same register
conventions the compiler does. Like all assembly functions, interrupt routines can use the stack (16-bit
limit), access global C/C++ variables, and call C/C++ functions normally. When calling C/C++ functions, be
sure that any save-on-call registers are preserved before the call because the C/C++ function can modify
any of these registers. You do not need to save save-on-entry registers because they are preserved by
the called C/C++ function.

Interrupt Vectors

The interrupt vectors for the MSP430 and MSP430X devices are 16 bits. Therefore, interrupt service
routines (ISRs) must be placed into the low 64K of memory. Convenience macros are provided in the
MSP430X device headers file to declare interrupts to ensure 16-bit placement when linking.

Alternatively, use the CODE_SECTIONS pragma to place the code for ISRs into sections separate from
the default .text sections. Use the linker command file and the SECTIONS directive to ensure the code
sections associated with ISRs are placed into low memory.

If you do not specify an ISR for some interrupt vectors, an ISR will be provided for those vectors from the
RTS library and the RTS library will automatically be linked with your application. The default ISR puts the
device in low power mode. You can override the ISR provided by the RTS with the pragma vector and the
unused_interrupts keyword as shown in Section 5.12.30.

Other Interrupt Information

An interrupt routine can perform any task performed by any other function, including accessing global
variables, allocating local variables, and calling other functions.

When you write interrupt routines, keep the following points in mind:

e Itis your responsibility to handle any special masking of interrupts.

* A C/C++ interrupt routine cannot be called directly from C/C++ code. You need to arrange for an
interrupt signal to happen.

* In a system reset interrupt, such as _c_int00, you cannot assume that the run-time environment is set
up; therefore, you cannot allocate local variables, and you cannot save any information on the run-time
stack.

SLAU132S-0October 2004—Revised September 2018 Run-Time Environment 139
Submit Documentation Feedback

Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS

INSTRUMENTS
Using Intrinsics to Access Assembly Language Statements www.ti.com
6.8 Using Intrinsics to Access Assembly Language Statements
The compiler recognizes a number of intrinsic operators. Intrinsics are used like functions and produce
assembly language statements that would otherwise be inexpressible in C/C++. You can use C/C++
variables with these intrinsics, just as you would with any normal function. The intrinsics are specified with
a double leading underscore, and are accessed by calling them as you do a function. (Both single and
double leading underscores can be used with intrinsics, but a double underscore is preferred. For
example:
short state;
state = _ _get_SR_register();
No declaration of the intrinsic functions is necessary.
6.8.1 MSP430 Intrinsics
Table 6-5 lists all of the intrinsic operators in the MSP430 C/C++ compiler. A function-like prototype is
presented for each intrinsic that shows the expected type for each parameter. If the argument type does
not match the parameter, type conversions are performed on the argument. The intrinsics.h file in the
compiler's "include" directory contains function-like prototypes for all supported intrinsics.
For more information on the resulting assembly language mnemonics, see the MSP430x1xx Family User’'s
Guide, the MSP430x3xx Family User's Guide, and the MSP430x4xx Family User’s Guide.
Table 6-5. MSP430 Intrinsics
Intrinsic Generated Assembly
unsigned short __bcd_add_short(unsigned short op1, unsigned short op2); MOV opl, dst
CLRC
DADD op2, dst
unsigned long __bed_add_long(unsigned long opl, unsigned long op2); MOV opl_low, dst_low
MOV opl_hi, dst_hi
CLRC
DADD op2_low, dst_low
DADD op2_hi, dst_hi
unsigned short __bic_SR_register(unsigned short mask); BIC mask, SR
unsigned short __bic_SR_register_on_exit(unsigned short mask); BIC mask, saved_SR
unsigned short __bis_SR_register(unsigned short mask); BIS mask, SR
unsigned short __bis_SR_register_on_exit(unsigned short mask); BIS mask, saved_SR
unsigned long __datal6_read_addr(unsigned short addr); MOV.W addr, Rx
MOVA 0(Rx), dst
void __datal6_write_addr (unsigned short addr, unsigned long src); MOV.W addr, Rx
MOVA src, 0(Rx)
unsigned char __data20_read_char(unsigned long addr);® MOVA addr, Rx
MOVX.B 0(Rx), dst
unsigned long __data20_read_long(unsigned long addr);® MOVA addr, Rx
MOVX.W 0O(Rx), dst.lo
MOVX.W 2(Rx), dst.hi
unsigned short __data20_read_short(unsigned long addr);® MOVA addr, Rx
MOVX.W O(Rx), dst
void __data20_write_char(unsigned long addr, unsigned char src);® MOVA addr, Rx
MOVX.B src, O(Rx)
void __data20_write_long(unsigned long addr, unsigned long src);® MOVA addr, Rx
MOVX.W src.lo, O(Rx)
MOVX.W src.hi, 2(Rx)
void __data20_write_short(unsigned long addr, unsigned short src);® MOVA addr, Rx
MOVX.W src, 0(Rx)
void __delay_cycles(unsigned long); See Section 6.8.3.
void __disable_interrupt(void); DINT
OR
__disable_interrupts(void);
@ Intrinsic encodes multiple instructions depending on the code. The most common instructions produced are presented here.
140 Run-Time Environment SLAU132S-October 2004—Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS

INSTRUMENTS
www.ti.com Using Intrinsics to Access Assembly Language Statements
Table 6-5. MSP430 Intrinsics (continued)
Intrinsic Generated Assembly
void __enable_interrupt(void); EINT
OR
__enable_interrupts(void);

unsigned int __even_in_range(unsigned int, unsigned int); See Section 5.12.30.

unsigned short __get_interrupt_state(void); MOV SR, dst

unsigned short __get_R4_register(void); /* deprecated */ MOV.W R4, dst

unsigned short __get_R5_register(void); /* deprecated */ MOV.W R5, dst

unsigned short __get_SP_register(void); MOV SP, dst

unsigned short __get_SR_register(void); MOV SR, dst

unsigned short __get_SR_register_on_exit(void); MOV saved_SR, dst

void __low_power_mode_0(void); BIS.W #0x18, SR

void __low_power_mode_1(void); BIS.W #0x58, SR

void __low_power_mode_2(void); BIS.W #0x98, SR

void __low_power_mode_3(void); BIS.W #0xD8, SR

void __low_power_mode_4(void); BIS.W #0xF8, SR

void __low_power_mode_off_on_exit(void); BIC.W #0xFO, saved_SR

void __never_executed(void); See Section 6.8.4.

void ___no_operation(void); NOP

void __op_code(unsigned short); Encodes whatever instruction
corresponds to the argument.

short __saturated_add_signed_short(short src1, short src2); Instructions to perform saturated
addition on short values. Values
outside the range of a signed short
are capped at the maximum or
minimum value as appropriate.

long __saturated_add_signed_long(long srcl, long src2); Instructions to perform saturated
addition on long values. Values
outside the range of a signed long
are capped at the maximum or
minimum value as appropriate.

short __saturated_sub_signed_short(short srcl, short src2); Instructions to perform saturated
subtraction on short values. Values
outside the range of a signed short
are capped at the maximum or
minimum value as appropriate.

long __saturated_sub_signed_long(long srcl, long src2); Instructions to perform saturated
subtraction on long values. Values
outside the range of a signed long
are capped at the maximum or
minimum value as appropriate.

void __set_interrupt_state(unsigned short src); MOV src, SR

void __set_R4_register(unsigned short src); /* deprecated */ MOV.W src, R4

void __set_R5_register(unsigned short src); /* deprecated */ MOV.W src, R5

void __set_SP_register(unsigned short src); MOV src, SP

unsigned short __swap_bhytes(unsigned short src); MOV src, dst

SWPB dst

6.8.2 Deprecated Intrinsics

The following intrinsics have been deprecated. Using them is not recommended, because they may not be
supported in future releases.

SLAU132S-0October 2004—Revised September 2018 Run-Time Environment 141

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

Using Intrinsics to Access Assembly Language Statements www.ti.com

Table 6-6. Deprecated Intrinsics

Intrinsic

__get_RA4 register

__get_R5_register

__set R4_register

__set R5_register

6.8.3 The __delay_cycle Intrinsic

The __delay_cycles intrinsic inserts code to consume precisely the number of specified cycles with no
side effects. The number of cycles delayed must be a compile-time constant.

6.8.4 The _ never_executed Intrinsic

The MSP430 C/C++ Compiler supports a __never_executed() intrinsic that can be used to assert that a
default label in a switch block is never executed. If you assert that a default label is never executed the
compiler can generate more efficient code based on the values specified in the case labels within a switch
block.

6.8.4.1 Using _ never_executed With a Vector Generator

The __ never_executed() intrinsic is specifically useful for testing the values of an MSP430 interrupt vector
generator such as the vector generator for Timer A (TAIV). MSP430 vector generator values are mapped
to an interrupt source and are characterized in that they fall within a specific range and can only take on
even values. A common way to handle a particular interrupt source represented in a vector generator is to
use a switch statement. However, a compiler is constrained by the C language in that it can make no
assumptions about what values a switch expression may have. The compiler will have to generate code to
handle every possible value, which leads to what would appear to be inefficient code.

The __never_executed() intrinsic can be used to assert to the compiler that a switch expression can only
take on values represented by the case labels within a switch block. Having this assertion, the compiler
can avoid generating test code for handling values not specified by the switch case labels. Having this
assertion is specifically suited for handling values that characterize a vector generator.

Example 6-8 illustrates a switch block that handles the values of the Timer B (TBIV) vector generator.

Example 6-8. TBIV Vector Generator

__interrupt void Timer_Bl (void)
{
switch(TBIV)
{
case O0: break; /* Do nothing */
case 2: TBCCR1 += 255;
state +=1;
break;
case 4: TBCCRO = 254;
TBCCR1 = 159;
state =200;
break;
case 6: break;
case 8: break;
case 10: break;
case 12: break;
case 14: break;
default: _ never_executed();

142 Run-Time Environment SLAU132S-October 2004—Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

www.ti.com Using Intrinsics to Access Assembly Language Statements

In Example 6-8 using the __never_executed() intrinsic asserts that the value of TBIV can only take on the
values specified by the case labels, namely the even values from 0 to 14. Normally, the compiler would
have to generate code to handle any value which would result in extra range checks. Instead, for this
example, the compiler will generate a switch table where the value of TBIV is simply added to the PC to
jump to the appropriate code block handling each value represented by the case labels.

6.8.4.2 Using _ never_executed With General Switch Expressions

Using the __never_executed() intrinsic at the default label can also improve the generated switch code for
more general switch expressions that do not involve vector generator type values.

Example 6-9. General Switch Statement

switch(val)
{

case O:
case 5: action(a); break;

case 14: action(b); break;

default: _ never_executed();

}

Normally, for the switch expression values 0 and 5, the compiler generates code to test for both 0 and 5
since the compiler must handle the possible values 1-4. The __never_executed() intrinsic in Example 6-9
asserts that val cannot take on the values 1-4 and therefore the compiler only needs to generate a single
test (val < 6) to handle both case labels.

Additionally, using the __never_executed() intrinsic results in the assertion that if val is not 0 or 5 then it
has to be 14 and the compiler has no need to generate code to test for val == 14.

The __never_executed() intrinsic is only defined when specified as the single statement following a
default case label. The compiler ignores the use of the intrinsic in any other context.

SLAU132S-0October 2004—Revised September 2018 Run-Time Environment 143

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

System Initialization www.ti.com

6.9

6.9.1

6.9.2

System Initialization

Before you can run a C/C++ program, you must create the C/C++ run-time environment. The C/C++ boot
routine performs this task using a function called _c_int00. The run-time-support source library, rts.src,
contains the source to this routine in a module named boot.c (or boot.asm).

To begin running the system, the _c_int00 function can be called by reset hardware. You must link the
_c_int0O0 function with the other object files. This occurs automatically when you use the --rom_model or --
ram_model link option and include a standard run-time-support library as one of the linker input files.

When C/C++ programs are linked, the linker sets the entry point value in the executable output file to the
symbol _c_int0O.

The _c_int00 function performs the following tasks to initialize the environment:
1. Reserves space for the user mode run-time stack, and sets up the initial value of the stack pointer (SP)

2. ltinitializes global variables by copying the data from the initialization tables to the storage allocated for
the variables in the .bss section. If you are initializing variables at load time (--ram_model option), a
loader performs this step before the program runs (it is not performed by the boot routine). For more
information, see Section 6.9.3.

3. Executes the global constructors found in the global constructors table. For more information, see
Section 6.9.3.6.

4. Calls the main() function to run the C/C++ program

You can replace or modify the boot routine to meet your system requirements. However, the boot routine
must perform the operations listed above to correctly initialize the C/C++ environment.

Boot Hook Functions for System Pre-Initialization

Boot hooks are points at which you may insert application functions into the C/C++ boot process. Default
boot hook functions are provided with the run-time support (RTS) library. However, you can implement
customized versions of these boot hook functions, which override the default boot hook functions in the
RTS library if they are linked before the run-time library. Such functions can perform any application-
specific initialization before continuing with the C/C++ environment setup.

Note that the TI-RTOS operating system uses custom versions of the boot hook functions for system
setup, so you should be careful about overriding these functions if you are using TI-RTOS.

The following boot hook functions are available:

_system_pre_init(): This function provides a place to perform application-specific initialization. It is
invoked after the stack pointer is initialized but before any C/C++ environment setup is performed. By
default, system_pre_init() should return a non-zero value. The default C/C++ environment setup is
bypassed if _system_pre_init() returns 0.

_system_post_cinit(): This function is invoked during C/C++ environment setup, after C/C++ global data
is initialized but before any C++ constructors are called. This function should not return a value.

The _c_int00() initialization routine also provides a mechanism for an application to perform the setup (set
I/O registers, enable/disable timers, etc.) before the C/C++ environment is initialized.

Run-Time Stack

The run-time stack is allocated in a single continuous block of memory and grows down from high
addresses to lower addresses. The SP points to the top of the stack.

