

November 2014

1

Java HID Demo App for MSP430™ MCUs

 MSP430 Applications

1 Introduction

The Java HID Demo Application is a host side application that provides a GUI for
communicating with a HID device. It simplifies the creation of a general purpose USB
HID device. It uses the MSP430’s HID-Datapipe format, but it can also be used for
implementing any custom HID devices not directly driven by the OS. (A mouse or a
keyboard are examples of HID devices driven directly by the OS.)

The Java HID Demo App is part of the MSP430 USB Developers Package and can be
downloaded from http://www.ti.com/tool/msp430usbdevpack.

2 System Requirements

See the ‘release_notes.html’ file included in the Java_Hid_Demo/Windows or /Linux project
folder for system requirements.

3 HID Demo Project

The HID Demo App’s project is composed of a Java GUI and C drivers. The communication
between Java and the C drivers is based on Java Native Interface (JNI). This means there is an
accompanying DLL (Windows) or SO (Linux) in the same path as the *.jar file that contains the
native calls.

Hid Demo App GUI
(com folder)

JNI
(hidapi folder)

C/C++ Driver

Hardware

HidCommunicationManager.dll or
libHidCommunicationManagerLinux.so

Figure 1. Hid Demo App Architecture

2 Error! No text of specified style in document.

The Windows project folder contains the following items:

Figure 2. Windows Project Structure

The Linux project folder contains the following items:

Figure 3. Linux Project Structure

The main Java files are contained in the ‘com’ directory, whereas all the JNI code are located in
the ‘jni’ folder. The ‘jni’ folder contains the open source ‘hidapi’ software downloaded from
https://github.com/signal11/hidapi/downloads.

https://github.com/signal11/hidapi/downloads

 Error! No text of specified style in document. 3

In the Windows version of the tool, the project folder also contains two DLLs – one for 32-bit OS
and the other for 64-bit OS. Depending on the version (32-bit or 64-bit) of the JDK or JRE used
to bring up the GUI, the tool automatically selects the appropriate DLL.

In the Linux version of the tool, the project folder contains two SOs – one for 32-bit OS and the
other for 64bit OS. Both the 32 bit and 64-bit SOs can be created on a either a 32-bit or 64-bit
Linux box by running the Makefile included in the Linux project folder. When the Makefile is run,
both the .jar file and the .so file for the selected OS bit version are created. Depending on the
version (32-bit or 64-bit) JDK installed on the OS, the tool automatically selects the appropriate
SO.

4 Running the Demo

See the ‘release_notes.html’ file included in the Java_Hid_Demo folder for how to run the HID
Demo App.

4.1 Using HID Demo App

This section gives some tips on using the HID Demo App. For additional information in the
context of using the USB examples, see the Examples Guide within the USB Developers
Package

If no USB device with the default VID/PID is connected to the host, the HID Demo App will
display the following screen to indicate an error:

Figure 4. No Device Found, for the Selected VID/PID

When a USB device with the selected VID/PID is present on the USB host, the HID Demo App
displays the main screen:

4 Error! No text of specified style in document.

VID PID SET VID PID

Serial Number of
Device

Interface Type

USB Connect/
Disconnect

Communication Text
Box

Send Button

Clear Display Area
Button

Tool Info

Display Area

Exit Button

Figure 5. HID Demo Initial Screen

Enter the appropriate VID and PID for the device connected to the computer, and click on ‘SET
VID PID’ for the tool to display the correct Serial Number and Interface. Once the USB
Connect/Disconnect button is clicked, the GUI is connected to the device and the following
screen is displayed:

 Error! No text of specified style in document. 5

Figure 6. HID Demo App GUI Connected to a USB HID-Datapipe Device

NOTE: The VID and PID displayed in the display area are in decimal format.

The user is now able to communicate with the device by typing the text in the communication
text box. See the Examples Guide (Examples_Guide_MSP430_USB.pdf, in the USB
Developers Package) for information on using the HID Demo App with the USB examples.

An example is shown below, of the HID Demo App communicating with the MSP430F5529
LaunchPad, loaded with the USB example #H1_LedOnOff:

6 Error! No text of specified style in document.

Figure 7. Communication Example with HID Device

5 Rebuilding the Demo

On Windows the HID Demo App should be built using cygwin. On Linux, a terminal window will
suffice. The Makefile that is in the project folder allows for selecting either to build the 32-bit or
64-bit versions of the *.jar file and DLL/SO file of the tool. After the system requirements for re-
building the tool are met, the user can run the Makefile in one of two ways:

 By typing ‘make’ at the command line to build the 32-bit version

 By typing ‘make JDK64=1 or make Linux=1’ at the command line to build the 64-bit
version

If 32-bit version is selected, verify that the JDK pointed to in the Makefile is for 32 bit version of
java installed on the host computer. If 64-bit version is selected, verify that the JDK pointed to in
the Makefile is for 64 bit version installed on the computer.

On Windows 7, the 64-bit version of Java is installed in the default folder ‘Program Files’, and
the 32-bit version of Java is installed in the default folder ‘Program Files (x86)’.

For additional information on re-building the Hid Demo, see the ‘release_notes.html’ file included
in the Java_Hid_Demo project folder.

 Error! No text of specified style in document. 7

6 References

 MSP430F5xx Family User’s Guide (SLAU208)

 http://www.ti.com/430usb

http://www.ti.com/430usb

