
Rev H 20 February 2015

1

The SD16_A as a thermal random number-generator
Phil Ekstrom and Ray Glaze, Northwest Marine Technology, Inc.

The SD16_A analog-to-digital converter module, implemented in some members of the Texas Instruments
MSP430 microcontroller line, can function as a surprisingly good source of randomly generated bytes, producing
them at the rate of four per millisecond. The randomness can be traced to a fundamentally thermal source, so
this is a truly random generator, not a pseudo-random one.

What to do – for randomly generated bytes.
Configure the SD16_A for maximum gain, input 7 (which is an internal short circuit), and an oversampling ratio
(OSR) of at least 256. (Smaller may do in some cases - see below). Set the input clock divider to make a 1MHz
converter clock and set the LSBACC bit to give access to the low order part of the converter’s filter register.

When running with a 16MHZ MCLK, C code to accomplish this would be (assuming an appropriate header file
that defines the symbols the same way the User’s guide does):

//1 MHz, (MCLK/16), turn reference generator on.
SD16CTL = SD16XDIV_2 + SD16DIV_0+ SD16SSEL_0 + SD16REFON;
// Oversampling ratio set to 256, enable LSB access, no interrupts,
SD16CCTL0 = SD16OSR_256 + SD16LSBACC;
// Gain = 32 (actually 28), channel is 7 (shorted)
SD16INCTL0 = SD16GAIN_32 + SD16INCH_7;
// Now Go
SD16CCTL0 |= SD16SC;

After each conversion, the SC16IFG flag will set in the SD16CCTL0 register. If you have the interrupt enabled (by
setting SD16IE in that same register) the module will post an interrupt. When the flag sets, the lower byte of the
SD16MEM0 result register contains your new randomly generated eight-bit value. Reading that byte will reset
the flag bit. At this clock rate and OSR value, the flag bit will set again with a new randomly-generated byte

every 256 seconds. To access it in C, assign the value in SD16MEM0 to a variable of type unsigned char.

This recipe assumes that the SD16_A is used for no other purpose. In fact it can be shared with another use, and
configured as a random generator only when needed or when it is free from other demands. Even when doing
its intended job as an ADC for nonzero signals, it will also be generating a noisy byte in the bottom of its output
register as a result of each conversion. If it is run with high gain and an OSR of at least 256, and if the signal
being converted lies safely within its input range limits, one would expect that the low order byte would be
much like it is during dedicated operation. We have not investigated the quality of that byte in such conditions,
but you may find it usable.

As discussed below, you may be able to use an oversampling ratio as small as 128, doubling the rate of byte
production, but the resulting entropy stream fails tests 8, 12, and 13 (see appendix) of the NIST test battery.

Finally, for each processor to be used in this service, you need to verify that the least significant bit is actually a 1
half the time, and 0 half the time. Of 14 MSP430F2013 processors we have tested, 10 behaved perfectly. Four of
them, however, showed a marked preference, for generating even numbers. They would show a 0:1 ratio in the
least significant bit as high as 5:3.

If all you want is a recipe for randomly generated bytes with a uniform distribution, there it is.

Rev H 20 February 2015

2

What to do - for randomly generated numbers over some other range
For some purposes you need numbers uniformly distributed over some range other than 0-255, perhaps over a
range that is not any power of two.

One particular case of interest is the Fisher-Yates Shuffle algorithm. That algorithm requires one number
randomly generated modulo 2, another modulo 3, another modulo 4, and so on up to a final number randomly
generated modulo N for shuffling N objects. See the Wikipedia article on the Fisher-Yates shuffle for a
description of the algorithm and of the difficulties that can arise when randomly generating the input numbers
that are needed to specify an output order.

In any such case you can start out with numbers that have a Gaussian (Normal) distribution with a standard
deviation at least 70% as large as the numerical range you need. You then take those Gaussian-distributed
numbers modulo your range. The result is a uniform distribution over that range. That is, in fact, just what we
did in the case above, taking Gaussian-distributed numbers from the SD16 modulo 28.

However when the desired range is not a power of two, we will need to divide the word read from the SD16 by
the modulus using unsigned integer division with remainder; that means we must start with a positive number.
The offset specifications of the SD16 are not tight enough to determine the sign of the low order word of the
filter register at high gain and large oversampling ratio. At an oversampling ratio of 128 the offset , specified as
1.5% of full scale, amounts to 214 LSB in the lower end of the filter register, and that will fit in a 16-bit field.
Because of the way the result is scaled by the ADC hardware, each doubling of the OSR multiplies the apparent
offset (as seen in the bottom half of the register) by a factor of 8, so the offset at OSR=256 is 217 LSB, which will
not fit. We will need to do something more to control the average value of the distribution so that all of our
numbers are positive. The simplest option is to use the general scheme above, but add three more processing
steps:

1) We first generate two Gaussian numbers. In this case we set up the SD16 as above, but instead of a byte
we load an entire 16-bit word from the low end of the SD16.

2) We form the difference of those two words (which makes numbers with a zero mean, no matter what
the offset voltage of the ADC is) and finally,

3) We add the desired offset, ordinarily215=32768. (The actual value does not matter, so long as it prevents
both overflow and underflow. 215 is as far from both 0 and 216 as we can simultaneously get.)

That scheme is very robust and especially suited to a production version of some product. Another possibility
that is twice as fast per sample generated is to do a preliminary experiment to measure the mean of each
particular SD16 for the particular mode of operation we will use, and then subtract that mean from each sample
before adding the desired offset. One should probably re-measure the average every so often, perhaps at every
power-on.

A more surprising possibility that still produces an entropy item for every conversion is to take the difference of
successive ADC results, but to re-use the later one for forming the next difference. That is, from ADC results ai,

ai+1, ai+2, etc. one generates iii aax  1 , 121   iii aax etc. That it can be useful is surprising because even

if the ai are uncorrelated, one can show that the original differences xi (before taking them modulo the desired
range) are highly correlated at lag 1. The expected correlation coefficient is r(1) =-0.5. It will turn out below that
successive ADC words are already positively correlated, so the observed value of r(1) is not exactly -½, but it is
negative and substantially different from zero. However it will also turn out that taking the stream modulo a
sufficiently small number m, as we must do to get a flat distribution, will also erase the correlations. We leave

Rev H 20 February 2015

3

the details for a later section, but the point to be made here is that there is a third way of forming differences
with known mean, that all three can be considered, and one makes twice as many results from a given stream of
ADC outputs.

With our known-positive numbers drawn from a population with a Gaussian distribution, we divide by the
desired range of each number we need, and each remainder is our randomly generated number over the range
bounded by 0 and the divisor. We may divide each Gaussian number repeatedly until the product of all the
divisors exceeds 1.4 times the standard deviation. For instance, we will see below that the difference of two
Gaussian numbers generated with OSR = 256 has a standard deviation near 1250, and 1250*1.4 = 1750. If we
are making integers for a Fisher-Yates shuffle, we can safely divide out remainders modulo the numbers 2
through 6, since 2x3x4x5x6 =720. We cannot safely divide again by our next modulus 7, since 720x7=5040 >
1750. Instead, we begin with a new Gaussian number from the SD16 and divide by 7 through 9, since 7x8x9=504
but cannot then also divide by 10 since 504x10=5040 > 1750.

If you know in advance how large N is, there is usually a way of grouping your divisors to make better use of the
entropy you have generated than this example does, that is to make the product of your divisors nearer to the
limit of 1750 than we did just above. We leave that as a matter of tactics for any given situation.

Rev H 20 February 2015

4

How well it works - bytes
If we are trying to make a number generator with a uniform distribution, one that produces all possible values in
its output range with equal probability, we ought to check its output to see that all values really are produced
about equally often. If we want the generator’s past history to offer no clues about its future actions, we ought
to check the autocorrelation function of the byte sequence to make sure that a large byte value is not, for
instance, usually followed by a small one or vice versa. As will be argued in the appendix, these are necessary
but not sufficient tests for randomness.

To run these tests, we need a file of output bytes from our generator. There is a program in the appendix which
when loaded into the target board of an eZ430_2013 evaluation kit sends out bytes in start-stop serial form (for
receipt by a UART) that have been randomly generated by the SD16_A in the manner described above. It uses
the Timer_a module to simulate
a serial communication port
and runs at 115.2 KBaud with
its output on P1.1. We removed
the target board from the USB
stick hardware of that
evaluation kit, attached a serial-
to-USB interface cable from
FTDI, and read the byte stream
into a PC for further processing.

The results of these two tests
on a sample of N=106 bytes
generated in this manner are
shown in the figures at the
right.

The first figure shows a
histogram of values observed in
the record, accumulated by
setting up 256 counters (the
“bins”), one for each possible
byte value, scanning the record,
and for each value observed
incrementing the
corresponding bin. The second
figure is an expanded version
with three heavy black lines
indicating the average n and
the average plus and minus the
expected standard deviation

nn. The average number in
each bin is

 25610256/ 6Nn

3906.25. Theoretically we expect about 63% of the values to fall between the outer lines.

Rev H 20 February 2015

5

The next two figures show the results of an
autocorrelation calculation based on the same data
record for lags between 0 and 20. (See the appendix for
details of the calculation.) The first figure includes for
comparison the correlation at zero lag, which is by
definition 1.

