Rev H 20 February 2015

The SD16_A as a thermal random number-generator
Phil Ekstrom and Ray Glaze, Northwest Marine Technology, Inc.

The SD16_A analog-to-digital converter module, implemented in some members of the Texas Instruments
MSP430 microcontroller line, can function as a surprisingly good source of randomly generated bytes, producing
them at the rate of four per millisecond. The randomness can be traced to a fundamentally thermal source, so
this is a truly random generator, not a pseudo-random one.

What to do - for randomly generated bytes.

Configure the SD16_A for maximum gain, input 7 (which is an internal short circuit), and an oversampling ratio
(OSR) of at least 256. (Smaller may do in some cases - see below). Set the input clock divider to make a 1MHz
converter clock and set the LSBACC bit to give access to the low order part of the converter’s filter register.

When running with a 16 MHZ MCLK, C code to accomplish this would be (assuming an appropriate header file
that defines the symbols the same way the User’s guide does):

//1 MHz, (MCLK/16), turn reference generator on.

SD16CTL = SD16XDIV_2 + SD16DIV_0+ SD16SSEL_0O + SD16REFON;

// Oversampling ratio set to 256, enable LSB access, no interrupts,

SD16CCTLO = SD160SR_256 + SD16LSBACC;

// Gain =32 (actually 28), channel is 7 (shorted)

SD16INCTLO = SD16GAIN_32 + SD16INCH_7;

// Now Go

SD16CCTLO |= SD16SC;

After each conversion, the SC16IFG flag will set in the SD16CCTLO register. If you have the interrupt enabled (by
setting SD16IE in that same register) the module will post an interrupt. When the flag sets, the lower byte of the
SD16MEMO result register contains your new randomly generated eight-bit value. Reading that byte will reset
the flag bit. At this clock rate and OSR value, the flag bit will set again with a new randomly-generated byte
every 256 pseconds. To access it in C, assign the value in SD16MEMO to a variable of type unsigned char.

This recipe assumes that the SD16_A is used for no other purpose. In fact it can be shared with another use, and
configured as a random generator only when needed or when it is free from other demands. Even when doing
its intended job as an ADC for nonzero signals, it will also be generating a noisy byte in the bottom of its output
register as a result of each conversion. If it is run with high gain and an OSR of at least 256, and if the signal
being converted lies safely within its input range limits, one would expect that the low order byte would be
much like it is during dedicated operation. We have not investigated the quality of that byte in such conditions,
but you may find it usable.

As discussed below, you may be able to use an oversampling ratio as small as 128, doubling the rate of byte
production, but the resulting entropy stream fails tests 8, 12, and 13 (see appendix) of the NIST test battery.

Finally, for each processor to be used in this service, you need to verify that the least significant bit is actually a 1
half the time, and 0 half the time. Of 14 MSP430F2013 processors we have tested, 10 behaved perfectly. Four of
them, however, showed a marked preference, for generating even numbers. They would show a 0:1 ratio in the
least significant bit as high as 5:3.

If all you want is a recipe for randomly generated bytes with a uniform distribution, there it is.

Rev H 20 February 2015

What to do - for randomly generated numbers over some other range
For some purposes you need numbers uniformly distributed over some range other than 0-255, perhaps over a
range that is not any power of two.

One particular case of interest is the Fisher-Yates Shuffle algorithm. That algorithm requires one number
randomly generated modulo 2, another modulo 3, another modulo 4, and so on up to a final number randomly
generated modulo N for shuffling N objects. See the Wikipedia article on the Fisher-Yates shuffle for a
description of the algorithm and of the difficulties that can arise when randomly generating the input numbers
that are needed to specify an output order.

In any such case you can start out with numbers that have a Gaussian (Normal) distribution with a standard
deviation at least 70% as large as the numerical range you need. You then take those Gaussian-distributed
numbers modulo your range. The result is a uniform distribution over that range. That is, in fact, just what we
did in the case above, taking Gaussian-distributed numbers from the SD16 modulo 28,

However when the desired range is not a power of two, we will need to divide the word read from the SD16 by
the modulus using unsigned integer division with remainder; that means we must start with a positive number.
The offset specifications of the SD16 are not tight enough to determine the sign of the low order word of the
filter register at high gain and large oversampling ratio. At an oversampling ratio of 128 the offset, specified as
1.5% of full scale, amounts to 2'* LSB in the lower end of the filter register, and that will fit in a 16-bit field.
Because of the way the result is scaled by the ADC hardware, each doubling of the OSR multiplies the apparent
offset (as seen in the bottom half of the register) by a factor of 8, so the offset at OSR=256 is 2’ LSB, which will
not fit. We will need to do something more to control the average value of the distribution so that all of our
numbers are positive. The simplest option is to use the general scheme above, but add three more processing
steps:
1) We first generate two Gaussian numbers. In this case we set up the SD16 as above, but instead of a byte
we load an entire 16-bit word from the low end of the SD16.
2) We form the difference of those two words (which makes numbers with a zero mean, no matter what
the offset voltage of the ADC is) and finally,
3) We add the desired offset, ordinarily2'°=32768. (The actual value does not matter, so long as it prevents
both overflow and underflow. 2'° is as far from both 0 and 2'® as we can simultaneously get.)

That scheme is very robust and especially suited to a production version of some product. Another possibility
that is twice as fast per sample generated is to do a preliminary experiment to measure the mean of each
particular SD16 for the particular mode of operation we will use, and then subtract that mean from each sample
before adding the desired offset. One should probably re-measure the average every so often, perhaps at every
power-on.

A more surprising possibility that still produces an entropy item for every conversion is to take the difference of
successive ADC results, but to re-use the later one for forming the next difference. That is, from ADC results a;,

di+1, Ao, €tc. one generates X; = a;,; —a;, X,y =i, — iy

etc. That it can be useful is surprising because even
if the a; are uncorrelated, one can show that the original differences x; (before taking them modulo the desired
range) are highly correlated at lag 1. The expected correlation coefficient is r(1) =-0.5. It will turn out below that
successive ADC words are already positively correlated, so the observed value of r(1) is not exactly -%, but it is
negative and substantially different from zero. However it will also turn out that taking the stream modulo a

sufficiently small number m, as we must do to get a flat distribution, will also erase the correlations. We leave

Rev H 20 February 2015

the details for a later section, but the point to be made here is that there is a third way of forming differences
with known mean, that all three can be considered, and one makes twice as many results from a given stream of
ADC outputs.

With our known-positive numbers drawn from a population with a Gaussian distribution, we divide by the
desired range of each number we need, and each remainder is our randomly generated number over the range
bounded by 0 and the divisor. We may divide each Gaussian number repeatedly until the product of all the
divisors exceeds 1.4 times the standard deviation. For instance, we will see below that the difference of two
Gaussian numbers generated with OSR = 256 has a standard deviation near 1250, and 1250*1.4 = 1750. If we
are making integers for a Fisher-Yates shuffle, we can safely divide out remainders modulo the numbers 2
through 6, since 2x3x4x5x6 =720. We cannot safely divide again by our next modulus 7, since 720x7=5040 >
1750. Instead, we begin with a new Gaussian number from the SD16 and divide by 7 through 9, since 7x8x9=504
but cannot then also divide by 10 since 504x10=5040 > 1750.

If you know in advance how large N is, there is usually a way of grouping your divisors to make better use of the
entropy you have generated than this example does, that is to make the product of your divisors nearer to the
limit of 1750 than we did just above. We leave that as a matter of tactics for any given situation.

Rev H 20 February 2015

How well it works - bytes

If we are trying to make a number generator with a uniform distribution, one that produces all possible values in
its output range with equal probability, we ought to check its output to see that all values really are produced
about equally often. If we want the generator’s past history to offer no clues about its future actions, we ought
to check the autocorrelation function of the byte sequence to make sure that a large byte value is not, for
instance, usually followed by a small one or vice versa. As will be argued in the appendix, these are necessary
but not sufficient tests for randomness.

To run these tests, we need a file of output bytes from our generator. There is a program in the appendix which
when loaded into the target board of an eZ430_2013 evaluation kit sends out bytes in start-stop serial form (for
receipt by a UART) that have been randomly generated by the SD16_A in the manner described above. It uses
the Timer_a module to simulate

a serial communication port Histogram of 106 values
and runs at 115.2 KBaud with T | |
its output on P1.1. We removed
the target board from the USB
stick hardware of that
evaluation kit, attached a serial-
to-USB interface cable from
FTDI, and read the byte stream
into a PC for further processing.

A
=
o
L=

e A S ™ i e e e, e e e

2000 -

Muwmber of counts in hin

The results of these two tests
on a sample of N=10° bytes
generated in this manner are
shown in the figures at the 1]
right.

| | |
1] td 128 192 236
Ein valus

The first figure shows a
histogram of values observed in
the record, accumulated by
setting up 256 counters (the
“bins”), one for each possible
byte value, scanning the record,
and for each value observed
incrementing the
corresponding bin. The second
figure is an expanded version
with three heavy black lines
indicating the average n and
the average plus and minus the

Histogram of 106 values
4100 | I

4000 | L] Ill. .
% IARLIN
QA
I A \ [l 'l

expected standard deviation | | I
ntVn. The average number in 3700 0 64 128 192 136
each bin is Bin value

n=N/256=10°/256 =

3906.25. Theoretically we expect about 63% of the values to fall between the outer lines.

—

Mumber of counts in bin

Rev H 20 February 2015

The next two figures show the results of an Correlation of values in the sequence
autocorrelation calculation based on the same data . ' ' '
record for lags between 0 and 20. (See the appendix for
details of the calculation.) The first figure includes for
comparison the correlation at zero lag, which is by
definition 1.