The code does not check to see if the run-time stack overflows. Stack overflow occurs when the stack
grows beyond the limits of the memory space that was allocated for it. Be sure to allocate adequate
memory for the stack.

The stack size can be changed at link time by using the --stack_size link option on the linker command
line and specifying the stack size as a constant directly after the option.

The C/C++ boot routine shipped with the compiler sets up the user/thread mode run-time stack. If your
program uses a run-time stack when it is in other operating modes, you must also allocate space and set
up the run-time stack corresponding to those modes.

144

Run-Time Environment SLAU132S-October 2004 —-Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

www.ti.com System Initialization

6.9.3 Automatic Initialization of Variables

Any global variables declared as preinitialized must have initial values assigned to them before a C/C++
program starts running. The process of retrieving these variables' data and initializing the variables with
the data is called autoinitialization. Internally, the compiler and linker coordinate to produce compressed
initialization tables. Your code should not access the initialization table.

6.9.3.1 Zero Initializing Variables

In ANSI C, global and static variables that are not explicitly initialized must be set to 0 before program
execution. The C/C++ compiler supports preinitialization of uninitialized variables by default. This can be
turned off by specifying the linker option --zero_init=off.

6.9.3.2 Direct Initialization

The compiler uses direct initialization to initialize global variables. For example, consider the following C

code:
int i = 23;
int a[5] = {1, 2, 3, 4, 5 };

The compiler allocates the variables 'i' and 'a[] to .data section and the initial values are placed directly.

-global i
.data
.align 4

i:
-Field 23,32 ;100
-global a
.data
.align 4

a:
-field 1,32 ; a[0] @ O
-Field 2,32 ; a[1] @ 32
-Field 3,32 ; a[2] @ 64
-field 4,32 ; a[3] @ 96
-Field 5,32 ; a[4] @ 128

Each compiled module that defines static or global variables contains these .data sections. The linker
treats the .data section like any other initialized section and creates an output section. In the load-time
initialization model, the sections are loaded into memory and used by the program. See Section 6.9.3.5.

In the run-time initialization model, the linker uses the data in these sections to create initialization data
and an additional compressed initialization table. The boot routine processes the initialization table to copy
data from load addresses to run addresses. See Section 6.9.3.3.

6.9.3.3 Autoinitialization of Variables at Run Time

Autoinitializing variables at run time is the default method of autoinitialization. To use this method, invoke
the linker with the --rom_model option.

Using this method, the linker creates a compressed initialization table and initialization data from the direct
initialized sections in the compiled module. The table and data are used by the C/C++ boot routine to
initialize variables in RAM using the table and data in ROM.

Figure 6-3 illustrates autoinitialization at run time. Use this method in any system where your application
runs from code burned into ROM.

SLAU132S-0October 2004—Revised September 2018 Run-Time Environment 145

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

System Initialization www.ti.com

Figure 6-3. Autoinitialization at Run Time

Object file Memory
C auto init C auto init
tabl((e Ra(g'c\i/l ?ata table and data
(.cinit section) (ROM) >
Boot
routine
.data
uninitialized
(RAM)

6.9.3.4 Autoinitialization Tables

The compiled object files do not have initialization tables. The variables are initialized directly . The linker,
when the --rom_model option is specified, creates C auto initialization table and the initialization data. The
linker creates both the table and the initialization data in an output section nhamed .cinit.

The autoinitialization table has the following format:
_TI_CINIT_Base:

32-bit load address 32-bit run address

* -
* -

- -

32-bit load address 32-bit run address

_TI_CINIT_Limit:

The linker defined symbols __TI_CINIT_Base and __TI_CINIT_Limit point to the start and end of the
table, respectively. Each entry in this table corresponds to one output section that needs to be initialized.
The initialization data for each output section could be encoded using different encoding.

The load address in the C auto initialization record points to initialization data with the following format:

8-bit index ‘ Encoded data ‘

The first 8-bits of the initialization data is the handler index. It indexes into a handler table to get the
address of a handler function that knows how to decode the following data.

The handler table is a list of 32-bit function pointers.

_TI_Handler_Table_Base:

32-bit handler 1 address

.
.
.

32-bit handler n address

_TI_Handler_Table_Limit:

The encoded data that follows the 8-bit index can be in one of the following format types. For clarity the 8-
bit index is also depicted for each format.

Run-Time Environment SLAU132S-October 2004 —-Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

www.ti.com System Initialization

6.9.3.4.1 Length Followed by Data Format

’ 8-bit index ‘ 24-bit padding ’ 32-bit length (N) | N byte initialization data (not compressed)

The compiler uses 24-bit padding to align the length field to a 32-bit boundary. The 32-bit length field
encodes the length of the initialization data in bytes (N). N byte initialization data is not compressed and is
copied to the run address as is.

The run-time support library has a function __TI_zero_init() to process this type of initialization data. The
first argument to this function is the address pointing to the byte after the 8-bit index. The second
argument is the run address from the C auto initialization record.

6.9.3.4.2 Zero Initialization Format

| 8-bit index | 24-bit padding | 32-bit length (N) |

The compiler uses 24-bit padding to align the length field to a 32-bit boundary. The 32-bit length field
encodes the number of bytes to be zero initialized.

The run-time support library has a function __ Tl zero_init() to process the zero initialization. The first
argument to this function is the address pointing to the byte after the 8-bit index. The second argument is
the run address from the C auto initialization record.

6.9.3.4.3 Run Length Encoded (RLE) Format

8-bit index ‘ Initialization data compressed using run length encoding

The data following the 8-bit index is compressed using Run Length Encoded (RLE) format. uses a simple
run length encoding that can be decompressed using the following algorithm:

1. Read the first byte, Delimiter (D).

2. Read the next byte (B).

3. If B !=D, copy B to the output buffer and go to step 2.
4. Read the next byte (L).

a. If L ==0, then length is either a 16-bit, a 24-bit value, or we've reached the end of the data, read
next byte (L).

1. If L==0, length is a 24-bit value or the end of the data is reached, read next byte (L).
a. IfL==0, the end of the data is reached, go to step 7.
b. Else L <<= 16, read next two bytes into lower 16 bits of L to complete 24-bit value for L.
2. Else L <<= 8, read next byte into lower 8 bits of L to complete 16-bit value for L.
b. Elseif L >0 and L < 4, copy D to the output buffer L times. Go to step 2.
c. Else, length is 8-bit value (L).
5. Read the next byte (C); C is the repeat character.
6. Write C to the output buffer L times; go to step 2.
7. End of processing.
The run-time support library has a routine __ Tl _decompress_rle24() to decompress data compressed

using RLE. The first argument to this function is the address pointing to the byte after the 8-bit index. The
second argument is the run address from the C auto initialization record.

SLAU132S-0October 2004—Revised September 2018 Run-Time Environment 147

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

System Initialization www.ti.com

RLE Decompression Routine

NOTE: The previous decompression routine, __TI_decompress_rle(), is included in the run-time-
support library for decompressing RLE encodings generated by older versions of the linker.

6.9.3.4.4 Lempel-Ziv-Storer-Szymanski Compression (LZSS) Format

’ 8-bit index ‘ Initialization data compressed using LZSS ‘

The data following the 8-bit index is compressed using LZSS compression. The run-time support library
has the routine __ Tl _decompress_lzss() to decompress the data compressed using LZSS. The first
argument to this function is the address pointing to the byte after the 8-bit index. The second argument is
the run address from the C auto initialization record.

6.9.3.5 Initialization of Variables at Load Time

Initialization of variables at load time enhances performance by reducing boot time and by saving the
memory used by the initialization tables. To use this method, invoke the linker with the --ram_model
option.

When you use the --ram_model link option, the linker does not generate C autoinitialization tables and
data. The direct initialized sections (.data) in the compiled object files are combined according to the linker
command file to generate initialized output sections. The loader loads the initialized output sections into
memory. After the load, the variables are assigned their initial values.

Since the linker does not generate the C autoinitialization tables, no boot time initialization is performed.

Figure 6-4 illustrates the initialization of variables at load time.

Figure 6-4. Initialization at Load Time
Object file Memory

.data
section M

.data section
(initialized)
(RAM)

148

Run-Time Environment SLAU132S-October 2004 —-Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

www.ti.com System Initialization

6.9.3.6 Global Constructors

All global C++ variables that have constructors must have their constructor called before main(). The
compiler builds a table of global constructor addresses that must be called, in order, before main() in a
section called .init_array. The linker combines the .init_array section form each input file to form a single
table in the .init_array section. The boot routine uses this table to execute the constructors. The linker

defines two symbols to identify the combined .init_array table as shown below. This table is not null
terminated by the linker.

Figure 6-5. Constructor Table
__TIL_INITARRAY_Base:

Address of constructor 1

Address of constructor 2

Address of constructor n

__ TL_INITARRAY_Limit:

6.9.4 Initialization Tables

The tables in the .cinit section consist of variable-size initialization records. Each variable that must be

autoinitialized has a record in the .cinit section. Figure 6-6 shows the format of the .cinit section and the
initialization records.

Figure 6-6. Format of Initialization Records in the .cinit Section
.cinit section

Initialization record 1

Initialization record 2 ~

>~ Initialization record
Initialization record 3 | .
N Size in Pointer to Initialization
I [] I \\ bytes | .bss area data

Initialization record n

The fields of an initialization record contain the following information:
» The first field of an initialization record contains the size (in bytes) of the initialization data.

The second field contains the starting address of the area within the .bss section where the
initialization data must be copied.

The third field contains the data that is copied into the .bss section to initialize the variable.
Each variable that must be autoinitialized has an initialization record in the .cinit section.

SLAU132S-0October 2004—Revised September 2018

Run-Time Environment 149
Submit Documentation Feedback

Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

System Initialization www.ti.com

Example 6-10 shows initialized global variables defined in C. Example 6-11 shows the corresponding
initialization table. The section .cinit:c is a subsection in the .cinit section that contains all scalar data. The
subsection is handled as one record during initialization, which minimizes the overall size of the .cinit
section.

Example 6-10. Initialized Variables Defined in C

int x;

short 1 = 23;

int *p =

int a[5] = {1,2,3,4,5};

Example 6-11. Initialized Information for Variables Defined in Example 6-10

-global _x
-bss _X,4,4
.sect ".cinit:c"
.align 8
-field (CIR - $) - 8, 32
-Field _1+0,32
-field 23,16 ; _1@o
.sect "o text"”
-global _1
_: .usect ".bss:c",2,2
.sect ".cinit:c"
.align 4
-Field _X,32 ; _p@O
.sect " otext"
-global _p
_p: .usect "._bss:c",4,4
.sect tocinit”
.align 8
-Field IR_1,32
-Field _at+0,32
-field 1,32 ; _a[0] @ O
-Field 2,32 ; _a[1] @ 32
-Field 3,32 ; _a[2] @ 64
-field 4,32 ; _a[3] @ 96
-Field 5,32 ; _a[4] @ 128
IR_1: .set 20
.sect "o text"”
-global _a
.bss _a,20,4
;* MARK THE END OF THE SCALAR INIT RECORD IN CINIT:C *
CIR: .sect ".cinit:c"

The .cinit section must contain only initialization tables in this format. When interfacing assembly language
modules, do not use the .cinit section for any other purpose.

150 Run-Time Environment SLAU132S-October 2004—Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

I

TEXAS
INSTRUMENTS

www.ti.com Compiling for 20-Bit MSP430X Devices

The table in the .pinit section simply consists of a list of addresses of constructors to be called (see
Figure 6-7). The constructors appear in the table after the .cinit initialization.

Figure 6-7. Format of Initialization Records in the .pinit Section

.pinit section

Address of constructor 1

Address of constructor 2

Address of constructor 3

[]

Address of constructor n

When you use the --rom_model or --ram_model option, the linker combines the .cinit sections from all the
C/C++ modules and appends a null word to the end of the composite .cinit section. This terminating record
appears as a record with a size field of 0 and marks the end of the initialization tables.

Likewise, the --rom_model or --ram_model link option causes the linker to combine all of the .pinit sections
from all C/C++ modules and append a null word to the end of the composite .pinit section. The boot
routine knows the end of the global constructor table when it encounters a null constructor address.

The const-qualified variables are initialized differently; see Section 5.8.1.

6.10 Compiling for 20-Bit MSP430X Devices
The MSP430 tools support compiling and linking code for MSP430 and MSP430X (MSP430X) devices.
See the following for more information on options and topics that apply to compiling for the MSP430X
devices:
» Use the --silicon_version=mspx option to compile for MSP430X devices. See Section 2.3.4.
* Function pointers are 20-bits. See Section 5.6 and Table 6-2.
e The compiler supports a large-code memory model while generating code for MSP430X devices. See
Section 6.1.1.
* The compiler supports a large-data memory model while generating code for MSP430X devices. See
Section 6.1.2.
* Any assembly routines that interface with MSP430X C programs must fit the large code model. See
Section 6.6.1.
« Interrupt service routines must be placed into low memory. See Section 6.7.4.
e Link with the rts430x.lib or rts430x_eh.lib run-time-support library.
SLAU132S-0October 2004—Revised September 2018 Run-Time Environment 151

Submit Documentation Feedback

Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

1 Chapter 7
I -{IE)S(’?IEUMENTS SLAU132S-0October 2004—Revised September 2018

Using Run-Time-Support Functions and Building Libraries

Some of the features of C/C++ (such as 1/O, dynamic memory allocation, string operations, and
trigonometric functions) are provided as an ANSI/ISO C/C++ standard library, rather than as part of the
compiler itself. The Tl implementation of this library is the run-time-support library (RTS). The C/C++
compiler implements the ISO standard library except for those facilities that handle exception conditions,
signal and locale issues (properties that depend on local language, nationality, or culture). Using the
ANSI/ISO standard library ensures a consistent set of functions that provide for greater portability.

In addition to the ANSI/ISO-specified functions, the run-time-support library includes routines that give you
processor-specific commands and direct C language I/O requests. These are detailed in Section 7.1 and
Section 7.2.

