

MSP MCU Capacitive Touch Design Considerations

Line vs. Battery Powered Applications
MSP Applications, Dennis Lehman
Revision 09/10/2025

Overview

- Line powered devices are strongly coupled to common (earth) ground
- Battery powered devices are weakly coupled
- Stronger coupling increases sensitivity to touch
- Stronger coupling decreases susceptiblity to environmental changes
- Examples
 - Wall thermostats
 - Elocks
 - Hotel door card reader

Grounded Power Supply

- Strong coupling to ground
- Best sensitivity
 - Example ~10%

$$Sensitivity\ Line\ Powered = \frac{\frac{1}{\frac{1}{C\ touch} + \frac{1}{C\ person}}}{C\ electrode} = \frac{\frac{1}{\frac{1}{1pF} + \frac{1}{100pF}}}{10pF} = \frac{0.99pF}{10pF} = \frac{\sim 1pF}{10pF}$$

Battery Powered

- Weak coupling due to:
 - Distance to earth ground too far
 - Local ground plane area too small
- Reduced Sensitivity
 - Example ~0.1%

Battery Powered (Improvements)

- Reduce distance
- Enlarge local ground area
- Improves sensitivity
 - Example ~1%

Improve system coupling to earth ground by A, B or both.

$$Improved \ Battery \ Powered = \frac{\frac{1}{\frac{1}{C \ touch} + \frac{1}{C \ person} + \frac{1}{C \ ground}}{C \ electrode} = \frac{\frac{1}{\frac{1}{1pF} + \frac{1}{100pF} + \frac{1}{0.1pF}}}{10pF} = \frac{0.0908pF}{10pF} = 0.908\%$$

Design References

- CapTIvate Technology guide, Design Section, Battery powered devices
- SN0A952 Ground Shifting in Capacitive Sensing Applications