=
A
I

The second figure expands the scale for the remaining
values and shows for comparison two horizontal lines at
i]/\/ N = #0.001 indicating the expected standard

deviation of the results for uniformly distributed | |
randomly-generated values. -0.3) 5 10

orrelaton functon

>

L
A

20
Lag

The Tl user’s manual text and figures describing the

SD16 makes it clear that the value of the converted , Correlation of values in the sequence

number does not settle in a single conversion cycle, and 0.002 ' ' '

that for two conversion cycles after an input value

changes there is a substantial error in the most | .|l1.

significant bits of the ADC result. The new value remains 0.001 4

correlated with the previous value. We would not /\

expect this correlation to occur with constant input and
in the noisy lower bits, and the results shown here
confirm that indeed it does not. Again we expect about
63% of the values to lie between the outer lines, and we
see that they do. Successive bytes in the sequence are
effectively uncorrelated. -0.001 U

orrelation function
=

i

A stream of uncorrelated symbols, each occurring with
probability p;, has a Shannon entropy in bits per symbol ~0.002 | |

defined by S = —z p, -log,(p,), where the 0 . 10
i

Lag

-
A
[}
=

summation index i runs over all symbols. In our case,
0 <i < 255. For a theoretically perfect generator, all the probabilities would be p, =1/256, so

~log,(p,)=8, and s=8.

We can approximate the probability of seeing a byte of value i by the relative frequency of occurrence of that
value in our test sequence. With a finite sequence, the bin contents will of course not be exactly equal and not
exactly equal to the underlying probability so we do not expect the resulting estimate to be exactly $S=8, but with
a large sample such as the one we have, we expect to be close if the generator is indeed random. To make that
estimate we take p; ~ N, /N where n; is the number of counts in the i-th bin (as plotted in the first two figures
255
of this section) and N is the total length of the sample, N = ZHi . Estimating S in this way gives S = 7.99981
i=0
bits/symbol. We will not be far wrong to call that result 8 bits of entropy per generated byte.

The appendix contains a pointer to a suite of tests offered by NIST for candidate random number generators,
and to the “Dieharder” test suite, a more convenient implementation of those tests along with several others.

Rev H 20 February 2015

It also contains some rude words about the ability of any test to actually confirm true randomness. Still, if we
have a supposedly random generator of numbers, it ought to be able to pass those tests, as the appendix
argues, most of the time. When we ran the STS suite on the same file of 10° randomly generated bytes tested
above it passed all tests successfully. The result file is in the last appendix.

However when we condensed that experimental setup into a compact USB memory-key format and made ten
copies for a project, we found that seven worked perfectly but three failed in an interesting and puzzling way. In
those three units all odd byte values were equally likely to occur, and all even byte values equally likely, but the
even bytes were more likely than the odd ones in a ratio of about 3:5! Something was wrong with the least
significant bit! Unfortunately we had blown the security fuse of all ten processors before testing statistical
quality, so were unable to perform a number of experiments which may have elucidated the matter. We
replaced the processors in all three of the failed units and left the security fuse intact to allow investigations.
One of the replaced processors misbehaved, and persisted in misbehaving when erased and re-programmed
with the same image used originally, and also used in the successful units. Including the original processor from
the EZ430 module, we have now tested 14 of these processors, and the SD16 units of 10 have worked perfectly
for us. Four showed a marked preference for generating even bytes, and that preference seems clearly to be a
property of the particular chip being tested.

As a result of this experience, we have included a health check in all of our subsequent experiments that will
quickly verify that the least significant bit of the output is equal to zero as close to half of the time as one would
expect. We will meet a related issue in the next section, and will discuss a possible quick health check there.

Rev H 20 February 2015

How well it works — Gaussian

We used two channels of the SD16_A in an MSP430F47197 processor to investigate the actual distribution of
the nominally Gaussian ADC output. In each run we accumulated a 10°-sample histogram for each channel in a
512-word array in that processor’s larger but still limited RAM, using just over half of the available memory.
Therefore the values had to be binned in classes of either 128 or (for cases where the standard deviation was
smaller) 16 values per bin. We will see below that errors in going from Gaussian to uniform distributions occur in
the form of a single-cycle approximate sinusoid. The binned data will be sufficient to exhibit that sort of problem
to us whenever it is present.

Well, how good are our Gaussian

distributions? They are very good indeed. 35000

At the right is an example of single data f\
values (not yet differences of successive 30000

pairs) generated with the oversampling / \

ratio equal to 128. The horizontal axis is bin {25000
number (16 values per bin) and the vertical] \
axis is the number of counts in the bin. The |20000

dotted red model trace is a theoretical l \
Gagssmn predlt?tlon of the bin contgnt‘s for 115000 — = mmodel 6
10° numbers with the standard deviation

best fit to the data. It has been deliberately 10000 j \

shifted left by one bin to make both traces

visible. When that is not done the data / \

trace disappears behind the prediction. >000

That best-fit model has a standard deviation j/ \\

of 12.5 bins, or 200 LSB. 0 ' ' ' ' ! '
235 255 275 295 315 335 355

dataéb

Histograms for OSR=128 and OSR=256 with two successive bytes subtracted look as good as the one shown just

above. However with

) 16000
OSR=512, we see the kind of
fat ta.|Is dewa'Flon frorTm 14000
Gaussian behavior that is /\
commonly seen in 12000
distributions of experimental !

data. Here the bins are 128 10000
units wide and again 10° data
values are represented. The 8000 Channel O data
data and best-fit model are
here not offset, emphasizing 6000
the small region in the tails of
the distribution where they 4000 1 l
deviate enough so that the l \

data trace emerges from 2000

behind the model. The data f \

can be modeled quite 0 . . T . T .
successfully as a sum of two 0 100 200 300 400 500 600

= (Channel 0 model

Gaussians, one with a standard deviation of 3431 and the second with smaller amplitude and a standard
deviation of 7770.

Rev H 20 February 2015

These “fat tails” that are so troublesome in some circumstances are in this context of no concern. Our rule will
be that the distribution must be wide enough, and an extra contribution that is an even-wider second Gaussian
does us no harm. So long as the central peak corresponds to a sufficiently large standard deviation, we get a
uniform distribution in the end.

That rule will be justified
theoretically later, but let us see 30000 co—1

some examples of it in action. At (0.7)
the right we see sums over the 25000 ——C0-148
histogram above. Each individual _(COO'G_)SS
case groups together those counts 20000 TS (05)
that would land in the same bin if PSS S ——c0-82
the data were taken modulo some A~ (0.4)

15000
particular value that is an exact __‘_’_/ —C0-96
multiple of the bin size. If the m.a)
standard deviation is to be as small 10000 _’/ N
as 0.3 times the modulus, then we

sum the contents of bins that are 5000

96 bins apart and obtain the wide

variations shown in the bottom, 0 : : : : ,
light blue trace. If instead we follow 0 20 40 60 80 100

the rule suggested earlier and
require that the standard deviation be at least 0.7 times the modulus (modulus <1.4 times standard deviation)
then we sum together data that are 41 bins apart and get the top green trace. Intermediate values of the
modulus give intermediate results, with the total systematic variation decreasing rapidly as the modulus
decreases. Towards the top any systematic variation is lost in the natural noise.

The rule illustrated
above, that one can use a 70000
modulus as large as 1.4 PEVENEVNINI TN INDS v
times the standard 60000

deviation, suggests that
one could take the output | 50000
of even the data first
shown that was 40000 === (Chan 6 mod 256

generated at OSR=128

=—#=—Chan 0 Mod 256

+1 std

modulo a value as large 30000 ted vali
as 200*1.4 = 280; one expected value

20000
should be able to extract —-1std
a' byte from'each. We can 10000
simulate doing that by
again summing up for 0

T T T T T 1

each bin n the counts in
bin n, bin n+16, n+32,
n+64 etc. The result is shown in the figure at the right, a satisfactorily flat distribution. The horizontal scale here
is in byte values rather than bin numbers. Values on the vertical scale are the contents of the virtual bins
summed as above. They represent the bin contents that would have been obtained if the values were first taken
modulo 256, and then binned.

0 50 100 150 200 250 300

Rev H 20 February 2015

—4==Chan 0 Mod 256
#==Chan 6 mod 256

To allow a better look at
the variations, the next 63400
figure suppresses the 63200
zero of the vertical scale.
We expect that 63% of 63000
the points will be within 62800
the lines marked +-std.
That is, we expect about 62600 7 5
0.63*16 ~ 10 points on 62400 ‘/ \ A AV
each trace to be inside. 62200 __M
The channel 0 trace has 7
inside, the channel 6 62000 u
trace has 14. For both
61800
taken together we expect
20 and observe 21. With 61600 .
this small numbers of 0 50

+1 std
expected valiue

—-1 std

points all of that is
satisfactory agreement.

This is the basis for suggesting that one can make bytes sufficiently randomly with the oversampling ratio as
small as 128, which generates bytes twice as fast as a ratio of 256 does — about 8 per millisecond per ADC

channel. A test file of 10° bytes generated
at OSR=256 passed all of the NIST battery of
tests for random number-generators. A
comparable file generated as OSR=128
passed most but not all of those tests, so
we use the larger oversampling ratio unless
the higher generation rate is needed.