 The second figure expands the scale for the remaining
values and shows for comparison two horizontal lines at

001.01  N indicating the expected standard

deviation of the results for uniformly distributed
randomly-generated values.

The TI user’s manual text and figures describing the
SD16 makes it clear that the value of the converted
number does not settle in a single conversion cycle, and
that for two conversion cycles after an input value
changes there is a substantial error in the most
significant bits of the ADC result. The new value remains
correlated with the previous value. We would not
expect this correlation to occur with constant input and
in the noisy lower bits, and the results shown here
confirm that indeed it does not. Again we expect about
63% of the values to lie between the outer lines, and we
see that they do. Successive bytes in the sequence are
effectively uncorrelated.

A stream of uncorrelated symbols, each occurring with
probability pi, has a Shannon entropy in bits per symbol

defined by   
i

ii ppS 2log , where the

summation index i runs over all symbols. In our case,

2550  i . For a theoretically perfect generator, all the probabilities would be 2561ip , so

  8log 2  ip , and S=8.

 We can approximate the probability of seeing a byte of value i by the relative frequency of occurrence of that
value in our test sequence. With a finite sequence, the bin contents will of course not be exactly equal and not
exactly equal to the underlying probability so we do not expect the resulting estimate to be exactly S=8, but with
a large sample such as the one we have, we expect to be close if the generator is indeed random. To make that

estimate we take Nnp ii  where in is the number of counts in the i-th bin (as plotted in the first two figures

of this section) and N is the total length of the sample, 



255

0i

inN . Estimating S in this way gives S  7.99981

bits/symbol. We will not be far wrong to call that result 8 bits of entropy per generated byte.

The appendix contains a pointer to a suite of tests offered by NIST for candidate random number generators,
and to the “Dieharder” test suite, a more convenient implementation of those tests along with several others.

.

Rev H 20 February 2015

6

It also contains some rude words about the ability of any test to actually confirm true randomness. Still, if we
have a supposedly random generator of numbers, it ought to be able to pass those tests, as the appendix
argues, most of the time. When we ran the STS suite on the same file of 106 randomly generated bytes tested
above it passed all tests successfully. The result file is in the last appendix.

However when we condensed that experimental setup into a compact USB memory-key format and made ten
copies for a project, we found that seven worked perfectly but three failed in an interesting and puzzling way. In
those three units all odd byte values were equally likely to occur, and all even byte values equally likely, but the
even bytes were more likely than the odd ones in a ratio of about 3:5! Something was wrong with the least
significant bit! Unfortunately we had blown the security fuse of all ten processors before testing statistical
quality, so were unable to perform a number of experiments which may have elucidated the matter. We
replaced the processors in all three of the failed units and left the security fuse intact to allow investigations.
One of the replaced processors misbehaved, and persisted in misbehaving when erased and re-programmed
with the same image used originally, and also used in the successful units. Including the original processor from
the EZ430 module, we have now tested 14 of these processors, and the SD16 units of 10 have worked perfectly
for us. Four showed a marked preference for generating even bytes, and that preference seems clearly to be a
property of the particular chip being tested.

As a result of this experience, we have included a health check in all of our subsequent experiments that will
quickly verify that the least significant bit of the output is equal to zero as close to half of the time as one would
expect. We will meet a related issue in the next section, and will discuss a possible quick health check there.

Rev H 20 February 2015

7

How well it works – Gaussian
We used two channels of the SD16_A in an MSP430F47197 processor to investigate the actual distribution of
the nominally Gaussian ADC output. In each run we accumulated a 106-sample histogram for each channel in a
512-word array in that processor’s larger but still limited RAM, using just over half of the available memory.
Therefore the values had to be binned in classes of either 128 or (for cases where the standard deviation was
smaller) 16 values per bin. We will see below that errors in going from Gaussian to uniform distributions occur in
the form of a single-cycle approximate sinusoid. The binned data will be sufficient to exhibit that sort of problem
to us whenever it is present.

Well, how good are our Gaussian
distributions? They are very good indeed.
At the right is an example of single data
values (not yet differences of successive
pairs) generated with the oversampling
ratio equal to 128. The horizontal axis is bin
number (16 values per bin) and the vertical
axis is the number of counts in the bin. The
dotted red model trace is a theoretical
Gaussian prediction of the bin contents for
106 numbers with the standard deviation
best fit to the data. It has been deliberately
shifted left by one bin to make both traces
visible. When that is not done the data
trace disappears behind the prediction.
That best-fit model has a standard deviation
of 12.5 bins, or 200 LSB.

Histograms for OSR=128 and OSR=256 with two successive bytes subtracted look as good as the one shown just
above. However with
OSR=512, we see the kind of
“fat tails” deviation from
Gaussian behavior that is
commonly seen in
distributions of experimental
data. Here the bins are 128
units wide and again 106 data
values are represented. The
data and best-fit model are
here not offset, emphasizing
the small region in the tails of
the distribution where they
deviate enough so that the
data trace emerges from
behind the model. The data
can be modeled quite
successfully as a sum of two
Gaussians, one with a standard deviation of 3431 and the second with smaller amplitude and a standard
deviation of 7770.

Rev H 20 February 2015

8

These “fat tails” that are so troublesome in some circumstances are in this context of no concern. Our rule will
be that the distribution must be wide enough, and an extra contribution that is an even-wider second Gaussian
does us no harm. So long as the central peak corresponds to a sufficiently large standard deviation, we get a
uniform distribution in the end.

That rule will be justified
theoretically later, but let us see
some examples of it in action. At
the right we see sums over the
histogram above. Each individual
case groups together those counts
that would land in the same bin if
the data were taken modulo some
particular value that is an exact
multiple of the bin size. If the
standard deviation is to be as small
as 0.3 times the modulus, then we
sum the contents of bins that are
96 bins apart and obtain the wide
variations shown in the bottom,
light blue trace. If instead we follow
the rule suggested earlier and

require that the standard deviation be at least 0.7 times the modulus (modulus 1.4 times standard deviation)
then we sum together data that are 41 bins apart and get the top green trace. Intermediate values of the
modulus give intermediate results, with the total systematic variation decreasing rapidly as the modulus
decreases. Towards the top any systematic variation is lost in the natural noise.

The rule illustrated
above, that one can use a
modulus as large as 1.4
times the standard
deviation, suggests that
one could take the output
of even the data first
shown that was
generated at OSR=128
modulo a value as large
as 200*1.4 = 280; one
should be able to extract
a byte from each. We can
simulate doing that by
again summing up for
each bin n the counts in
bin n, bin n+16, n+32,
n+64 etc. The result is shown in the figure at the right, a satisfactorily flat distribution. The horizontal scale here
is in byte values rather than bin numbers. Values on the vertical scale are the contents of the virtual bins
summed as above. They represent the bin contents that would have been obtained if the values were first taken
modulo 256, and then binned.

Rev H 20 February 2015

9

To allow a better look at
the variations, the next
figure suppresses the
zero of the vertical scale.
We expect that 63% of
the points will be within
the lines marked +-std.
That is, we expect about

0.63*16  10 points on
each trace to be inside.
The channel 0 trace has 7
inside, the channel 6
trace has 14. For both
taken together we expect
20 and observe 21. With
this small numbers of
points all of that is
satisfactory agreement.

This is the basis for suggesting that one can make bytes sufficiently randomly with the oversampling ratio as
small as 128, which generates bytes twice as fast as a ratio of 256 does – about 8 per millisecond per ADC
channel. A test file of 106 bytes generated
at OSR=256 passed all of the NIST battery of
tests for random number-generators. A
comparable file generated as OSR=128
passed most but not all of those tests, so
we use the larger oversampling ratio unless
the higher generation rate is needed.
At smaller values of oversampling ratio the
standard deviation of the noise is not
sufficient to generate bytes (that is to use a
modulus as large as 256) but they can be
useful for generating values with respect to
a smaller modulus. However histograms of
data taken with OSR = 64 show a slight
preference for even numbers, as shown in
the magnified plot at the right. The
resulting standard deviation is 36, which
will allow use of a modulus as large as 50 if
the preference, which we can estimate by eye to be about 10%, is acceptable.

Rev H 20 February 2015

10

Alternately, the result can be shifted one place to the right, obtaining a standard deviation of 18, a maximum
modulus of 25. The next histogram at the
right was generated for this case by adding
together each even numbered bin and the
following odd-numbered one. To plot this
on the same scale as the model curve
above, the sums were then divided by two,
and were plotted against a scale which is
the original one divided by two. To get
around Excel limitations without artificially
smoothing the record, each summed data
value was plotted twice, leading to the
stair-step effect that can be seen in the data
trace. The crucial point here is that with the
LSB removed, there is no visible systematic
preference for, for instance, either state of
the next higher bit.

This result, obtained with MSP430f47127 chip 1 is a bit equivocal, because when the same options were set up
in chip 2, both channels behaved well with no sign of a preference for even numbers, and gave a standard
deviation of 18.5. So at least here it looks like the kind of failure we saw earlier with the byte generator where a
few units had the disease, most did not, but the disease affects only some of the possible ways to set up the
SD16.