A library-build utility is provided with the code generation tools that lets you create customized run-time-
support libraries. This process is described in Section 7.4 .

Topic Page
7.1 Cand C++ Run-Time Support LiDraries ..o 153
A 2 1 = O 1@ U T o B P 156
7.3 Handling Reentrancy (_register_lock() and _register_unlock() Functions)............... 168
7.4 LiDrary-BUild PrOCESS .uuiuiuiiiiiiitiie ettt ettt e et e e e et e e e e e e e et e n e a e eeaeees 169
152 Using Run-Time-Support Functions and Building Libraries SLAU132S-October 2004—Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

I3 TEXAS
INSTRUMENTS
www.ti.com C and C++ Run-Time Support Libraries
7.1 Cand C++ Run-Time Support Libraries
MSP430 compiler releases include pre-built run-time support (RTS) libraries that provide all the standard
capabilities. Separate libraries are provided for each ABI and C++ exception support. See Section 7.1.8
for information on the library-naming conventions.
The run-time-support library contains the following:
* ANSI/ISO C/C++ standard library
e C /O library
» Low-level support functions that provide I/O to the host operating system
* Fundamental arithmetic routines
» System startup routine, _c_int00
» Compiler helper functions (to support language features that are not directly efficiently expressible in
C/C++)
The run-time-support libraries do not contain functions involving signals and locale issues.
The C++ library supports wide chars, in that template functions and classes that are defined for char are
also available for wide char. For example, wide char stream classes wios, wiostream, wstreambuf and so
on (corresponding to char classes ios, iostream, streambuf) are implemented. However, there is no low-
level file 1/0O for wide chars. Also, the C library interface to wide char support (through the C++ headers
<cwchar> and <cwctype>) is limited as described in Section 5.1.
TI does not provide documentation that covers the functionality of the C++ library. Tl suggests referring to
one of the following sources:
* The Standard C++ Library: A Tutorial and Reference,Nicolai M. Josuttis, Addison-Wesley, ISBN 0-201-
37926-0
» The C++ Programming Language (Third or Special Editions), Bjarne Stroustrup, Addison-Wesley,
ISBN 0-201-88954-4 or 0-201-70073-5
7.1.1 Linking Code With the Object Library
When you link your program, you must specify the object library as one of the linker input files so that
references to the I/O and run-time-support functions can be resolved. You can either specify the library or
allow the compiler to select one for you. See Section 4.3.1 for further information.
When a library is linked, the linker includes only those library members required to resolve undefined
references. For more information about linking, see the MSP430 Assembly Language Tools User's Guide.
C, C++, and mixed C and C++ programs can use the same run-time-support library. Run-time-support
functions and variables that can be called and referenced from both C and C++ will have the same
linkage.
7.1.2 Header Files
You must use the header files provided with the compiler run-time support when using functions from
C/C++ standard library. Set the MSP_C_DIR environment variable to the absolute path of the "include"
directory in the compiler release.
7.1.3 Modifying a Library Function
You can inspect or modify library functions by examining the source code in the lib/src subdirectory of the
compiler installation. For example, C:\ti\ccsv7\tools\compiler\msp430_#.#.#\lib\src.
One you have located the relevant source code, change the specific function file and rebuild the library.
You can use this source tree to rebuild the rts430.lib library or to build a new library. See Section 7.4 for
details on building.
SLAU132S-0October 2004—Revised September 2018 Using Run-Time-Support Functions and Building Libraries 153

Submit Documentation Feedback

Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

C and C++ Run-Time Support Libraries www.ti.com

7.1.4

7.1.5

7.1.6

Support for String Handling

The library includes the header files <string.h> and <strings.h>, which provide the following functions for
string handling beyond those required.

e string.h
— strdup(), which duplicates a string
* strings.h

— bemp(), which is equivalent to memcmp()

— bcopy(), which is equivalent to memmove()

— bzero(), which replaces memory locations with zero-valued bytes

— ffs(), which finds the first bit set and returns the index of that bit

— index(), which is equivalent to strchr()

— rindex(), which is equivalent to strrchr()

— strcasecmp() and strncasecmp(), which perform case-insensitive string comparisons

Minimal Support for Internationalization

The library includes the header files <locale.h>, <wchar.h>, and <wctype.h>, which provide APIs to
support non-ASCII character sets and conventions. Our implementation of these APIs is limited in the
following ways:

e The library has minimal support for wide and multibyte characters. The type wchar _t is implemented as
unsigned int. The wide character set is equivalent to the set of values of type char. The library includes
the header files <wchar.h> and <wctype.h> but does not include all the functions specified in the
standard. See Section 5.7 for more information about extended character sets.

* The C library includes the header file <locale.h> but with a minimal implementation. The only
supported locale is the C locale. That is, library behavior that is specified to vary by locale is hard-
coded to the behavior of the C locale, and attempting to install a different locale via a call to setlocale()
will return NULL.

Allowable Number of Open Files

In the <stdio.h> header file, the value for the macro FOPEN_MAX has the value of the macro _NFILE,
which is set to 10. The impact is that you can only have 10 files simultaneously open at one time
(including the pre-defined streams - stdin, stdout, stderr).

The C standard requires that the minimum value for the FOPEN_MAX macro is 8. The macro determines
the maximum number of files that can be opened at one time. The macro is defined in the stdio.h header
file and can be modified by changing the value of the _NFILE macro and recompiling the library.

154

Using Run-Time-Support Functions and Building Libraries SLAU132S-October 2004 —-Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

www.ti.com C and C++ Run-Time Support Libraries

7.1.7 Nonstandard Header Files in the Source Tree
The source code in the lib/src subdirectory of the compiler installation contains certain files that are not
specified by the ISO/ANSI standard, but are needed to build the library:

» The file.h file includes macros and definitions used for low-level I/O functions. This file is available to
be included by the user. Although it is non-standard, it is needed for building the library. There are
other header files in this same category, such as cpy_tbl.h.

» The format.h file includes structures and macros used in printf and scanf.

» The 430cio.h file includes low-level, target-specific C I/0O macro definitions. If necessary, you can
customize 430cio.h.

» The rtti.h file includes internal function prototypes necessary to implement run-time type identification.
» The vtbl.h file contains the definition of a class's virtual function table format.

7.1.8 Library Naming Conventions

By default, the linker uses automatic library selection to select the correct run-time-support library (see
Section 4.3.1.1) for your application. If you select the library manually, you must select the matching
library using a naming scheme like the following:

rts430[x[I]][abi][_eh].lib

rts430 Indicates a 16-bit MSP430 library.
X Optional x indicates a 20-bit MSP430X library.

I Optional | after x indicates a 20-bit large code, large-data model MSP430X library. (This
format is the old style.)

abi Indicates the application binary interface (ABI) used. Although the COFF file format is no
longer supported, the library filename still contains "_eabi" to distinguish the EABI
libraries from older COFF libraries.

_eabi EABI

_eh Indicates the library has exception handling support
_lc Indicates the library supports large code

_sc Indicates the library supports small code

_Id Indicates the library supports large data

_rd Indicates the library supports restricted data

_sd Indicates the library supports small data

SLAU132S-0October 2004—Revised September 2018 Using Run-Time-Support Functions and Building Libraries 155

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

The C I/O Functions www.ti.com

7.2

The C I/O Functions

The C 1/0O functions make it possible to access the host's operating system to perform 1/0O. The capability
to perform 1/0O on the host gives you more options when debugging and testing code.

The I/O functions are logically divided into layers: high level, low level, and device-driver level.

With properly written device drivers, the C-standard high-level I/O functions can be used to perform I/O on
custom user-defined devices. This provides an easy way to use the sophisticated buffering of the high-
level 1/O functions on an arbitrary device.

NOTE:

NOTE:

NOTE:

Debugger Required for Default HOST

For the default HOST device to work, there must be a debugger to handle the C I/O
requests; the default HOST device cannot work by itself in an embedded system. To work in
an embedded system, you will need to provide an appropriate driver for your system.

C I/O Mysteriously Fails

If there is not enough space on the heap for a C I/O buffer, operations on the file will silently
fail. If a call to printf() mysteriously fails, this may be the reason. The heap needs to be at
least large enough to allocate a block of size BUFSIZ (defined in stdio.h) for every file on
which I/O is performed, including stdout, stdin, and stderr, plus allocations performed by the
user's code, plus allocation bookkeeping overhead. Alternately, declare a char array of size
BUFSIZ and pass it to setvbuf to avoid dynamic allocation. To set the heap size, use the --
heap_size option when linking (refer to the Linker Description chapter in the MSP430
Assembly Language Tools User's Guide).

Open Mysteriously Fails

The run-time support limits the total number of open files to a small number relative to
general-purpose processors. If you attempt to open more files than the maximum, you may
find that the open will mysteriously fail. You can increase the number of open files by
extracting the source code from rts.src and editing the constants controlling the size of some
of the C I/O data structures. The macro _NFILE controls how many FILE (fopen) objects can
be open at one time (stdin, stdout, and stderr count against this total). (See also
FOPEN_MAX.) The macro _NSTREAM controls how many low-level file descriptors can be
open at one time (the low-level files underlying stdin, stdout, and stderr count against this
total). The macro _NDEVICE controls how many device drivers are installed at one time (the
HOST device counts against this total).

156

Using Run-Time-Support Functions and Building Libraries SLAU132S-October 2004 —-Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

www.ti.com The C I/O Functions
7.2.1 High-Level I/O Functions

The high-level functions are the standard C library of stream 1/O routines (printf, scanf, fopen, getchar, and
so on). These functions call one or more low-level I/O functions to carry out the high-level I/O request. The
high-level I/O routines operate on FILE pointers, also called streams.

Portable applications should use only the high-level 1/O functions.

To use the high-level I/O functions, include the header file stdio.h, or cstdio for C++ code, for each module
that references a C I/O function.

For example, given the following C program in a file named main.c:
#include <stdio.h>

void main(Q)

{
FILE *fid;

fid = fopen(myfile”,"w'");
fprintf(fid, "Hello, world\n");
fclose(fid);

printf(""Hello again, world\n');
3

Issuing the following compiler command compiles, links, and creates the file main.out from the run-time-
support library:
cl430 main.c --run_linker --heap_size=400 --library=rts430_eabi.lib --output_file=main.out

Executing main.out results in
Hello, world

being output to a file and
Hello again, world

being output to your host's stdout window.

7.2.1.1 Formatting and the Format Conversion Buffer

The internal routine behind the C I/O functions—such as printf(), vsnprintf(), and snprintf()—reserves stack
space for a format conversion buffer. The buffer size is set by the macro
FORMAT_CONVERSION_BUFFER, which is defined in format.h. Consider the following issues before
reducing the size of this buffer:

e The default buffer size is 100 bytes. If MINIMAL is defined, the size is set to 32, which allows integer
values without width specifiers to be printed.

» Each conversion specified with %xxxx (except %s) must fit in FORMAT_CONVERSION_BUFSIZE.
This means any individual formatted float or integer value, accounting for width and precision
specifiers, needs to fit in the buffer. Since the actual value of any representable number should easily
fit, the main concern is ensuring the width and/or precision size meets the constraints.

» The length of converted strings using %s are unaffected by any change in
FORMAT_CONVERSION_BUFSIZE. For example, you can specify printf(""%s value is %d",
some_really long_string, intval) without a problem.

» The constraint is for each individual item being converted. For example a format string of
%d iteml %Ff item2 %e item3 does not need to fit in the buffer. Instead, each converted item
specified with a % format must fit.

* There is no buffer overrun check.

SLAU132S-0October 2004—Revised September 2018 Using Run-Time-Support Functions and Building Libraries 157

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

The C I/O Functions

13 TEXAS
INSTRUMENTS

www.ti.com

7.2.2 Overview of Low-Level /O Implementation

open

Syntax

Description

Return

The low-level functions are comprised of seven basic I/O functions: open, read, write, close, Iseek,
rename, and unlink. These low-level routines provide the interface between the high-level functions and
the device-level drivers that actually perform the /0O command on the specified device.

The low-level functions are designed to be appropriate for all I/O methods, even those which are not
actually disk files. Abstractly, all I/O channels can be treated as files, although some operations (such as
Iseek) may not be appropriate. See Section 7.2.3 for more details.

The low-level functions are inspired by, but not identical to, the POSIX functions of the same names.

The low-level functions operate on file descriptors. A file descriptor is an integer returned by open,
representing an opened file. Multiple file descriptors may be associated with a file; each has its own
independent file position indicator.

Open File for 1/0

#include <file.h>

int open (const char * path , unsigned flags , int file_descriptor);

The open function opens the file specified by path and prepares it for 1/O.

» The path is the filename of the file to be opened, including an optional directory path
and an optional device specifier (see Section 7.2.5).

» The flags are attributes that specify how the file is manipulated. The flags are
specified using the following symbols:

0_RDONLY
0_WRONLY
O_RDWR
0_APPEND
0_CREAT
0_TRUNC
0_BINARY

(0x0000)
(0x0001)
(0x0002)
(0x0008)
(0x0200)
(0x0400)
(0x8000)

/*
/*
/*
/*
/*
/*
/*

open for reading */

open for writing */

open for read & write */
append on each write */
open with file create */
open with truncation */
open in binary mode */

Low-level I/O routines allow or disallow some operations depending on the flags used
when the file was opened. Some flags may not be meaningful for some devices,
depending on how the device implements files.

» The file_descriptor is assigned by open to an opened file.
The next available file descriptor is assigned to each new file opened.

Value The function returns one of the following values:
non-negative file descriptor if successful

-1

on failure

158

Using Run-Time-Support Functions and Building Libraries

SLAU132S-October 2004 —-Revised September 2018
Submit Documentation Feedback

Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS

INSTRUMENTS

www.ti.com

close — Close File for 1/0

close

Syntax

Description

Return Value

read

Syntax

Description

Return Value

write

Syntax

Description

Return Value

Close File for 1/O

#include <file.h>

int close (int file_descriptor);

The close function closes the file associated with file_descriptor.