At smaller values of oversampling ratio the
standard deviation of the noise is not
sufficient to generate bytes (that is to use a
modulus as large as 256) but they can be
useful for generating values with respect to
a smaller modulus. However histograms of
data taken with OSR = 64 show a slight
preference for even numbers, as shown in
the magnified plot at the right. The
resulting standard deviation is 36, which
will allow use of a modulus as large as 50 if

12000

11000

10000

9000

8000

7000

6000

5000

4000

\

data6

model 6

\

/

550 570 590 610

630 650

the preference, which we can estimate by eye to be about 10%, is acceptable.

Alternately, the result can be shifted one place to the right, obtaining a standard deviation of 18, a maximum

modulus of 25. The next histogram at the
right was generated for this case by adding
together each even numbered bin and the
following odd-numbered one. To plot this
on the same scale as the model curve
above, the sums were then divided by two,
and were plotted against a scale which is
the original one divided by two. To get
around Excel limitations without artificially
smoothing the record, each summed data
value was plotted twice, leading to the
stair-step effect that can be seen in the data
trace. The crucial point here is that with the
LSB removed, there is no visible systematic
preference for, for instance, either state of
the next higher bit.

Rev H 20 February 2015

12000

11000

10000

9000

8000

7000

6000

5000

4000

med

= model 6

/

\
\
)\

275

285

295

305

315 325

This result, obtained with MSP430f47127 chip 1 is a bit equivocal, because when the same options were set up
in chip 2, both channels behaved well with no sign of a preference for even numbers, and gave a standard
deviation of 18.5. So at least here it looks like the kind of failure we saw earlier with the byte generator where a

few units had the disease, most did not, but the disease affects only some of the possible ways to set up the

SD1e.

However at OSR = 32 (the smallest available) even numbers become much more likely than adjacent odd

numbers in the data, as illustrated in the next figure, and the disease afflicts both units comparably. One could
again try shifting the data right one place. The regular progression of the peaks seen below lead one to expect

that higher bits are indeed not involved and that one would meet success when doing that. However the result

would have a standard deviation near 4 and a maximum modulus near 6 — of little practical use. Therefore we

do not pursue this possibility and do not suggest operating at such a small value of oversampling ratio. Note that
the central three peaks are clipped at 2'°=65536 in this histogram. These three bins became full and saturated;
about 7400 counts were lost out of the 10° total.

70000

60000

50000

40000

30000 !

20000
J

10000

450 460 470

480

490

500

510

—data 0

model 0

10

Rev H 20 February 2015

This preference for even numbers is presumably related to the similar preference observed in the MSP430F2013
byte generator and mentioned in a previous section, but there are significant differences. First, the effect seen
here was seen in both channels tested, in both devices tested, repeatedly at any sufficiently small OSR, but
never at an OSR as large as 256. The previous instance was seen in 4 out of 14 separate processor chips
operating at OSR=256. In this case the malady affected both channels of one chip at OSR=64, neither channel of
the other chip.

However in all cases when the effect occurred at all, it seemed to occur stably. Modeling the process as a
binomial distribution with p= % (so g=1-p=1/2), we expect that in a sample of N values the average number of
zeros will be u=Np—>N/2, and the standard deviation of that number will be o=V(Npq) —(1/2)VN. For a large
sample, the number of zeros is approximately normal so we expect that number to be within 2.58c of the
predicted mean 99% of the time. That is, the observed number of zeros of an actually good unit will lie outside

of the limits (N /2 —1.29\/ﬁ)< s< (N /12 —1.29\/N) only 1% of the time. For a set of N=2"° generated values,

the test limits would be 2" + 331. If a processor fails the test, it could be discarded wasting only 1% of actually
good processors. One that failed initially can be re-tested, and accepted if it satisfies the condition the second
time. In fact, all failed processors we have seen violate that limit by a huge margin and a much wider acceptance
band could be used to catch all failures we have seen. Note that this test can be applied at either of two stages
of the generation process, either to the full word when first generating the Gaussian samples, or to the
uniformly distributed results of taking these modulo any even modulus.

Early experience applying this test to the Gaussian output of eight MSP430F47127 processors, testing ADC
channels 0 and 6 of each processor so in all 16 channels were tested, showed that the results separated into two
clearly defined groups, with one outlier. Two of the channels failed solidly, with their results never lying within
the test limits. Thirteen of the channels behaved as predicted with the worst showing a failure rate of 1.6%. The
outlier was an extreme 14™ member of the well-behaved group, showing a failure rate of 3.1%. This appears to
be a simple statistical fluctuation, since on re-testing this channel’s results lay well within the others of the “well
behaved” group.

A later examination was performed with N = 2714 (that is, the LSBs from 16384 data words were summed, so
the expected value was 8192). Each channel was tested at least 256 times, and one running overnight was
tested 13,345 times. The largest results produced by the two bad channels in these trials were never larger than
7179 (12.4%low nominal). The smallest value produced by any of the 14 “well behaved” channels was 7937
(3.1% below nominal). Tentatively, since we have looked closely at only two misbehaving channels and four
others in the byte tests only qualitatively, it looks like when operating at OSR=256 there is a clear separation
between good and bad SD16 modules, and that a single test with N =27214 (which takes only four seconds) will
determine which of the two kinds we have.

Any similar test would have immediately flagged the earlier problem units. We suggest that all applications
include a similar health check, both as a screening measure before installing the processor, and also in the
application for ongoing monitoring.

Summarizing our other observations of performance, various setups have yielded best-fit standard deviations as
given in the table shown here. Several other items not yet discussed are also shown in that table, and will be
referred to in the discussions that follow. The sample standard deviation (not displayed here) is in most cases
slightly larger than the best-fit model standard deviation G, as a result of a few outlier points in the tails of the

11

Rev H 20 February 2015

distribution. Avoiding undue optimism, we use the standard deviation of the model best-fit to the central peak.
In particular, in the case of OSR=512, the smaller of the two standard deviations is quoted.

Single Value c Difference (data not shared) Difference
ratio (data shared)
OSR | even offset c c— r — max c c—> r—-maxm |r—maxm
bias LSB maxm | m max m
32 large 28 7.8 11 Data rate too high to compute correlations in the setup used.
64 |small | 2" 36/18 | 50/25
128 | none 2" 200 280 256<max | 1.10 | 220 | 308 512<max | 512<max<25
<512 <256 6
256 | none 2Y 1152 1613 2048<ma | 1.09 | 1250 | 1750 2048<max | 2048<max
x <4096 <4096 <4096
512 | none 2%° 3257x2 | 9120 8192<ma | 1.05 | 3430 | 9604 8192<max | 8192<max
x <16384 X2 <16384 <16384

We have seen in the previous section that when we use only the low order 8 bits of data generated at OSR=256,
successive bytes are uncorrelated. When we subtract two uncorrelated numbers from the same distribution, as
we have done in some cases just above, we expect that the standard deviation of the result will be V2 times as
large as that of either one, about 41% larger. What we see above is a standard deviation only 5% to 10% larger.
This is our first warning that when we start to include higher order bits, successive ADC results may be no longer
uncorrelated. That is, there another limit on the maximum modulus if we demand that the results be
uncorrelated (which we do). The SD16 documentation does warn that if we change its setup the output may
take up to three conversions to settle, but there is reason to suspect that, as with the single-byte data, it will not
take as long for the lower bits to become uncorrelated with those of the previous sample.

12

Rev H 20 February 2015

To explore this issue, we calculated the autocorrelation function in the MSP430F47197 for some of the cases
above. The calculation was implemented using integer arithmetic for speed, as described in the appendix, and
the words read from the SD16 were taken modulo various powers of two, the only moduli for which division
could be performed rapidly enough to keep up with the data rate. The scaling factor was chosen to be 10,000 in
order to preserve four decimal places 12000

in the result. That is, a correlation of 1
will Forrespond to 10,000 units on the | 10000 mod 4096
vertical scale of the graphs here. The
horizontal scale will be the lag L. 8000 \ ¢—mod 2048
For OSR=128, the result 6000 ot

or =128, t e results are as _ \ mod 512
shown at the right. Indeed there is a 4000
visible correlation at one unit lag o—mod 256
which decreases rapidly with lag and 2000 +1 sigma
with oversampling ratio. The next .

. 0 - - = - | -1 sigma
graph expands the vertical scale to
. 2 4 6

show more detail. 2000 [\]

As the modulus decreases, the correlations also decrease. When the modulus is as small as 512, the correlation
at one unit lag is only 0.0045, and at
modulus 256 the largest correlation
magnitude (at lag 5) is -0.0015, or
1.5x the expected standard deviation
for these points. Yes, there is a —&—mod 2048

. . 700 L
separate limit on the maximum —@—mod 1024
modulus that is set by the need for
. 500 - == mod 512
uncorrelated samples, but one that is
not more stringent than the limit m < =®—mod 256

1100

900

mod 4096

280 set by the requirement for a flat 300
distribution.

+1 sigma

100

=1 sigma

The correlations are larger for larger
OSR, as we might expect from the fact | 12000

that differencing successive samples
offered an even smaller increase in 10000 f}
standard deviation. The data are \
shown here for OSR= 256. A modulus 8000 _\\
of 4096 brings the correlation at one 6000 | —&4—mod 8192
lag down to 0.07, and for 2048 it —B—mod 4096
actually goes negative, -0.001. Again, 4000
the earlier limit of m < 1316 is more mod 2048
stringent than the one set by 2000
correlations. o | \
[\] 2 4 6
-2000

13

Rev H 20 February 2015

For OSR =512, the story is much 12000
the same. In this case the data
were divided by 2 before 10000 £}
processing, so the modulus 8192,
which here is seen to reduce the

correlation at one lag to 0.016, is 6000 |—
equivalent to 16384 applied to
the raw data. An actual 8192 is
shown here as 4096, and reduces 2000
that correlation to 0.0018. The
limit set by the flatness 0
requirement is here m <9120,
again more stringent.