However at OSR = 32 (the smallest available) even numbers become much more likely than adjacent odd
numbers in the data, as illustrated in the next figure, and the disease afflicts both units comparably. One could
again try shifting the data right one place. The regular progression of the peaks seen below lead one to expect
that higher bits are indeed not involved and that one would meet success when doing that. However the result
would have a standard deviation near 4 and a maximum modulus near 6 – of little practical use. Therefore we
do not pursue this possibility and do not suggest operating at such a small value of oversampling ratio. Note that
the central three peaks are clipped at 216=65536 in this histogram. These three bins became full and saturated;
about 7400 counts were lost out of the 106 total.

Rev H 20 February 2015

11

This preference for even numbers is presumably related to the similar preference observed in the MSP430F2013
byte generator and mentioned in a previous section, but there are significant differences. First, the effect seen
here was seen in both channels tested, in both devices tested, repeatedly at any sufficiently small OSR, but
never at an OSR as large as 256. The previous instance was seen in 4 out of 14 separate processor chips
operating at OSR=256. In this case the malady affected both channels of one chip at OSR=64, neither channel of
the other chip.

However in all cases when the effect occurred at all, it seemed to occur stably. Modeling the process as a
binomial distribution with p= ½ (so q=1-p=1/2), we expect that in a sample of N values the average number of

zeros will be =NpN/2, and the standard deviation of that number will be =(Npq) (1/2)N. For a large

sample, the number of zeros is approximately normal so we expect that number to be within 2.58 of the
predicted mean 99% of the time. That is, the observed number of zeros of an actually good unit will lie outside

of the limits    NNsNN 29.12/29.12/  only 1% of the time. For a set of N=216 generated values,

the test limits would be 215  331. If a processor fails the test, it could be discarded wasting only 1% of actually
good processors. One that failed initially can be re-tested, and accepted if it satisfies the condition the second
time. In fact, all failed processors we have seen violate that limit by a huge margin and a much wider acceptance
band could be used to catch all failures we have seen. Note that this test can be applied at either of two stages
of the generation process, either to the full word when first generating the Gaussian samples, or to the
uniformly distributed results of taking these modulo any even modulus.

Early experience applying this test to the Gaussian output of eight MSP430F47127 processors, testing ADC
channels 0 and 6 of each processor so in all 16 channels were tested, showed that the results separated into two
clearly defined groups, with one outlier. Two of the channels failed solidly, with their results never lying within
the test limits. Thirteen of the channels behaved as predicted with the worst showing a failure rate of 1.6%. The
outlier was an extreme 14th member of the well-behaved group, showing a failure rate of 3.1%. This appears to
be a simple statistical fluctuation, since on re-testing this channel’s results lay well within the others of the “well
behaved” group.

A later examination was performed with N = 2^14 (that is, the LSBs from 16384 data words were summed, so
the expected value was 8192). Each channel was tested at least 256 times, and one running overnight was
tested 13,345 times. The largest results produced by the two bad channels in these trials were never larger than
7179 (12.4%low nominal). The smallest value produced by any of the 14 “well behaved” channels was 7937
(3.1% below nominal). Tentatively, since we have looked closely at only two misbehaving channels and four
others in the byte tests only qualitatively, it looks like when operating at OSR=256 there is a clear separation
between good and bad SD16 modules, and that a single test with N =2^14 (which takes only four seconds) will
determine which of the two kinds we have.

Any similar test would have immediately flagged the earlier problem units. We suggest that all applications
include a similar health check, both as a screening measure before installing the processor, and also in the
application for ongoing monitoring.

 Summarizing our other observations of performance, various setups have yielded best-fit standard deviations as
given in the table shown here. Several other items not yet discussed are also shown in that table, and will be
referred to in the discussions that follow. The sample standard deviation (not displayed here) is in most cases

slightly larger than the best-fit model standard deviation , as a result of a few outlier points in the tails of the

Rev H 20 February 2015

12

distribution. Avoiding undue optimism, we use the standard deviation of the model best-fit to the central peak.
In particular, in the case of OSR=512, the smaller of the two standard deviations is quoted.

 We have seen in the previous section that when we use only the low order 8 bits of data generated at OSR=256,
successive bytes are uncorrelated. When we subtract two uncorrelated numbers from the same distribution, as

we have done in some cases just above, we expect that the standard deviation of the result will be 2 times as
large as that of either one, about 41% larger. What we see above is a standard deviation only 5% to 10% larger.
This is our first warning that when we start to include higher order bits, successive ADC results may be no longer
uncorrelated. That is, there another limit on the maximum modulus if we demand that the results be
uncorrelated (which we do). The SD16 documentation does warn that if we change its setup the output may
take up to three conversions to settle, but there is reason to suspect that, as with the single-byte data, it will not
take as long for the lower bits to become uncorrelated with those of the previous sample.

 Single Value 
ratio

Difference (data not shared) Difference
(data shared)

OSR even
bias

offset
LSB

  
max m

r  max
m

  
max m

r  max m r  max m

32 large 28 7.8 11 Data rate too high to compute correlations in the setup used.

64 small 211 36/18 50/25

128 none 214 200 280 256<max
<512

1.10 220 308 512<max
<256

512<max<25
6

256 none 217 1152 1613 2048<ma
x <4096

1.09 1250 1750 2048<max
<4096

2048<max
<4096

512 none 220 3257x2 9120 8192<ma
x <16384

1.05 3430
x2

9604 8192<max
<16384

8192<max
<16384

Rev H 20 February 2015

13

To explore this issue, we calculated the autocorrelation function in the MSP430F47197 for some of the cases
above. The calculation was implemented using integer arithmetic for speed, as described in the appendix, and
the words read from the SD16 were taken modulo various powers of two, the only moduli for which division
could be performed rapidly enough to keep up with the data rate. The scaling factor was chosen to be 10,000 in
order to preserve four decimal places
in the result. That is, a correlation of 1
will correspond to 10,000 units on the
vertical scale of the graphs here. The
horizontal scale will be the lag L.

For OSR=128, the results are as
shown at the right. Indeed there is a
visible correlation at one unit lag
which decreases rapidly with lag and
with oversampling ratio. The next
graph expands the vertical scale to
show more detail.

As the modulus decreases, the correlations also decrease. When the modulus is as small as 512, the correlation
at one unit lag is only 0.0045, and at
modulus 256 the largest correlation
magnitude (at lag 5) is -0.0015, or
1.5x the expected standard deviation
for these points. Yes, there is a
separate limit on the maximum
modulus that is set by the need for
uncorrelated samples, but one that is
not more stringent than the limit m <
280 set by the requirement for a flat
distribution.

The correlations are larger for larger
OSR, as we might expect from the fact
that differencing successive samples
offered an even smaller increase in
standard deviation. The data are
shown here for OSR= 256. A modulus
of 4096 brings the correlation at one
lag down to 0.07, and for 2048 it
actually goes negative, -0.001. Again,
the earlier limit of m < 1316 is more
stringent than the one set by
correlations.

Rev H 20 February 2015

14

For OSR = 512, the story is much
the same. In this case the data
were divided by 2 before
processing, so the modulus 8192,
which here is seen to reduce the
correlation at one lag to 0.016, is
equivalent to 16384 applied to
the raw data. An actual 8192 is
shown here as 4096, and reduces
that correlation to 0.0018. The
limit set by the flatness
requirement is here m < 9120,
again more stringent.

These results have been added to the table on the previous page that kicked off this investigation, and the

conclusion is clear: if we obey the proposed limit that m  1.4, we lose nothing significant to serial correlations.
While several conversions must elapse for the entire word to be uncorrelated with a first conversion result, the
numbers we divide out of that result will be insignificantly correlated with the ones divided out of the previous
converison result.

The fact that the nonlinear modulo operation removed the correlations in this case suggested that it might also
remove the correlation that would arise if we were to difference our ADC result in overlapping pairs, as
mentioned in an earlier section. Without much theory to guide us here, we just repeated the same experiments
done above for the case where we did overlapping differences. The results were much the same. Although the
correlations seen were different, always negative when they were large, they came down to the expected noise
level within the same modulus range. These results have also been added to the table above, under the heading
“data shared” differences.

Again we conclude that if we obey the limit on modulus m set by the flatness criterion, correlations from either
of the two sources discussed will be eliminated.

Note that the standard deviation increases by a factor near 6 when doubling the oversampling ratio, offering
between two and three more bits of entropy. However halving the oversampling ratio generates twice as many
data words per unit time, offering twice as many bits. Operating at low OSR maximizes the rate of entropy
generation.

Rev H 20 February 2015

15

Why it works at all
Every time a capacitor is connected to a resistive source, allowed to settle, and then disconnected it acquires a

thermally generated noise voltage with standard deviation CkTVRMS  in addition to whatever voltage the

source is intentionally providing. This random addition is called “contact noise”, but it is actually the resistor that
is noisy, not the contact, as explained in the appendix. Here k is Boltzmann’s constant and T is the absolute

temperature, so at room temperature the result becomes CVVRMS 64 for C in picofarads.