The file_descriptor is the number assigned by open to an opened file.

The return value is one of the following:
0 if successful

-1 on failure

Read Characters from a File

#include <file.h>
int read (int file_descriptor , char * buffer , unsigned count);

The read function reads count characters into the buffer from the file associated with
file_descriptor.

» The file_descriptor is the number assigned by open to an opened file.
» The buffer is where the read characters are placed.
» The count is the number of characters to read from the file.

The function returns one of the following values:

0 if EOF was encountered before any characters were read
number of characters read (may be less than count)
-1 on failure

Write Characters to a File

#include <file.h>

int write (int file_descriptor , const char * buffer , unsigned count);

The write function writes the number of characters specified by count from the buffer to
the file associated with file_descriptor.

» The file_descriptor is the number assigned by open to an opened file.
» The buffer is where the characters to be written are located.
* The count is the number of characters to write to the file.

The function returns one of the following values:
number of characters written if successful (may be less than count)

-1 on failure

SLAU132S-0October 2004—Revised September 2018

Submit Documentation Feedback

Copyright © 2004-2018, Texas Instruments Incorporated

Using Run-Time-Support Functions and Building Libraries 159

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

Iseek — Set File Position Indicator www.ti.com

Iseek

Syntax for C

Description

Return Value

unlink

Syntax

Description

Return Value

Set File Position Indicator

#include <file.h>

off_t Iseek (int file_descriptor , off t offset, int origin);

The Iseek function sets the file position indicator for the given file to a location relative to
the specified origin. The file position indicator measures the position in characters from
the beginning of the file.

» The file_descriptor is the number assigned by open to an opened file.
» The offset indicates the relative offset from the origin in characters.

e The origin is used to indicate which of the base locations the offset is measured from.
The origin must be one of the following macros:

SEEK_SET (0x0000) Beginning of file
SEEK_CUR (0x0001) Current value of the file position indicator
SEEK_END (0x0002) End of file

The return value is one of the following:
new value of the file position indicator if successful

(off_t)-1 on failure

Delete File

#include <file.h>

int unlink (const char * path);

The unlink function deletes the file specified by path. Depending on the device, a deleted
file may still remain until all file descriptors which have been opened for that file have
been closed. See Section 7.2.3.

The path is the filename of the file, including path information and optional device prefix.
(See Section 7.2.5.)

The function returns one of the following values:

0 if successful
-1 on failure
160 Using Run-Time-Support Functions and Building Libraries SLAU132S-October 2004—Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

I3 TEXAS
INSTRUMENTS
www.ti.com rename — Rename File
rename Rename File
Syntax for C #include {<stdio.h> | <file.h>}
int rename (const char * old_name , const char * new_name);
Syntax for C++ #include {<cstdio> | <file.h>}
int std::rename (const char * old_name , const char * new_name);
Description The rename function changes the name of a file.
e The old_name is the current name of the file.
* The new_name is the new name for the file.

NOTE: The optional device specified in the new name must match the device of
the old name. If they do not match, a file copy would be required to
perform the rename, and rename is not capable of this action.

Return Value The function returns one of the following values:
0 if successful
-1 on failure

NOTE: Although rename is a low-level function, it is defined by the C standard
and can be used by portable applications.

7.2.3 Device-Driver Level I/O Functions

At the next level are the device-level drivers. They map directly to the low-level I/O functions. The default
device driver is the HOST device driver, which uses the debugger to perform file operations. The HOST
device driver is automatically used for the default C streams stdin, stdout, and stderr.

The HOST device driver shares a special protocol with the debugger running on a host system so that the
host can perform the C 1/O requested by the program. Instructions for C 1/O operations that the program
wants to perform are encoded in a special buffer named _CIOBUF _ in the .cio section. The debugger
halts the program at a special breakpoint (C$$I0$$), reads and decodes the target memory, and performs
the requested operation. The result is encoded into _CIOBUF _, the program is resumed, and the target
decodes the result.

The HOST device is implemented with seven functions, HOSTopen, HOSTclose, HOSTread, HOSTwrite,
HOSTIseek, HOSTunlink, and HOSTrename, which perform the encoding. Each function is called from the
low-level I/O function with a similar name.

A device driver is composed of seven required functions. Not all function need to be meaningful for all
devices, but all seven must be defined. Here we show the names of all seven functions as starting with
DEV, but you may choose any name except for HOST.

SLAU132S-0October 2004—Revised September 2018 Using Run-Time-Support Functions and Building Libraries 161
Submit Documentation Feedback

Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS

INSTRUMENTS
DEV_open — Open File for 1/0 www.ti.com
DEV_open Open File for 1/0
Syntax int DEV_open (const char * path , unsigned flags , int llv_fd);
Description This function finds a file matching path and opens it for I/O as requested by flags.

Return Value

« The path is the filename of the file to be opened. If the name of a file passed to open
has a device prefix, the device prefix will be stripped by open, so DEV_open will not
see it. (See Section 7.2.5 for details on the device prefix.)

* The flags are attributes that specify how the file is manipulated. The flags are
specified using the following symbols:
O_RDONLY (0x0000) /* open for reading */
O_WRONLY (0x0001) /* open for writing */
O_RDWR (0x0002) /* open for read & write */
O_APPEND (0x0008) /* append on each write */
O_CREAT (0x0200) /* open with file create */
O_TRUNC (0x0400) /* open with truncation */
O_BINARY (0x8000) /* open in binary mode */

See POSIX for further explanation of the flags.

* The llv_fd is treated as a suggested low-level file descriptor. This is a historical
artifact; newly-defined device drivers should ignore this argument. This differs from
the low-level 1/O open function.

This function must arrange for information to be saved for each file descriptor, typically
including a file position indicator and any significant flags. For the HOST version, all the
bookkeeping is handled by the debugger running on the host machine. If the device uses
an internal buffer, the buffer can be created when a file is opened, or the buffer can be
created during a read or write.

This function must return -1 to indicate an error if for some reason the file could not be
opened; such as the file does not exist, could not be created, or there are too many files
open. The value of errno may optionally be set to indicate the exact error (the HOST
device does not set errno). Some devices might have special failure conditions; for
instance, if a device is read-only, a file cannot be opened O_WRONLY.

On success, this function must return a non-negative file descriptor uniqgue among all
open files handled by the specific device. The file descriptor need not be unique across
devices. The device file descriptor is used only by low-level functions when calling the
device-driver-level functions. The low-level function open allocates its own unique file
descriptor for the high-level functions to call the low-level functions. Code that uses only
high-level I/O functions need not be aware of these file descriptors.

162 Using Run-Time-Support Functions and Building Libraries SLAU132S-October 2004—Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS

INSTRUMENTS

www.ti.com

DEV_close — Close File for 1/0

DEV_close

Syntax

Description

Return Value

DEV_read

Syntax

Description

Return Value

DEV_write

Syntax

Description

Return Value

Close File for 1/O

int DEV_close (int dev_fd);

This function closes a valid open file descriptor.

On some devices, DEV_close may need to be responsible for checking if this is the last
file descriptor pointing to a file that was unlinked. If so, it is responsible for ensuring that
the file is actually removed from the device and the resources reclaimed, if appropriate.

This function should return -1 to indicate an error if the file descriptor is invalid in some
way, such as being out of range or already closed, but this is not required. The user
should not call close() with an invalid file descriptor.

Read Characters from a File

int DEV_read (int dev_fd , char * buf , unsigned count);

The read function reads count bytes from the input file associated with dev_fd.
e The dev_fd is the number assigned by open to an opened file.

» The buf is where the read characters are placed.

» The count is the number of characters to read from the file.

This function must return -1 to indicate an error if for some reason no bytes could be
read from the file. This could be because of an attempt to read from a O_WRONLY file,
or for device-specific reasons.

If count is 0, no bytes are read and this function returns 0.

This function returns the number of bytes read, from 0 to count. O indicates that EOF
was reached before any bytes were read. It is not an error to read less than count bytes;
this is common if the are not enough bytes left in the file or the request was larger than
an internal device buffer size.

Write Characters to a File

int DEV_write (int dev_fd , const char * buf , unsigned count);

This function writes count bytes to the output file.

» The dev_fd is the number assigned by open to an opened file.

» The buffer is where the write characters are placed.

* The count is the number of characters to write to the file.

This function must return -1 to indicate an error if for some reason no bytes could be

written to the file. This could be because of an attempt to read from a O_RDONLY file,
or for device-specific reasons.

SLAU132S-0October 2004—Revised September 2018

Using Run-Time-Support Functions and Building Libraries 163

Submit Documentation Feedback

Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

DEV_lseek — Set File Position Indicator

13 TEXAS
INSTRUMENTS

www.ti.com

DEV_Iseek

Syntax

Description

Return Value

DEV_unlink

Syntax

Description

Return Value

DEV_rename

Syntax

Description

Return Value

Set File Position Indicator

off_t Iseek (int dev_fd , off_t offset, int origin);

This function sets the file's position indicator for this file descriptor as Iseek.

If Iseek is supported, it should not allow a seek to before the beginning of the file, but it
should support seeking past the end of the file. Such seeks do not change the size of
the file, but if it is followed by a write, the file size will increase.

If successful, this function returns the new value of the file position indicator.

This function must return -1 to indicate an error if for some reason no bytes could be
written to the file. For many devices, the Iseek operation is nonsensical (e.g. a computer
monitor).

Delete File

int DEV_unlink (const char * path);

Remove the association of the pathname with the file. This means that the file may no
longer be opened using this name, but the file may not actually be immediately removed.

Depending on the device, the file may be immediately removed, but for a device which
allows open file descriptors to point to unlinked files, the file will not actually be deleted
until the last file descriptor is closed. See Section 7.2.3.

This function must return -1 to indicate an error if for some reason the file could not be
unlinked (delayed removal does not count as a failure to unlink.)

If successful, this function returns 0.

Rename File

int DEV_rename (const char * old_name , const char * new_name);

This function changes the name associated with the file.
e The old_name is the current name of the file.
* The new_name is the new name for the file.

This function must return -1 to indicate an error if for some reason the file could not be
renamed, such as the file doesn't exist, or the new name already exists.

NOTE: It is inadvisable to allow renaming a file so that it is on a different device.
In general this would require a whole file copy, which may be more
expensive than you expect.

If successful, this function returns 0.

164 Using Run-Time-Support Functions and Building Libraries

SLAU132S-October 2004 —-Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

www.ti.com The C I/O Functions

7.2.4 Adding a User-Defined Device Driver for C I/O

The function add_device allows you to add and use a device. When a device is registered with
add_device, the high-level I/O routines can be used for 1/0 on that device.

You can use a different protocol to communicate with any desired device and install that protocol using
add_device; however, the HOST functions should not be modified. The default streams stdin, stdout, and
stderr can be remapped to a file on a user-defined device instead of HOST by using freopen() as in
Example 7-1. If the default streams are reopened in this way, the buffering mode will change to _|IOFBF
(fully buffered). To restore the default buffering behavior, call setvbuf on each reopened file with the
appropriate value (_IOLBF for stdin and stdout, |IONBF for stderr).

The default streams stdin, stdout, and stderr can be mapped to a file on a user-defined device instead of
HOST by using freopen() as shown in Example 7-1. Each function must set up and maintain its own data
structures as needed. Some function definitions perform no action and should just return.

Example 7-1. Mapping Default Streams to Device

#include <stdio.h>
#include <file.h>
#include "mydevice.h"

void main()

{
add_device("'mydevice', _MSA,
MYDEVICE_open, MYDEVICE_close,
MYDEVICE_read, MYDEVICE_write,
MYDEVICE_Iseek, MYDEVICE_unlink, MYDEVICE_rename);
/* ___ */
/* Re-open stderr as a MYDEVICE file */
/* ___ */
if (Ifreopen("'mydevice:stderrfile", "w", stderr))
{
puts(“'Failed to freopen stderr™);
exit(EXIT_FAILURE);
}
/* ___ */
/* stderr should not be fully buffered; we want errors to be seen as */
/* soon as possible. Normally stderr is line-buffered, but this example */
/* doesn®t buffer stderr at all. This means that there will be one call */
/* to write() for each character in the message. */
/* ___ */
if (setvbuf(stderr, NULL, _IONBF, 0))
{
puts(“'Failed to setvbuf stderr™);
exit(EXIT_FAILURE);
}
/* ___ */
/* Try it out! */
/* ___ */
printf("This goes to stdout\n');
fprintf(stderr, "This goes to stderr\n'); }
NOTE: Use Unique Function Names
The function names open, read, write, close, Iseek, rename, and unlink are used by the low-
level routines. Use other names for the device-level functions that you write.
SLAU132S-0October 2004—Revised September 2018 Using Run-Time-Support Functions and Building Libraries 165

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

The C I/O Functions www.ti.com

Use the low-level function add_device() to add your device to the device_table. The device table is a
statically defined array that supports n devices, where n is defined by the macro _NDEVICE found in
stdio.h/cstdio.

The first entry in the device table is predefined to be the host device on which the debugger is running.
The low-level routine add_device() finds the first empty position in the device table and initializes the
device fields with the passed-in arguments. For a complete description, see the add_device function.

7.2.5 The device Prefix

A file can be opened to a user-defined device driver by using a device prefix in the pathname. The device
prefix is the device name used in the call to add_device followed by a colon. For example:

FILE *fptr = fopen("mydevice:filel™, "r");

int fd = open(“'mydevice:file2, O_RDONLY, 0);

If no device prefix is used, the HOST device will be used to open the file.
add_device Add Device to Device Table

Syntax for C #include <file.h>

int add_device(char * name,
unsigned flags ,
int (* dopen)(const char *path, unsigned flags, int llv_fd),
int (* dclose)(int dev_fd),
int (* dread)(intdev_fd, char *buf, unsigned count),
int (* dwrite)(int dev_fd, const char *buf, unsigned count),
off_t (* dlseek)(int dev_fd, off_t ioffset, int origin),
int (* dunlink)(const char * path),
int (* drename)(const char *old_name, const char *new_name));

Defined in lowlev.c (in the lib/src subdirectory of the compiler installation)

Description The add_device function adds a device record to the device table allowing that device to
be used for I/O from C. The first entry in the device table is predefined to be the HOST
device on which the debugger is running. The function add_device() finds the first empty
position in the device table and initializes the fields of the structure that represent a
device.