8000
=—g=mod 32768

—i—mod 16384

4000
mod 8192

-2000

These results have been added to the table on the previous page that kicked off this investigation, and the
conclusion is clear: if we obey the proposed limit that m < 1.4c, we lose nothing significant to serial correlations.
While several conversions must elapse for the entire word to be uncorrelated with a first conversion result, the
numbers we divide out of that result will be insignificantly correlated with the ones divided out of the previous
converison result.

The fact that the nonlinear modulo operation removed the correlations in this case suggested that it might also
remove the correlation that would arise if we were to difference our ADC result in overlapping pairs, as
mentioned in an earlier section. Without much theory to guide us here, we just repeated the same experiments
done above for the case where we did overlapping differences. The results were much the same. Although the
correlations seen were different, always negative when they were large, they came down to the expected noise
level within the same modulus range. These results have also been added to the table above, under the heading
“data shared” differences.

Again we conclude that if we obey the limit on modulus m set by the flatness criterion, correlations from either
of the two sources discussed will be eliminated.

Note that the standard deviation increases by a factor near 6 when doubling the oversampling ratio, offering
between two and three more bits of entropy. However halving the oversampling ratio generates twice as many
data words per unit time, offering twice as many bits. Operating at low OSR maximizes the rate of entropy
generation.

14

Rev H 20 February 2015

Why it works at all
Every time a capacitor is connected to a resistive source, allowed to settle, and then disconnected it acquires a

thermally generated noise voltage with standard deviation Vs =+/KT/C in addition to whatever voltage the

source is intentionally providing. This random addition is called “contact noise”, but it is actually the resistor that
is noisy, not the contact, as explained in the appendix. Here k is Boltzmann's constant and T is the absolute

temperature, so at room temperature the result becomes Vp,,s = 64,uV/\/C for Cin picofarads.

Every microsecond when the input sampler of the SD16_A contacts the external circuit and the voltage on its
20pF sampling capacitor settles to a new measurement of the nominally zero input value, that value is zero plus
or minus “contact noise” that has a standard deviation of 64/\/20 = 14 microvolts. That voltage is amplified by a
factor of 28, so will have a standard deviation of 0.4mV, and applied to the sigma-delta modulator. In the course
of the conversion, 256 of these values (for OSR=256) will be more-or-less averaged by the digital filter, to yield a
random contribution no smaller than 400/\/256:25uv. This truly-random contribution could possibly approach
that theoretically smallest value if the filter simply averaged. In fact it does something more complicated to
minimize the shaped quantization noise of the second order delta modulator, so we expect that there will be
more of the truly random noise than this. Also there are other noise sources in the modulator, so for that reason
also the noise we have just estimated is a minimum.

For OSR = 256, the most significant bit of the output register is bit 23 (see figure 26-5 of the MSP430F2xxx User’s
guide, SLAU144)), and that bit is worth 600 mV. The least significant bit of the register is therefore worth 22
*600 mV~72nV. That means the 25uV noise contribution is worth at least 25uV/72nV = 350 LSB, and we expect
it to be Gaussian noise, distributed along the familiar bell-shaped curve of probability density. Again this is a
minimum.

The simple treatment in the paragraph above requires some assumptions about just how the input amplifier and
delta modulator are constructed and operated. Based on the gain and capacitance specifications of the SD16
and the fact that the module still offers gain when the active amplifiers are omitted, | have assumed that each of
the two Cs capacitors (10pF at gain 32) in figure 26-2 of theF2xx users guide (SLAU144J) is made of eight 1.25pF
capacitors (like the one that is used at gain 1) that are charged in parallel and then connected in series when
presented to the ADC core. A final factor-of-four gain is achieved some other way, perhaps in the delta
modulator, or perhaps by actually splitting each of the 1.25pF capacitors four ways. There are other ways that
the input amplifier could be operating, but most of them lead to the same noise estimate. None we have
thought of leads to a smaller one.

Recall that in the experiments reported above we saw a standard deviation of 1250 LSB for OSR=256; the output
is actually noisier than this estimate would lead us to expect, but that’s OK even though it is not quite clear just
where that extra noise is all coming from. We can guess that it is partly additional contact noise arising in the
integrators of the delta modulator, which are likely implemented using switched-capacitor techniques. Even
though we are less confident that we can count on all of this additional noise despite unit-to unit variations, we
do note that it is remarkably Gaussian, and are glad to have it.

To check on this noise estimate, we wrote a program for the eZ430F2013 that accumulated statistics on the
SD16_A output in the upper (normally used) section of the SD16 output register. For comparison, we need a
prediction based on our noise model above for what we should expect. The MSB of the upper output register is
worth 600mV at Gain=1, so its LSB is worth 600mV*2™"> = 18V. At any other gain it is worth 18uV/G. Our
simple model of the filter effect is that it will simply average the noise samples, so we expect them to be

15

Rev H 20 February 2015

attenuated by a factor of 1/+/OSR Thus we predict a noise in f the upper register equal to
64N G 1

G
=3.6—————LSB.
JC 18wV JOSR JOSReC

Plotting this out vs. G /JC Predicted noise
for the various available 3.00
gain settings (tick marks on @
the traces) and interesting =250
values of OSR, we obtain § /
the figure on the right. > 2.00 //
£ 1.50 — +—OSR=64
i OSR=256
T 0.50 _%
-}
2
E 0.00 T T T 1
@ 0.00 2.00 4.00 6.00 8.00
Gain/sqrt(C)

Running a program in an
e€Z430F2013 to calculate .
the mean and standard Observed noise
deviation of 10°
conversions for each of
those cases gives instead
the next figure. It has
approximately the same
shape, but the measured
values are about four
times larger than the
predicted ones. If we
knew where all that came

14.00

12.00
10.00 /
8.00 o
/ / —+—OSR=64
6.00
//,,/ —+—0SR=128
4.00

/ OSR=256
2.00 |

Standard deviation in upper LSB

from and how securely it 0.00
was tied to a thermal 0.00 2.00 4.00 6.00 8.00
source, perhaps we could Gain/sqrt(C)

confidently use a smaller
OSR and generate bytes more rapidly.

The experiments reported above in “How well it works” (done later than these and based on best-fit Gaussian
standard deviation instead of sample standard deviation) have in this revision increased our confidence in the
unaccounted-for extra noise.

16

Rev H 20 February 2015

Why it works so well
When you have a set of data with a Gaussian

distribution and you take those numbers modulo
something comparable with or smaller than their A _—y .
standard deviation, the result always comes out to be | I‘ b= 5p5

nearly uniformly distributed. That is the real key; if you l
have enough Gaussian noise to fill your byte, you don’t 08 b]'
care about much else. The rest of this section will show 1
how that works.
06
In the example at the right, we see some graphs
illustrating how that begins to take effect, where in
these graphs we are taking things modulo 1. In our 04 F .
present application we can think of that unit 1 as being |'|'
one byte; in our hardware the numbers are taken ! l'

Probahility density

modulo 256, which is one byte. In the first figure the 02k | h —
standard deviation of the Gaussian is less than half a /

byte — still a bit small — but when you take the ordinate \f

of the curve modulo 1, that is when you slice it along 0

) . . o 1 2 3 4 5 & 1 8§ @
each of the vertical green lines, superimpose those Datum vahue, units of L SBytes

slices, and add them up as has been done with the

dashed lines on the left side of the graph, you get a sum (heavy black line) that is not yet flat, but already has
sharply limited variation. Throughout this section the mean of the original distribution has been chosen % unit
off-center to cause the maximum possible variation in the black trace.

Well, how about adding a little more noise? When the
Gaussian is only 20% wider, the variations in the heavy
black trace shrink markedly. Let’s plot that black trace
separately, and follow its behavior as we increase ¢
(and thereby increase the width of the Gaussian) by a 08
few more steps. |

1 6 =05 -
L=305

In these graphs below we have shown the X-axis scale in
LSB, 0 to 255, replacing the scale of 0 to 1 bytes, now
that we do not have to also show the Gaussian peak.
The values of pand o are still shown in bytes for 04 4
compactness and would have to be multiplied by 256 to | II
get the corresponding values in LSB. f]

0.6~

Probability density

0 1 2 3 4 5 6 7 8 ¢ 10
Datum value, units of LSEytes

17

Rev H 20 February 2015

The first two graphs represent the two cases shown in full above.

Data modulo one byte Data modulo one b‘i,'te
11 1.1
.] ' =05
Hl g w=3.23
E" 1 :21' 1 %
g 4
0.9 : ' 0.9 ' I
0 100 200 0 100 20
Datum value, units of L3Bit Datum value, units of LSBit

As the standard deviation increases, the probability density rapidly flattens out until its variation becomes
completely invisible when plotted at the original scale.