Every microsecond when the input sampler of the SD16_A contacts the external circuit and the voltage on its
20pF sampling capacitor settles to a new measurement of the nominally zero input value, that value is zero plus

or minus “contact noise” that has a standard deviation of 64/20 = 14 microvolts. That voltage is amplified by a
factor of 28, so will have a standard deviation of 0.4mV, and applied to the sigma-delta modulator. In the course
of the conversion, 256 of these values (for OSR=256) will be more-or-less averaged by the digital filter, to yield a

random contribution no smaller than 400/25625V. This truly-random contribution could possibly approach
that theoretically smallest value if the filter simply averaged. In fact it does something more complicated to
minimize the shaped quantization noise of the second order delta modulator, so we expect that there will be
more of the truly random noise than this. Also there are other noise sources in the modulator, so for that reason
also the noise we have just estimated is a minimum.

For OSR = 256, the most significant bit of the output register is bit 23 (see figure 26-5 of the MSP430F2xxx User’s
guide, SLAU144J), and that bit is worth 600 mV. The least significant bit of the register is therefore worth 2-23

*600 mV72nV. That means the 25V noise contribution is worth at least 25V/72nV = 350 LSB, and we expect
it to be Gaussian noise, distributed along the familiar bell-shaped curve of probability density. Again this is a
minimum.

The simple treatment in the paragraph above requires some assumptions about just how the input amplifier and
delta modulator are constructed and operated. Based on the gain and capacitance specifications of the SD16
and the fact that the module still offers gain when the active amplifiers are omitted, I have assumed that each of
the two Cs capacitors (10pF at gain 32) in figure 26-2 of theF2xx users guide (SLAU144J) is made of eight 1.25pF
capacitors (like the one that is used at gain 1) that are charged in parallel and then connected in series when
presented to the ADC core. A final factor-of-four gain is achieved some other way, perhaps in the delta
modulator, or perhaps by actually splitting each of the 1.25pF capacitors four ways. There are other ways that
the input amplifier could be operating, but most of them lead to the same noise estimate. None we have
thought of leads to a smaller one.

Recall that in the experiments reported above we saw a standard deviation of 1250 LSB for OSR=256; the output
is actually noisier than this estimate would lead us to expect, but that’s OK even though it is not quite clear just
where that extra noise is all coming from. We can guess that it is partly additional contact noise arising in the
integrators of the delta modulator, which are likely implemented using switched-capacitor techniques. Even
though we are less confident that we can count on all of this additional noise despite unit-to unit variations, we
do note that it is remarkably Gaussian, and are glad to have it.

To check on this noise estimate, we wrote a program for the eZ430F2013 that accumulated statistics on the
SD16_A output in the upper (normally used) section of the SD16 output register. For comparison, we need a
prediction based on our noise model above for what we should expect. The MSB of the upper output register is

worth 600mV at Gain=1, so its LSB is worth 600mV*2-15 = 18V. At any other gain it is worth 18V/G. Our
simple model of the filter effect is that it will simply average the noise samples, so we expect them to be

Rev H 20 February 2015

16

attenuated by a factor of OSR/1 Thus we predict a noise in f the upper register equal to

COSR

G

OSRV

G

C

V


 6.3

1

18

64




LSB.

Plotting this out vs. CG /

for the various available
gain settings (tick marks on
the traces) and interesting
values of OSR, we obtain
the figure on the right.

Running a program in an
eZ430F2013 to calculate
the mean and standard
deviation of 106
conversions for each of
those cases gives instead
the next figure. It has
approximately the same
shape, but the measured
values are about four
times larger than the
predicted ones. If we
knew where all that came
from and how securely it
was tied to a thermal
source, perhaps we could
confidently use a smaller
OSR and generate bytes more rapidly.

The experiments reported above in “How well it works” (done later than these and based on best-fit Gaussian
standard deviation instead of sample standard deviation) have in this revision increased our confidence in the
unaccounted-for extra noise.

Rev H 20 February 2015

17

Why it works so well
When you have a set of data with a Gaussian
distribution and you take those numbers modulo
something comparable with or smaller than their
standard deviation, the result always comes out to be
nearly uniformly distributed. That is the real key; if you
have enough Gaussian noise to fill your byte, you don’t
care about much else. The rest of this section will show
how that works.

In the example at the right, we see some graphs
illustrating how that begins to take effect, where in
these graphs we are taking things modulo 1. In our
present application we can think of that unit 1 as being
one byte; in our hardware the numbers are taken
modulo 256, which is one byte. In the first figure the
standard deviation of the Gaussian is less than half a
byte – still a bit small – but when you take the ordinate
of the curve modulo 1, that is when you slice it along
each of the vertical green lines, superimpose those
slices, and add them up as has been done with the
dashed lines on the left side of the graph, you get a sum (heavy black line) that is not yet flat, but already has
sharply limited variation. Throughout this section the mean of the original distribution has been chosen ¼ unit
off-center to cause the maximum possible variation in the black trace.

Well, how about adding a little more noise? When the
Gaussian is only 20% wider, the variations in the heavy
black trace shrink markedly. Let’s plot that black trace

separately, and follow its behavior as we increase 
(and thereby increase the width of the Gaussian) by a
few more steps.

In these graphs below we have shown the X-axis scale in
LSB, 0 to 255, replacing the scale of 0 to 1 bytes, now
that we do not have to also show the Gaussian peak.

The values of  and  are still shown in bytes for
compactness and would have to be multiplied by 256 to
get the corresponding values in LSB.

Rev H 20 February 2015

18

The first two graphs represent the two cases shown in full above.

As the standard deviation increases, the probability density rapidly flattens out until its variation becomes
completely invisible when plotted at the original scale.

Now plotting that last case again but allowing the vertical
scale to adjust we see that the shape of the variation has
not changed, but that its scale has become so small as to
be undetectable in practice. To get that degree of flatness
takes a standard deviation of 0.7 times the modulus
value. For data taken modulo one byte, that requires 180
LSB of noise standard deviation. More noise is better, so
long as it all stays within the input range of the ADC; our
OSB=256 case, with a contact noise contribution of
350LSB, is safe by a wide margin.

Having seen all of these particular examples, let us write
out in general that the probability density of a Gaussian

sample with standard deviation  and mean  taken

modulo a number m is    





i
inxNnxg  ,1),(over the interval [0,n), where N(x,) is the

Gaussian density function with mean 0 and standard deviation . The maximum of this function is at x+ =0, the

minimum is at x+ = n/2. Plotting the fractional difference of these two vs /n gives the following:

Rev H 20 February 2015

19

Depending on the needs of a given
application, one may choose to work at
a variety of positions along this curve,
but for sample sizes no larger than 106,

the criteria m1.4 or 0.7m would
seem to beadequate, in that any
systematic deviations from uniformity
would be lost in the expected statistical
variations in observed frequency. Those
criteria are obviously a bit soft and
while not quite equivalent they have
been used interchangeably in this
document.

There is additional value to an
extremely flat distribution made by
folding up a Gaussian as we have done
above; you can’t easily disturb it by
adding something else to it. Adding
something to the input of the ADC just
moves the mean of the input Gaussian distribution. But when the resulting output distribution is flat, then the
location of the original Gaussian’s peak no longer matters. All that moving the peak could ever do was to move
the location and perhaps reduce the height of that wavy trace we have been watching. If the wave has a small
enough amplitude to be undetectable, then the effect of a change in the mean of the noise is also undetectable.

That is the starting point for a useful way to think about other contributions to our noise generator’s result. All
that any additive (interfering) signal can do is to move that mean. If it moves the mean and leaves it in a new
location, then quite clearly it has no effect on the performance of our generator. We won’t see the same result
of a conversion that we would have seen without the addition, but we will see another value drawn from the
same nearly-flat distribution. It will be just as unpredictable, will be drawn from the same population of values
and will have the same distribution. If the added signal moves the mean back and forth between conversions,
we still won’t have any way to tell that it has done so or any reason to wish that it hadn’t. If it changes back and
forth during a conversion, we expect that all it can do is to broaden the noise distribution, and as we can see
that helps us out. Once we have enough Gaussian noise, it looks like we can relax about interference. So long as
the SD16_A is well enough shielded to do its normal ADC function, it should be able to make high quality noise
bytes.

Rev H 20 February 2015

20

It is worth noting that we do need the SD16_A to be
working well as an ADC, and as already mentioned we
need the entire input noise voltage range to fit within
its linear input range. If one tail of the input noise
gets outside the linear range of the ADC function, we
can no longer guarantee a flat noise spectrum in the
result, as illustrated in the plot at the right. The
output value distribution in the case illustrated here is
no longer flat. It has a shape that is just the negative
of the missing tail of the original distribution.

When the SD16_A is operating with its input range
symmetric around zero, and with the input shorted as
we do here, that requirement is easily met and the
situation diagrammed here is easily avoided.