To open a stream on a newly added device use fopen() with a string of the format
devicename : filename as the first argument.

e The name is a character string denoting the device name. The name is limited to 8
characters.

* The flags are device characteristics. The flags are as follows:
_SSA Denotes that the device supports only one open stream at a time
_MSA Denotes that the device supports multiple open streams
More flags can be added by defining them in file.h.

e The dopen, dclose, dread, dwrite, dlseek, dunlink, and drename specifiers are
function pointers to the functions in the device driver that are called by the low-level
functions to perform 1/O on the specified device. You must declare these functions
with the interface specified in Section 7.2.2. The device driver for the HOST that the
MSP430 debugger is run on are included in the C I/O library.

Return Value The function returns one of the following values:
0 if successful
-1 on failure
166 Using Run-Time-Support Functi@lsAuntBB8Hddgydblera2ied4 — Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

www.ti.com add_device — Add Device to Device Table

Example Example 7-2 does the following:
» Adds the device mydevice to the device table
* Opens a file named test on that device and associates it with the FILE pointer fid
» Writes the string Hello, world into the file
* Closes the file

Example 7-2 illustrates adding and using a device for C I/O:

Example 7-2. Program for C I/O Device

#include <file.h>
#include <stdio.h>

/ /
/* Declarations of the user-defined device drivers */
/ /

extern int MYDEVICE_open(const char *path, unsigned flags, int fno);
extern int MYDEVICE_close(int fno);
extern int MYDEVICE_read(int fno, char *buffer, unsigned count);
extern int MYDEVICE_write(int fno, const char *buffer, unsigned count);
extern off_t MYDEVICE_lseek(int fno, off_t offset, int origin);
extern int MYDEVICE_unlink(const char *path);
extern int MYDEVICE_rename(const char *old_name, char *new_name);
main()
{
FILE *fid;
add_device("mydevice", _MSA, MYDEVICE_open, MYDEVICE_close, MYDEVICE_read,
MYDEVICE_write, MYDEVICE_lseek, MYDEVICE unlink, MYDEVICE_rename);
fid = fopen(‘'mydevice:test","w'");
fprintf(fid, "Hello, world\n");

fclose(fid);

SLAU132S-0October 2004—Revised September 2018 Using Run-Time-Support Functions and Building Libraries 167

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

Handling Reentrancy (_register_lock() and _register_unlock() Functions) www.ti.com

7.3

Handling Reentrancy (_register_lock() and _register_unlock() Functions)

The C standard assumes only one thread of execution, with the only exception being extremely narrow
support for signal handlers. The issue of reentrancy is avoided by not allowing you to do much of anything
in a signal handler. However, SYS/BIOS applications have multiple threads which need to modify the
same global program state, such as the CIO buffer, so reentrancy is a concern.

Part of the problem of reentrancy remains your responsibility, but the run-time-support environment does
provide rudimentary support for multi-threaded reentrancy by providing support for critical sections. This
implementation does not protect you from reentrancy issues such as calling run-time-support functions
from inside interrupts; this remains your responsibility.

The run-time-support environment provides hooks to install critical section primitives. By default, a single-
threaded model is assumed, and the critical section primitives are not employed. In a multi-threaded
system such as SYS/BIOS, the kernel arranges to install semaphore lock primitive functions in these
hooks, which are then called when the run-time-support enters code that needs to be protected by a
critical section.

Throughout the run-time-support environment where a global state is accessed, and thus needs to be
protected with a critical section, there are calls to the function _lock(). This calls the provided primitive, if
installed, and acquires the semaphore before proceeding. Once the critical section is finished, _unlock() is
called to release the semaphore.

Usually SYS/BIOS is responsible for creating and installing the primitives, so you do not need to take any
action. However, this mechanism can be used in multi-threaded applications that do not use the
SYS/BIOS locking mechanism.

You should not define the functions _lock() and _unlock() functions directly; instead, the installation
functions are called to instruct the run-time-support environment to use these new primitives:
void _register_lock (void (*lock)(Q));

void _register_unlock(void (*unlock)(Q);

The arguments to _register_lock() and _register_unlock() should be functions which take no arguments
and return no values, and which implement some sort of global semaphore locking:

extern volatile sig_atomic_t *sema = SHARED_SEMAPHORE_LOCATION;

static int sema_depth = 0;

static void my_lock(void)

while (ATOMIC_TEST_AND_SET(sema, MY_UNIQUE_ID) != MY_UNIQUE_ID);
sema_depth++;

}

static void my_unlock(void)

{

}
The run-time-support nests calls to _lock(), so the primitives must keep track of the nesting level.

if (1--sema_depth) ATOMIC_CLEAR(sema);

168

Using Run-Time-Support Functions and Building Libraries SLAU132S-October 2004 —-Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

I3 TEXAS
INSTRUMENTS
www.ti.com Library-Build Process
7.4 Library-Build Process
When using the C/C++ compiler, you can compile your code under a large number of different
configurations and options that are not necessarily compatible with one another. Because it would be
infeasible to include all possible run-time-support library variants, compiler releases pre-build only a small
number of very commonly-used libraries such as rts430_eabi.lib.
To provide maximum flexibility, the run-time-support source code is provided as part of each compiler
release. You can build the missing libraries as desired. The linker can also automatically build missing
libraries. This is accomplished with a new library build process, the core of which is the executable mklib,
which is available beginning with CCS 5.1.
7.4.1 Required Non-Texas Instruments Software
To use the self-contained run-time-support build process to rebuild a library with custom options, the
following are required:
* sh (Bourne shell)
» gmake (GNU make 3.81 or later)
More information is available from GNU at http://www.gnu.org/software/make. GNU make (gmake) is
also available in earlier versions of Code Composer Studio. GNU make is also included in some UNIX
support packages for Windows, such as the MKS Toolkit, Cygwin, and Interix. The GNU make used on
Windows platforms should explicitly report "This program build for Windows32" when the following is
executed from the Command Prompt window:
gmake -h
All three of these programs are provided as a non-optional feature of CCS 5.1. They are also available as
part of the optional XDC Tools feature if you are using an earlier version of CCS.
The mklib program looks for these executables in the following order:
1. inyour PATH
2. in the directory getenv("CCS_UTILS_DIR")/cygwin
3. in the directory getenv("CCS_UTILS_DIR")/bin
4. in the directory getenv("XDCROOT")
5. in the directory getenv("XDCROOT")/bin
If you are invoking mklib from the command line, and these executables are not in your path, you must set
the environment variable CCS_UTILS_DIR such that getenv("CCS_UTILS_DIR")/bin contains the correct
programs.
7.4.2 Using the Library-Build Process

You should normally let the linker automatically rebuild libraries as needed. If necessary, you can run
mkKlib directly to populate libraries. See Section 7.4.2.2 for situations when you might want to do this.

7.4.2.1 Automatic Standard Library Rebuilding by the Linker

The linker looks for run-time-support libraries primarily through the MSP430_C_DIR environment variable.
Typically, one of the pathnames in MSP430_C_DIR is your install directory/lib, which contains all of the
pre-built libraries, as well as the index library libc.a. The linker looks in MSP430_C_DIR to find a library
that is the best match for the build attributes of the application. The build attributes are set indirectly
according to the command-line options used to build the application. Build attributes include things like
CPU revision. If the library name is explicitly specified (e.g. -library=rts430_eabi.lib), run-time support
looks for that library exactly. If the library name is not specified, the linker uses the index library libc.a to
pick an appropriate library. If the library is specified by path (e.g. —library=/foo/rts430_eabi.lib), it is
assumed the library already exists and it will not be built automatically.

The index library describes a set of libraries with different build attributes. The linker will compare the build
attributes for each potential library with the build attributes of the application and will pick the best fit. For
details on the index library, see the archiver chapter in the MSP430 Assembly Language Tools User's
Guide.

SLAU132S-0October 2004—Revised September 2018 Using Run-Time-Support Functions and Building Libraries 169
Submit Documentation Feedback

Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S
http://www.gnu.org/software/make

13 TEXAS
INSTRUMENTS

Library-Build Process www.ti.com

Now that the linker has decided which library to use, it checks whether the run-time-support library is
present in MSP430_C_DIR . The library must be in exactly the same directory as the index library libc.a. If
the library is not present, the linker invokes mklib to build it. This happens when the library is missing,
regardless of whether the user specified the name of the library directly or allowed the linker to pick the
best library from the index library.

The mklib program builds the requested library and places it in 'lib' directory part of MSP430_C_DIR in the
same directory as the index library, so it is available for subsequent compilations.

Things to watch out for:

» The linker invokes mklib and waits for it to finish before finishing the link, so you will experience a one-
time delay when an uncommonly-used library is built for the first time. Build times of 1-5 minutes have
been observed. This depends on the power of the host (number of CPUSs, etc).

e In a shared installation, where an installation of the compiler is shared among more than one user, it is
possible that two users might cause the linker to rebuild the same library at the same time. The mklib
program tries to minimize the race condition, but it is possible one build will corrupt the other. In a
shared environment, all libraries which might be needed should be built at install time; see
Section 7.4.2.2 for instructions on invoking mklib directly to avoid this problem.

» The index library must exist, or the linker is unable to rebuild libraries automatically.

e The index library must be in a user-writable directory, or the library is not built. If the compiler
installation must be installed read-only (a good practice for shared installation), any missing libraries
must be built at installation time by invoking mklib directly.

» The mklib program is specific to a certain version of a certain library; you cannot use one compiler
version's run-time support's mklib to build a different compiler version's run-time support library.

7.4.2.2 Invoking mklib Manually

You may need to invoke mklib directly in special circumstances:
* The compiler installation directory is read-only or shared.

* You want to build a variant of the run-time-support library that is not pre-configured in the index library
libc.a or known to mklib. (e.g. a variant with source-level debugging turned on.)

7.4.2.2.1 Building Standard Libraries

You can invoke mklib directly to build any or all of the libraries indexed in the index library libc.a. The
libraries are built with the standard options for that library; the library names and the appropriate standard
option sets are known to mklib.

This is most easily done by changing the working directory to be the compiler run-time-support library
directory 'lib* and invoking the mklib executable there:

mklib --pattern=rts430_eabi.lib

7.4.2.2.2 Shared or Read-Only Library Directory

If the compiler tools are to be installed in shared or read-only directory, mklib cannot build the standard
libraries at link time; the libraries must be built before the library directory is made shared or read-only.

At installation time, the installing user must build all of the libraries which will be used by any user. To
build all possible libraries, change the working directory to be the compiler RTS library directory 'lib' and
invoke the mklib executable there:

mklib —-all

Some targets have many libraries, so this step can take a long time. To build a subset of the libraries,
invoke mklib individually for each desired library.

170

Using Run-Time-Support Functions and Building Libraries SLAU132S-October 2004 —-Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

www.ti.com Library-Build Process

7.4.2.2.3 Building Libraries With Custom Options

You can build a library with any extra custom options desired. This is useful for building a debugging
version of the library, or with silicon exception workarounds enabled. The generated library is not a
standard library, and must not be placed in the 'lib' directory. It should be placed in a directory local to the
project which needs it. To build a debugging version of the library rts430_eabi.lib, change the working
directory to the 'lib' directory and run the command:

mklib --pattern=rts430_eabi.lib --name=rts430_dbg.lib --install_to=$Project/Debug --
extra_options="-g"

7.4.2.2.4 The mklib Program Option Summary
Run the following command to see the full list of options. These are described in Table 7-1.

mklib --help
Table 7-1. The mklib Program Options

Option Effect

--index=filename The index library (libc.a) for this release. Used to find a template library for custom builds, and to find the
source files (in the lib/src subdirectory of the compiler installation). REQUIRED.

--pattern=filename Pattern for building a library. If neither --extra_options nor --options are specified, the library will be the
standard library with the standard options for that library. If either --extra_options or --options are
specified, the library is a custom library with custom options. REQUIRED unless --all is used.

--all Build all standard libraries at once.

--install_to=directory The directory into which to write the library. For a standard library, this defaults to the same directory as
the index library (libc.a). For a custom library, this option is REQUIRED.

--compiler_bin_dir= The directory where the compiler executables are. When invoking mklib directly, the executables should
directory be in the path, but if they are not, this option must be used to tell mklib where they are. This option is

primarily for use when mklib is invoked by the linker.

--name=filename File name for the library with no directory part. Only useful for custom libraries.

--options="str' Options to use when building the library. The default options (see below) are replaced by this string. If
this option is used, the library will be a custom library.

--extra_options="str' Options to use when building the library. The default options (see below) are also used. If this option is
used, the library will be a custom library.

--list_libraries List the libraries this script is capable of building and exit. ordinary system-specific directory.

--log=filename Save the build log as filename.

--tmpdir=directory Use directory for scratch space instead of the ordinary system-specific directory.

--gmake=filename Gmake-compatible program to invoke instead of "gmake"

--parallel=N Compile N files at once ("gmake -j N").

--query=filename Does this script know how to build FILENAME?

--help or --h Display this help.

--quiet or --q Operate silently.

--verbose or --v Extra information to debug this executable.

Examples:

To build all standard libraries and place them in the compiler's library directory:
mklib --all --index=$C_DIR/lib

To build one standard library and place it in the compiler's library directory:
mklib --pattern=rts430_eabi.lib --index=$C_DIR/Ilib

To build a custom library that is just like rts430_eabi.lib, but has symbolic debugging support enabled:

mklib --pattern=rts430_eabi.lib --extra_options="-g" --index=$C_DIR/lib --
install_to=$Project/Debug --name=rts430_debug.lib

SLAU132S-0October 2004—Revised September 2018 Using Run-Time-Support Functions and Building Libraries 171

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

Library-Build Process www.ti.com

7.4.3 Extending mklib

The mklib APl is a uniform interface that allows Code Composer Studio to build libraries without needing
to know exactly what underlying mechanism is used to build it. Each library vendor (e.g. the TI compiler)
provides a library-specific copy of 'mklib' in the library directory that can be invoked, which understands a
standardized set of options, and understands how to build the library. This allows the linker to
automatically build application-compatible versions of any vendor's library without needing to register the
library in advance, as long as the vendor supports mklib.