Data modulo one hvte Data modulo one byte
1.1 T 1.1 T T
) o= |:|'] =07

= :
& =323 £ p =323
g ! Z 1
= £
i 2

08 ' : | |

09
0 100 200 0 100 300

Datum value, units of L3Bit Datum value, units of L3Bit

Now plotting that last case again but allowing the vertical

scale to adjust we see that the shape of the variation has Data modulo one byte

not changed, but that its scale has become so small as to 1.0002 I 5 T 0.7

be undetectable in practice. To get that degree of flatness = B

takes a standard deviation of 0.7 times the modulus 'z 1.0001 K

value. For data taken modulo one byte, that requires 180 A

LSB of noise standard deviation. More noise is better, so :f“ 1

long as it all stays within the input range of the ADC; our =

0OSB=256 case, with a contact noise contribution of Lé (.9409

350LSB, is safe by a wide margin. = I I
09903

Having seen all of these particular examples, let us write 0 100 200

out in general that the probability density of a Gaussian Datum value, units of LSBit

sample with standard deviation ¢ and mean p taken

modulo a number mis g(X+ u,0) = (n)z (X +N-i, O')over the interval [0,n), where N(x,c) is the

Gaussian density function with mean 0 and standard deviation 6. The maximum of this function is at x+p =0, the
minimum is at x+u = n/2. Plotting the fractional difference of these two vs o/n gives the following:

18

Rev H 20 February 2015

Depending on the needs of a given . Deviation from uniform distribution
application, one may choose to work at P ———————

a variety of positions along this curve,

but for sample sizes no larger than 10°, 01 %
the criteria m<1.4c or 6=0.7m would 0.01 %

seem to beadequate, in that any '

systematic deviations from uniformity 1 -11}_3 %

would be lost in the expected statistical

variations in observed frequency. Those

criteria are obviously a bit soft and
while not quite equivalent they have

been used interchangeably in this : %
document. 1 -11}_5 %‘
There is additional value to an 1 -l'l]_'_' %

extremely flat distribution made by

P-F amplitude
=

folding up a Gaussian as we have done 1108
above; you can’t easily disturb it by 0.4 0.6 0.8
adding something else to it. Adding Standard Deviaticn'moedulus

something to the input of the ADC just

moves the mean of the input Gaussian distribution. But when the resulting output distribution is flat, then the
location of the original Gaussian’s peak no longer matters. All that moving the peak could ever do was to move
the location and perhaps reduce the height of that wavy trace we have been watching. If the wave has a small
enough amplitude to be undetectable, then the effect of a change in the mean of the noise is also undetectable.

That is the starting point for a useful way to think about other contributions to our noise generator’s result. All
that any additive (interfering) signal can do is to move that mean. If it moves the mean and leaves it in a new
location, then quite clearly it has no effect on the performance of our generator. We won’t see the same result
of a conversion that we would have seen without the addition, but we will see another value drawn from the
same nearly-flat distribution. It will be just as unpredictable, will be drawn from the same population of values
and will have the same distribution. If the added signal moves the mean back and forth between conversions,
we still won’t have any way to tell that it has done so or any reason to wish that it hadn’t. If it changes back and
forth during a conversion, we expect that all it can do is to broaden the noise distribution, and as we can see
that helps us out. Once we have enough Gaussian noise, it looks like we can relax about interference. So long as
the SD16_A is well enough shielded to do its normal ADC function, it should be able to make high quality noise
bytes.

19

Rev H 20 February 2015

It is worth noting that we do need the SD16_A to be
working well as an ADC, and as already mentioned we
need the entire input noise voltage range to fit within 1 7 Y -

its linear input range. If one tail of the input noise
gets outside the linear range of the ADC function, we
can no longer guarantee a flat noise spectrum in the 08 - 4
result, as illustrated in the plot at the right. The
output value distribution in the case illustrated here is
no longer flat. It has a shape that is just the negative
of the missing tail of the original distribution.

06— —

FProbability density

When the SD16_A is operating with its input range 04 JI‘:I .
symmetric around zero, and with the input shorted as |
we do here, that requirement is easily met and the '.Lf
situation diagrammed here is easily avoided. 02k {

Conclusion
The SD16_A sigma-delta ADC can be operated as an 05 "1 T T o o
excellent random generator of values, where the Datum value, units of L SBytes

source of randomness can be traced to thermal noise.

However a minority of SD16 modules exhibit a preference for generating even numbers rather than odd ones.
The possibly-biased LSB of each result can be removed by shifting the result right one place, but that decreases
the range of numbers that can be generated. If the LSB is retained, any processor used in this service should be

screened to identify and discard those units that show this preference for even numbers.

20

Rev H 20 February 2015

Appendices

About Contact Noise
It is not actually the contact that is noisy.

Whenever you connect a warm resistor across a capacitor, the resistor generates Johnson (thermal) noise and
applies it to the capacitor. Meanwhile the same resistor is discharging that capacitor. As the net result of those
two actions, there is a random voltage appearing across the capacitor, which fluctuates as long as the resistor is
connected. If the RC product is small, the range of frequencies involved may be very large and mostly outside
the passband of a typical sensitive amplifier that may be looking at the capacitor. The amplifier may see nothing
happening. When the resistor is disconnected from the capacitor, as happens every microsecond in the SD16_A,
the voltage suddenly freezes at a definite value and can be seen by narrow-band circuitry. Since a new frozen
value appears any time the capacitor is contacted long enough for a new equilibrium to be established, then
disconnected, the effect has acquired the name contact noise even though the switch contact is not actually the
source of the noise. The electrical resistance of the switch and circuit is the actual source, and what it
contributes is thermal noise.

An electrical engineering text which analyzes this effect might proceed by integrating the Johnson noise
spectrum over the bandwidth defined by the resistor and capacitor, considered as a single-section low-pass
filter, and thereby could derive an expression for how much noise to expect. While it gives a nice picture of what
is going on to anyone who already knows about Johnson noise, that approach is complicated; we won’t do it
that way.

A physicist looking at the same problem would more likely think about the Equipartition Theorem from
Statistical Mechanics. It states (roughly) that any quadratic energy term in a system will have an average value
equal to kT/2 when the system is in thermal equilibrium. In our case, we notice that the voltage across a
capacitor C gives rise to an energy term % CV® which is quadratic in V, its terminal voltage. We can set that term

equal to % kT, then solve for the mean-squared terminal voltage<V ? >=KkT/C ..

At room temperature this becomes V, . =+/<V? > =kT/C = 644V //C for Cin picofarads, the result
qguoted in the body of the note. The 20pF input capacitor of the SD16_A will have a root-mean-square thermal
noise voltage due to this effect of 64,uV/\/ 20 =14,V .

About Random Numbers
There aren’t any. However there are randomly generated numbers.

Once you have a number, however generated, it has a perfectly definite value and there is nothing random
about it. The only thing that can be random about the situation is the way the number was generated. Said more
compactly, a number cannot be random, but its value can be chosen randomly and therefore can be
unexpected. For most purposes it is fair to call the process that generated it truly random if there is no way to
predict (better than chance) the number that the generator is going to make next — even if you have full
knowledge of the generator’s history and internal state.

So it is fair to talk about random number-generators, but not random-number generators. Mostly, people are
not careful about that distinction, but this note will try to be.

21

Rev H 20 February 2015

About Testing for Randomness
There is no good way to do it.

In the output from a perfectly random generator of numbers, at least one with a uniform distribution like we are
trying to make here, all possible bit sequences are equally likely. A string of all ones or all zeros looks to us wildly
non-random, but it is as likely as any other particular sequence in a random generator’s output. In a single-byte
result from the generator proposed here, you will see a solid zero about 15 times a second. You will see a pair of
two zero bytes together more-or-less every 16 seconds, a trio of three in a row more or less every 72 minutes,
four in a row about every twelve days, and so on. No particular sequence of the same length that you could
name would be either more or less likely than one with all bits zero. You can’t call any of them right or wrong,
random or non-random in themselves.

What you can do is to test for properties that a large majority of randomly generated sequences is likely to have,
realizing that any such test will sometimes call foul on a sequence that came out of a perfectly random
generator. A truly random generator must eventually make all possible sequences — including all of those that
fail your test. Also, there may also be chaotic sequences generated by a perfectly predictable (pseudo-random)
process that always pass such a test, which a genuinely random generator could not always do.

In short, a generator that fails a sensible test consistently is with high probability not random. One that fails
rarely may or may not be truly random. One that always passes is with high probability not truly random, though
it may take an impractically long time to adequately explore “always”. So we can test for failed generators, but
not for good ones.

We talked about two tests in some detail in the body of this note, based on the ideas that: 1) all possible byte
values should occur about equally often and 2) pairs of bytes in sequence should be uncorrelated. These are
relatively simple tests that are suggested by the physical process that we expect is going on in our generator.
They characterize that process, which is believed to be fundamentally unpredictable, and they give these
physicist writers a good feeling. They are also likely to catch a programing error should we make one. But they
are not tests for randomness per se. Assurance of that has to come from knowledge of the underlying physics,
and of the electronic and computational structure built atop that physics.

That said, there are some widely accepted tests that are thought to have relevance to cryptographic strength. A
suite of them can be found at http://csrc.nist.gov/groups/ST/toolkit/rng/documentation software.html. Any
random generator of numbers that we want to take seriously ought to be able to pass them, at least most of the
time (and that may be every time we have the patience to try). Again, as should be obvious from the fact that
pseudo-random generators can also pass them, they are not tests for genuine randomness.

A more convenient implementation of some of these and other tests, ready to run on a Windows PC, can be
found at_http://www.phy.duke.edu/~rgb/General/dieharder.php

We have run the same 10°-byte sequence from the MSP430F2013 that discussed above through the NIST test
suite using the supplied default values of the test parameters. The sequence passed all tests. (We did not
successfully explore “always”.) The printout from those tests is included as the last appendix.

22

http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html
http://www.phy.duke.edu/~rgb/General/dieharder.php

Rev H 20 February 2015

About Autocorrelation

N
Given two finite sequences x; and y;, for i=1...N, the means of the two sequences are 1, =<X; >= (ZI/N)Zi:1 X

N Lo .
and u, =<Y; >= (]/N)zi:1 Y; . Here and below we denote an average over all values of i with the pointed

brackets < >.