Conclusion
The SD16_A sigma-delta ADC can be operated as an
excellent random generator of values, where the
source of randomness can be traced to thermal noise.
However a minority of SD16 modules exhibit a preference for generating even numbers rather than odd ones.
The possibly-biased LSB of each result can be removed by shifting the result right one place, but that decreases
the range of numbers that can be generated. If the LSB is retained, any processor used in this service should be
screened to identify and discard those units that show this preference for even numbers.

Rev H 20 February 2015

21

Appendices
About Contact Noise
It is not actually the contact that is noisy.

Whenever you connect a warm resistor across a capacitor, the resistor generates Johnson (thermal) noise and
applies it to the capacitor. Meanwhile the same resistor is discharging that capacitor. As the net result of those
two actions, there is a random voltage appearing across the capacitor, which fluctuates as long as the resistor is
connected. If the RC product is small, the range of frequencies involved may be very large and mostly outside
the passband of a typical sensitive amplifier that may be looking at the capacitor. The amplifier may see nothing
happening. When the resistor is disconnected from the capacitor, as happens every microsecond in the SD16_A,
the voltage suddenly freezes at a definite value and can be seen by narrow-band circuitry. Since a new frozen
value appears any time the capacitor is contacted long enough for a new equilibrium to be established, then
disconnected, the effect has acquired the name contact noise even though the switch contact is not actually the
source of the noise. The electrical resistance of the switch and circuit is the actual source, and what it
contributes is thermal noise.

An electrical engineering text which analyzes this effect might proceed by integrating the Johnson noise
spectrum over the bandwidth defined by the resistor and capacitor, considered as a single-section low-pass
filter, and thereby could derive an expression for how much noise to expect. While it gives a nice picture of what
is going on to anyone who already knows about Johnson noise, that approach is complicated; we won’t do it
that way.

A physicist looking at the same problem would more likely think about the Equipartition Theorem from
Statistical Mechanics. It states (roughly) that any quadratic energy term in a system will have an average value
equal to kT/2 when the system is in thermal equilibrium. In our case, we notice that the voltage across a
capacitor C gives rise to an energy term ½ CV2 which is quadratic in V, its terminal voltage. We can set that term

equal to ½ kT, then solve for the mean-squared terminal voltage CkTV /2  .

At room temperature this becomes CVCkTVVrms 64/2  for C in picofarads, the result

quoted in the body of the note. The 20pF input capacitor of the SD16_A will have a root-mean-square thermal

noise voltage due to this effect of VV  142064  .

About Random Numbers
There aren’t any. However there are randomly generated numbers.

 Once you have a number, however generated, it has a perfectly definite value and there is nothing random
about it. The only thing that can be random about the situation is the way the number was generated. Said more
compactly, a number cannot be random, but its value can be chosen randomly and therefore can be
unexpected. For most purposes it is fair to call the process that generated it truly random if there is no way to
predict (better than chance) the number that the generator is going to make next – even if you have full
knowledge of the generator’s history and internal state.

So it is fair to talk about random number-generators, but not random-number generators. Mostly, people are
not careful about that distinction, but this note will try to be.

Rev H 20 February 2015

22

About Testing for Randomness
There is no good way to do it.

In the output from a perfectly random generator of numbers, at least one with a uniform distribution like we are
trying to make here, all possible bit sequences are equally likely. A string of all ones or all zeros looks to us wildly
non-random, but it is as likely as any other particular sequence in a random generator’s output. In a single-byte
result from the generator proposed here, you will see a solid zero about 15 times a second. You will see a pair of
two zero bytes together more-or-less every 16 seconds, a trio of three in a row more or less every 72 minutes,
four in a row about every twelve days, and so on. No particular sequence of the same length that you could
name would be either more or less likely than one with all bits zero. You can’t call any of them right or wrong,
random or non-random in themselves.

What you can do is to test for properties that a large majority of randomly generated sequences is likely to have,
realizing that any such test will sometimes call foul on a sequence that came out of a perfectly random
generator. A truly random generator must eventually make all possible sequences – including all of those that
fail your test. Also, there may also be chaotic sequences generated by a perfectly predictable (pseudo-random)
process that always pass such a test, which a genuinely random generator could not always do.

In short, a generator that fails a sensible test consistently is with high probability not random. One that fails
rarely may or may not be truly random. One that always passes is with high probability not truly random, though
it may take an impractically long time to adequately explore “always”. So we can test for failed generators, but
not for good ones.

We talked about two tests in some detail in the body of this note, based on the ideas that: 1) all possible byte
values should occur about equally often and 2) pairs of bytes in sequence should be uncorrelated. These are
relatively simple tests that are suggested by the physical process that we expect is going on in our generator.
They characterize that process, which is believed to be fundamentally unpredictable, and they give these
physicist writers a good feeling. They are also likely to catch a programing error should we make one. But they
are not tests for randomness per se. Assurance of that has to come from knowledge of the underlying physics,
and of the electronic and computational structure built atop that physics.

That said, there are some widely accepted tests that are thought to have relevance to cryptographic strength. A
suite of them can be found at http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html. Any
random generator of numbers that we want to take seriously ought to be able to pass them, at least most of the
time (and that may be every time we have the patience to try). Again, as should be obvious from the fact that
pseudo-random generators can also pass them, they are not tests for genuine randomness.

A more convenient implementation of some of these and other tests, ready to run on a Windows PC, can be
found at http://www.phy.duke.edu/~rgb/General/dieharder.php

We have run the same 106-byte sequence from the MSP430F2013 that discussed above through the NIST test
suite using the supplied default values of the test parameters. The sequence passed all tests. (We did not
successfully explore “always”.) The printout from those tests is included as the last appendix.

http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html
http://www.phy.duke.edu/~rgb/General/dieharder.php

Rev H 20 February 2015

23

About Autocorrelation

Given two finite sequences xi and yi, for i=1...N, the means of the two sequences are   


N

i iix xNx
1

1

and   


N

i iiy yNy
1

1 . Here and below we denote an average over all values of i with the pointed

brackets < >.

 The covariance of the two sequences is defined as

     yxxiyiiiyixi yxyxyxC 

Since the means are constant they may be factored out of the averages to yield a simpler result.

yxii

yxxyyxiiyxxiyiii

yx

yxyxyxC









The autocovariance of a sequence of values ix at lag L is the covariance of that sequence with a copy of itself

shifted by L places. That is, yxii yxLC  )(where Lii xy  and we assume that the sequence is

now of length at least N+L so that there are still N product terms to average over, and where the sums are still
over the range i=1...N. C(0) is equal to the ordinary variance of the sequence.

The autocorrelation function is  )0(/)(CLCLr  . The autocorrelation at zero lag, r(0), is always 1; any

sequence is perfectly correlated with itself at zero lag. We are concerned that our sequences not be correlated
with themselves at any lag larger than zero. That is, we want successive values to be independent.

When calculating the autocorrelation in a small processor “on the fly” (processing each value as it is generated

without storing the entire sequence) we need to keep the sums   
N

i LixLS
1

)(and Li

N

i i xxLSS 
 1

),0(

for L=0 and for all other values of L that are of interest. This is conveniently done by first populating a history
array hi that is as long as the largest lag to be calculated, then as each new value comes in

1) Copy each element of the history array into the next higher location; jj hh 1 with values of j

decreasing.{for(j=0;j<LMAX; j++) h[j+1]=h[j+1] }
2) Copy the new sequence value into hLMAX; {h[LMAX]=x}
3) Maintain the sums, reading the value of xi+L from hL.. { SS[L] +=h[0]*h[L]}.

When the entire record has been processed in this way, we calculate

  NNSNLSLSSLC /))/)0((*/)(),0(()(

)0(/)(*)(CLCScaleLr 

The sum of products can be large when processing a large file. A random million-byte file will generate a sum of

squares with a value approximately 1282x106
234 that will overflow a four-byte field. The sum cannot be

accumulated to adequate precision either as a 32-bit integer or in single precision floating point.

A million-word sample will result in sums as large as 216* 106
216*220=236, and a sum of squares as large as

232*106
 232*220 = 252. The resulting covariance can be as large as 232. Autocorrelation calculations for 16-bit

full-word data calculated on the fly as suggested above must do their sums in 64-bit long long variables in
MSP430 C. Even with 64-bit variables, care is necessary (for instance breaking up one factor of N in the

denominator for C(L) above into two factors of N) in order to both maintain precision and to avoid overflow
when doing what is effectively a fixed-point calculation with integers.

Rev H 20 February 2015

24

 Handling these64-bit variables slows the calculation significantly, and one must check that a calculation done
“on the fly” can keep up with the rate of data production. The requirement that data overrun not occur, and
that no data is lost, is one limit to the number of lags that can be computed on one data set to something like six
when running at OSR=256. One assumes that a floating point calculation would be much worse.

Program for the eZ430-F2013
The program below loaded into an eZ430-F2013 will send randomly generated bytes in start-stop serial format
at 115.2 KBaud out through P1.1, which is pin 3 of the MSP430F2013 processor included in the eZ430-F2013.
The oversampling ratio may be changed by altering a statement just below the comment line // SD_16. However
notice the warning message just above that line.

The program works as described in the text only for OSR  128. For smaller oversampling ratios, characters are
produced faster than they can be sent. The program will still run, but successive characters in the serial
communication output will no longer represent successive characters in the generator output.