7.4.3.1 Underlying Mechanism

The underlying mechanism can be anything the vendor desires. For the compiler run-time-support
libraries, mklib is just a wrapper that knows how to use the files in the lib/src subdirectory of the compiler
installation and invoke gmake with the appropriate options to build each library. If necessary, mklib can be
bypassed and the Makefile used directly, but this mode of operation is not supported by Tl, and you are
responsible for any changes to the Makefile. The format of the Makefile and the interface between mklib
and the Makefile is subject to change without notice. The mklib program is the forward-compatible path.

7.4.3.2 Libraries From Other Vendors

Any vendor who wishes to distribute a library that can be rebuilt automatically by the linker must provide:
* Anindex library (like 'libc.a’, but with a different name)

» A copy of mklib specific to that library

» A copy of the library source code (in whatever format is convenient)

These things must be placed together in one directory that is part of the linker's library search path
(specified either in MSP430_C_DIR or with the linker --search_path option).

If mklib needs extra information that is not possible to pass as command-line options to the compiler, the
vendor will need to provide some other means of discovering the information (such as a configuration file
written by a wizard run from inside CCS).

The vendor-supplied mklib must at least accept all of the options listed in Table 7-1 without error, even if
they do not do anything.

172

Using Run-Time-Support Functions and Building Libraries SLAU132S-October 2004 —-Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

i Chapter 8

TE S SLAU132S-0October 2004—Revised September 2018

INSTRUMENTS
C++ Name Demangler

The C++ compiler implements function overloading, operator overloading, and type-safe linking by
encoding a function's prototype and namespace in its link-level name. The process of encoding the
prototype into the linkname is often referred to as name mangling. When you inspect mangled names,
such as in assembly files, disassembler output, or compiler or linker diagnostic messages, it can be
difficult to associate a mangled name with its corresponding name in the C++ source code. The C++ name
demangler is a debugging aid that translates each mangled name it detects to its original name found in
the C++ source code.

These topics tell you how to invoke and use the C++ name demangler. The C++ name demangler reads
in input, looking for mangled names. All unmangled text is copied to output unaltered. All mangled names
are demangled before being copied to output.

Topic Page

8.1 Invoking the C++ Name Demanglero.iu it e e e aeaeaens 174

8.2 C++ Name Demangler OPtiONScciie et eea e s e e e eneasa e eaenenranes 174

8.3 Sample Usage of the C++ Name Demangler......ccoevieieieiiiiiiiiiieeeieeeeeeeneeaeeens 174
SLAU132S-0October 2004—Revised September 2018 C++ Name Demangler 173

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS

INSTRUMENTS

Invoking the C++ Name Demangler www.ti.com
8.1 Invoking the C++ Name Demangler

The syntax for invoking the C++ name demangler is:

‘ dem430 [options] [filenames]

dem430 Command that invokes the C++ name demangler.

options Options affect how the name demangler behaves. Options can appear anywhere on the

command line. (Options are discussed in Section 8.2.)
filenames Text input files, such as the assembly file output by the compiler, the assembler listing file,

the disassembly file, and the linker map file. If no filenames are specified on the command
line, dem430 uses standard input.

By default, the C++ name demangler outputs to standard output. You can use the -o file option if you want
to output to a file.

8.2 C++ Name Demangler Options

The following options apply only to the C++ name demangler:

--debug Prints debug messages.

--diag_wrap[=on,off] Sets diagnostic messages to wrap at 79 columns (on, which is the default)
or not (off).

--help Prints a help screen that provides an online summary of the C++ name
demangler options.

--output=file Outputs to the specified file rather than to standard out.

--quiet Reduces the number of messages generated during execution.

-u Specifies that external names do not have a C++ prefix.

-v Enables verbose mode (outputs a banner).

8.3 Sample Usage of the C++ Name Demangler

The examples in this section illustrate the demangling process. Example 8-1 shows a sample C++
program. Example 8-2 shows the resulting assembly that is output by the compiler. In this example, the
linknames of all the functions are mangled; that is, their signature information is encoded into their names.

Example 8-1. C++ Code for calories_in_a_banana

class banana {

public:
int calories(void);
banana();
~banana();
}:
int calories_in_a_banana(void)
{
banana Xx;
return x.calories();
}
174 C++ Name Demangler SLAU132S-October 2004—Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

www.ti.com Sample Usage of the C++ Name Demangler

Example 8-2. Resulting Assembly for calories_in_a_banana

PUSH.W r10

SUB.W #2,SP

MOV . W SP,ri12

CALL #_ZN6bananaClEv
MOV . W SP,ri12

CALL #_ZN6banana8caloriesEv
MOV.W rl2,r10

MOV . W SP,ri12

CALL #_ZN6bananaD1Ev
MOV . W rio,ri2

ADD.W #2,SP

POP rio

RET

Executing the C++ name demangler demangles all names that it believes to be mangled. Enter:
dem430 calories_in_a_banana.asm

The result is shown in Example 8-3. The linknames in Example 8-2 __ ct__6bananaFv,
_calories__6bananaFv, and ___ dt 6bananaFv are demangled.

Example 8-3. Result After Running the C++ Name Demangler

calories_in_a banana():

e e e e e e e e e e e e e e *

PUSH.W rio
SUB.W #2,SP
MOV . W SP,r12
CALL #banana: :banana()
MOV . W SP,r12
CALL #banana: :calories()
MOV . W ri2,r10
MOV . W SP,r12
CALL #banana: : ~banana()
MOV.W r10,rl2
ADD . W #2,SP
POP rio
RET

SLAU132S-0October 2004—Revised September 2018 C++ Name Demangler 175

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

I3 TEXAS
INSTRUMENTS

Appendix A

SLAU132S-0October 2004—Revised September 2018

Glossary

A.1 Terminology

absolute lister— A debugging tool that allows you to create assembler listings that contain absolute
addresses.

Application Binary Interface (ABI)— A standard that specifies the interface between two object
modules. An ABI specifies how functions are called and how information is passed from one
program component to another.

assignment statement— A statement that initializes a variable with a value.

autoinitialization— The process of initializing global C variables (contained in the .cinit section) before
program execution begins.

autoinitialization at run time— An autoinitialization method used by the linker when linking C code. The
linker uses this method when you invoke it with the --rom_maodel link option. The linker loads the
.Cinit section of data tables into memory, and variables are initialized at run time.

alias disambiguation— A technique that determines when two pointer expressions cannot point to the
same location, allowing the compiler to freely optimize such expressions.

aliasing— The ability for a single object to be accessed in more than one way, such as when two
pointers point to a single object. It can disrupt optimization, because any indirect reference could
refer to any other object.

allocation— A process in which the linker calculates the final memory addresses of output sections.

ANSI— American National Standards Institute; an organization that establishes standards voluntarily
followed by industries.

archive library— A collection of individual files grouped into a single file by the archiver.

archiver— A software program that collects several individual files into a single file called an archive
library. With the archiver, you can add, delete, extract, or replace members of the archive library.

assembler— A software program that creates a machine-language program from a source file that
contains assembly language instructions, directives, and macro definitions. The assembler
substitutes absolute operation codes for symbolic operation codes and absolute or relocatable
addresses for symbolic addresses.

assignment statement— A statement that initializes a variable with a value.

autoinitialization— The process of initializing global C variables (contained in the .cinit section) before
program execution begins.

autoinitialization at run time— An autoinitialization method used by the linker when linking C code. The
linker uses this method when you invoke it with the --rom_maodel link option. The linker loads the
.Cinit section of data tables into memory, and variables are initialized at run time.

big endian— An addressing protocol in which bytes are numbered from left to right within a word. More
significant bytes in a word have lower numbered addresses. Endian ordering is hardware-specific
and is determined at reset. See also little endian

BIS— Bit instruction set.

176 Glossary SLAU132S-October 2004—Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

www.ti.com Terminology

block— A set of statements that are grouped together within braces and treated as an entity.

.bss section— One of the default object file sections. You use the assembler .bss directive to reserve a
specified amount of space in the memory map that you can use later for storing data. The .bss
section is uninitialized.

byte— Per ANSI/ISO C, the smallest addressable unit that can hold a character.

C/C++ compiler— A software program that translates C source statements into assembly language
source statements.

code generator— A compiler tool that takes the file produced by the parser or the optimizer and
produces an assembly language source file.

COFF— Common object file format; a system of object files configured according to a standard
developed by AT&T. This ABI is no longer supported.

command file— A file that contains options, filenames, directives, or commands for the linker or hex
conversion utility.

comment— A source statement (or portion of a source statement) that documents or improves
readability of a source file. Comments are not compiled, assembled, or linked; they have no effect
on the object file.

compiler program— A utility that lets you compile, assemble, and optionally link in one step. The
compiler runs one or more source modules through the compiler (including the parser, optimizer,
and code generator), the assembler, and the linker.

configured memory— Memory that the linker has specified for allocation.
constant— A type whose value cannot change.

cross-reference listing— An output file created by the assembler that lists the symbols that were
defined, what line they were defined on, which lines referenced them, and their final values.

.data section— One of the default object file sections. The .data section is an initialized section that
contains initialized data. You can use the .data directive to assemble code into the .data section.

direct call— A function call where one function calls another using the function's name.

directives— Special-purpose commands that control the actions and functions of a software tool (as
opposed to assembly language instructions, which control the actions of a device).

disambiguation— See alias disambiguation

dynamic memory allocation— A technique used by several functions (such as malloc, calloc, and
realloc) to dynamically allocate memory for variables at run time. This is accomplished by defining a
large memory pool (heap) and using the functions to allocate memory from the heap.

ELF— Executable and Linkable Format; a system of object files configured according to the System V
Application Binary Interface specification.

emulator— A hardware development system that duplicates the MSP430 operation.
entry point— A point in target memory where execution starts.

environment variable— A system symbol that you define and assign to a string. Environmental variables
are often included in Windows batch files or UNIX shell scripts such as .cshrc or .profile.

epilog— The portion of code in a function that restores the stack and returns.

executable object file— A linked, executable object file that is downloaded and executed on a target

system.
expression— A constant, a symbol, or a series of constants and symbols separated by arithmetic
operators.
SLAU132S-0October 2004—Revised September 2018 Glossary 177

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

Terminology www.ti.com

external symbol— A symbol that is used in the current program module but defined or declared in a
different program module.

file-level optimization— A level of optimization where the compiler uses the information that it has about
the entire file to optimize your code (as opposed to program-level optimization, where the compiler
uses information that it has about the entire program to optimize your code).

function inlining— The process of inserting code for a function at the point of call. This saves the
overhead of a function call and allows the optimizer to optimize the function in the context of the
surrounding code.

global symbol— A symbol that is either defined in the current module and accessed in another, or
accessed in the current module but defined in another.

high-level language debugging— The ability of a compiler to retain symbolic and high-level language
information (such as type and function definitions) so that a debugging tool can use this
information.

indirect call— A function call where one function calls another function by giving the address of the
called function.

initialization at load time— An autoinitialization method used by the linker when linking C/C++ code. The
linker uses this method when you invoke it with the --ram_model link option. This method initializes
variables at load time instead of run time.

initialized section— A section from an object file that will be linked into an executable object file.
input section— A section from an object file that will be linked into an executable object file.

integrated preprocessor— A C/C++ preprocessor that is merged with the parser, allowing for faster
compilation. Stand-alone preprocessing or preprocessed listing is also available.

interlist feature— A feature that inserts as comments your original C/C++ source statements into the
assembly language output from the assembler. The C/C++ statements are inserted next to the
equivalent assembly instructions.

intrinsics— Operators that are used like functions and produce assembly language code that would
otherwise be inexpressible in C, or would take greater time and effort to code.

ISO— International Organization for Standardization; a worldwide federation of national standards
bodies, which establishes international standards voluntarily followed by industries.

K&R C— Kernighan and Ritchie C, the de facto standard as defined in the first edition of The C
Programming Language (K&R). Most K&R C programs written for earlier, non-1ISO C compilers
should correctly compile and run without modification.

label— A symbol that begins in column 1 of an assembler source statement and corresponds to the
address of that statement. A label is the only assembler statement that can begin in column 1.

linker— A software program that combines object files to form an executable object file that can be
allocated into system memory and executed by the device.

listing file— An output file, created by the assembler, which lists source statements, their line numbers,
and their effects on the section program counter (SPC).

little endian— An addressing protocol in which bytes are numbered from right to left within a word. More
significant bytes in a word have higher numbered addresses. Endian ordering is hardware-specific
and is determined at reset. See also big endian

loader— A device that places an executable object file into system memory.

loop unrolling— An optimization that expands small loops so that each iteration of the loop appears in
your code. Although loop unrolling increases code size, it can improve the performance of your
code.