The covariance of the two sequences is defined as

C=<(X =) (Vi =,)>=<X Yy > = <X gty > =< Y gt >+ < pr -, >

Since the means are constant they may be factored out of the averages to yield a simpler result.

C =<X - Y; > = <X >'ﬂy—< Yi > py + “Hy =<X; Y > 4y “Hy — Hy o By + U, “Hy

=< Xi : yi >_lux '/uy

The autocovariance of a sequence of values X; at lag L is the covariance of that sequence with a copy of itself
shifted by L places. Thatis, C(L) =<X; -Y; > —, - £, where y; = X; | and we assume that the sequence is

now of length at least N+L so that there are still N product terms to average over, and where the sums are still
over the range i=1...N. C(0) is equal to the ordinary variance of the sequence.

The autocorrelation function is I’(L) =C(L)/C(0). The autocorrelation at zero lag, r(0), is always 1; any

sequence is perfectly correlated with itself at zero lag. We are concerned that our sequences not be correlated
with themselves at any lag larger than zero. That is, we want successive values to be independent.

When calculating the autocorrelation in a small processor “on the fly” (processing each value as it is generated
N N
without storing the entire sequence) we need to keep the sums S(L) = Zi:1 X;_, and SS(O,L) = Zi:l X; - Xi_,

for L=0 and for all other values of L that are of interest. This is conveniently done by first populating a history
array h; that is as long as the largest lag to be calculated, then as each new value comes in

1) Copy each element of the history array into the next higher location; hj+l = hj with values of j
decreasing.{for(j=0;j<LMAX; j++) h[j+1]=h[j+1] }

2) Copy the new sequence value into hjyax, {h[LMAX]=x}

3) Maintain the sums, reading the value of x;,, from h__{ SS[L] +=h[0]*h[L]}.

When the entire record has been processed in this way, we calculate

C(L) = (SS(0,L) —(S(L) /N J*(S(0)/v/N))/ N

r(L) = Scale*C(L)/C(0)

The sum of products can be large when processing a large file. A random million-byte file will generate a sum of

squares with a value approximately 128°x10°~2** that will overflow a four-byte field. The sum cannot be
accumulated to adequate precision either as a 32-bit integer or in single precision floating point.

A million-word sample will result in sums as large as 2'°* 10°<2'°*2%°=2°° and a sum of squares as large as
232%10°< 2°%*2%°= 2°%, The resulting covariance can be as large as 2*%. Autocorrelation calculations for 16-bit
full-word data calculated on the fly as suggested above must do their sums in 64-bit long long variables in
MSP430 C. Even with 64-bit variables, care is necessary (for instance breaking up one factor of N in the
denominator for C(L) above into two factors of N) in order to both maintain precision and to avoid overflow
when doing what is effectively a fixed-point calculation with integers.

23

Rev H 20 February 2015

Handling these64-bit variables slows the calculation significantly, and one must check that a calculation done
“on the fly” can keep up with the rate of data production. The requirement that data overrun not occur, and
that no data is lost, is one limit to the number of lags that can be computed on one data set to something like six
when running at OSR=256. One assumes that a floating point calculation would be much worse.

Program for the eZ430-F2013

The program below loaded into an eZ430-F2013 will send randomly generated bytes in start-stop serial format
at 115.2 KBaud out through P1.1, which is pin 3 of the MSP430F2013 processor included in the eZ430-F2013.
The oversampling ratio may be changed by altering a statement just below the comment line // SD_16. However
notice the warning message just above that line.

The program works as described in the text only for OSR > 128. For smaller oversampling ratios, characters are
produced faster than they can be sent. The program will still run, but successive characters in the serial
communication output will no longer represent successive characters in the generator output.

There are two separate files below, Main.c and Timer_A.c. They were compiled using IAR Embedded
Workbench.

//File Main.c

// Random Number generator test, target is MSP430F2013,
#include <msp430f2013.h>

int send_byte(char);

unsigned char Datum;

volatile unsigned int v =0;

int main(void)

{

// Disable watchdog timer
WDTCTL = WDTPW + WDTHOLD;

// Set DCO to 16MHz, which is OK at 3.3V Vcc.
BCSCTL1 = CALBC1_16MHZ;
DCOCTL = CALDCO_16MHZ;

// Configure the ports

//P1

P1OUT=0; //Outputsare low

P1DIR = OxFF; // All pins are output
P1SEL = BIT1; // And Bitl is timer output.
//P2

P20UT =0;

P2DIR = 0;

P2REN = OxFF;

// Timer_A
// P1.1 = data output Pin 3 of DIP package. (LED is P1.0, pin 2)
TACCRO =139; // =16 MHz/115.2 KBaud

24

TACCTLO = OUTMOD_1 + CCIE; // Set on event, enable interrupt;
TACTL = TASSEL_2 +ID_0 + MC_1;

// This SHIFT definition is the SD_16 register position from which the

// LSBit of the data byte is taken. SHIFT <= 8. Ordinarily O or 8.

#define SHIFT 0

// It and the oversampling ratio set below define the case.

// OSR >= 128 assumed so bytes are sent faster than they are produced.

//SD_16

//1 MHz, (MCLK/16), turn reference generator on.

SD16CTL = SD16XDIV_2 + SD16DIV_0+ SD16SSEL_O + SD16REFON;
// Oversampling ratio set, enable LSB access, no interrupts,
SD16CCTLO = SD160OSR_256 + SD16LSBACC;

// Gain =32, channel is 7 (shorted)

SD16INCTLO = SD16GAIN_32 + SD16INCH_7;

// Now Go

SD16CCTLO |=SD16SC;

//***************************************

v = SD16MEMO; // Clear any leftover data.

//***

__enable_interrupt();

// Event loop starts here

while(1)

{

// Wait for next value

while((SD16IFG & SD16CCTLO) == 0) v++;

// Shift during this assignment to move up the filter register.
Datum = SD16MEMO>>SHIFT;

send_byte(Datum);

}// End the event loop.

}// end main

Rev H 20 February 2015

25

// File Timer_A.c
#include <msp430f2013.h>

// Set TACCTLO to one of these to either set or clear P1.1 on next event.

// Temporary reversal for test

#define SET OUTMOD_1 + CCIE

#define RESET OUTMOD_5 + CCIE

enum {idle = 0, start, bit0, bitl, bit2, bit3, bit4, bit5, bit6, bit7, stop};
unsigned int serial_out_state = idle;

unsigned char Out;

// This routine called from main to initiate character output
// Return 0O for character accepted, 1 for refused (overrun).
int send_byte(char Outchar)
{
if(serial_out_state == idle)
{
Out = Outchar;
serial_out_state = start;
return(0);
}

return(1); //Overrun error return

}

#pragma vector=TIMERAO_VECTOR
__interrupt void Timer_AO(void)
{
switch(serial_out_state)
{
case idle:
{
TACCTLO = SET; // Set Idle line and wait for send_byte to be called.
break;

}

case start:
{
TACCTLO = RESET; // Make start bit
serial_out_state = bit0;
break;
}
// Send next bit of character.
case bit0:
case bitl:
case bit2:
case bit3:
case bit4:
case bit5:
case bit6:

Rev H 20 February 2015

26

case bit7:
{
if((Out&0x01) == 0) TACCTLO = SET; //if bitis 0, output is 1
else TACCTLO = RESET; // and vice versa.
Out=0ut>>1; // shift to next bit
serial_out_state++; // increment to next state.
break;
}
case stop:
{

TACCTLO = SET; // Set Idle line and
serial_out_state =idle; // go to idle state.
break;
}
default:
{
serial_out_state = idle;
break;
}
} //End switch(serial_out_state)
}//End __interrupt void Timer_AO(void)

Rev H 20 February 2015

27

Rev H 20 February 2015

Results of The NIST STS suite
These tests were performed running the STS test suite with the default parameters supplied by NIST.

STS Run

06 December 2013

RKG

Notes:

1) The data file, ekstrom.raw, is a file of 1076 random bytes captured from a CPU
configured to stream randomly generated numbers generated by the SD 16A in the
processor of the EZ430F2013, using the program given in the previous section.

2) The data file contains the bits in binary format. Each byte of data in the file
contains 8 bits of randomly generated data

Tests:
01 Frequency Test: Monobit
02 Frequency Test: Block
03 Cumulative Sums Test
04 Runs Test
05 Test for the Longest Runs of Ones in a Block
06 Binary Matrix Rank Test
07 Discrete Fourier Transform (Spectral Test)
08 Non-Overlapping Template Matching Test
09 Overlapping Template Matching Test
10 Maurer's Universal Statistical Test
11 Approximate Entropy Test
12 Random Excursions Test
13 Random Excursions Variant Test
14 Serial Test
15 Linear Complexity Test
FREQUENCY TEST
COMPUTATIONAL INFORMATION
(a) The nth partial sum = -898
(b) S n/n = -0.000898
SUCCESS p_value = 0.369186
BLOCK FREQUENCY TEST
COMPUTATIONAL INFORMATION
(a) Chi~2 = 7967.437500
(b) # of substrings = 7812
(c) block length = 128
(d) Note: 64 bits were discarded.
SUCCESS p _value = 0.107356

28

CUMULATIVE SUMS (FORWARD) TEST

Rev H 20 February 2015

SUCCESS p_value = 0.705472
CUMULATIVE SUMS (REVERSE) TEST
COMPUTATIONAL INFORMATION:
(a) The maximum partial sum = 1494
SUCCESS p value = 0.270336
RUNS TEST
COMPUTATIONAL INFORMATION:
(a) Pi = 0.499551
(b) V.n obs (Total # of runs) = 500177
(c¢) V.n obs - 2 n pi (l-pi)
——————————————————————— = 0.250886
2 sqrt(2n) pi (l-pi)
SUCCESS p_value = 0.722734
LONGEST RUNS OF ONES TEST
COMPUTATIONAL INFORMATION:
(a) N (# of substrings) = 100
(b) M (Substring Length) = 10000
(c) Chi~2 = 3.894568
FREQUENCY
<=10 11 12 13 14 15 >=16 P-value Assignment
7 28 22 16 13 6 8
SUCCESS p_value = 0.690942

RANK TEST

(a) Probability P 32 = 0.288788
(b) P 31 = 0.577576
(c) P 30 = 0.133636
(d) Frequency F 32 = 278
(e) F 31 = 593
(f) F 30 = 105
(g) # of matrices = 976

29

(h) Chi~2 = 6.531766

(i) NOTE: 576 BITS WERE DISCARDED.