There are two separate files below, Main.c and Timer_A.c. They were compiled using IAR Embedded
Workbench.

//File Main.c
// Random Number generator test, target is MSP430F2013,
#include <msp430f2013.h>
int send_byte(char);
unsigned char Datum;
volatile unsigned int v = 0;

int main(void)
{
// Disable watchdog timer
WDTCTL = WDTPW + WDTHOLD;

// Set DCO to 16MHz, which is OK at 3.3V Vcc.
BCSCTL1 = CALBC1_16MHZ;
DCOCTL = CALDCO_16MHZ;

// Configure the ports
//P1
P1OUT = 0; // Outputs are low
P1DIR = 0xFF; // All pins are output
P1SEL = BIT1; // And Bit1 is timer output.
//P2
P2OUT = 0;
P2DIR = 0;
P2REN = 0xFF;

// Timer_A
// P1.1 = data output Pin 3 of DIP package. (LED is P1.0, pin 2)
TACCR0 = 139; // = 16 MHz/115.2 KBaud

Rev H 20 February 2015

25

TACCTL0 = OUTMOD_1 + CCIE; // Set on event, enable interrupt;
TACTL = TASSEL_2 + ID_0 + MC_1;

// This SHIFT definition is the SD_16 register position from which the
// LSBit of the data byte is taken. SHIFT <= 8. Ordinarily 0 or 8.
#define SHIFT 0
// It and the oversampling ratio set below define the case.
// OSR >= 128 assumed so bytes are sent faster than they are produced.

// SD_16
//1 MHz, (MCLK/16), turn reference generator on.
SD16CTL = SD16XDIV_2 + SD16DIV_0+ SD16SSEL_0 + SD16REFON;
// Oversampling ratio set, enable LSB access, no interrupts,
SD16CCTL0 = SD16OSR_256 + SD16LSBACC;
// Gain = 32, channel is 7 (shorted)
SD16INCTL0 = SD16GAIN_32 + SD16INCH_7;
// Now Go
SD16CCTL0 |= SD16SC;

//***************************************
v = SD16MEM0; // Clear any leftover data.
//***
__enable_interrupt();

// Event loop starts here
while(1)
{
// Wait for next value
while((SD16IFG & SD16CCTL0) == 0) v++;
// Shift during this assignment to move up the filter register.
 Datum = SD16MEM0>>SHIFT;
send_byte(Datum);
} // End the event loop.

} // end main

Rev H 20 February 2015

26

// File Timer_A.c
#include <msp430f2013.h>
// Set TACCTL0 to one of these to either set or clear P1.1 on next event.
// Temporary reversal for test
#define SET OUTMOD_1 + CCIE
#define RESET OUTMOD_5 + CCIE
enum {idle = 0, start, bit0, bit1, bit2, bit3, bit4, bit5, bit6, bit7, stop};
unsigned int serial_out_state = idle;
unsigned char Out;

// This routine called from main to initiate character output
// Return 0 for character accepted, 1 for refused (overrun).
int send_byte(char Outchar)
{
 if(serial_out_state == idle)
 {
 Out = Outchar;
 serial_out_state = start;
 return(0);
 }
 return(1); //Overrun error return
}

#pragma vector=TIMERA0_VECTOR
__interrupt void Timer_A0(void)
{
switch(serial_out_state)
{
case idle:
 {
 TACCTL0 = SET; // Set Idle line and wait for send_byte to be called.
 break;
 }

case start:
 {
 TACCTL0 = RESET; // Make start bit
 serial_out_state = bit0;
 break;
 }
// Send next bit of character.
case bit0:
case bit1:
case bit2:
case bit3:
case bit4:
case bit5:
case bit6:

Rev H 20 February 2015

27

case bit7:
 {
 if((Out&0x01) == 0) TACCTL0 = SET; // if bit is 0, output is 1
 else TACCTL0 = RESET; // and vice versa.
 Out=Out>>1; // shift to next bit
 serial_out_state++; // increment to next state.
 break;
 }
case stop:
 {
 TACCTL0 = SET; // Set Idle line and
 serial_out_state = idle; // go to idle state.
 break;
 }
default:
 {
 serial_out_state = idle;
 break;
 }
} //End switch(serial_out_state)
} //End __interrupt void Timer_A0(void)

Rev H 20 February 2015

28

Results of The NIST STS suite
These tests were performed running the STS test suite with the default parameters supplied by NIST.

STS Run

06 December 2013

RKG

--

Notes:

1) The data file, ekstrom.raw, is a file of 10^6 random bytes captured from a CPU

configured to stream randomly generated numbers generated by the SD_16A in the

processor of the EZ430F2013, using the program given in the previous section.

2) The data file contains the bits in binary format. Each byte of data in the file

contains 8 bits of randomly generated data

--

Tests:

01 Frequency Test: Monobit

02 Frequency Test: Block

03 Cumulative Sums Test

04 Runs Test

05 Test for the Longest Runs of Ones in a Block

06 Binary Matrix Rank Test

07 Discrete Fourier Transform (Spectral Test)

08 Non-Overlapping Template Matching Test

09 Overlapping Template Matching Test

10 Maurer's Universal Statistical Test

11 Approximate Entropy Test

12 Random Excursions Test

13 Random Excursions Variant Test

14 Serial Test

15 Linear Complexity Test

===

 FREQUENCY TEST

 COMPUTATIONAL INFORMATION:

 (a) The nth partial sum = -898

 (b) S_n/n = -0.000898

SUCCESS p_value = 0.369186

===

 BLOCK FREQUENCY TEST

 COMPUTATIONAL INFORMATION:

 (a) Chi^2 = 7967.437500

 (b) # of substrings = 7812

 (c) block length = 128

 (d) Note: 64 bits were discarded.

SUCCESS p_value = 0.107356

===

Rev H 20 February 2015

29

 CUMULATIVE SUMS (FORWARD) TEST

 COMPUTATIONAL INFORMATION:

 (a) The maximum partial sum = 918

SUCCESS p_value = 0.705472

 CUMULATIVE SUMS (REVERSE) TEST

 COMPUTATIONAL INFORMATION:

 (a) The maximum partial sum = 1494

SUCCESS p_value = 0.270336

===

 RUNS TEST

 --

 COMPUTATIONAL INFORMATION:

 --

 (a) Pi = 0.499551

 (b) V_n_obs (Total # of runs) = 500177

 (c) V_n_obs - 2 n pi (1-pi)

 ----------------------- = 0.250886

 2 sqrt(2n) pi (1-pi)

 --

SUCCESS p_value = 0.722734

===

 LONGEST RUNS OF ONES TEST

 COMPUTATIONAL INFORMATION:

 (a) N (# of substrings) = 100

 (b) M (Substring Length) = 10000

 (c) Chi^2 = 3.894568

 F R E Q U E N C Y

 <=10 11 12 13 14 15 >=16 P-value Assignment

 7 28 22 16 13 6 8

SUCCESS p_value = 0.690942

===

 RANK TEST

 COMPUTATIONAL INFORMATION:

 (a) Probability P_32 = 0.288788

 (b) P_31 = 0.577576

 (c) P_30 = 0.133636

 (d) Frequency F_32 = 278

 (e) F_31 = 593

 (f) F_30 = 105

 (g) # of matrices = 976

Rev H 20 February 2015

30

 (h) Chi^2 = 6.531766

 (i) NOTE: 576 BITS WERE DISCARDED.

SUCCESS p_value = 0.038163

===

 FFT TEST

 COMPUTATIONAL INFORMATION:

 (a) Percentile = 94.965800

 (b) N_l = 474829.000000

 (c) N_o = 475000.000000

 (d) d = -1.569204

SUCCESS p_value = 0.116601

===

 NONPERIODIC TEMPLATES TEST

 COMPUTATIONAL INFORMATION

 LAMBDA = 244.125000 M = 125000 N = 8 m = 9 n = 1000000

 F R E Q U E N C Y

Template W_1 W_2 W_3 W_4 W_5 W_6 W_7 W_8 Chi^2 P_value Assignment

Index

000000001 233 237 232 250 240 239 236 267 4.188479 0.839730 SUCCESS 0

000000011 228 247 235 216 245 241 219 263 9.069123 0.336498 SUCCESS 1

000000101 241 238 271 234 222 221 265 273 13.412770 0.098415 SUCCESS 2

000000111 249 248 255 202 245 235 233 254 9.476903 0.303674 SUCCESS 3

000001001 248 242 253 239 223 243 249 280 7.977121 0.435708 SUCCESS 4

000001011 235 231 270 227 249 237 257 244 6.179714 0.627109 SUCCESS 5

000001101 252 232 227 255 233 255 248 221 5.983768 0.649050 SUCCESS 6

000001111 249 250 235 211 246 229 233 227 7.999364 0.433532 SUCCESS 7

000010001 225 225 262 254 265 250 251 244 7.058823 0.530300 SUCCESS 8

000010011 257 221 238 250 235 279 248 247 8.877414 0.352743 SUCCESS 9

000010101 229 253 229 253 240 256 256 256 4.470217 0.812405 SUCCESS 10

000010111 229 236 264 249 255 256 241 236 4.442679 0.815140 SUCCESS 11

000011001 259 266 253 256 246 243 238 279 9.227998 0.323429 SUCCESS 12

000011011 248 253 214 258 240 233 254 226 7.459188 0.487994 SUCCESS 13

000011101 267 238 218 229 227 233 232 244 8.626391 0.374786 SUCCESS 14

000011111 239 235 225 222 243 208 234 209 15.283260 0.053866 SUCCESS 15

000100011 241 238 245 246 235 236 259 245 1.791582 0.986748 SUCCESS 16

000100101 251 264 258 280 244 221 257 252 11.372813 0.181456 SUCCESS 17

000100111 252 225 231 221 253 272 251 277 13.212587 0.104741 SUCCESS 18

000101001 249 233 279 248 235 228 223 254 9.599766 0.294248 SUCCESS 19

000101011 241 276 236 230 249 237 259 246 6.738954 0.565042 SUCCESS 20

000101101 223 266 274 247 262 239 255 253 10.034025 0.262646 SUCCESS 21

000101111 249 236 237 220 249 253 237 240 3.782817 0.876168 SUCCESS 22

000110011 245 269 247 262 233 246 236 243 4.837748 0.774769 SUCCESS 23

000110101 234 250 250 273 256 266 256 243 7.486727 0.485140 SUCCESS 24

000110111 228 229 226 245 250 243 267 229 6.803564 0.557968 SUCCESS 25

000111001 257 219 262 259 227 238 265 235 9.268247 0.320175 SUCCESS 26

000111011 268 236 231 240 240 250 229 235 5.036872 0.753628 SUCCESS 27

000111101 247 243 275 224 247 247 272 269 11.778474 0.161365 SUCCESS 28

Rev H 20 February 2015

31

000111111 239 256 233 241 234 208 237 228 8.554368 0.381270 SUCCESS 29

001000011 266 274 238 218 243 236 253 245 9.481139 0.303345 SUCCESS 30

001000101 219 227 241 251 258 279 232 242 10.769087 0.215129 SUCCESS 31

001000111 238 235 271 245 222 232 251 256 7.069415 0.529162 SUCCESS 32

001001011 265 249 243 280 235 237 249 248 8.137056 0.420198 SUCCESS 33

001001101 224 220 241 245 262 258 220 237 9.076537 0.335881 SUCCESS 34

001001111 243 206 236 254 255 259 258 271 12.170366 0.143763 SUCCESS 35

001010011 249 242 264 253 240 206 228 249 9.559518 0.297312 SUCCESS 36

001010101 243 224 220 243 217 224 231 260 10.823105 0.211925 SUCCESS 37

001010111 243 259 232 225 249 259 239 225 5.814301 0.668024 SUCCESS 38

001011011 233 281 233 239 240 237 249 239 7.419999 0.492068 SUCCESS 39

001011101 230 260 254 226 240 239 258 238 4.875878 0.770756 SUCCESS 40

001011111 248 226 247 240 247 247 257 247 2.369888 0.967522 SUCCESS 41

001100101 268 251 247 229 234 259 230 277 10.415325 0.237076 SUCCESS 42

001100111 238 246 250 251 236 247 219 239 3.620765 0.889618 SUCCESS 43

001101011 237 258 239 264 261 243 246 255 4.543300 0.805086 SUCCESS 44

001101101 252 238 236 256 234 222 249 221 6.173359 0.627820 SUCCESS 45

001101111 234 251 220 233 249 253 241 242 4.119633 0.846172 SUCCESS 46

001110101 234 251 227 226 253 218 240 252 6.828984 0.555192 SUCCESS 47

001110111 255 233 234 241 242 237 223 207 9.465252 0.304579 SUCCESS 48

001111011 268 251 273 207 236 252 242 269 15.169929 0.055924 SUCCESS 49

001111101 240 241 233 252 227 253 235 236 3.109187 0.927320 SUCCESS 50

001111111 263 245 215 245 228 212 235 247 10.971388 0.203326 SUCCESS 51

010000011 248 243 224 258 219 251 248 222 7.612768 0.472180 SUCCESS 52

010000111 244 238 238 215 246 227 244 216 8.520474 0.384346 SUCCESS 53

010001011 231 240 249 236 250 262 252 247 2.979968 0.935608 SUCCESS 54

010001111 214 248 263 259 245 223 259 261 10.393083 0.238513 SUCCESS 55

010010011 250 199 259 242 254 220 222 251 14.882895 0.061463 SUCCESS 56

010010111 249 262 223 266 216 242 239 267 11.070950 0.197711 SUCCESS 57

010011011 233 247 238 261 263 237 235 243 4.007361 0.856459 SUCCESS 58

010011111 227 245 231 264 250 248 251 277 8.638042 0.373744 SUCCESS 59

010100011 253 224 246 245 258 242 267 254 5.532562 0.699430 SUCCESS 60

010100111 235 264 264 258 270 219 238 262 11.539102 0.172983 SUCCESS 61

010101011 235 241 229 251 226 229 245 254 4.340999 0.825122 SUCCESS 62

010101111 227 249 245 241 242 253 251 231 2.670691 0.953296 SUCCESS 63

010110011 250 261 222 245 251 243 244 261 4.841985 0.774324 SUCCESS 64

010110111 216 253 259 221 246 234 271 237 10.612331 0.224647 SUCCESS 65

010111011 252 274 246 231 257 255 250 261 7.344798 0.499929 SUCCESS 66

010111111 226 233 240 255 258 263 255 237 5.530444 0.699665 SUCCESS 67

011000111 252 259 230 237 230 244 256 226 5.095126 0.747362 SUCCESS 68

011001111 250 244 240 243 215 226 210 222 12.216970 0.141783 SUCCESS 69

011010111 257 233 243 232 263 272 279 220 14.274932 0.074875 SUCCESS 70

011011111 247 263 218 259 260 228 271 238 10.761673 0.215572 SUCCESS 71

011101111 271 253 240 242 225 247 247 226 6.496405 0.591806 SUCCESS 72

011111111 245 250 206 243 259 244 242 218 10.161125 0.253899 SUCCESS 73

100000000 233 237 232 250 240 239 236 267 4.188479 0.839730 SUCCESS 74

100010000 258 247 248 242 251 236 256 262 3.364446 0.909452 SUCCESS 75

100100000 237 241 252 250 226 253 251 246 2.606082 0.956600 SUCCESS 76

100101000 243 248 246 224 244 238 265 269 6.426500 0.599571 SUCCESS 77

100110000 218 245 242 230 241 236 253 255 4.915068 0.766614 SUCCESS 78

100111000 236 233 268 254 246 236 250 254 4.486105 0.810822 SUCCESS 79

101000000 232 238 241 213 235 241 230 239 6.278216 0.616099 SUCCESS 80

101000100 272 239 227 267 228 259 231 261 10.837933 0.211052 SUCCESS 81

101001000 249 240 259 239 240 259 252 231 3.223577 0.919553 SUCCESS 82

101001100 240 261 258 222 227 249 233 242 6.054732 0.641101 SUCCESS 83

101010000 257 230 221 246 219 247 247 230 7.417881 0.492289 SUCCESS 84

101010100 277 231 210 239 241 261 202 250 19.265730 0.013501 SUCCESS 85

Rev H 20 February 2015

32

101011000 210 232 255 264 246 246 211 242 12.428803 0.133073 SUCCESS 86

101011100 272 261 242 219 255 243 238 235 8.210138 0.413217 SUCCESS 87

101100000 254 264 271 257 247 232 248 264 8.244032 0.410003 SUCCESS 88

101100100 239 228 249 250 233 254 246 246 2.427083 0.965044 SUCCESS 89

101101000 250 261 253 250 258 238 237 216 6.373541 0.605466 SUCCESS 90

101101100 241 265 235 207 231 247 242 250 9.009810 0.341469 SUCCESS 91

101110000 235 230 241 249 237 253 249 244 1.989646 0.981328 SUCCESS 92

101110100 215 240 244 217 236 225 248 211 13.324859 0.101150 SUCCESS 93

101111000 235 259 235 234 228 241 243 259 4.163059 0.842120 SUCCESS 94