178

Glossary SLAU132S-October 2004 —-Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

www.ti.com Terminology

macro— A user-defined routine that can be used as an instruction.
macro call— The process of invoking a macro.

macro definition— A block of source statements that define the name and the code that make up a
macro.

macro expansion— The process of inserting source statements into your code in place of a macro call.

map file— An output file, created by the linker, which shows the memory configuration, section
composition, section allocation, symbol definitions and the addresses at which the symbols were
defined for your program.

memory map— A map of target system memory space that is partitioned into functional blocks.

name mangling— A compiler-specific feature that encodes a function name with information regarding
the function's arguments return types.

object file— An assembled or linked file that contains machine-language object code.
object library— An archive library made up of individual object files.

operand— An argument of an assembly language instruction, assembler directive, or macro directive
that supplies information to the operation performed by the instruction or directive.

optimizer— A software tool that improves the execution speed and reduces the size of C programs.

options— Command-line parameters that allow you to request additional or specific functions when you
invoke a software tool.

output section— A final, allocated section in a linked, executable module.

parser— A software tool that reads the source file, performs preprocessing functions, checks the syntax,
and produces an intermediate file used as input for the optimizer or code generator.

partitioning— The process of assigning a data path to each instruction.
pop— An operation that retrieves a data object from a stack.

pragma— A preprocessor directive that provides directions to the compiler about how to treat a particular
statement.

preprocessor— A software tool that interprets macro definitions, expands macros, interprets header
files, interprets conditional compilation, and acts upon preprocessor directives.

program-level optimization— An aggressive level of optimization where all of the source files are
compiled into one intermediate file. Because the compiler can see the entire program, several
optimizations are performed with program-level optimization that are rarely applied during file-level
optimization.

prolog— The portion of code in a function that sets up the stack.

push— An operation that places a data object on a stack for temporary storage.

guiet run— An option that suppresses the normal banner and the progress information.
raw data— Executable code or initialized data in an output section.

relocation— A process in which the linker adjusts all the references to a symbol when the symbol's
address changes.

run-time environment— The run time parameters in which your program must function. These
parameters are defined by the memory and register conventions, stack organization, function call
conventions, and system initialization.

run-time-support functions— Standard 1SO functions that perform tasks that are not part of the C
language (such as memory allocation, string conversion, and string searches).

SLAU132S-0October 2004—Revised September 2018 Glossary 179

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

13 TEXAS
INSTRUMENTS

Terminology www.ti.com

run-time-support library— A library file, rts.src, which contains the source for the run time-support
functions.

section— A relocatable block of code or data that ultimately will be contiguous with other sections in the
memory map.

sign extend— A process that fills the unused MSBs of a value with the value's sign bit.
simulator— A software development system that simulates MSP430 operation.

source file— A file that contains C/C++ code or assembly language code that is compiled or assembled
to form an object file.

stand-alone preprocessor— A software tool that expands macros, #include files, and conditional
compilation as an independent program. It also performs integrated preprocessing, which includes
parsing of instructions.

static variable— A variable whose scope is confined to a function or a program. The values of static
variables are not discarded when the function or program is exited; their previous value is resumed
when the function or program is reentered.

storage class— An entry in the symbol table that indicates how to access a symbol.

string table— A table that stores symbol names that are longer than eight characters (symbol names of
eight characters or longer cannot be stored in the symbol table; instead they are stored in the string
table). The name portion of the symbol's entry points to the location of the string in the string table.

structure— A collection of one or more variables grouped together under a single name.

subsection— A relocatable block of code or data that ultimately will occupy continuous space in the
memory map. Subsections are smaller sections within larger sections. Subsections give you tighter
control of the memory map.

symbol— A string of alphanumeric characters that represents an address or a value.

symbolic debugging— The ability of a software tool to retain symbolic information that can be used by a
debugging tool such as an emulator or simulator.

target system— The system on which the object code you have developed is executed.

.text section— One of the default object file sections. The .text section is initialized and contains
executable code. You can use the .text directive to assemble code into the .text section.

trigraph sequence— A 3-character sequence that has a meaning (as defined by the ISO 646-1983
Invariant Code Set). These characters cannot be represented in the C character set and are
expanded to one character. For example, the trigraph ??' is expanded to *.

unconfigured memory— Memory that is not defined as part of the memory map and cannot be loaded
with code or data.

uninitialized section— A object file section that reserves space in the memory map but that has no
actual contents. These sections are built with the .bss and .usect directives.

unsigned value— A value that is treated as a nonnegative number, regardless of its actual sign.
variable— A symbol representing a quantity that can assume any of a set of values.

word— A 16-bit addressable location in target memory

180 Glossary SLAU132S-October 2004—Revised September 2018

Submit Documentation Feedback
Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

I3 TEXAS
INSTRUMENTS

B.1 Recent Revisions

Appendix B

SLAU132S-0October 2004—Revised September 2018

Revision History

Table B-1 lists significant changes made to this document. The left column identifies the first version of
this document in which that particular change appeared.

Table B-1. Revision History

Version

Added Chapter Location Additions / Modifications / Deletions
Introduction, gig::gg ;g
SLAU132S | Using the Compiler, Section 5'1’ and Added support for C11.
C/C++ Language | goiion 5.16.2
. . . Added the --ecc=on linker option, which enables ECC generation. Note
SLAU132S | Using the Compiler | Section 2.3.1 that ECC generation is now off by default.
SLAU132S | Using the Compiler | Section 2.5.1 The __TI_STRICT_ANSI|_MODE__and __TI_STRICT_FP_MODE__
macros are defined as 0 if their conditions are false.
Revised the section on inline function expansion and its subsections to
. .) include new pragmas and changes to the compilers decision-making
SLAU132S g/sé”ﬂttznc‘ff;‘pger’ ggg::gﬂ EE and | Jpout what functions to inline. The FORCEINLINE,
guag : FORCEINLINE_RECURSIVE, and NOINLINE pragmas have been
added.
C++11 features related to atomics are now supported. In addition,
SLAU132S | C/C++ Language Section 5.2 removed several C++ features from the exception list because they
have been supported for several releases.
SLAU132S | C/C++ Language Section 5.7 Added information about character sets and file encoding.
SLAU132S | C/C++ Language Section 5.17.2 and Added "retain" as a function attribute and variable attribute.

Section 5.17.3

Previous Revisions:

Using the Compiler,

Section 2.3 and

SLAU132R CIC++ Language Section 5.2 The compiler now follows the C++14 standard.
SLAU132R | C/C++ Language Section 5.17 The compiler now supports several Clang __has_ macro extensions.
SLAU132R | C/C++ Language Section 5.17.1 The wrapper header file GCC extension (#include_next) is now
supported.
Preliminary changes have been made in order to support C++14 in a
SLAU132Q | C/C++ Language Section 5.2 future release. These changes may cause linktime errors. Recompile
object files to resolve these errors.
SLAU132Q | C/C++ Language Section 5.8.1 Clarified exceptions to const data storage set by the const keyword.
SLAU132P | Optimization Section 3.7.1.4 Corrected error in command to process the profile data.
Section 2.3.3,
SLAU1320 Using the Compiler, | Section 5.3, Revised to state that --check_misra option is required even if the
C/C++ Language Section 5.12.3, and | CHECK_MISRA pragma is used.
Section 5.12.26
SLAU1320 | Using the Compiler | Section 2.10 Corrected the document to descr!b(_e the ---gen_preprocessor_llstlng
option. The name --gen_parser_listing was incorrect.
Run-Time . State that certain MSP430 devices do have writeable memory above
SLAU1320 Environment Section 6.1.3 the 64K boundary.
SLAU132N | Optimization Section 3.7.3 Corrected function names for _TI_start_pprof_collection() and
_TI_stop_pprof_collection().
SLAU132N | C/C++ Language Section 5.17.2 Added the call_conv function attribute to allow IAR and Tl compilers to

link against the same ROM image.

SLAU132S-0October 2004—Revised September 2018
Submit Documentation Feedback

Revision History 181

Copyright © 2004-2018, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

Recent Revisions

13 TEXAS
INSTRUMENTS

www.ti.com

Table B-1. Revision History (continued)

pElel Chapter Location Additions / Modifications / Deletions
Added
SLAU132M | Using the Compiler | Section 2.3 The --align_for_power option has been added.
. .) The default for --cinit_compression and --copy_compression has been
SLAU132M | Using the Compiler | Section 2.3 changed from RLE t0 LZSS.
SLAU132M | Using the Compiler | Section 2.3 Settings available for use with the --silicon_errata option are now
documented.
Several compiler options have been deprecated, removed, or renamed.
The compiler continues to accept some of the deprecated options, but
SLAU132M | Using the Compiler they are not recommended for use. See the Compiler Option Cleanup
wiki page for a list of deprecated and removed options, options that
have been removed from CCS, and options that have been renamed.
. . Section 2.3 and ’ .
SLAU132L | Using the Compiler Section 4.2.2 The --gen_data_subsections option has been added.
. . . The --symdebug:dwarf_version compiler option has been added. This
SLAUL32L | Using the Compiler | Section 2.3.5 option sets the DWARF debugging format version used.
T Section 3.7 and Feedback directed optimization is described. This technique can be
SLAUL32L | Optimization Section 3.8 used for code coverage analysis.
A CALLS pragma has been added to specify a set of functions that can
) be called indirectly from a specified calling function. Using this pragma
SLAUL32L | C/C++ Language Section 5.12.2 allows such indirect calls to be included in the calculation of a functions'
inclusive stack size.
Run-Time) Intrinsics have been added for saturated addition and subtraction of
SLAUL32L Environment Section 6.8 shorts and longs.
SLAU132L Run-Time Section 6.9.1 Additional boot hook functions are available. These can be customized
Environment for use during system initialization.
The COFF object file format is no longer supported. The MSP430 Code
Generation Tools now support only the Embedded Application Binary
Interface (EABI) ABI, which works only with object files that use the ELF
object file format and the DWARF debug format. Sections of this
. . document that referred to the COFF format have been removed or
SLAU132K | Introduction Section 1.4 simplified. If you would like to produce COFF output files, please use
v4.4 of the MSP430 Code Generation Tools and refer to SLAU132J for
documentation.
The --abi=coff, --symdebug:profile_coff, --no_sym_merge, and --
diable_clink options have been deprecated.
. . . The --ramfunc option has been added. If set, this option places all
SLAU132K | Using the Compiler | Section 2.3.4 functions in RAM.
. The ramfunc function attribute has been added. It specifies that a
SLAU132K | C/C++ Language Section 5.17.2 function should be placed in RAM.
SLAU132K Run-Time Section 6.1.5 Corrected documentation to state that R1 is the stack pointer
Environment o p '
SLAU132| Introduction Section 1.3 Added support for C99 and C++03.
. . Table 2-7 and Added --advice:hw_config option for ULP Advisor checking of device
SLAU132I Using the Compiler Section 5.5 configuration.
. .) Added support for C99 and C++03. The -gcc option has been
StAu1s2l Using the Compiler | Table 2-9 deprecated. The --relaxed_ansi option is now the default.
. .) Removed documentation of precompiled headers, which are not
SLAU132I Using the Compiler | Table 2-9 supported for MSPA30.
. . Table 2-12 and) - " h : -) ’
SLAU132I Using the Compiler Section 2.7 1 Added --section_sizes option for diagnostic reporting of section sizes.
. . Table 2-13 and . . .
SLAU132J Using the Compiler Section 2 3.4 Added --disable_interrupts_around_hw_mpy option.
. . Table 2-13 and The --use_hw_mpy option is now a compiler option and performs
SLAU132) Using the Compiler Section 2.3.4 additional actions at compile time.
SLAU132J Using the Compiler | Section 2.5.3 Documented that the #warning and #warn preprocessor directives are
supported.
SLAU132J Using the Compiler | Section 2.6 Added section on techniques for passing arguments to main().

182 Revision History

SLAU132S-October 2004 —-Revised September 2018
Submit Documentation Feedback

Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S
http://processors.wiki.ti.com/index.php/Compiler_option_cleanup
http://processors.wiki.ti.com/index.php/Compiler_option_cleanup
http://www.ti.com/lit/pdf/slau132J

13 TEXAS

INSTRUMENTS

www.ti.com

Recent Revisions

Table B-1. Revision History (continued)

pElel Chapter Location Additions / Modifications / Deletions
Added
. .) Documented that the inline keyword is now enabled in all modes except
SLAU132| Using the Compiler | Section 2.11 C89 strict ANSI mode.
SLAU132J | C/C++ Language Section 5.1.1 Added section documenting implementation-defined behavior.
Section 5.4,
SLAU132| C/C++ Language Section 5.12.4, and | Added pragmas for enabling/resetting ULP Advisor rule checks.
Section 5.12.27
SLAU132J | C/C++ Language Section 5.6.1 Added documentation on the size of enum types.
Section 5.12.5, Added C++ syntax for the CLINK, INTERRUPT, and RETAIN pragmas.
Section 5.12.20, Also removed unnecessary semicolons from #pragma syntax
SLAU132) C/C++ Language Section 5.12.28, and | specifications. Also the GCC interrupt and alias function attributes are
Section 5.17.2 now supported.
SLAU132J C/C++ Language Section 5.12.9 Added the diag_push and diag_pop diagnostic message pragmas.
Section 5.16, Added support for C99 and C++03. The --relaxed_ansi option is now
SLAU132| C/C++ Language Section 5.16.1, and | the default and --strict_ansi is the other option; "normal mode" for
Section 5.16.3 standards violation strictness is no longer available.
Run-Time) Added reference to section on accessing linker symbols in C and C++
SLAU132) Environment Section 6.5 in the Assembly Language Tools User's Guide.
Run-Time Section 6.8.1 and Corrected: __never_executed intrinsic has two underscores as the
SLAU132I - .)
Environment Section 6.8.4 prefix.
Run-Time Support RTS source code is no longer provided in a rtssrc.zip file. Instead, it is
SLAU132J Functions PP Section 7.1.3 located in separate files in the lib/src subdirectory of the compiler
installation.
SLAU132J C++ Name Section 8.2 Corrected information about name demangler options
Demangler ’ 9 P '

SLAU132S-0October 2004—Revised September 2018
Submit Documentation Feedback

Revision History 183

Copyright © 2004-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU132S

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with T1 products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the Tl products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other Tl intellectual property right or to any third
party intellectual property right. Tl disclaims responsibility for, and you will fully indemnify Tl and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such Tl products. TI's provision of these resources does not expand or otherwise alter TI's applicable
warranties or warranty disclaimers for Tl products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	Table of Contents
	Preface
	1 Introduction to the Software Development Tools
	1.1 Software Development Tools Overview
	1.2 Compiler Interface
	1.3 ANSI/ISO Standard
	1.4 Output Files
	1.5 Utilities