Rev H 20 February 2015

SUCCESS p_value = 0.038163
FFT TEST

COMPUTATIONAL INFORMATION:

(a) Percentile = 94.965800

(b) N 1 = 474829.000000

(c) N o = 475000.000000

(d) d = -1.569204
SUCCESS p value = 0.116601

NONPERIODIC TEMPLATES TEST
COMPUTATIONAL INFORMATION
LAMBDA = 244.125000 M = 125000 N = n = 1000000

FREQUENCY
Template 1 w2 w3 w4 W5 We W7 Chi~2 P value Assignment
Index
000000001 233 237 232 250 240 239 236 4.188479 0.839730 SUCCESS 0
000000011 228 247 235 216 245 241 219 9.069123 0.336498 SUCCESS 1
000000101 241 238 271 234 222 221 265 3.412770 0.098415 SUCCESS 2
000000111 249 248 255 202 245 235 233 9.476903 0.303674 SUCCESS 3
000001001 248 242 253 239 223 243 249 7.977121 0.435708 SUCCESS 4
000001011 235 231 270 227 249 237 257 6.179714 0.627109 SUCCESS 5
000001101 252 232 227 255 233 255 248 5.983768 0.649050 SUCCESS 6
000001111 249 250 235 211 246 229 233 7.999364 0.433532 SUCCESS 7
000010001 225 225 262 254 265 250 251 7.058823 0.530300 SUCCESS 8
000010011 257 221 238 250 235 279 248 8.877414 0.352743 SUCCESS 9
000010101 229 253 229 253 240 256 256 4.470217 0.812405 SUCCESS 10
000010111 229 236 264 249 255 256 241 4.442679 0.815140 SUCCESS 11
000011001 259 266 253 256 246 243 238 9.227998 0.323429 SUCCESS 12
000011011 248 253 214 258 240 233 254 7.459188 0.487994 SUCCESS 13
000011101 267 238 218 229 227 233 232 8.626391 0.374786 SUCCESS 14
000011111 239 235 225 222 243 208 234 15.283260 0.053866 SUCCESS 15
000100011 241 238 245 246 235 236 259 1.791582 0.986748 SUCCESS 16
000100101 251 264 258 280 244 221 257 11.372813 0.181456 SUCCESS 17
000100111 252 225 231 221 253 272 251 13.212587 0.104741 SUCCESS 18
000101001 249 233 279 248 235 228 223 9.599766 0.294248 SUCCESS 19
000101011 241 276 236 230 249 237 259 6.738954 0.565042 SUCCESS 20
000101101 223 266 274 247 262 239 255 10.034025 0.262646 SUCCESS 21
000101111 249 236 237 220 249 253 237 3.782817 0.876168 SUCCESS 22
000110011 245 269 247 262 233 246 236 4.837748 0.774769 SUCCESS 23
000110101 234 250 250 273 256 266 256 7.486727 0.485140 SUCCESS 24
000110111 228 229 226 245 250 243 267 6.803564 0.557968 SUCCESS 25
000111001 257 219 262 259 227 238 265 9.268247 0.320175 SUCCESS 26
000111011 268 236 231 240 240 250 229 5.036872 0.753628 SUCCESS 27
000111101 247 243 275 224 247 247 272 11.778474 0.161365 SUCCESS 28

30

Rev H 20 February 2015

000111111 239 256 233 241 234 208 237 228 8.554368 0.381270 SUCCESS 29
001000011 266 274 238 218 243 236 253 245 9.481139 0.303345 SUCCESS 30
001000101 219 227 241 251 258 279 232 242 10.769087 0.215129 SUCCESS 31
001000111 238 235 271 245 222 232 251 256 7.069415 0.529162 SUCCESS 32
001001011 265 249 243 280 235 237 249 248 8.137056 0.420198 SUCCESS 33
001001101 224 220 241 245 262 258 220 237 9.076537 0.335881 SUCCESS 34
001001111 243 206 236 254 255 259 258 271 12.170366 0.143763 SUCCESS 35
001010011 249 242 264 253 240 206 228 249 9.559518 0.297312 SUCCESS 36
001010101 243 224 220 243 217 224 231 260 10.823105 0.211925 SUCCESS 37
001010111 243 259 232 225 249 259 239 225 5.814301 0.668024 SUCCESS 38
001011011 233 281 233 239 240 237 249 239 7.419999 0.492068 SUCCESS 39
001011101 230 260 254 226 240 239 258 238 4.875878 0.770756 SUCCESS 40
001011111 248 226 247 240 247 247 257 247 2.369888 0.967522 SUCCESS 41
001100101 268 251 247 229 234 259 230 277 10.415325 0.237076 SUCCESS 42
001100111 238 246 250 251 236 247 219 239 3.620765 0.889618 SUCCESS 43
001101011 237 258 239 264 261 243 246 255 4.543300 0.805086 SUCCESS 44
001101101 252 238 236 256 234 222 249 221 6.173359 0.627820 SUCCESS 45
001101111 234 251 220 233 249 253 241 242 4.119633 0.846172 SUCCESS 46
001110101 234 251 227 226 253 218 240 252 6.828984 0.555192 SUCCESS 47
001110111 255 233 234 241 242 237 223 207 9.465252 0.304579 SUCCESS 48
001111011 268 251 273 207 236 252 242 269 15.169929 0.055924 SUCCESS 49
001111101 240 241 233 252 227 253 235 236 3.109187 0.927320 SUCCESS 50
001111111 263 245 215 245 228 212 235 247 10.971388 0.203326 SUCCESS 51
010000011 248 243 224 258 219 251 248 222 7.612768 0.472180 SUCCESS 52
010000111 244 238 238 215 246 227 244 216 8.520474 0.384346 SUCCESS 53
2

010001011 231 240 249 236 250 262 252 247 .979968
010001111 214 248 263 259 245 223 259 261 10.393083
010010011 250 199 259 242 254 220 222 251 14.882895
010010111 249 262 223 266 216 242 239 267 11.070950
010011011 233 247 238 261 263 237 235 243 4.007361
010011111 227 245 231 264 250 248 251 277 8.638042
010100011 253 224 246 245 258 242 267 254 5.532562
010100111 235 264 264 258 270 219 238 262 11.539102
010101011 235 241 229 251 226 229 245 254 4.340999
010101111 227 249 245 241 242 253 251 231 2.670691
010110011 250 261 222 245 251 243 244 261 4.841985

0

7

5

.935608 SUCCESS 54
.238513 SUCCESS 55
.061463 SUCCESS 56
.197711 SUCCESS 57
.856459 SUCCESS 58
.373744 SUCCESS 59
.699430 SUCCESS 60
.172983 SUCCESS 61
.825122 SUCCESS 62
.953296 SUCCESS 63
.774324 SUCCESS 64
.224647 SUCCESS 65
.499929 SUCCESS 66
.699665 SUCCESS 67
.747362 SUCCESS 68
.141783 SUCCESS 69
.074875 SUCCESS 70
.215572 SUCCESs 71
.591806 SUCCESS 72
.253899 SUCCEss 73
.839730 SUCCESS 74

010110111 216 253 259 221 246 234 271 237 10.612331
010111011 252 274 246 231 257 255 250 261 .344798
010111111 226 233 240 255 258 263 255 237 .530444
011000111 252 259 230 237 230 244 256 226 5.09512¢6
011001111 250 244 240 243 215 226 210 222 12.216970
011010111 257 233 243 232 263 272 279 220 14.274932
011011111 247 263 218 259 260 228 271 238 10.761673
011101111 271 253 240 242 225 247 247 226 6.496405
011111111 245 250 206 243 259 244 242 218 10.161125
100000000 233 237 232 250 240 239 236 267 4.188479

eNoNeoNoNeoNoNoBolNoholoNoNolNololNoNoNoBoNoNoNeoloNoNolNoNoNoNoNoNoloNoloNohoNoholNoholNoNoNoNoNoNoloNolBoNoNolNololNololelNo)

100010000 258 247 248 242 251 236 256 262 3.364446 0.909452 SUCCESS 75
100100000 237 241 252 250 226 253 251 246 2.606082 0.956600 SUCCESS 76
100101000 243 248 246 224 244 238 265 269 6.426500 0.599571 SUCCESS 77
100110000 218 245 242 230 241 236 253 255 4.915068 0.766614 SUCCESS 78
100111000 236 233 268 254 246 236 250 254 4.486105 0.810822 SUCCESS 79
101000000 232 238 241 213 235 241 230 239 6.278216 0.616099 SUCCESS 80
101000100 272 239 227 267 228 259 231 261 10.837933 0.211052 SUCCESS 81
101001000 249 240 259 239 240 259 252 231 3.223577 0.919553 SUCCESS 82
101001100 240 261 258 222 227 249 233 242 6.054732 0.641101 SUCCESS 83
101010000 257 230 221 246 219 247 247 230 7.417881 0.492289 SUCCESS 84
101010100 277 231 210 239 241 261 202 250 19.265730 0.013501 SUCCESS 85