101111100 262 239 257 238 226 212 284 258 15.642318 0.047795 SUCCESS 95

110000000 239 240 252 232 249 236 231 284 8.915544 0.349471 SUCCESS 96

110000010 229 223 250 226 252 276 257 233 10.191841 0.251819 SUCCESS 97

110000100 221 229 248 275 223 270 259 228 14.103347 0.079111 SUCCESS 98

110001000 241 239 233 239 235 216 262 249 5.946697 0.653203 SUCCESS 99

110001010 261 238 254 237 244 240 240 245 2.141107 0.976377 SUCCESS 100

110010000 258 267 253 245 237 232 256 254 5.217990 0.734043 SUCCESS 101

110010010 259 221 241 243 236 260 244 253 4.930955 0.764930 SUCCESS 102

110010100 240 254 235 239 240 223 254 282 9.402761 0.309466 SUCCESS 103

110011000 231 231 246 229 262 258 246 244 4.628033 0.796491 SUCCESS 104

110011010 256 227 218 252 245 252 230 261 7.311964 0.503378 SUCCESS 105

110100000 237 241 234 233 225 246 241 213 6.925368 0.544706 SUCCESS 106

110100010 250 247 232 263 240 228 221 263 7.262183 0.508627 SUCCESS 107

110100100 264 226 230 239 252 225 264 234 7.942169 0.439140 SUCCESS 108

110101000 263 248 234 239 234 249 252 243 2.921714 0.939174 SUCCESS 109

110101010 269 248 219 247 251 266 215 244 11.216056 0.189755 SUCCESS 110

110101100 202 237 259 267 216 222 221 244 18.578331 0.017285 SUCCESS 111

110110000 244 256 261 249 232 247 253 235 3.248997 0.917774 SUCCESS 112

110110010 234 269 224 241 218 268 243 255 10.626100 0.223798 SUCCESS 113

110110100 259 258 243 261 241 214 214 227 11.938408 0.153973 SUCCESS 114

110111000 218 231 252 236 266 252 235 234 7.241000 0.510868 SUCCESS 115

110111010 214 236 249 220 252 229 236 207 14.041915 0.080679 SUCCESS 116

110111100 233 235 232 223 227 247 253 237 5.216930 0.734159 SUCCESS 117

111000000 259 235 250 219 250 235 235 274 8.743959 0.364354 SUCCESS 118

111000010 218 271 253 274 230 229 280 233 17.858097 0.022316 SUCCESS 119

111000100 248 228 245 220 245 215 265 238 9.236472 0.322742 SUCCESS 120

111000110 243 221 247 225 226 272 245 243 8.548013 0.381846 SUCCESS 121

111001000 250 276 235 218 236 254 242 265 10.253273 0.247698 SUCCESS 122

111001010 249 223 223 218 258 228 247 260 9.793594 0.279813 SUCCESS 123

111001100 215 225 239 225 264 258 249 248 9.457838 0.305156 SUCCESS 124

111010000 261 222 240 220 235 226 261 231 9.499145 0.301952 SUCCESS 125

111010010 229 220 241 222 233 223 253 222 10.372959 0.239818 SUCCESS 126

111010100 232 244 238 253 266 222 287 263 14.514304 0.069307 SUCCESS 127

111010110 214 245 243 248 226 255 228 220 9.377341 0.311470 SUCCESS 128

111011000 260 247 257 245 245 260 248 255 3.443884 0.903501 SUCCESS 129

111011010 258 271 226 244 219 249 213 235 12.499767 0.130259 SUCCESS 130

111011100 234 257 247 240 258 269 249 231 5.511379 0.701779 SUCCESS 131

111100000 261 250 225 209 264 229 256 267 13.586473 0.093201 SUCCESS 132

111100010 246 242 247 223 247 219 258 243 5.490196 0.704126 SUCCESS 133

111100100 251 246 254 219 218 246 221 260 9.542571 0.298609 SUCCESS 134

111100110 253 233 215 253 242 238 248 257 5.729568 0.677495 SUCCESS 135

111101000 246 227 231 264 241 235 236 240 4.406667 0.818697 SUCCESS 136

111101010 240 241 243 249 275 248 265 264 7.841548 0.449099 SUCCESS 137

111101100 245 240 235 261 241 277 242 253 6.607618 0.579497 SUCCESS 138

111101110 245 248 256 230 240 262 254 211 7.997246 0.433739 SUCCESS 139

111110000 270 250 239 280 251 225 270 241 13.174457 0.105986 SUCCESS 140

111110010 255 241 232 217 230 239 239 250 5.496551 0.703422 SUCCESS 141

111110100 240 232 220 250 234 224 255 227 7.200751 0.515136 SUCCESS 142

Rev H 20 February 2015

33

111110110 230 250 230 257 232 254 248 244 3.638771 0.888157 SUCCESS 143

111111000 251 260 229 244 240 211 241 214 10.844288 0.210679 SUCCESS 144

111111010 256 233 220 259 254 238 254 223 7.400934 0.494056 SUCCESS 145

111111100 272 244 228 243 260 227 224 229 9.394288 0.310133 SUCCESS 146

111111110 245 250 206 243 259 244 242 218 10.161125 0.253899 SUCCESS 147

===

 OVERLAPPING TEMPLATE OF ALL ONES TEST

 COMPUTATIONAL INFORMATION:

 (a) n (sequence_length) = 1000000

 (b) m (block length of 1s) = 9

 (c) M (length of substring) = 1032

 (d) N (number of substrings) = 968

 (e) lambda [(M-m+1)/2^m] = 2.000000

 (f) eta = 1.000000

 F R E Q U E N C Y

 0 1 2 3 4 >=5 Chi^2 P-value Assignment

 359 194 137 97 60 121 4.106682 0.534161 SUCCESS

===

 UNIVERSAL STATISTICAL TEST

 --

 COMPUTATIONAL INFORMATION:

 --

 (a) L = 7

 (b) Q = 1280

 (c) K = 141577

 (d) sum = 877347.519730

 (e) sigma = 0.002768

 (f) variance = 3.125000

 (g) exp_value = 6.196251

 (h) phi = 6.196964

 (i) WARNING: 1 bits were discarded.

SUCCESS p_value = 0.796777

===

 APPROXIMATE ENTROPY TEST

 --

 COMPUTATIONAL INFORMATION:

 --

 (a) m (block length) = 10

 (b) n (sequence length) = 1000000

 (c) Chi^2 = 1083.704253

 (d) Phi(m) = -6.930968

 (e) Phi(m+1) = -7.623573

 (f) ApEn = 0.692605

 (g) Log(2) = 0.693147

 --

SUCCESS p_value = 0.095242

===

Rev H 20 February 2015

34

 RANDOM EXCURSIONS TEST

 --

 COMPUTATIONAL INFORMATION:

 --

 (a) Number Of Cycles (J) = 1730

 (b) Sequence Length (n) = 1000000

 (c) Rejection Constraint = 500.000000

SUCCESS x = -4 chi^2 = 2.121795 p_value = 0.832049

SUCCESS x = -3 chi^2 = 4.219629 p_value = 0.518247

SUCCESS x = -2 chi^2 = 7.092899 p_value = 0.213822

SUCCESS x = -1 chi^2 = 11.611561 p_value = 0.040516

SUCCESS x = 1 chi^2 = 8.154913 p_value = 0.147902

SUCCESS x = 2 chi^2 = 0.794205 p_value = 0.977401

SUCCESS x = 3 chi^2 = 2.269508 p_value = 0.810735

SUCCESS x = 4 chi^2 = 2.720236 p_value = 0.743022

===

 RANDOM EXCURSIONS VARIANT TEST

 --

 COMPUTATIONAL INFORMATION:

 --

 (a) Number Of Cycles (J) = 1730

 (b) Sequence Length (n) = 1000000

 --

SUCCESS (x = -9) Total visits = 1823; p-value = 0.701378

SUCCESS (x = -8) Total visits = 1750; p-value = 0.930043

SUCCESS (x = -7) Total visits = 1755; p-value = 0.906165

SUCCESS (x = -6) Total visits = 1789; p-value = 0.762328

SUCCESS (x = -5) Total visits = 1759; p-value = 0.869465

SUCCESS (x = -4) Total visits = 1688; p-value = 0.787257

SUCCESS (x = -3) Total visits = 1722; p-value = 0.951500

SUCCESS (x = -2) Total visits = 1873; p-value = 0.160444

SUCCESS (x = -1) Total visits = 1833; p-value = 0.079937

SUCCESS (x = 1) Total visits = 1839; p-value = 0.063874

SUCCESS (x = 2) Total visits = 1854; p-value = 0.223570

SUCCESS (x = 3) Total visits = 1760; p-value = 0.819580

SUCCESS (x = 4) Total visits = 1749; p-value = 0.902831

SUCCESS (x = 5) Total visits = 1733; p-value = 0.986436

SUCCESS (x = 6) Total visits = 1737; p-value = 0.971377

SUCCESS (x = 7) Total visits = 1726; p-value = 0.984952

SUCCESS (x = 8) Total visits = 1798; p-value = 0.765332

SUCCESS (x = 9) Total visits = 1967; p-value = 0.328467

===

 SERIAL TEST

 COMPUTATIONAL INFORMATION:

 (a) Block length (m) = 16

 (b) Sequence length (n) = 1000000

 (c) Psi_m = 65563.586560

 (d) Psi_m-1 = 32968.732672

 (e) Psi_m-2 = 16480.137216

 (f) Del_1 = 32594.853888

 (g) Del_2 = 16106.258432

Rev H 20 February 2015

35

SUCCESS p_value1 = 0.750144

SUCCESS p_value2 = 0.938145

===

 L I N E A R C O M P L E X I T Y

 M (substring length) = 500

 N (number of substrings) = 2000

 F R E Q U E N C Y

 C0 C1 C2 C3 C4 C5 C6 CHI2 P-value

 Note: 0 bits were discarded!

 21 62 281 980 505 114 37 5.788698 0.447272