	2 Using the C/C++ Compiler
	2.1 About the Compiler
	2.2 Invoking the C/C++ Compiler
	2.3 Changing the Compiler's Behavior with Options
	2.3.1 Linker Options
	2.3.2 Frequently Used Options
	2.3.3 Miscellaneous Useful Options
	2.3.4 Run-Time Model Options
	2.3.5 Symbolic Debugging Options
	2.3.6 Specifying Filenames
	2.3.7 Changing How the Compiler Interprets Filenames
	2.3.8 Changing How the Compiler Processes C Files
	2.3.9 Changing How the Compiler Interprets and Names Extensions
	2.3.10 Specifying Directories
	2.3.11 Assembler Options
	2.3.12 Deprecated Options

	2.4 Controlling the Compiler Through Environment Variables
	2.4.1 Setting Default Compiler Options (MSP430_C_OPTION)
	2.4.2 Naming One or More Alternate Directories (MSP430_C_DIR)

	2.5 Controlling the Preprocessor
	2.5.1 Predefined Macro Names
	2.5.2 The Search Path for #include Files
	2.5.2.1 Adding a Directory to the #include File Search Path (--include_path Option)

	2.5.3 Support for the #warning and #warn Directives
	2.5.4 Generating a Preprocessed Listing File (--preproc_only Option)
	2.5.5 Continuing Compilation After Preprocessing (--preproc_with_compile Option)
	2.5.6 Generating a Preprocessed Listing File with Comments (--preproc_with_comment Option)
	2.5.7 Generating Preprocessed Listing with Line-Control Details (--preproc_with_line Option)
	2.5.8 Generating Preprocessed Output for a Make Utility (--preproc_dependency Option)
	2.5.9 Generating a List of Files Included with #include (--preproc_includes Option)
	2.5.10 Generating a List of Macros in a File (--preproc_macros Option)

	2.6 Passing Arguments to main()
	2.7 Understanding Diagnostic Messages
	2.7.1 Controlling Diagnostic Messages
	2.7.2 How You Can Use Diagnostic Suppression Options

	2.8 Other Messages
	2.9 Generating Cross-Reference Listing Information (--gen_cross_reference Option)
	2.10 Generating a Raw Listing File (--gen_preprocessor_listing Option)
	2.11 Using Inline Function Expansion
	2.11.1 Inlining Intrinsic Operators
	2.11.2 Inlining Restrictions

	2.12 Using Interlist
	2.13 Controlling Application Binary Interface
	2.14 Enabling Entry Hook and Exit Hook Functions

	3 Optimizing Your Code
	3.1 Invoking Optimization
	3.2 Controlling Code Size Versus Speed
	3.3 Performing File-Level Optimization (--opt_level=3 option)
	3.3.1 Creating an Optimization Information File (--gen_opt_info Option)

	3.4 Program-Level Optimization (--program_level_compile and --opt_level=3 options)
	3.4.1 Controlling Program-Level Optimization (--call_assumptions Option)
	3.4.2 Optimization Considerations When Mixing C/C++ and Assembly

	3.5 Automatic Inline Expansion (--auto_inline Option)
	3.6 Link-Time Optimization (--opt_level=4 Option)
	3.6.1 Option Handling
	3.6.2 Incompatible Types

	3.7 Using Feedback Directed Optimization
	3.7.1 Feedback Directed Optimization
	3.7.1.1 Phase 1 -- Collect Program Profile Information
	3.7.1.2 Phase 2 -- Use Application Profile Information for Optimization
	3.7.1.3 Generating and Using Profile Information
	3.7.1.4 Example Use of Feedback Directed Optimization
	3.7.1.5 The .ppdata Section
	3.7.1.6 Feedback Directed Optimization and Code Size Tune
	3.7.1.7 Instrumented Program Execution Overhead
	3.7.1.8 Invalid Profile Data

	3.7.2 Profile Data Decoder
	3.7.3 Feedback Directed Optimization API
	3.7.4 Feedback Directed Optimization Summary

	3.8 Using Profile Information to Analyze Code Coverage
	3.8.1 Code Coverage
	3.8.1.1 Phase1 -- Collect Program Profile Information
	3.8.1.2 Phase 2 -- Generate Code Coverage Reports

	3.8.2 Related Features and Capabilities
	3.8.2.1 Path Profiler
	3.8.2.2 Analysis Options
	3.8.2.3 Environment Variables

	3.9 Accessing Aliased Variables in Optimized Code
	3.10 Use Caution With asm Statements in Optimized Code
	3.11 Using the Interlist Feature With Optimization
	3.12 Debugging Optimized Code
	3.13 What Kind of Optimization Is Being Performed?
	3.13.1 Cost-Based Register Allocation
	3.13.2 Alias Disambiguation
	3.13.3 Branch Optimizations and Control-Flow Simplification
	3.13.4 Data Flow Optimizations
	3.13.5 Expression Simplification
	3.13.6 Inline Expansion of Functions
	3.13.7 Function Symbol Aliasing
	3.13.8 Induction Variables and Strength Reduction
	3.13.9 Loop-Invariant Code Motion
	3.13.10 Loop Rotation
	3.13.11 Instruction Scheduling
	3.13.12 Tail Merging
	3.13.13 Integer Division With Constant Divisor

	4 Linking C/C++ Code
	4.1 Invoking the Linker Through the Compiler (-z Option)
	4.1.1 Invoking the Linker Separately
	4.1.2 Invoking the Linker as Part of the Compile Step
	4.1.3 Disabling the Linker (--compile_only Compiler Option)

	4.2 Linker Code Optimizations
	4.2.1 Conditional Linking
	4.2.2 Generating Aggregate Data Subsections (--gen_data_subsections Compiler Option)

	4.3 Controlling the Linking Process
	4.3.1 Including the Run-Time-Support Library
	4.3.1.1 Automatic Run-Time-Support Library Selection
	4.3.1.2 Manual Run-Time-Support Library Selection
	4.3.1.3 Library Order for Searching for Symbols

	4.3.2 Run-Time Initialization
	4.3.3 Initialization by the Interrupt Vector
	4.3.4 Initialization of the FRAM Memory Protection Unit
	4.3.5 Initialization of Cinit and Watchdog Timer Hold
	4.3.6 Global Object Constructors
	4.3.7 Specifying the Type of Global Variable Initialization
	4.3.8 Specifying Where to Allocate Sections in Memory
	4.3.9 A Sample Linker Command File

	5 C/C++ Language Implementation
	5.1 Characteristics of MSP430 C
	5.1.1 Implementation-Defined Behavior

	5.2 Characteristics of MSP430 C++
	5.3 Using MISRA C 2004
	5.4 Using the ULP Advisor
	5.5 Advice on Hardware Configuration
	5.6 Data Types
	5.6.1 Size of Enum Types

	5.7 File Encodings and Character Sets
	5.8 Keywords
	5.8.1 The const Keyword
	5.8.2 The __interrupt Keyword
	5.8.3 The restrict Keyword
	5.8.4 The volatile Keyword

	5.9 C++ Exception Handling
	5.10 Register Variables and Parameters
	5.11 The __asm Statement
	5.12 Pragma Directives
	5.12.1 The BIS_IE1_INTERRUPT
	5.12.2 The CALLS Pragma
	5.12.3 The CHECK_MISRA Pragma
	5.12.4 The CHECK_ULP Pragma
	5.12.5 The CLINK Pragma
	5.12.6 The CODE_SECTION Pragma
	5.12.7 The DATA_ALIGN Pragma
	5.12.8 The DATA_SECTION Pragma
	5.12.9 The Diagnostic Message Pragmas
	5.12.10 The FORCEINLINE Pragma
	5.12.11 The FORCEINLINE_RECURSIVE Pragma
	5.12.12 The FUNC_ALWAYS_INLINE Pragma
	5.12.13 The FUNC_CANNOT_INLINE Pragma
	5.12.14 The FUNC_EXT_CALLED Pragma
	5.12.15 The FUNC_IS_PURE Pragma
	5.12.16 The FUNC_NEVER_RETURNS Pragma
	5.12.17 The FUNC_NO_GLOBAL_ASG Pragma
	5.12.18 The FUNC_NO_IND_ASG Pragma
	5.12.19 The FUNCTION_OPTIONS Pragma
	5.12.20 The INTERRUPT Pragma
	5.12.21 The LOCATION Pragma
	5.12.22 The NOINIT and PERSISTENT Pragmas
	5.12.23 The NOINLINE Pragma
	5.12.24 The NO_HOOKS Pragma
	5.12.25 The pack Pragma
	5.12.26 The RESET_MISRA Pragma
	5.12.27 The RESET_ULP Pragma
	5.12.28 The RETAIN Pragma
	5.12.29 The SET_CODE_SECTION and SET_DATA_SECTION Pragmas
	5.12.30 The vector Pragma

	5.13 The _Pragma Operator
	5.14 Application Binary Interface
	5.15 Object File Symbol Naming Conventions (Linknames)
	5.16 Changing the ANSI/ISO C/C++ Language Mode
	5.16.1 C99 Support (--c99)
	5.16.2 C11 Support (--c11)
	5.16.3 Strict ANSI Mode and Relaxed ANSI Mode (--strict_ansi and --relaxed_ansi)

	5.17 GNU and Clang Language Extensions
	5.17.1 Extensions
	5.17.2 Function Attributes
	5.17.3 Variable Attributes
	5.17.4 Type Attributes
	5.17.5 Built-In Functions

	5.18 Compiler Limits

	6 Run-Time Environment
	6.1 Memory Model
	6.1.1 Code Memory Models
	6.1.2 Data Memory Models
	6.1.3 Support for Near Data
	6.1.4 Sections
	6.1.5 C/C++ Software Stack
	6.1.6 Dynamic Memory Allocation

	6.2 Object Representation
	6.2.1 Data Type Storage
	6.2.1.1 Pointer to Member Function Types
	6.2.1.2 Structure and Array Alignment
	6.2.1.3 Field/Structure Alignment

	6.2.2 Character String Constants

	6.3 Register Conventions
	6.4 Function Structure and Calling Conventions
	6.4.1 How a Function Makes a Call
	6.4.2 How a Called Function Responds
	6.4.3 Accessing Arguments and Local Variables

	6.5 Accessing Linker Symbols in C and C++
	6.6 Interfacing C and C++ With Assembly Language
	6.6.1 Using Assembly Language Modules With C/C++ Code
	6.6.2 Accessing Assembly Language Functions From C/C++
	6.6.3 Accessing Assembly Language Variables From C/C++
	6.6.3.1 Accessing Assembly Language Global Variables
	6.6.3.2 Accessing Assembly Language Constants

	6.6.4 Sharing C/C++ Header Files With Assembly Source
	6.6.5 Using Inline Assembly Language

	6.7 Interrupt Handling
	6.7.1 Saving Registers During Interrupts
	6.7.2 Using C/C++ Interrupt Routines
	6.7.3 Using Assembly Language Interrupt Routines
	6.7.4 Interrupt Vectors
	6.7.5 Other Interrupt Information

	6.8 Using Intrinsics to Access Assembly Language Statements
	6.8.1 MSP430 Intrinsics
	6.8.2 Deprecated Intrinsics
	6.8.3 The __delay_cycle Intrinsic
	6.8.4 The __never_executed Intrinsic
	6.8.4.1 Using __never_executed With a Vector Generator
	6.8.4.2 Using __never_executed With General Switch Expressions

	6.9 System Initialization
	6.9.1 Boot Hook Functions for System Pre-Initialization
	6.9.2 Run-Time Stack
	6.9.3 Automatic Initialization of Variables
	6.9.3.1 Zero Initializing Variables
	6.9.3.2 Direct Initialization
	6.9.3.3 Autoinitialization of Variables at Run Time
	6.9.3.4 Autoinitialization Tables
	6.9.3.4.1 Length Followed by Data Format
	6.9.3.4.2 Zero Initialization Format
	6.9.3.4.3 Run Length Encoded (RLE) Format
	6.9.3.4.4 Lempel-Ziv-Storer-Szymanski Compression (LZSS) Format

	6.9.3.5 Initialization of Variables at Load Time
	6.9.3.6 Global Constructors

	6.9.4 Initialization Tables

	6.10 Compiling for 20-Bit MSP430X Devices

	7 Using Run-Time-Support Functions and Building Libraries
	7.1 C and C++ Run-Time Support Libraries
	7.1.1 Linking Code With the Object Library
	7.1.2 Header Files
	7.1.3 Modifying a Library Function
	7.1.4 Support for String Handling
	7.1.5 Minimal Support for Internationalization
	7.1.6 Allowable Number of Open Files
	7.1.7 Nonstandard Header Files in the Source Tree
	7.1.8 Library Naming Conventions

	7.2 The C I/O Functions
	7.2.1 High-Level I/O Functions
	7.2.1.1 Formatting and the Format Conversion Buffer

	7.2.2 Overview of Low-Level I/O Implementation
	7.2.3 Device-Driver Level I/O Functions
	7.2.4 Adding a User-Defined Device Driver for C I/O
	7.2.5 The device Prefix

	7.3 Handling Reentrancy (_register_lock() and _register_unlock() Functions)
	7.4 Library-Build Process
	7.4.1 Required Non-Texas Instruments Software
	7.4.2 Using the Library-Build Process
	7.4.2.1 Automatic Standard Library Rebuilding by the Linker
	7.4.2.2 Invoking mklib Manually
	7.4.2.2.1 Building Standard Libraries
	7.4.2.2.2 Shared or Read-Only Library Directory
	7.4.2.2.3 Building Libraries With Custom Options
	7.4.2.2.4 The mklib Program Option Summary

	7.4.3 Extending mklib
	7.4.3.1 Underlying Mechanism
	7.4.3.2 Libraries From Other Vendors

	8 C++ Name Demangler
	8.1 Invoking the C++ Name Demangler
	8.2 C++ Name Demangler Options
	8.3 Sample Usage of the C++ Name Demangler

	A Glossary
	A.1 Terminology

	B Revision History
	B.1 Recent Revisions

	Important Notice