31

101011000
101011100
101100000
101100100
101101000
101101100
101110000
101110100
101111000
101111100
110000000
110000010
110000100
110001000
110001010
110010000
110010010
110010100
110011000
110011010
110100000
110100010
110100100
110101000
110101010
110101100
110110000
110110010
110110100
110111000
110111010
110111100
111000000
111000010
111000100
111000110
111001000
111001010
111001100
111010000
111010010
111010100
111010110
111011000
111011010
111011100
111100000
111100010
111100100
111100110
111101000
111101010
111101100
111101110
111110000
111110010
111110100

210
272
254
239
250
241
235
215
235
262
239
229
221
241
261
258
259
240
231
256
237
250
264
263
269
202
244
234
259
218
214
233
259
218
248
243
250
249
215
261
229
232
214
260
258
234
261
246
251
253
246
240
245
245
270
255
240

232
2601
264
228
2601
265
230
240
259
239
240
223
229
239
238
267
221
254
231
227
241
247
226
248
248
237
256
269
258
231
236
235
235
271
228
221
276
223
225
222
220
244
245
247
271
257
250
242
246
233
227
241
240
248
250
241
232

255
242
271
249
253
235
241
244
235
257
252
250
248
233
254
253
241
235
246
218
234
232
230
234
219
259
261
224
243
252
249
232
250
253
245
247
235
223
239
240
241
238
243
257
226
247
225
247
254
215
231
243
235
256
239
232
220

264
219
257
250
250
207
249
217
234
238
232
226
275
239
237
245
243
239
229
252
233
263
239
239
247
267
249
241
261
236
220
223
219
274
220
225
218
218
225
220
222
253
248
245
244
240
209
223
219
253
264
249
261
230
280
217
250

246
255
247
233
258
231
237
236
228
226
249
252
223
235
244
237
236
240
262
245
225
240
252
234
251
216
232
218
241
266
252
227
250
230
245
226
236
258
264
235
233
266
226
245
219
258
264
247
218
242
241
275
241
240
251
230
234

246
243
232
254
238
247
253
225
241
212
236
276
270
216
240
232
260
223
258
252
246
228
225
249
266
222
247
268
214
252
229
247
235
229
215
272
254
228
258
226
223
222
255
260
249
269
229
219
246
238
235
248
277
262
225
239
224

211
238
248
246
237
242
249
248
243
284
231
257
259
262
240
256
244
254
246
230
241
221
264
252
215
221
253
243
214
235
236
253
235
280
265
245
242
247
249
261
253
287
228
248
213
249
256
258
221
248
236
265
242
254
270
239
255

242
235
264
246
216
250
244
211
259
258
284
233
228
249
245
254
253
282
244
261
213
263
234
243
244
244
235
255
227
234
207
237
274
233
238
243
265
260
248
231
222
263
220
255
235
231
267
243
260
257
240
264
253
211
241
250
227

=

=
S W HE O oD o oo N

=
o Ol

= e = =
WU IR O WORNIJdoYJdd O N 0D

= = = =
N WO OWWOWO W

I
g w ;m

N
~N O WwWw Jdo d > oo

.428803
.210138
.244032
.427083
.373541
.009810
.989646
.324859
.163059
.642318
.915544
10.
.103347
.946697
.141107
.217990
.930955
.402761
.628033
.311964
.925368
.262183
.942169
.921714
.216056
.578331
.248997
.626100
.938408
.241000
.041915
.216930
. 743959
.858097
.236472
.548013
.253273
.793594
.457838
.499145
.372959
.514304
.377341
.443884
.499767
.511379
.586473
.490196
.542571
.729568
.406667
.841548
.607618
.997246
.174457
.496551
.200751

191841

eNoNeoNoNeoNoNoBolNoholBoNoNoNololNoNoNooNolNoNoloNoNolNoNoNoNoNoNoloNoloNooNoBolNoholNoNoNoNoNoNoloNolBoNolNolNololNololNolNo)

Rev H 20 February 2015

.133073
.413217
.410003
.965044
.605466
.341469
.981328
.101150
.842120
.047795
.349471
.251819
.079111
.653203
.976377
. 734043
. 764930
.309466
.796491
.503378
.544706
.508627
.439140
.939174
.189755
.017285
.917774
.223798
.153973
.510868
.080679
. 734159
.364354
.022316
.322742
.381846
.247698
.279813
.305156
.301952
.239818
.069307
.311470
.903501
.130259
.701779
.093201
.704126
.298609
.677495
.818697
.449099
.579497
.433739
.105986
.703422
.515136

SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS

86

87

88

89

90

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

32

Rev H 20 February 2015

111110110 230 250 230 257 232 254 248 244 3.638771 0.888157 SUCCESS 143
111111000 251 260 229 244 240 211 241 214 10.844288 0.210679 SUCCESS 144
111111010 256 233 220 259 254 238 254 223 7.400934 0.494056 SUCCESS 145
111111100 272 244 228 243 260 227 224 229 9.394288 0.310133 SUCCESS 146
111111110 245 250 206 243 259 244 242 218 10.161125 0.253899 SUCCESS 147
OVERLAPPING TEMPLATE OF ALL ONES TEST

COMPUTATIONAL INFORMATION:

(a) n (sequence_ length) = 1000000

(b) m (block length of 1s) =9

(c) M (length of substring) = 1032

(d) N (number of substrings) = 968

(e) lambda [(M-m+1)/2”m] = 2.000000

(f) eta = 1.000000

FREQUENCY
0 1 2 3 4 >=5 Chi~2 P-value Assignment
359 194 137 97 60 121 4.106682 0.534161 SUCCESS
UNIVERSAL STATISTICAL TEST

COMPUTATIONAL INFORMATION:

(a) L =7

(b) Q = 1280

(c) K = 141577

(d) sum = 877347.519730

(e) sigma = 0.0027068

(f) variance = 3.125000

(g) exp value = 6.196251

(h) phi = 6.196964

(1) WARNING: 1 bits were discarded.
SUCCESS p value = 0.796777

APPROXIMATE ENTROPY TEST

COMPUTATIONAL INFORMATION

(a) m (block length) = 10

(b) n (sequence length) = 1000000

(c) Chi~2 = 1083.704253

(d) Phi (m) = -6.930968

(e) Phi (m+1) = -7.623573

(f) ApEn = 0.692605

(g) Log(2) = 0.693147
SUCCESS p value = 0.095242

33

RANDOM EXCURSIONS TEST

(a) Number Of Cycles
(b) Sequence Length

(J) = 1730
(n) = 1000000

(c) Rejection Constraint = 500.000000

Rev H 20 February 2015

SUCCESS x = -4 chi®2 = 2.121795 p value = 0.832049
SUCCESS x = -3 chi”®2 = 4.219629 p value = 0.518247
SUCCESS x = -2 chi®2 = 7.092899 p value = 0.213822
SUCCESS x = -1 chi”2 = 11.611561 p value = 0.040516
SUCCESS x = 1 chi®2 = 8.154913 p value = 0.147902
SUCCESS x = 2 chi®2 = 0.794205 p value = 0.977401
SUCCESS x = 3 chi®2 = 2.269508 p value = 0.810735
SUCCESS x = 4 chi”2 = 2.720236 p value = 0.743022
RANDOM EXCURSIONS VARIANT TEST

COMPUTATIONAL INFORMATION:

(a) Number Of Cycles (J) = 1730

(b) Sequence Length (n) = 1000000
SUCCESS (x = -9) Total visits = 1823; p-value = 0.701378
SUCCESS (x -8) Total visits = 1750; p-value = 0.930043
SUCCESS (x -7) Total visits = 1755; p-value = 0.906165
SUCCESS (x = -6) Total wvisits = 1789; p-value = 0.762328
SUCCESS (x = =-5) Total visits = 1759; p-value = 0.869465
SUCCESS (x -4) Total visits = 1688; p-value = 0.787257
SUCCESS (x -3) Total visits = 1722; p-value = 0.951500
SUCCESS (x = =2) Total wvisits = 1873; p-value = 0.160444
SUCCESS (x = -1) Total wvisits = 1833; p-value = 0.079937
SUCCESS (x = 1) Total visits = 1839; p-value = 0.063874
SUCCESS (x = 2) Total visits = 1854; p-value = 0.223570
SUCCESS (x = 3) Total visits = 1760; p-value = 0.819580
SUCCESS (x = 4) Total wvisits = 1749; p-value = 0.902831
SUCCESS (x = 5) Total wvisits = 1733; p-value = 0.986436
SUCCESS (x = 6) Total visits = 1737; p-value = 0.971377
SUCCESS (x = 7) Total visits = 1726; p-value = 0.984952
SUCCESS (x = 8) Total wvisits = 1798; p-value = 0.765332
SUCCESS (x = 9) Total wvisits = 1967; p-value = 0.328467

(a) Block length
(b) Sequence length
(c) Psi m

(d) Psi m-1

(e) Psi m-2

(f) Del 1

(g) Del 2

(m) = 16

(n) = 1000000
= 65563.586560
= 32968.732672
= 16480.137216
= 32594.853888
= 16106.258432

34

Rev H 20 February 2015

SUCCESS p _valuel = 0.750144
SUCCESS p_value2 = 0.938145

|
o

M (substring length) = 500
N (number of substrings) = 2000

Note: 0 bits were discarded!
21 62 281 980 505 114 37 5.788698 0.447272

35

